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Abstract——Atherosclerosis is a leading cause of
cardiovascular disease worldwide, and hypercholes-
terolemia is a major risk factor. Preventive treatments
mainly focus on the effective reduction of low-density
lipoprotein cholesterol, but their therapeutic value
is limited by the inability to completely normalize
atherosclerotic risk, probably due to the disease
complexity andmultifactorial pathogenesis. Consequently,
high-density lipoprotein cholesterol gained much interest,
as it appeared to be cardioprotective due to its major
role in reverse cholesterol transport (RCT). RCT
facilitates removal of cholesterol from peripheral
tissues, including atherosclerotic plaques, and its
subsequent hepatic clearance into bile. Therefore,
RCT is expected to limit plaque formation and
progression. Cellular cholesterol efflux is initiated
and propagated by the ATP-binding cassette (ABC)
transporters ABCA1 and ABCG1. Their expression and
function are expected to be rate-limiting for cholesterol
efflux, whichmakes them interesting targets to stimulate
RCT and lower atherosclerotic risk. This systematic
review discusses the molecular mechanisms relevant
for RCT and ABCA1 and ABCG1 function, followed by
a critical overview of potential pharmacological

strategies with small molecules to enhance cellular
cholesterol efflux and RCT. These strategies include
regulation of ABCA1andABCG1expression, degradation,
and mRNA stability. Various small molecules have been
demonstrated to increase RCT, but the underlying
mechanisms are often not completely understood
and are rather unspecific, potentially causing
adverse effects. Better understanding of these
mechanisms could enable the development of safer
drugs to increase RCT and provide more insight into its
relation with atherosclerotic risk.

Significance Statement——Hypercholesterolemia is
an important risk factor of atherosclerosis, which is
a leading pathological mechanism underlying cardio-
vascular disease. Cholesterol is removed from athero-
sclerotic plaques and subsequently cleared by the liver
into bile. This transport is mediated by high-density
lipoprotein particles, to which cholesterol is
transferred via ATP-binding cassette transporters
ABCA1 and ABCG1. Small-molecule pharmacolog-
ical strategies stimulating these transporters may
provide promising options for cardiovascular disease
treatment.

I. Introduction

A. The Importance of Plasma Cholesterol for
Cardiovascular Disease

Cardiovascular disease (CVD) comprises a wide range
of disorders, includingmyocardial infarction and stroke,
for which atherosclerosis is the major pathologic mech-
anism. CVD is associated with severe morbidity and
one of the leading causes of mortality worldwide, with
17.5 million annual deaths accounting for almost

one-third of all deaths (WHO, 2008, 2014; Taylor et al.,
2011). The etiology of atherosclerosis is complex and
multifactorial, but hypercholesterolemia and particu-
larly increased low-density lipoprotein (LDL) cholesterol
(LDL-C) levels are acknowledged as major risk factors
(Levine et al., 1995; De Backer et al., 2003; Taylor et al.,
2011; Ridker, 2014; Piepoli et al., 2016). Together with
very LDL (VLDL) and intermediate-density lipoprotein
particles, cholesterol- and triglyceride-loaded LDL par-
ticles facilitate lipid and cholesterol transport from the

ABBREVIATIONS: ABC, ATP-binding cassette; AC, adenylate cyclase; AICAR, 5-aminoimidazole-4-carboxyyamide ribonucleoside; AMPK,
AMP-activated protein kinase; apo, apolipoprotein; CETP, cholesteryl ester transfer protein; CVD, cardiovascular disease; DMHCA, N,N-
dimethyl-3b-hydroxycholenamide; ERK, extracellular signal-regulated kinase; GPR, G protein–coupled receptor; HDL, high-density lipo-
protein; HDL-C, HDL cholesterol; HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A; HO-1, heme oxygenase-1; IDL, intermediate density
lipoprotein; IMM-H007, triacetyl-3 hydroxyphenyl-adenosine; LDL, low-density lipoprotein; LDL-C, LDL cholesterol; LDLR, LDL receptor;
LXR, liver X receptor; LXRE, LXR response element; MAPK, mitogen-activated protein kinase; MC1-R, melanocortin 1 receptor; miRNA,
microRNA; NBD, nucleotide binding domain; Nrf, nuclear factor-like; ox-LDL, oxidized LDL; PDE, phosphodiesterase; PEST, Pro-Glu-Ser-
Thr; PKA, protein kinase A; PKC, protein kinase C; PKD, protein kinase D; PPAR, peroxisome proliferator-activated receptor; RA,
retinoic acid; RAR, retinoid-activated receptor; RCT, reverse cholesterol transport; RXR, retinoid X receptor; SR-B1, scavenger receptor B1;
SREBP-1c, sterol regulatory-binding element protein 1c; TMD, transmembrane domain; TNF, tumor necrosis factor; TTNPB, 4-[(E)-2-(5,6,7,8-
Tetrahydro-5,5,8,8-tetramethyl-2-naphtalenyl)-1-propenyl]benzoic acid; VLDL, very LDL.
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liver to peripheral tissues (Hegele, 2009; Kingwell et al.,
2014) (Fig. 1). Hepatic lipases and lipoprotein lipases
mediate the formation of LDL particles from VLDL
particles, the latter containing high triglycerides, but

moderate cholesterol and phospholipid concentrations
(Fig. 1, right panels), whereas LDL particles contain
high cholesterol and moderate phospholipid concentra-
tions and almost no triglycerides (Kwiterovich, 2000;

Fig. 1. Cholesterol uptake, distribution, and peripheral utilization. (I) Schematic overview illustrating intestinal cholesterol (light yellow spheres)
uptake by enterocytes, including cholesterol esterification and apoB-48 binding, which facilitates cholesterol efflux to the lymphatic system. (II) The
resulting nascent chylomicrons are subsequently transported to the blood, where they collide with HDL particles that transfer apoE and apoC-II to
chylomicrons, leading to their maturation. (III) Mature chylomicrons can be converted to chylomicron remnants by endothelial lipoprotein lipase (LPL)
activated by apoC-II, which releases free fatty acids (yellow spheres) for uptake in peripheral tissues (e.g., muscles and fat) and apoC-II for translocation
to HDL. (IV) Next, chylomicron remnants are imported into hepatocytes via the chylomicron remnant receptor (CRR), which releases the remaining cholesterol
and apoE by lysosomal degradation. The resulting hepatic free cholesterol, which may also originate from de novo synthesis, can be exported as VLDL particles
upon binding to apoB-100. (III) Removal of triglycerides by endothelial LPL converts VLDL particles into intermediate density lipoprotein (IDL) particles. They
can collide with HDL to acquire apoE. (IV) Hepatic lipase (HL) subsequently hydrolyzes the remaining triglycerides in IDL, which forms LDL particles (III)
that can also be formed by LPL (III) out of IDL particles, and that are able to release cholesterol to peripheral tissues via LDLR.
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Guyton and Hall, 2011). Once formed, circulating LDL
particles are removed from the plasma via the interac-
tion of apolipoprotein (apo)B-100 (i.e., one of the LDL
particle lipoproteins) with LDL receptors (LDLRs)
mainly expressed on liver, but also various other tissues
(e.g., lungs, kidneys, urinary bladder, gastrointestinal
tract, and adipose tissue). However, if the plasma levels
of LDL particles increase, they may accumulate in the
arterial wall, where they become proinflammatory by
enzymatic oxidation. Subsequently, these proinflam-
matory LDL particles stimulate endothelial cells and
smooth muscle cells in the tunica intima (i.e., the
innermost arterial layer) to express adhesion mole-
cules and chemoattractants for the recruitment of
monocytes, lymphocytes, and neutrophils. In addition,
oxidized LDL (ox-LDL) particles can also directly induce
a proinflammatory state in monocytes (i.e., inflammatory
priming) and accelerate the formation of foam cells
(Bekkering et al., 2014). This is preceded by macro-
phage formation from monocytes, after they have
entered the arterial wall guided by chemoattractants.
These macrophages recognize and engulf cholesterol,
finally yielding foam cells (Insull, 2009; Libby et al.,
2011; Maiolino et al., 2013; Bentzon et al., 2014).
Consequently, these lipid-loaded macrophages can
result in atherosclerotic plaque formation, contribut-
ing to an increased risk of CVD (Levine et al., 1995;
Kwiterovich, 2000; De Backer et al., 2003; Guyton and
Hall, 2011; Taylor et al., 2011; Ridker, 2014; Piepoli
et al., 2016).

B. Statins as the Cornerstone of Cardiovascular
Disease Treatment

The strong association between high LDL-C levels,
atherosclerotic plaque formation, and CVD led to the
development of multiple LDL-lowering therapies.
To date, statins are among the most widely used
LDL-C–lowering therapies (Downs et al., 1998; Baigent
et al., 2005; Karalis, 2009; Piepoli et al., 2016), leading
to a decrease of 22% in CVD risk with every millimole
per liter LDL-C reduction, as quantified in ameta-analysis
(Baigent et al., 2010). Statins inhibit 3-hydroxy-3-
methylglutaryl-coenzyme A (HMG-CoA) reductase,
which is the rate-limiting enzyme in cholesterol syn-
thesis that mediates the conversion of HMG-CoA into
mevalonate (Sacks et al., 1996; Taylor et al., 2011; Cruz
et al., 2013). Because statins effectively reduce LDL-C,
they comprise the cornerstone of atherosclerosis pre-
vention strategies. Although generally well-tolerated,
statin-inducedmuscle complaints are observed in 7%–29%
of all users (Bitzur et al., 2013; Wilkinson et al., 2014;
Stroes et al., 2015), which contribute significantly to the
high discontinuation rate observed with statin therapy.
Myopathic symptoms range from very rare cases of
rhabdomyolysis to muscle complaints with normal or
minimally elevated creatine kinase levels (Bitzur et al.,
2013; Wilkinson et al., 2014; Stroes et al., 2015).

These complaints are expected to result from a combi-
nation of drug-related (e.g., relative potency, statin
metabolism, drug–drug interactions, dose, and lipophi-
licity) and patient-related (e.g., age, comorbidities,
ethnicity, and gender) factors. At the molecular level,
many mechanisms have been proposed, with a pivotal
role for mitochondrial dysfunction (Schirris et al.,
2015a; Stroes et al., 2015). This is supported by the
recent discovery of the first statin off-target associated
with these muscle complaints, demonstrating that
statins in their pharmacologically inactive lactone form
inhibit the third complex of the mitochondrial respira-
tory chain (Schirris et al., 2015a). The cholesterol-
lowering statin acid is converted into the lactone form
by uridine 59-diphospho-glycoronyltransferases in the
liver (Schirris et al., 2015b). Besides a low adherence
due to muscle complaints, statin treatment does not
completely normalize the risk of LDL-associated CVD,
despite effective LDL reduction (Kuhnast et al., 2015),
as demonstrated by several multiple large controlled
clinical trials, and follow-up trials illustrated that
CVD events persist after treatment in two-thirds of all
patients (Sacks et al., 1996; Long-Term Intervention
with Pravastatin in Ischaemic Disease (LIPID) Study
Group, 1998; Pedersen et al., 2004; Libby, 2005).
Similar effects were observed in a subset of patients
with coronary heart disease, coronary heart disease
risk equivalents, and diabetes mellitus, in which
there was a failure to sufficiently lower plasma LDL-C
levels (Davidson et al., 2005). More recently, mono-
clonal antibody proprotein convertase subtilisin/kexin
type 9 inhibitors have been introduced (i.e., evolocumab
and alirocumab) that drastically reduce LDL-C up to
59% (Sabatine et al., 2017). Contradictory to the large
LDL-C reduction, treatment of patients suffering from
atherosclerotic CVD with the proprotein convertase
subtilisin/kexin type 9 inhibitor evolocumab still resulted
in a residual cardiovascular event incidence of 9.8%
(Sabatine et al., 2017). This gives rise to the idea that
lowering LDL-C cholesterol alone is not sufficient to
fully prevent CVD and warrants the exploration of
novel therapies to interfere with the pathologic mech-
anism underlying atherosclerosis.

C. High-Density Lipoprotein and Cardiovascular
Disease: High-Density Lipoprotein Levels Are a Poor
Reflection of Reverse Cholesterol Transport Capacity

In contrast to blood LDL-C levels, high-density
lipoprotein (HDL) cholesterol (HDL-C) levels have been
inversely correlated to atherosclerotic events (Tang and
Oram, 2009; Uehara and Saku, 2014; Westerterp et al.,
2014; Kuhnast et al., 2015). HDL particles have a high
protein and low cholesterol and phospholipid content
and are involved in the reverse cholesterol transport
(RCT) pathway, explaining the beneficial effects of
these particles in atherosclerosis (Murphy et al.,
2013; Kingwell et al., 2014; Kuhnast et al., 2015).
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However, the concept that increased HDL cholesterol
levels do uniformly translate into reduced myocar-
dial infarction risk is challenged by a Mendelian
randomization study (Voight et al., 2012). The RCT
pathway consists of cholesterol transport by HDL
particles from peripheral tissue to the liver, where
cholesterol is subsequently excreted into the bile by
the ATP-binding cassette (ABC) transporters ABCG5
and ABCG8 (Zanlungo et al., 2004; Kingwell et al.,
2014) (Fig. 2). As HDL particles are the key players of
RCT, they have the potential to degrade atheroscle-
rotic plaques and prevent the formation of new
plaques. At the site of the atherosclerotic plaque,
cholesterol is transferred to HDL particles by macro-
phages, which after engulfment transfer cholesterol
to HDL via ABC transporter–mediated efflux across
the plasma membrane by ABCA1 and ABCG1 (Fig. 2).
In addition, the inverse correlation between HDL-C
levels and atherosclerotic events has been associated
with anti-inflammatory, antioxidant, antiplatelet, and
vasodilatory effects (Murphy et al., 2013; Kingwell et al.,
2014; Kuhnast et al., 2015; Ramasamy, 2016). Conse-
quently, stimulation of HDL particle levels as well as
RCT provides interesting treatment strategies for ath-
erosclerosis. In contrast to previous studies (Fazio and
Linton, 2003), recent clinical trials evaluating the in-
fusion of apo mimetics did not show atherosclerotic
protection (Karalis and Jukema, 2018). This indicates
that increasing HDL levels alonemay not be sufficient to
stimulate RCT and lower atherosclerotic risk. This also
initiated the development of cholesteryl ester transfer
protein (CETP) inhibitors, which increase HDL-C levels
by reducing the transfer of cholesterol from HDL par-
ticles to LDL particles and triglyceride-loaded lipopro-
tein particles (Barter et al., 2015). However, next to the
involvement of CETP in the heterotypic cholesterol
transfer pathway (i.e., cholesterol and triglyceride (TG)
movement between VLDL or LDL and HDL), it also
contributes to the homotypic cholesterol transfer path-
way (Lagrost et al., 1990; Rye et al., 1999; Niesor et al.,
2010; Barter and Rye, 2012; Mohammadpour and
Akhlaghi, 2013; Lauer et al., 2016). In the homotypic
pathway, CETP induces the formation of pre-bHDL
and cholesterol efflux between subparticles of HDL,
including HDL3 and HDL2 (Lagrost et al., 1990; Rye
et al., 1999; Niesor et al., 2010). The effect of CETP
inhibitors on the heterotypic and homotypic cholesterol
transfer pathway depends on the type of inhibitor,
which most likely explains their difference in efficacy
to reduce cardiovascular risk. For instance, both the
homotypic and heterotypic transfer are inhibited by
torcetrapib, evacetrapib, and anacetrapib, whereas
dalcetrapib more selectively inhibited the heterotypic
transferwithout affecting the homotypic transfer (Hewing
and Fisher, 2012; Mohammadpour and Akhlaghi, 2013).
To date, development of CETP inhibitors has been
discontinued due to adverse events or lack of efficacy

(Tall and Rader, 2018). The latter also substantiates
the notion that functionality of HDL, rather than its
absolute HDL-C level, determines effectivity of reducing
atherosclerotic risk. Consequently, stimulation ofABCA1-
and ABCG1-mediated cellular cholesterol efflux to HDL
particles could, due to its pivotal role in RCT, provide
a more effective strategy to stimulate RCT and decrease
atherosclerotic risk.

D. Systematic Review: Scope and Methodology

In this review, we discuss the major players of RCT
as well as therapeutic strategies explored to stimulate
them. A systematic literature search was conducted
using both Medline and Embase, which resulted in
2928 abstracts (Fig. 3; Supplemental Tables 1 and 2).
Removal of duplicates resulted in 2809unique publications
that were independently evaluated for their relevance by
two reviewers. First, all publications not involving choles-
terol efflux stimulation were excluded based on the title
(i.e., title screen, Fig. 3). Following strict exclusion criteria,
175 publications remained, based on their abstract for
amore in-depth study and inclusion in this review (Fig. 3),
including publications describing the effects on cholesterol
efflux of endogenous compounds, natural compounds,
apolipoprotein mimetics, microRNAs (miRNAs), as well
as nonresearch publications and publications of which
only the abstract or no English version was available.

We first provide an overview of the main players
involved in RCT, focusing on the crucial role of ABCA1
and ABCG1 cholesterol efflux transporters in the initi-
ation and propagation of this process. We conclude with
a critical discussion of small-molecule pharmaceutical
interventions that could affect RCT beneficially.

II. Reverse Cholesterol Transport Pathway

A. Initiation and Propagation of Reverse
Cholesterol Transport

Each RCT cycle is initiated by the removal of cellular
cholesterol from peripheral tissues, of which the deter-
minants (i.e., HDL size and composition, gender, body
mass index, and age) have been reviewed recently by
Talbot et al. (2018). Active transport is involved in
70% of all cellular cholesterol efflux pathways (Ono,
2012; Phillips, 2014). Passive bidirectional cholesterol
flux between HDL particles and the plasma membrane
is mediated by aqueous diffusion and via interaction
of HDL particles with scavenger receptor B1 (SR-B1).
SR-B1 mediates cholesterol uptake in the cell without
endocytic uptake and degradation of HDL particles by
ABCG1 (Phillips, 2014). However, the contribution of
this mechanism to peripheral cholesterol efflux is
expected to be minimal, as SR-B1 is most abundantly
expressed in the adrenal gland, and at lower levels in
peripheral tissues. Aqueous diffusion includes passive
transport through the intervening aqueous phase until
collision occurs between cholesterol and an extra- or

156 Frambach et al.

at A
SPE

T
 Journals on M

arch 29, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/lookup/suppl/doi:10.1124/pr.119.017897/-/DC1
http://pharmrev.aspetjournals.org/lookup/suppl/doi:10.1124/pr.119.017897/-/DC1
http://pharmrev.aspetjournals.org


intracellular cholesterol acceptor (Yancey et al., 2003;
Rosenson et al., 2012; Phillips, 2014). ATP-dependent
cholesterol efflux is mainly facilitated by ABCA1
and ABCG1 (Fig. 2) (Oram, 2003; Yancey et al., 2003;

Yvan-Charvet et al., 2010b; Phillips, 2014; Westerterp
et al., 2014). ABCA1-mediated cholesterol and phos-
pholipid efflux is initiated by the interaction of lipid-
and cholesterol-free apoA-I particles with ABCA1

Fig. 2. Reverse cholesterol transport. Schematic overview of reverse cholesterol transport, (I) which is initiated by the efflux of cholesterol (yellow
spheres) by ABCA1 and ABCG1 transporters. They are expressed on a variety of peripheral tissues, including macrophages that engulf cholesterol
from atherosclerotic plaques (i.e., foam cells). ABCA1-mediated cholesterol efflux transfers cholesterol to lipid-poor apoA-I, leading to the formation of
pre-bHDL. These particles can be converted by circulating lecithin:cholesterol acyltransferase (LCAT) into HDL particles, which function as cholesterol
acceptor for ABCG1. Cholesterol efflux by ABCG1 is mediated via reorganization of cholesterol in the plasma membrane, which increases plasma
membrane cholesterol concentrations. Subsequently, aqueous diffusion could increase the cholesterol efflux out of the cell to HDL without necessity of
HDL to bind to the plasma membrane. (II) SR-BI mediates cholesterol influx into hepatocytes without whole HDL particle uptake, allowing unbound
apoA-I to circulate and enter a new RCT cycle. Finally, hepatic free cholesterol can be directly removed to bile canaliculi by ABCG5 and ABCG8
transporters, or indirect via conversion by cytochrome P450 (CYP)7A1 into bile acids (green spheres) that can subsequently be transported into bile via
the multidrug resistance protein (MRP)2/ABCC2 and bile salt export pump (BSEP/ABCB11) transporters, located on the canalicular membrane.
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transporters on peripheral tissue (i.e., highest expression
in macrophages and foam cells) and hepatocytes (Fig. 2).
This results in the formation of lipid-poor pre-bHDL
particles, which upon rapid esterification by lecithin:
cholesterol acyltransferase are converted into lipid-rich
HDL particles (Morgado et al., 2005). These particles
mediate cellular cholesterol efflux via interaction with
ABCG1, thereby further facilitating transport of choles-
terol from peripheral tissues toward the liver, followed
by uptake into hepatocytes via SR-B1 (Tall and Yvan-
Charvet, 2015). As the final step of RCT, cholesterol is
secreted into the bile via an ABCG5/8 heterodimer
complex present at the canalicular membrane (Thomas
et al., 2003; Roglans et al., 2004; Zanlungo et al., 2004;
Valasek et al., 2007; Lee et al., 2016). These two
ABCG transporters are only expressed in hepatocytes,

gallbladder epithelium, and enterocytes (Tauscher and
Kuver, 2003; Wang et al., 2015a; Patel et al., 2018).
Formation of a heterodimer of ABCG5 and ABCG8 in the
endoplasmic reticulum is required before the complex can
be translocated to the apicalmembrane,where it facilitates
sterol transport into the bile or gut lumen (Graf et al., 2003;
Yu et al., 2014). The bilairy excretion rate of cholesterol is
associated with the level of hepatic ABCG5 and ABCG8
expression (Yu et al., 2005). Consequently, the ABCG5/G8
complex is important in the correction of high plasma and
hepatic cholesterol and sterol levels (Yu et al., 2002, 2014).

B. ATP-Binding Cassette A1 and ATP-Binding
Cassette G1 as Master Effectors of Cholesterol Efflux

ABCA1 plays a crucial role in the cellular cholesterol
efflux, and its importance is illustrated by Tangier

Fig. 3. Flow chart of systematic literature search strategy. Overview of the number of publications retrieved from all MEDLINE and EMBASE
searches and exclusion criteria applied to these publications, including removal of duplicates and title- and abstract-based screenings conducted by two
independent reviewers. For a detailed overview of the search strategies, see Supplemental Tables 1 and 2.
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disease, which is characterized by a severe deficiency
in plasma HDL and cholesterol caused by autosomal
recessive mutations in the ABCA1 gene (Brooks-Wilson
et al., 1999; Langmann et al., 1999; Rust et al., 1999;
Oram, 2000; Uehara et al., 2011; Phillips, 2018). The
human ABCA1 gene has a total length of 149 kb,
including a 1,453-bp promoter, 146,581 bp of introns
and exons, and a 1-kb 39 flanking region. Of the exons,
58 are comprised in the ABCA1 gene, and multiple
bindings sites for transcription factors are detected in
the promoter region (Gene, 1982–2019a; Santamarina-
Fojo et al., 2000). Like many other transporters of the
ABCA subfamily, ABCA1 is a full transporter, which
contains 2,261 amino acids and is integrated into the
membrane via two transmembrane domains (TMDs) that
both comprise six transmembrane helices. In addition,
ABCA1 has two nucleotide binding domains (NBDs),
which contain the conserved Walker-A and Walker-B
peptidemotifs (Langmann et al., 1999; Santamarina-Fojo
et al., 2000;Uehara et al., 2011). The tissue distribution of
ABCA1 is ubiquitous, and expression is especially high
in placenta, liver, small intestine, macrophages, adre-
nal glands, lung, and fetal tissues (Langmann et al.,
1999; Uehara et al., 2011). ABCA1 initiates cellular
cholesterol efflux and RCT to the lymph and blood-
stream via a specific interaction with apoA-I, allowing
cellular phospholipids and cholesterol to bind to these
apolipoproteins, which almost exclusivelymediatesHDL
biosynthesis and is therefore seen as its rate-limiting
step (Lee et al., 2002; Murthy et al., 2002; Ohama et al.,
2002; Mulligan et al., 2003; Singaraja et al., 2003). It
remains, however, unknown whether phospholipid and
cholesterol binding occurs at the plasma membrane
surface or whether apoA-I is internalized and targeted
to late endosomes after binding to ABCA1 at the plasma
membrane, where it forms complexes with lipids that
are subsequently released by exocytosis (Takahashi and
Smith, 1999; Neufeld et al., 2001; Vaughan and Oram,
2003; Denis et al., 2008; Lorenzi et al., 2008; Azuma
et al., 2009; Tang and Oram, 2009; von Eckardstein and
Rohrer, 2009; Yvan-Charvet et al., 2010b; Westerterp
et al., 2014; Du et al., 2015a) (Fig. 4). This is also
supported by the localization of ABCA1 on early and late
endosome and lysosome membranes, next to its plasma
membrane localization, and in line with its reuptake to
regulate cholesterol efflux rates, as described in the next
section (Neufeld et al., 2001; Tang and Oram, 2009; von
Eckardstein and Rohrer, 2009; Uehara and Saku, 2014;
Westerterp et al., 2014; Du et al., 2015a). However, the
majority of apoA-I lipidation is expected to occur at the
plasma membrane (Denis et al., 2008; Faulkner et al.,
2008). The exact modes of interaction between apoA-I
and ABCA1 still need to be elucidated. At least six
mechanisms have been proposed, as follows: 1) direct
apoA-I binding to phosphatidylserine, which is trans-
located outward by ABCA1 floppase activity (Chambenoit
et al., 2001; Alder-Baerens et al., 2005); 2) direct binding of

apoA-I to extracellular ABCA1 loop domains (Wang et al.,
2001; Fitzgerald et al., 2004); 3) apoA-I binding to
protrusions as a result of ABCA1 floppase activity
(Vedhachalam et al., 2007a); 4) outward translocation
of phosphatidylinositol 4,5-bisphosphate mediated by
ABCA1 floppase activity, which allows apoA-I to bind
and unfold, followed by microsolubilization of the mem-
brane (Gulshan et al., 2016); 5) low-affinity apoA-I
binding to ABCA1 and high-affinity binding to choles-
terol (Hassan et al., 2007; Vedhachalam et al., 2007b); 6)
apoA-I binding to extracellular domains of ABCA1
dimers that have been formed from two ABCA1 mono-
mers. Thesemonomershaveundergone a conformational
change as a result of the translocation of phosphatidyl-
choline and cholesterol leading to dimer formation
(Ishigami et al., 2018). Although ABCA1 mainly inter-
acts with apoA-I, it can also associate with lipid-free
apoE, which is most efficient when these apolipopro-
teins originate from small and dense HDL subfractions
like HDL3b and HDL3c (Neufeld et al., 2001; Tang and
Oram, 2009; von Eckardstein and Rohrer, 2009; Uehara
and Saku, 2014; Westerterp et al., 2014; Du et al.,
2015a).

In contrast to ABCA1, ABCG1 has a larger ambigu-
ity regarding its lipid acceptors, which include HDL,
LDL, and phospholipid vesicles (Wang et al., 2004;
Vaughan and Oram, 2005; Kobayashi et al., 2006;
Sankaranarayanan et al., 2009; Yvan-Charvet et al.,
2010b; Phillips, 2014; Westerterp et al., 2014). Unlike
ABCA1, ABCG1 is a half transporter, which only contains
a single TMD comprising of six transmembrane helices
and a single NBD at the C terminus of the TMD that is
responsible for ATP binding and hydrolysis (Kerr et al.,
2011; Uehara et al., 2011). Therefore, the ABCG1 protein
needs to either homo- or heterodimerize with other ABCG
proteins to become functional. The human ABCG1 gene
comprises 23 exons spanning 98 kb (Gene, 1982–2019b;
Kennedy et al., 2001). Eight different isoforms of ABCG1
areproducedbyalternative splicing,with a lengthvarying
between 644 and 785 amino acids. The ABCG1 protein is
expressed in many cell types, including macrophages,
neurons, astrocytes, endothelial, and epithelial cells,
and inmany tissues, such as the liver, intestine, kidney,
spleen, lung, and brain (Nakamura et al., 2004; Kennedy
et al., 2005; Wang et al., 2008; Bojanic et al., 2010).
Although the precise cellular localization of ABCG1
needs to be elucidated, the transporter was detected
in the plasma membrane and membranes of the Golgi
apparatus and endosomes of ABCG1-overexpressing
HEK293 cells and macrophages (Kobayashi et al., 2006;
Wang et al., 2006; Tarling and Edwards, 2011; Neufeld
et al., 2014; Phillips, 2014; Westerterp et al., 2014). It has
been demonstrated that cholesterol efflux facilitated
by ABCG1 does not increase lipoprotein binding to the
cell surface (Wang et al., 2004; Kobayashi et al., 2006;
Sankaranarayanan et al., 2009; Yvan-Charvet et al., 2010b;
Phillips, 2014), which makes a mechanism similar to
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Fig. 4. Potential ABCA1- and ABCG1-driven cholesterol efflux modes. ABCA1-driven cholesterol efflux to lipid-poor apoA-I is hypothesized to occur
either at the plasma membrane (upper left panel), or via endocytosis of the apoA-I–bound ABCA1 transporter, followed by intracellular lipid loading
and exocytosis (upper right panel). ABCA1 is ubiquitously expressed, particularly at high levels in liver, small intestine, macrophages, adrenal glands,
lungs, placenta, and fetal tissue. The transporter initiates cellular cholesterol efflux to the lymph and bloodstream via a specific interaction with apoA-
I. Six different mechanisms have been proposed for the interaction between apoA-I and ABCA1 (small boxes), including the following: outward
translocation of phosphatidylserine (PS) by ABCA1 floppase activity allowing apoA-I binding; direct binding of apoA-I to extracellular ABCA1 loop
domains; ABCA1 floppase activity leading to the formation of protrusions facilitating apoA-I binding; ABCA1 floppase activity leading to the outward
translocation of phosphatidylinositol 4,5-bisphosphate (PIP2), allowing apoA-I to bind and unfold, followed by microsolubilization of the membrane;
low-affinity binding to ABCA1 and high-affinity binding to cholesterol; dimerization of ABCA1 transporter proteins is initiated by loading of the
extracellular loop domains with cholesterol, followed by apoA-I binding to the dimerized cholesterol-loaded extracellular loop domains (ED). ABCG1-
driven cholesterol efflux to HDL particles in the bloodstream or lymph is expected to be the result of a collision of these particles with cholesterol
molecules that protrude from the plasma membrane (lower left panel), mediated either by a direct effect of the ABCG1 dimer on the membrane
structure or by outward translocation via ABCG1 floppase activity (lower right panel). ABCG1 is expressed in many cell types, including macrophages,
neurons, astrocytes, endothelial and epithelial cells, and many tissues (e.g., liver, intestine, kidney, spleen, lung, and brain), where it mediates
basolateral cholesterol efflux.
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ABCA1 unlikely. Several pathways have been suggested
to explain the ABCG1-mediated cellular cholesterol
efflux mechanism (Yvan-Charvet et al., 2010b; Neufeld
et al., 2014; Phillips, 2014). One of the proposed mech-
anisms suggests that ABCG1 facilitates protrusion of
cholesterol from the membrane pool into the hydrophilic
water layer lining the plasma membrane (Fig. 4). Sub-
sequently, cholesterol uptake by an acceptor occurs after
transient collision (Small, 2003; Yvan-Charvet et al.,
2010b; Neufeld et al., 2014; Phillips, 2014). A second
model suggests that ABCG1 promotes changes in the
organization of plasma membrane phospholipids func-
tioning as a phospholipid floppase, which leads to a
redistribution of sterols to the plasma membrane
(Yvan-Charvet et al., 2010b; Phillips, 2014). This
could result in an increased efflux of cholesterol out
of the cell by aqueous diffusion because of increased
cholesterol concentrations at the plasma membrane
(Sankaranarayanan et al., 2009; Yvan-Charvet et al.,
2010b; Phillips, 2014).
In summary, ABCA1- and ABCG1-mediated cholesterol

efflux is indispensable in cholesterol and phospholipid
loading of apolipoproteins and thereby the maturation
of HDL particles, which makes both ABC transporters
essential for the initiation of RCT (Tang and Oram, 2009;
Phillips, 2014; Uehara and Saku, 2014; Westerterp et al.,
2014). Consequently, stimulation of cellular cholesterol
removalviaABCA1andABCG1couldprovideapromising
target to enhance RCT.

C. Regulation of ATP-Binding Cassette A1– and ATP-
Binding Cassette G1–Mediated Cholesterol Efflux

Cholesterol efflux by ABCA1 and ABCG1 is regulated
by a variety of different mechanisms. Serum HDL and
its key apoA-I are key regulators of the cholesterol efflux
rate, in which high apolipoprotein levels are associated
with high cellular cholesterol efflux rates. Cellular mech-
anisms mainly regulate ABCA1- and ABCG1-mediated
cholesterol efflux by controlling the plasma membrane
expression of both transporters. This is accomplished by
various mechanisms. First, the nuclear receptors retinoid
X receptor (RXR), peroxisome proliferator-activated
receptors (PPARs), and liver X receptor (LXR) regulate
the transcription of the genes encoding ABCA1 and
ABCG1 (Fig. 5). Second, the stability of ABCA1 and
ABCG1 mRNA can be influenced by their protein
expression. Third, the expression of the transporter
on the plasma membrane is regulated via modulation
of its internalization, degradation, and recycling. Finally,
activity and localization are enhanced by cAMP-mediated
transporter phosphorylation and the stimulatory role
of extracellular ATP thereon (Lee et al., 2011). The
different cellular mechanisms influencing ABCA1-
and ABCG1-mediated cholesterol efflux are discussed
in more detail below, along with an overview of small-
molecule treatment strategies known to influence
these mechanisms.

III. Apolipoprotein A-I and Apolipoprotein
E Mimetics

Although we focus on small-molecule therapies
that enhance ABCA1- and ABCG1-mediated choles-
terol efflux, we will briefly address recent promising
progress in the development of recombinant apolipo-
proteins to stimulate cholesterol efflux by ABCA1
and ABCG1 (Zhang et al., 2003; Tall et al., 2008;
Bielicki et al., 2010; Khera et al., 2011), which was
extensively reviewed by others (Sherman et al., 2010;
White et al., 2014; Stoekenbroek et al., 2015; Cao et al.,
2017). Many efforts have been directed to mimic or
overexpress apoA-I as potential atherosclerosis treat-
ment strategy, which is a promising therapy for several
reasons. First, apoA-I is the major functional and most
abundant structural lipoprotein in HDL, which accounts
for approximately two-thirds of the total HDL protein
content (Zhang et al., 2003; Tall et al., 2008; Bielicki
et al., 2010; Getz and Reardon, 2011; Khera et al., 2011;
Uehara and Saku, 2014; Kontush et al., 2015). Moreover,
formation of cholesterol-loaded apoA-I by ABCA1 is
considered to be the rate-limiting step of HDL particle
biogenesis. Consequently, increasing apoA-I levels using
apoA-I mimetics (i.e., short synthetic peptides that
share structural and biologic features of native apolipo-
proteins) is expected to stimulate cholesterol transport.
The potential of this strategy is demonstrated in several
in vitro and in vivo studies, in which treatment with
apoA-I mimetics increased plasma HDL levels and
reduced atherosclerotic lesions (Zhang et al., 2003;
Tall et al., 2008; Bielicki et al., 2010; Khera et al.,
2011; Osei-Hwedieh et al., 2011; Uehara and Saku,
2014; Kuhnast et al., 2015). More recently, clinical
trials evaluating the infusion of these apoA-I mim-
etics, including the potent mimetic apoA-I Milano,
did not show atherosclerotic protection (Karalis and
Jukema, 2018). This also substantiates the notion
that not the HDL levels, but other parts of RCT, like
ABCA1- and ABCG1-mediated cholesterol efflux, con-
tribute to the inverse correlation between HDL-C levels
and atherosclerotic events.

Besides apoA-I mimetics, compounds that act like
apoE are of great interest for the treatment of athero-
sclerosis. ApoE possesses antiatherogenic properties
by its cholesterol-reducing potential. These effects
are mediated via the clearance of plasma apoB-containing
lipoprotein remnants (e.g., VLDL and chylomicrons) by
apoE LDLR-binding domain (Sharifov et al., 2011; Xu
et al., 2016).Moreover, they are involved in the initiation of
RCT from peripheral tissue and macrophages upon lipid
binding (Sharifov et al., 2011; Xu et al., 2016) and binding
to ABCG1 to facilitate cholesterol efflux by this trans-
porter. Several in vivo studies revealed that apoE mim-
etics have cholesterol-lowering, anti-inflammatory,
and atheroprotective properties (Nayyar et al., 2012;
Handattu et al., 2013; Xu et al., 2016). Moreover,
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Fig. 5. Cellular regulation of ABCA1 and ABCG1 transporter expression. Expression of ABCA1 and ABCG1 transporters is increased by stimulation
of the nuclear PPAR, which upon dimerization with RXR (i.e., another nuclear factor) bind to the PPAR-responsive element (PPRE), leading to the
transcription of the nuclear LXR and RAR, respectively (right upper panel). Next, dimerization of LXR or RAR with RXR enables binding to the LXRE,
inducing the transcription of ABCA1 and ABCG1, respectively. Once transcribed, the stability of ABCA1 and ABCG1 mRNA can either be enhanced or
decreased upon binding of miRNAs, of which an overview is provided in Table 4 (right middle panel). ABCA1 and ABCG1 plasma membrane expression
is also mediated via modulation of its lysosomal (blue vesicle) or endosomal (orange vesicle) degradation. The latter is stimulated by phosphorylation of
the PEST sequence by apelin-13 (AP-13) via PKCa (left lower panel). Upon phosphorylation, calpain (CALP) can bind and initiate proteolysis, a process
that is stimulated by calpastatin (CPSTAT), and negatively affected by calmodulin (CM) or by the HO-1 axis. Finally, the ability of ABCA1 and ABCG1
to bind lipid poor apoA-I is stimulated upon transporter phosphorylation by PKA at Ser-1042 and Ser-2054, located in the nucleotide binding domain of
ABCA1. PKA is positively regulated by cAMP levels that depend on the balance of cAMP breakdown by PDE, formation by adenosine
receptor–stimulated AC, and efflux by multidrug resistance protein (MRP) 4 and 5 (right lower panel).
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a hybrid peptide containing properties of both apoA-I
and apoE improved arterial endothelial function and
protected against atherogenesis in vivo (Gupta et al.,
2005).
Although these apolipoproteinmimetics showed prom-

ising results for the treatment of atherosclerosis, their
peptide nature may make them less favorable to admin-
ister as compared with orally available small-molecule
drugs. ABCA1 and ABCG1 transporters provide an
interesting target for small molecules to stimulate
RCT, as their expression and function are expected to
be rate-limiting for cellular cholesterol efflux (Oram,
2003; Tall et al., 2008; Yvan-Charvet et al., 2010b;
Phillips, 2014; Westerterp et al., 2014).

IV. Regulation and Pharmacological
Manipulation of Nuclear Receptor–Mediated
ATP-Binding Cassette A1 and ATP-Binding

Cassette G1 Expression

A. Nuclear Receptors Are Important Regulators of
ATP-Binding Cassette A1 and ATP-Binding Cassette
G1 Expression

Multiple nuclear receptors are involved in the regula-
tion of ABCA1 and ABCG1 mRNA expression, of which
the two LXR isoforms, LXRa and LXRb, have dem-
onstrated to play an important role in the cholesterol
homeostasis, including RCT (Zhao and Dahlman-Wright,
2010; Hong and Tontonoz, 2014). LXRa is predominantly
expressed in metabolically active tissue (e.g., liver,
kidney, macrophages, adipose tissue, and small intes-
tine), whereas LXRb has amore ubiquitous distribution
and is in particular highly expressed in the developing
brain (Zhao and Dahlman-Wright, 2010; Li et al., 2016).
LXRs act as cellular cholesterol sensors, as they are
activated by accumulation of oxysterols, oxidized deriv-
atives of cholesterol, which subsequently induce tran-
scription of genes involved in the protection of cells
against cholesterol overload (Zhao andDahlman-Wright,
2010; Di et al., 2012). After activation by oxysterols,
LXRa and LXRb form heterodimers with isoforms of
RXRs, including RXRa, RXRb, or RXRg (Di et al., 2012;
Hong and Tontonoz, 2014) (Fig. 5). After heterodimeri-
zation, LXR/RXR initiate transcription of target genes
(e.g., genes involved in lipid synthesis and metabolism,
including, but not limited to, the following: ABCA1,
ABCG1, ABCG5, ABCG8, SREBP-1C, and FAS) by
binding to the LXR response element (LXRE), which
consists of two direct repeats (i.e., a AGGTCA sequence)
separated by four nucleotides (Edwards et al., 2002;
Zhao andDahlman-Wright, 2010; Jakobsson et al., 2012;
Hong and Tontonoz, 2014; Li et al., 2016). These LXREs
are found in the proximal promotors of genes involved in
fatty acid, bile acid, cholesterol, and glucose regulation,
but also of genes with high relevance to RCT, including
ABCA1 and ABCG1 (Zhao and Dahlman-Wright, 2010;
Di et al., 2012; Hong and Tontonoz, 2014). Combined

with its high expression in macrophages, LXRa is an
important regulator in the initiation of RCT via modu-
lation of ABCA1 and ABCG1 expression.

Another class of nuclear receptors involved in the
regulation of ABCA1 and ABCG1 expression is PPAR,
which comprises the following three isoforms: PPARa,
PPARb/d, and PPARg (Berger et al., 2005; Ogata et al.,
2009). PPARa ismainly expressed in liver, kidney, heart,
muscle, and other metabolically active tissues that
rely predominantly on fatty acid b-oxidation. PPARb/d
is ubiquitously expressed (e.g., cardiovascular, urinary,
respiratory, digestive, endocrine, nervous, and hemato
organ system), whereas PPARg is mainly found in
adipose tissue, skeletal and cardiac muscles, and hu-
man monocytes (Escher et al., 2001; Berger et al., 2005;
Higashiyama et al., 2007; Ogata et al., 2009). Like LXR,
PPARs form obligate heterodimers with RXR upon
activation by their ligands (e.g., fatty acid metabolites),
which bind to isotype-specific peroxisome proliferator
response elements in target genes (Berger et al., 2005;
Grygiel-Górniak, 2014) (Fig. 5). Targets of PPARa and
PPARg include genes involved in lipid metabolism (e.g.,
SLC25A20, APOA1, LXRa, and SCD-1) and glucose
metabolism (e.g., G6PC, PCK, and PDK4) (Muoio et al.,
2002; Li and Glass, 2004; Rakhshandehroo et al., 2010).
PPARs have been associated with an increased ABCA1
expression and consequently enhanced HDL biogenesis
in vitro and in vivo (Chinetti et al., 2001; Ogata et al.,
2009). All three PPAR isoforms mediate these effects
via LXRa. However, only PPARg is known to directly
affect LXRa expression via interaction with a peroxi-
some proliferator response element proximal to the
LXRa promotor (Chawla et al., 2001), whereas the
exact mechanism remains unknown for the other iso-
types and is expected to be indirect (e.g., via effects on its
endogenous ligands) (Ogata et al., 2009).

In addition to RXR, retinoid-activated receptors (RARs;
i.e., another group of retinoid nuclear receptors) play
a role in cholesterol homeostasis. RARs are expressed in
a wide variety of tissues and, like other retinoid nuclear
receptors, also need to form a heterodimer with RXR
(Matsumoto et al., 2007; Jung et al., 2010; Kuntz et al.,
2015; Manna et al., 2015; Zhou et al., 2015). For all
retinoid nuclear receptors, this heterodimerization allows
them to bind to a response element in the promoter region
of their target genes, including ABCA1, ABCG1, APOA1,
GCK, UCP1 and UCP3, and FGF21 (Puigserver et al.,
1996; Solanes et al., 2000; Balmer and Blomhoff, 2002;
Cadoudal et al., 2008; Nishimaki-Mogami et al., 2008; Cui
et al., 2011; Ayaori et al., 2012; Li et al., 2013; Zhang et al.,
2013a, 2015b; Kuntz et al., 2015). PPAR/RXR, LXR/RXR,
and RAR/RXR can be activated by agonists for either
RXR and any other nuclear receptor (Nishimaki-Mogami
et al., 2008; Cui et al., 2011; Kuntz et al., 2015) (Fig. 5).
Consequently, RXR exerts pleiotropic effects due to
crosstalk of RXRwith other nuclear receptors, resulting
in the simultaneous activation of multiple converging
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signaling pathways (Matsumoto et al., 2007; Nishimaki-
Mogami et al., 2008). Both retinoic nuclear receptors are
activated by their endogenous ligand retinoic acid (RA;
i.e., all-trans-RA and 9-cis-RA) (Costet et al., 2003;
Koldamova et al., 2003; Nishimaki-Mogami et al.,
2008; Zhou et al., 2015). Recently, the relevance of this
pathway for RCTwas demonstrated in amousemodel of
atherosclerosis (apoE2/2 mice on a high-fat diet) by
the LXRE-dependent stimulatory effects of 9-cis-RA on
macrophage ABCA1 and ABCG1 expression, choles-
terol efflux, and HDL-C levels (Zhou et al., 2015).
Consequently, RXR as well as the other nuclear factors
are important effectors of the cellular cholesterol ho-
meostasis, which makes them valuable targets to in-
duce ABCA1 and ABCG1 expression and to eventually
enhance cellular cholesterol efflux and RCT.

B. Liver X Receptor Activation to Induce ATP-Binding
Cassette A1 and ATP-Binding Cassette G1 Expression

The increased understanding about the pivotal role of
LXR target genes in cholesterol metabolism, including
ABCA1 and ABCG1, has enhanced the interest to
pharmacologically modulate LXR signaling. One of
the first discovered synthetic steroidal LXR agonists,
T0901317, a full and potent agonist of both LXRa and
LXRb, appeared to protect against atherosclerotic
development in vitro and in animal studies (Terasaka
et al., 2003; Thomas et al., 2003; Beyer et al., 2004;
Quinet et al., 2004; Wang et al., 2006; Dai et al., 2008;
Sato et al., 2008; Larrede et al., 2009; Verschuren et al.,
2009; Yan et al., 2010; Honzumi et al., 2011; Chen
et al., 2012; Kirchgessner et al., 2015; Manna et al.,
2015; Jiang and Li, 2017) (Table 1). T0901317 en-
hanced the in vitro and in vivo expression of LXR
target genes, including ABCA1 and ABCG1, leading to
increased cholesterol efflux to apoA-I and HDL and
decreased foam cell and atherosclerotic plaque forma-
tion (Fukumoto et al., 2002; Murthy et al., 2002;
Terasaka et al., 2003; Thomas et al., 2003; Beyer
et al., 2004; Miao et al., 2004; Quinet et al., 2004,
2006; Wu et al., 2004; Panzenboeck et al., 2006; Wang
et al., 2006; Delvecchio et al., 2007, 2008; Fujiyoshi
et al., 2007; Dai et al., 2008; DiBlasio-Smith et al.,
2008; Sato et al., 2008; Zanotti et al., 2008; Larrede
et al., 2009; Verschuren et al., 2009; Mogilenko et al.,
2010; Morrow et al., 2010; Yan et al., 2010; Honzumi
et al., 2011; Maejima et al., 2011; Chen et al., 2012; Di
et al., 2012; Elali and Hermann, 2012; Jiang et al.,
2012;Ma et al., 2014; Kaneko et al., 2015; Kirchgessner
et al., 2015; Manna et al., 2015; Tamehiro et al., 2015;
Carter et al., 2017; Jiang and Li, 2017; Marinozzi et al.,
2017; Monzel et al., 2017; Kaseda et al., 2018). Unfortu-
nately, T0901317 was associated with enhanced lipogen-
esis, resulting in elevated serum triglyceride levels and
hepatic steatosis, which is most likely explained by
LXRa-induced activation of the sterol regulatory-binding
element protein 1c (SREBP-1c) pathway (Terasaka et al.,

2003; Thomas et al., 2003; Beyer et al., 2004; Miao et al.,
2004; Quinet et al., 2004, 2006; Delvecchio et al., 2008;
DiBlasio-Smith et al., 2008; Sato et al., 2008; Verschuren
et al., 2009; Yan et al., 2010; Honzumi et al., 2011; Chen
et al., 2012; Kaneko et al., 2015; Kirchgessner et al.,
2015; Manna et al., 2015; Carter et al., 2017; Marinozzi
et al., 2017). A nonsteroidal LXR agonist, GW3965, also
protected against atherosclerosis development (Ruan
et al., 2003), but less effectively as T091317 (Sparrow
et al., 2002; Bennett et al., 2006; Brunham et al., 2006;
Naik et al., 2006; Quinet et al., 2006; Delvecchio et al.,
2007; DiBlasio-Smith et al., 2008;Di et al., 2012;Kannisto
et al., 2014). Moreover, it amplified SREBP-1c expression
leading to increased hepatic and plasma triglyceride
levels (Sparrow et al., 2002; Quinet et al., 2004). Various
other LXR agonists, including acetyl-podocarpic dimer,
LXR-623 (i.e., also known as WAY-252623), ritonavir
(i.e., an antiretroviral drug), side-chain modified sterol,
ergosterol derivatives, and C24-hydoxylated stigmastane
derivatives, also effectively increased ABCA1 expression
(Sparrow et al., 2002; DiBlasio-Smith et al., 2008; Pou
et al., 2008; Quinet et al., 2009; Marinozzi et al., 2017;
Castro Navas et al., 2018). However, they all produced
unwanted effects on plasma triglyceride levels by stimu-
lation of SREBP-1c gene transcription and LXR-623
enhanced plasma triglyceride levels, yet all to a lower
extent than T0901317 (Sparrow et al., 2002; DiBlasio-
Smith et al., 2008; Pou et al., 2008; Quinet et al., 2009;
Marinozzi et al., 2017; Castro Navas et al., 2018).

Although the adverse effects limit the clinical use of
these LXR agonists, they raised great interest in LXR
stimulation as a potential target to stimulateRCT.Novel
LXR agonists have been developed, like N,N-dimethyl-
3b-hydroxycholenamide (DMHCA), a synthetic oxysterol
that has the potential to enhance cholesterol transport in
an LXR-dependent manner without increasing plasma
triglyceride levels. Moreover, hepatic SREBP-1c mRNA
expression was only slightly increased by DMHCA in
rat aortic endothelial cells, whereas in macrophages
SREBP-1c was reduced (Quinet et al., 2004; Kratzer
et al., 2009; Hammer et al., 2017). The potential of this
type of LXR agonist was emphasized by methyl-3b-
hydroxy-5a,6a-epoxy-cholanate, a compound with sim-
ilar structure and effects as DMHCA (Yan et al., 2010),
and a novel analog ofN,N-disubstituted 2,8-diazaspiro
[4.5]decane, also known as IMB-151 (Li et al., 2014).
This compound also upregulated ABCA1 and ABCG1
expression in RAW264.7 macrophages in an LXRa-
dependent manner, whereas SREBP-1c protein expres-
sion levels in HepG2 cells were only slightly increased
(Li et al., 2014). Other LXR-agonists, ibrolipim (also
known as NO-1886) and BMS-779788, increased ABCA1
expression and cellular cholesterol efflux and reduced
SREBP-1c expression in vitro and markedly lowered
plasma triglyceride levels in vivo (Zhang et al., 2006; Ma
et al., 2009; Chen et al., 2010; Tsou et al., 2014; Kick
et al., 2015; Kirchgessner et al., 2015). The LXRb-specific

164 Frambach et al.

at A
SPE

T
 Journals on M

arch 29, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


TABLE 1
LXR-activating compounds

Overview of compounds that activate LXR, including their primary pharmacological action, effects on ABCA1 and ABCG1 expression (arrows: mRNA, protein), and effects
on cellular cholesterol efflux. Effects on ABCA1, ABCG1, and cholesterol efflux are presented as follows: (↓) decreased; (5 ) no effect; (↑) increased. Italicized symbols indicate
changes in ABCA1 and ABCG1 mRNA levels, whereas nonitalicized symbols indicate protein levels.

Compound Primary Action ABCA1 ABCG1 Cholesterol Efflux Reference

Acetyl-podocarpic dimer Selective LXR
agonist

↑ THP-1 ↑ Caco-2 THP-1 Sparrow et al., 2002
↑ Caco-2 ↑ Primary

hepatocytesa
↑ apoA-I

↑ Primary
hepatocytesa

↑ Caco-2

↑ Monocytesa

Primary
fibroblastsa:

↑ apoA-I
Baclofen GABAB receptor

agonist
— — MDM Yang et al., 2014

5 apoA-I
5 HDL

Digoxin Na1-K1-ATPase
inhibitor

↑ H9c2 — ↑ H9c2 Campia et al., 2012

Disodium ascorbyl
phytostanol phosphate
(FM-VP4)

MDR1 antagonist ↑ Liverb — — Méndez-González et al., 2010
5 Small

intestineb

Daunorubicin Anthracycline
antibiotic

5 HL-1 5 HL-1 — Monzel et al., 2017

DMHCA LXRa agonist ↑ THP-1 ↑ BREC ↑ THP-1 Quinet et al., 2004; Kratzer
et al., 2009; Hammer et al.,
2017

↑ J774 ↑ PMc

↑ HepG2 ↑ Livera,d

↑↑ BREC ↑ Ileumd

↑ PMb,c ↑ Aortad

↑ Livera

5 Liverd

↑ Ileumd

↑ Aortad

Doxorubicin Anthracycline
antibiotic

↑ HL-1 ↑ HL-1 HL-1 Monzel et al., 2017
↑ apoA-I
↑ HDL

E17110 Benzofuran-2-
carboxylate
analog

↑↑ RAW264.7 ↑↑ RAW264.7 RAW264.7 Li et al., 2016
↑ apoA-I
↑ HDL

(E)-1-(e,4-
diisopropoxyphenyl)-3-
(4-isopropoxy-3-
methoxyphenyl-2-en-1-
one

Chalcone
derivative

↑↑ THP-1 ↑ THP-1 — Teng et al., 2018

Ergosterol derivatives Ergosterol analog ↑ U937 Marinozzi et al., 2017
Etoposide DNA

topoisomerase
II inhibitor

↑ RAW264.7 ↑ PMb ↑ PM Zhang et al., 2013a
↑↑ PMb ↑ RCTb

↑ THP-1
Blood

monocytea

EXEL-04286651/BMS-
779788

LXR partial
agonist

↑ Murine blood
cells

↑ Murine blood
cells

— Kick et al., 2015; Kirchgessner
et al., 2015

↑ Blood cellse

FTY720-P Sphingosine-1-
phosphate
analog

↑ Monocytesa — ↑ Monocytesa Blom et al., 2010

G004 Unknown
(synthetic
sulfonylurea
compound)

↑↑ RAW264.7 ↑↑ RAW264.7 ↑ RAW264.7 Qian et al., 2017
↑ Liverc ↑↑ Liverc ↑ RCTc

GW3965 LXRa agonist ↑ THP-1 ↑ haSMCa ↑ THP-1 Miao et al., 2004; Quinet et al.,
2004, 2006; Brunham et al.,
2006; Naik et al., 2006;
Delvecchio et al., 2007;
DiBlasio-Smith et al., 2008;
Kannisto et al., 2014

↑ J774 ↑5 Liverb ↑ RCTb

↑ HepG2 ↑ Peripheral bloodf

↑ haSMCa ↑ Spleenf

↑ BMM ↑ Prox small
intestineb,g

↑ PMb,h,i

↑↑ Livera,h

↑5 Livera,h

↑ Peripheral
bloodf

↑ Spleenf

↑↑ Prox small
intestineb

5 Prox small
intestineg

(continued )
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TABLE 1—Continued

Compound Primary Action ABCA1 ABCG1 Cholesterol Efflux Reference

↑ Kidneyb,h

↑ Duodenumb,h

Ibandronate Osteoclast
inhibitor

↑ MM6 — ↑ MM6 Strobach and Lorenz, 2003
↑ PBMCsa

Ibrolipim (NO-1886) Lipoprotein
lipase activator

↑↑ THP-1 ↑↑ THP-1 ↑ THP-1 Zhang et al., 2006; Ma et al.,
2009; Chen et al., 2010↑↑ Liverj

↑↑ Adipose tissuej

↑↑ Aortaj

Idarubicin Anthracycline
antibiotic

↑ HL-1 ↑ HL-1 Monzel et al., 2017

IMB-151 Unknown ↑↑ RAW264.7 ↑↑ RAW264.7 ↑ RAW264.7 Li et al., 2014
Infliximab Anti–TNF-a mAb ↑↑ THP-1 55 THP-1 ↑ THP-1 (restores

effect of
TNF-a)

Voloshyna et al., 2014

Lansoprazole Proton pump
inhibitor

↑ H4
neuroglioma
cellsa

— — Cronican et al., 2010

↑ U-87
astrocytoma

↑↑ CCF
astrocytoma

↑ U-118
astrocytoma

↑ Primary
astrocytesb

LXR-623 Synthetic LXR
agonist

↑ Duodenumg ↑ Duodenumg — DiBlasio-Smith et al., 2008;
Katz et al., 2009; Quinet
et al., 2009

5 Liverg 5 Liverg

↑ Spleenf ↑ Spleenf

↑ Peripheral
blooda,b,f

↑ Peripheral
blooda,b,f

↑↑ PBMCsa ↑↑ PBMCsa

↑ Whole blooda,e ↑ Whole blooda,e

Methyl-3b-hydroxy-
5a,6a-epoxycholanate

LXRa agonist ↑ THP-1 — — Yan et al., 2010
↑ Aortac

Omeprazole Proton pump
inhibitor

↑ H4 neuroglioma
cellsa

— — Cronican et al., 2010

Pantoprazole Proton pump
inhibitor

↑ H4
neuroglioma
cella

— — Cronican et al., 2010

Ouabain Na1-K1-ATPase
inhibitor

↑ H9c2 — ↑ H9c2 Campia et al., 2012

Ritonavir Viral proteinase
inhibitor

↑↑ THP-1 5 THP-1 — Pou et al., 2008

Sirolimus FK-binding
protein-12
inhibitor

↑ hVSMC 5 hVSMC 5 hVSMC Ma et al., 2007

(24S)-stigmasta-5,28-
diene-3b,24- ol

LXR agonist ↑ U937 Castro Navas et al., 2018

(24S)-stigmasta-5-ene-
3b,24-ol

LXR agonist ↑ U937 Castro Navas et al., 2018

Stigmasterol derivatives LXR agonist ↑ U937 Marinozzi et al., 2017
T0901317 LXR agonist ↑↑ THP-1 ↑ THP-1 ↑ THP-1 Fukumoto et al., 2002; Murthy

et al., 2002; Terasaka et al.,
2003; Thomas et al., 2003;
Beyer et al., 2004; Miao
et al., 2004; Quinet et al.,
2004, 2006; Wu et al., 2004;
Panzenboeck et al., 2006;
Wang et al., 2006;
Delvecchio et al., 2007,
2008; Fujiyoshi et al., 2007;
Sprecher et al., 2007; Dai
et al., 2008; DiBlasio-Sato
et al., 2008; Smith et al.,
2008; Zanotti et al., 2008;
Larrede et al., 2009;
Verschuren et al., 2009;
Mogilenko et al., 2010;
Morrow et al., 2010; Yan
et al., 2010; Maejima et al.,
2011; Honzumi et al., 2011;
Chen et al., 2012; Di et al.,
2012; El Roz et al., 2012;
Elali and Hermann, 2012;

↑↑ RAW264.7 ↑↑ RAW264.7 ↑ HDL
↑ J774 ↑ MCF-7 ↑ J774
↑ U937 ↑↑ Caco-1 ↑ Caco-1
↑↑ HepG2 ↑ HL-1 HL-1
↑↑ Caco-1 ↑ TR-CSFB3 ↑ apoA-I
↑ HL-1 ↑↑ haSMCa ↑ HDL
↑↑ pBCECs ↑ Cerebral

endothelial
cells

↑ SAS

↑ TR-CSFB3 ↑↑ Blood-derived
macrophagesa

↑ Jurkat

↑↑ SAS ↑ Aorta
endothelial
cellsc

↑ Fu5AH

↑↑ haSMC ↑ Liverb,k ↑ COS-7
↑↑ McARH7777 ↑ Aortai,o ↑ pBCECs
↑↑ CD41 T cellsa ↑ Peripheral

bloode, f,
↑ Monocyte-derived

macrophagesa

↑↑ Jurkat ↑ CD41 T cellsa

↑ Cerebral
endothelial
cells

↑ HSKMca

(continued )

166 Frambach et al.

at A
SPE

T
 Journals on M

arch 29, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


agonist E17110 (i.e., a benzofuran-2-carboxylate analog)
andLXRa-specific synthetic chalcone derivative, (E)-1-(3,4-
di-isopropoxyphenyl)-3-(4-isopropoxy-3-methoxyphenyl)prop-
2-en-1-one, both inducedABCA1expression inmacrophages,
whereas an enhanced cholesterol effluxwas only described
after treatment with E17110 (Li et al., 2016; Teng et al.,
2018). Moreover, commonly used proton pump inhibitors

(i.e., lansoprazole, omeprazole, pantoprazole) demonstrated
to act as LXR agonists, of which lansoprazole was most
potent (Cronican et al., 2010). By inducing LXR, proton
pump inhibitors enhanced ABCA1 expression in human
and mouse cells (Cronican et al., 2010).

Type II DNA topoisomerase inhibitors, which are
used as chemotherapeutic medication, also enhanced

TABLE 1—Continued

Compound Primary Action ABCA1 ABCG1 Cholesterol Efflux Reference

Jiang et al., 2012; Ma et al.,
2014; Kaneko et al., 2015;
Kirchgessner et al., 2015;
Manna et al., 2015;
Tamehiro et al., 2015; Li
et al., 2016; Carter et al.,
2017; Jiang and Li, 2017;
Marinozzi et al., 2017;
Monzel et al., 2017; Kaseda
et al., 2018

↑ Murine
immortal
macrop.

haSMCa

↑ Murine
neuro2A

5 apoA-I

↑ Murine BV-2 ↑ HDL
↑ Rat C6 MCF-7
↑↑ Blood-derived

macropg
5 apoA-I

↑ Aorta
endothelial
cellsc

↑ HDL

↑ Renal
glomerular
mesangial
cellsi

↑ Murine primary
macrop.

↑↑ PMb,d,g,h ↑ PMb,d,g,h

↑↑ Liver b,c,h,i,l,k ↑ Murine immortal
macrop.

↑↑ Aortab,c,i,k,o ↑ Renal
glomerular
mesangial
cellsi

↑ Small
intestinec

↑ Kidneyb,h

↑ Duodenumb,h

↑ Peripheral
bloodf

↑ Proximal
intestinek

↑ Distal
intestinek

↑↑ Brainm,n

Tacrolimus FK-binding
protein-12
inhibitor

↑5 THP-1 — — Jin et al., 2004

Teniposide DNA
topoisomerase
II inhibitor

↑ RAW264.7 ↑ PMb ↑ PMb Zhang et al., 2013a
↑↑ PMb ↑ RCT
↑ THP-1
↑ Blood

monocyte
Topiramate GABA-A receptor

agonist
↑↑ MDM ↑↑ MDM MDM Yang et al., 2014

↑ apoA-I
↑ HDL

YC-1 Soluble guanylyl
cyclase
activator

↑↑ J774A.1 5 J774A.1 ↑ J774A.1 Tsou et al., 2014
↑ Aortac 5 Aortac

BMM, bone marrow– derived macrophage; BREC, bovine retinal endothelial cells; haSMC, human airway smooth muscle cells; HSKM, human skeletal muscle cells;
hVSMC, human vascular smooth muscle cells; macrop, macrophage; MCF-7, Michigan Cancer Foundation-7; MDM, monocyte-derived macrophage; pBCECs, procine brain
capillary endothelial cells; PBMC, peripheral blood mononuclear cell; PM, peritoneal macrophages; prox, proximal; SAS, human squamous cell carcinoma cell line.

aHuman.
bC75BL/6 mice.
capoE2/2 C57BL/6 mice.
dLXRb2/2 C75BL/6 mice.
eCynomolgus monkeys.
fMale long Evans rats.
gLDLR2/2 C75BL/6 mice.
hLXRa2/2 C75BL/6 mice.
iNew Zealand White rabbits.
jMale chine Bama minipigs.
kMale SD rats.
l129Sv mice.
mAPP/PS1Δ9/APOE41/1/ABCA11/2 C57 BL/6 mice.
nAPP/PS1Δ9/APOE31/1/ABCA11/2 C57 BL/6 mice.
oE3L mice.
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ABCA1 expression in anLXRa-dependentmanner (Zhang
et al., 2013a; Tsou et al., 2014; Shen et al., 2015). Inhibition
of type II DNA topoisomerase by etoposide and teniposide
induced in vitro ABCA1 expression, free cholesterol efflux,
and in vivo RCT. Teniposide exerted its effect by inhibiting
expression of receptor-interacting protein 140, a corepres-
sor of LXR, and consequentlymediated its favorable effects
at lower concentrations compared with etoposide (Zhang
et al., 2013a). Like other LXR agonists, etoposide and
teniposide both enhanced FAS expression, indicating
that these inhibitors also activate genes involved in
lipogenesis, which could limit their use in the treatment
of atherosclerosis (Zhang et al., 2013a) in addition to
their unfavorable cytostatic effects. In contrast, 3-(59-
hydroxymethyl-29furyl)-1-benzyl indazole (YC-1), which
in addition to LXR also activates soluble guanylyl
cyclase, upregulated ABCA1 expression, enhanced cho-
lesterol efflux, and decreased ox-LDL particle accumu-
lation in macrophages in an LXRa-dependent manner,
whereas ABCG1, SR-B1, SR-1, and CD36 expression
levels were not altered (Tsou et al., 2014).
Indirect activation of LXR by a synthetic sphingosine

analog (i.e., 2-amino-2-[2-(4-n-octylphenyl)ethyl]-1,3-
propanediol hydrochloride, FTY720-P) and a synthetic
sulfonylurea compound (i.e., G004) also enhanced in vitro
expression of ABCA1 and ABCG1 and cholesterol efflux
(Blom et al., 2010). FTY720-P upregulatedABCA1 expres-
sion in human macrophages via increased production of
the endogenous LXR ligand 27-hydroxycholesterol,which
subsequently enhanced LXR activity independent
of sphingosine 1-phosphate receptor activation (Blom
et al., 2010; Qian et al., 2017). In contrast, G004 increased
ABCA1 and ABCG1 expression by targeting sirtuin 1 and
thereby acting as an atheroprotective agent in vivo (Qian
et al., 2017). Ibandronate, a bisphosphonate, also stimu-
lated LXR indirectly, whichwas reversed upon addition of
geranylgeranyl pyrophosphate, suggesting that low levels
of this mevalonate pathway intermediate increased LXR
expression via a negative feedback mechanism (Strobach
and Lorenz, 2003). Anthracyclines, which are used as
chemotherapeutic agents, also demonstrated to indirectly
activate LXR-ABCA1/ABCG1 pathway by enhancing sev-
eral oxysterol and cholesterol precursor levels, although
a direct binding between anthracyclines and LXR cannot
be excluded. Their clinical use is generally strongly limited
due to cardiotoxic effects (Monzel et al., 2017), and their
cytostatic effect omits the use of these drugs to stimu-
late RCT clinically. An indirect stimulatory effect on
LXR expression by a yet unknown mechanism has also
been observed with disodium ascorbyl phytostanol phos-
phate (FM-VP4), a potential cholesterol-lowering drug
(Méndez-González et al., 2010).
The cardiac glycosides, digoxin and ouabain, stim-

ulated cholesterol efflux via LXR-mediated upregu-
lation of ABCA1 expression in cardiomyocytes, but
only slightly increasedABCG1expression (Campia et al.,
2012). They also increased cholesterol and ubiquinone

synthesis via upregulation of HMG-CoA reductase ex-
pression without affecting the intracellular cholesterol
concentration. This could be explained by the stimula-
tion of cholesterol efflux in cardiomyocytes, which might
also contribute to the beneficial effect of cardiac glyco-
sides in CVD (i.e., next to their antiarrhythmic effects).
However, further research is warranted to demonstrate
their antiatherosclerotic potential. Finally, the anti–
tumor necrosis factor (TNF)-a monoclonal antibody
infliximab was linked to a reduced foam cell formation
in THP-1 macrophages induced by TNF-a, which was
dependent on the reversal of TNF-a–induced inhibition
of cholesterol efflux and LXR-a, ABCA1, and ABCG1
mRNA and protein expression (Voloshyna et al., 2014).
This could also provide an explanation for the improved
vascular function, as recently observed in patients
with rheumatoid arthritis with TNF inhibitor therapy
(Rongen et al., 2018). Although Voloshyna et al. (2014)
demonstrated a lowering effect of TNF-a on LXR-a and
ABCA1 levels in THP-1 monocytes, no differences in
the mRNA levels of the LXR-target gene ABCA1 and
apoA-I–dependent cholesterol efflux were reported in
TNF-a–treated C57BL/6 mice peritoneal macrophages
(Castrillo et al., 2003). The uncertainty about the exact
role of TNF-a on LXR-a and ABCA1 expression is
further emphasized by different findings in several
cell types. TNF-a reduced LXR-a expression and LXRE
activity level in HK-2 proximal tubular cells and Hep3B
liver cells, whereas in Caco-2 cells ABCA1 was de-
creased without attenuation of LXR-a upon stimulation
with TNF-a (Wang et al., 2005; Kim et al., 2007; Field
et al., 2010). A stimulatory effect on cellular cholesterol
efflux was found after lowering TNF-a production in
human macrophages by GABA and the GABA agonist
topiramate (Yang et al., 2014). These effects could not be
observed with baclofen, another GABA agonist (Yang
et al., 2014), which questions the direct involvement of
GABA in the previously observed effects with GABA
agonists. Interestingly, a reversal of TNF-a–induced
cholesterol efflux inhibition could also be observed with
the immunosuppressant sirolimus, which increased
cholesterol efflux in human vascular smooth muscle
cells accompanied by an increased ABCA1 expression
(Ma et al., 2007). Although the structurally related
drug tacrolimus did also increase ABCA1 expression,
its effect seemed to be mediated via PPARg and not
via a TNF-a–dependent mechanism (Jin et al., 2004).
Because both immunosuppressants have been also
associated with elevated plasma cholesterol and triglyc-
eride levels (Wlodarczyk et al., 2005; Kido et al., 2018),
their clinical applicability to reduce atherosclerotic risk
is limited.

Of all LXR agonists, only two (i.e., BMS-779788, also
known as EXEL-04286652 and LXR-623) were studied
in a clinical trial (Hong and Tontonoz, 2014). Unfortu-
nately, no published report is available on the completed
study of BMS-779788 (Hong and Tontonoz, 2014).
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LXR-623 stimulated ABCA1 and ABCG1 expression in
peripheral blood cells of healthy individuals, which is
expected to result in an enhanced RCT. However, the
phase I clinical trial was terminated due to unfortunate
neurologic adverse effects at the two highest concen-
trations tested. It remains unknown whether this effect
was LXR-mediated or via other unknown off-target
mechanisms of LXR-623 (Katz et al., 2009).

C. Peroxisome Proliferator-Activated Receptor
Activation to Enhance ATP-Binding Cassette A1 and
ATP-Binding Cassette G1 Expression

Fibrates have been used for decades as cholesterol-
lowering drugs, but currently they are mainly admin-
istered as comedication with statins to treat severe
hypertriglyceridemia (.15 mmol � l21). Although
fibrates are mainly agonists of PPARa, they stimulate
all three PPAR isoforms with different potencies, except
for bezafibrate, which is an equipotent agonist of all
isoforms. Gemfibrozil, fenofibrate, bezafibrate, and clofi-
brate all increased ABCA1 mRNA and protein expres-
sion upon PPAR activation in vitro (Oliver et al., 2001;
Forcheron et al., 2002; Lin and Bornfeldt, 2002; Guan
et al., 2003; Ruan et al., 2003; Thomas et al., 2003;
Arakawa et al., 2005; Kooistra et al., 2006; Hossain
et al., 2008; Tanabe et al., 2008; Ogata et al., 2009;
Kobayashi et al., 2011; Jiang and Li, 2017), which was
associated with enhanced apoA-I–mediated cholesterol
efflux (Oliver et al., 2001; Ruan et al., 2003; Arakawa
et al., 2005; Kooistra et al., 2006; Ogata et al., 2009)
(Table 2). Next to an effect on peripheral ABCA1
expression, fenofibrate and gemfibrozil also induced
hepatic ABCA1, ABCG1, and ABCG5/8 mRNA ex-
pression in a PPARa-dependent manner (Hossain
et al., 2008; Rotllan et al., 2011). This positive effect
on ABCA1 expression could also in part explain the
antiatherosclerotic effects observed with fibrates in
clinical trials (Steiner, 2005). The coronary risk re-
duction found in these trials could also be related to
their LDL-C–lowering capacity. However, the therapeu-
tic value of fibrates remains equivocal due to absence of
a reduction in total cardiovascular mortality in several
trials. Two large-scale intervention studies with feno-
fibrate (FIELD trial and ACCORD-LIPID trial) in
patients with type 2 diabetes mellitus found no differ-
ences in coronary events, nonfatal myocardial infarc-
tion, and stroke (Keech et al., 2005; Ginsberg et al.,
2010). Similar results were reported in two interven-
tion trials with bezafibrate, in which no significant
effect was found on both fatal and nonfatal myocardial
infarction in the Bezafibrate Infarction Prevention
(BIP) study, and no reduction in the incidence of
coronary heart disease and of strokes in the LEADER
trial (Bezafibrate Infarction Prevention (BIP) Study,
2000; Meade et al., 2002). In contrast, two trials using
gemfibrozil [Helsinki Heart Study (HHS) trial and
Veterans Affairs–HDL Intervention Trial (VA-HIT)

study] showed a significant reduction in the incidence
of coronary heart disease and myocardial infarction or
cardiovascular death, demonstrating an overall benefit
of gemfibrozil treatment (Frick et al., 1987; Rubins
et al., 1999).

Like gemfibrozil and fenofibrate, the specific PPARa
agonist, Wy14643, enhanced ABCA1 protein expression
and apoA-I–mediated cholesterol release in vitro, pri-
marily mediated via LXRa activation (Chinetti et al.,
2001; Ruan et al., 2003; Thomas et al., 2003; Beyer et al.,
2004; Arakawa et al., 2005; Lee et al., 2008; Maejima
et al., 2011). Although beneficial effects on ABCA1
expression and cholesterol efflux were observed after
treatment with gemfibrozil, fenofibrate, and Wy14643,
all three compounds stimulated PPARa with a rela-
tively low affinity in the micromolar range (Ferri et al.,
2017). This initiated the exploration of high-affinity
PPARa agonists like GW7647, which effectively in-
creased ABCA1 mRNA. However, no effect of GW7647
on apoA-I–driven cholesterol efflux was observed in
THP-1 macrophages (Oliver et al., 2001; Li et al., 2004;
Wang et al., 2010; Nakaya et al., 2011). Another high-
affinity PPARa agonist, LY518674, did increase both
ABCA1 expression and apoA-I–mediated cholesterol
efflux via LXRa activation, resulting in increased HDL
biogenesis, whereas Wy14563 only increased choles-
terol efflux via PPARa stimulation (Chawla et al., 2001;
Hossain et al., 2008; Ogata et al., 2009; Ferri et al., 2017).
Surprisingly, high aspirin concentrations ($250 mM)
slightly enhanced ABCA1 expression and cholesterol
efflux in macrophages in a PPARa-dependent manner
(Viñals et al., 2005; Wang et al., 2010).

Statins most likely also affect ABCA1-dependent
cholesterol efflux beneficially via indirect stimulation
of PPARa (Zanotti et al., 2004, 2006; Argmann et al.,
2005; Kobayashi et al., 2011; Maejima et al., 2011; Song
et al., 2011; Shimizu et al., 2014; Nicholls et al., 2015).
However, the results of a variety of studies are equiv-
ocal and report large differences with different statins
in vitro and in vivo (e.g., in various cell types, animal
models, and patients). In hepatocytes, only pitavastatin
seemed to enhance ABCA1 mRNA expression at low
micromolar concentrations in all studies (Zanotti et al.,
2004, 2006; Kobayashi et al., 2011; Maejima et al., 2011;
Song et al., 2011). Mechanistically, PPARa activation
was seen in all studies, but LXR was activated as well
as suppressed in hepatocytes after statin treatment.
Moreover, this effect seems to depend on downstream
products of the cholesterol synthesis pathway (e.g.,
mevalonate, geranylgeranyl pyrophosphate),with ama-
jor role for Ras homolog gene family member A, which
fully reversed statin-mediated ABCA1 upregulation
and ABCA1-mediated cholesterol efflux (Zanotti et al.,
2004; Argmann et al., 2005). Not all statins did increase
macrophage ABCA1 expression in vitro (Zanotti et al.,
2006), but rosuvastatin exposure in vivo increased total
and ABCA1-dependent cholesterol efflux (Shimizu et al.,
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TABLE 2
PPAR-activating compounds

Overview of compounds that activate PPARs, including their primary pharmacological action, effects on ABCA1 and ABCG1 expression (arrows: mRNA, protein), and
effects on cellular cholesterol efflux. Effects on ABCA1, ABCG1, and cholesterol efflux are presented as follows: (↓) decreased; (5 ) no effect; (↑) increased. Italicized symbols
indicate changes in ABCA1 and ABCG1 mRNA levels, whereas nonitalicized symbols indicate protein levels.

Compound Primary Action ABCA1 ABCG1 Cholesterol Efflux Reference

PPARg-activating compounds
15d-PGJ2 Prostanoid-specific

receptor inhibitor
↑ THP-1 ↑ PMa Lipid-loaded

HMC
Ruan et al., 2003; Jiang and Li,

2017
↑ HMC ↑ apoA-I

↓↓ PMa PMa

↓ apoA-I
↑ HDL

4010B-30 Benzamide analog ↑ RAW264.7 — RAW264.7 Du et al., 2015b
↑ HepG2 ↑ apoA-I

Ciglitazone PPARg agonist ↑5 THP-1 ↑ THP-1 ↑ THP-1 Argmann et al., 2003, 2005
E3317 PPARg agonist RAW264.7 RAW264.7 Wang et al., 2018

↑↑ LO2 ↑ apoA-I
GQ-11 PPARg/a agonist ↑ Liverb Silva et al., 2018
GW1929 PPARg agonist ↑↑ HepG2 — — Mogilenko et al., 2010
GW7845 PPARg agonist ↑ THP-1 — ↑ THP-1 Chawla et al., 2001; Oliver

et al., 2001
Propofol GABAB receptor

agonist
↑↑ THP-1 ↑↑ THP-1 ↑ THP-1 Ma et al., 2015; Hsu et al., 2018
↑ RAECs RAECs

↑ HDL
Lysophosphatidylcholine Unknown ↑↑ PMa — ↑ PMa Hou et al., 2007
Mycophenolic acid Inosine-59-

monophosphate
dehydrogenase
inhibitor

↑↑ HepG2 — — Xu et al., 2011

Pioglitazone PPARg agonist ↑↑ THP-1 ↑↑ THP-1 THP-1 Panzenboeck et al., 2006;
Nakaya et al., 2007; Tanabe
et al., 2008; Ogata et al.,
2009; Cocks et al., 2010;
Ozasa et al., 2011; Wang
et al., 2014b, 2015b; Jiang
and Li, 2017; Silva et al.,
2018

↑ HepG2 ↑ Monocyte-
derived
macrop

↑ apoA-I

↑↑ pBCECs ↑ PMa ↑ HDL
↑ gBECs ↑ Diabetic

patientsc
↓ pBCECs

↑↑ WI38 fibroblasts ↑ Rat cortical
neurons

↑ gBECs

↑ Monocyte-derived
macropc

↑ WI38
fibroblasts

↓↓ PMa PMa

5 Liverb ↓ apoA-I
↑ Diabetic patientsc ↑ HDL
↑ Rat cortical

neurons
↑ Diabetic

patientsc

Rosiglitazone PPARg agonist ↑↑ THP-1 ↑↑ THP-1 ↑ THP Chawla et al., 2001; Chinetti
et al., 2001; Claudel et al.,
2001; Li et al., 2004, 2015;
Llaverias et al., 2006

↑ RAW264.7 ↑ macropd ↑ RAW264.7
↑ HepG2 ↑ Aortad ↑ macropd

55 macropd ↑ PMe

↑ PMe ↑ Hepatocytese

↑5 Hepatocytese

5 Aortad

Aorta lesione

Telmisartan Angiotensin receptor
1 antagonist

↑↑ THP-1 ↑↑ THP-1 ↑ THP-1 Nakaya et al., 2007
↑ Monocyte-derived

macropc
↑ Monocyte-

derived
macropc

Troglitazone PPARg agonist ↑ THP-1 ↑ PMa ↑ pBCECs Cabrero et al., 2003;
Panzenboeck et al., 2006; Lee
et al., 2008; Jiang and Li,
2017

↓↑ pBCECs PMa

↑↑ gBECs ↓ apoA-I
5 Monocyte-derived

macropc
↑ HDL

↓↓ PMa

PPARa-activating compounds
Aspirin COX-1/2 inhibitor ↑ THP-1 — RAW264.7 Viñals et al., 2005; Wang et al.,

2010↑↑ RAW264.7 ↑ apoA-I
Atorvastatin HMG-CoA reductase

inhibitor
↑ THP-1 ↑ THP-1 THP-1 Argmann et al., 2005; Maejima

et al., 2011; Nicholls et al.,
2015, 2017

↑ McARH7777 ↑ apoA-I
↑ HDL

Bezafibrate Pan-PPAR agonist ↑↑ THP-1 — ↑ THP-1 Cabrero et al., 2003; Ruan
et al., 2003; Panzenboeck
et al., 2006; Hossain et al.,
2008; Inaba et al., 2008;
Ogata et al., 2009

↑↑ HepG2 ↑ HepG2
55 pBCECs 5 pBCECs
↑↑ W138 fibroblast ↑ W138

fibroblast
↑ HMC

(continued )
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TABLE 2—Continued

Compound Primary Action ABCA1 ABCG1 Cholesterol Efflux Reference

Lipid-loaded
HMC

↑↑ Primary
hepatocytes

↑ apoA-I

5 Monocyte-derived
macropc

↑ Primary
hepatocytes

5 aortab

Clofibrate PPARa agonist ↑5 HepG2 — — Guan et al., 2003; Kobayashi
et al., 20115 Primary

hepatocytesf

↑ Liverf

Fenofibrate PPARa agonist ↑↑ THP-1 ↑ Liverg ↑ THP-1 Forcheron et al., 2002; Lin and
Bornfeldt, 2002; Cabrero
et al., 2003; Thomas et al.,
2003; Arakawa et al., 2005;
Kooistra et al., 2006; Hossain
et al., 2008; Tanabe et al.,
2008; Ogata et al., 2009;
Jiang and Li, 2017

↑↑ RAW264.7 ↑ RAW264.7
↑↑ HepG2 ↑ HepG2
5↑ pBCECs 5 pBCECs
↑↑ Balb/3T3 5 Balb/3T3
↑↑ W138 fibroblast ↑ W138

fibroblast
↑↑ Primary

hepatocytes
↑ Primary

hepatocytes
5 Monocyte-derived

macropc

↑ PMa

↑ Liverh

↑ Diabetic patientsc

↑ Aortai

Gemfibrozil PPARa agonist ↑↑ THP-1 — ↑ THP-1 Hossain et al., 2008; Ogata
et al., 2009↑↑ HepG2 ↑ HepG2

↑↑ W138 fibroblast ↑ W138
fibroblast

↑↑ Primary
hepatocytes

↑ Primary
hepatocytes

GW7647 PPARa agonist ↑ THP-1 5 macropd 5 THP-1 Oliver et al., 2001; Li et al.,
2004; Wang et al., 2010;
Nakaya et al., 2011

↑↑ RAW264.7 5 Aortad RAW264.7
55 macropd ↑↑ BMMa ↑ apoA-I
55 Atherosclerotic

lesiond
5 macropd

↑↑ BMMa ↑ BMMa

LY518674 PPARa agonist ↑↑ THP-1 — ↑ THP-1 Hossain et al., 2008; Ogata
et al., 2009↑↑ HepG2 ↑ HepG2

↑↑ W138 fibroblast ↑ W138
fibroblast

↑↑ Primary
hepatocytes

↑ Primary
hepatocytes

Pitavastatin HMG-CoA reductase
inhibitor

↓ J774 — ↓ J774 Zanotti et al., 2004, 2006;
Kobayashi et al., 2011;
Maejima et al., 2011

↑ HepG2 ↑ Fu5AH
↑↑ McARH7777 ↓ PMa,b,d

↑ Liverf 5 LXR2/2 mice
Pravastatin HMG-CoA reductase

inhibitor
↑↑ 3T3-L1 ↓↓ 3T3-L1 ↓ 3T3-L1 Maejima et al., 2011; Mostafa

et al., 20165 McARH7777
Rosuvastatin HMG-CoA reductase

inhibitor
5 Hepatocytesa ↑ J774 Shimizu et al., 2014; Mostafa

et al., 2016↑ BMMa

↑ RCTa

Simvastatin HMG-CoA reductase
inhibitor

↑ McARH7777 55 PMi THP-1 Argmann et al., 2005; Guan
et al., 2008; Maejima et al.,
2011; Song et al., 2011; Ying
et al., 2013; Gong et al., 2014

↑ Diabetic patients
with
hyperlipidemia

55 Liveri ↑ apoA-I

55 PMd 5 HDL
↑↑ Liveri ↑ RAW264.7

WY14643 PPARa agonist ↑↑ THP-1 ↑ THP-1 ↑ THP-1 Chinetti et al., 2001; Ruan
et al., 2003; Beyer et al.,
2004; Arakawa et al., 2005;
Lee et al., 2008; Maejima
et al., 2011

↑↑ RAW264.7 ↑ RAW264.7
↑↑ gBECs 5 Balb/3T3
↑↑ Balb/3T3 Lipid-loaded

HMC
5 McARH7777 ↑ apoA-I
↑ Livera

Wy,14,563 PPARa agonist — — ↑ THP-1 Chawla et al., 2001
PPARd/b-activating compounds
Carbaprostacyclin

(cPGI)
PPARd agonist — — ↑ THP-1 Chawla et al., 2001

GW0742 PPARd agonist 5 Livera 5 Livera ↑ BMMa Li et al., 2004; Briand et al.,
20095 Small intestinea 5 Small

intestinea
5 macropa

(continued )
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2014). Although cotreatment with atorvastatin and
evacetrapib revealed an enhanced cholesterol efflux,
whereas single treatment with atorvastatin resulted in
a decreased cholesterol efflux, the clinical relevance is
limited, because evacetrapib also increased overall
atherogenic risk (Nicholls et al., 2017). Therefore, the
absence of an effect or even negative effect of statins on
ABCA1-mediated cholesterol efflux in some clinical studies
(Nicholls et al., 2015, 2017), as well as the high incidence
of dose-dependent muscle complaints associated with
these drugs, limits their ability to increase RCT.
Next to compounds that beneficially affect PPARa,

a vast number of drugs can stimulate PPARg. Thiazo-
lidinediones are probably the most well-known and
widely used PPARg agonists, due to their antidiabetic
properties. Thiazolidinediones, including pioglitazone,
ciglitazone, and rosiglitazone, enhanced LXRa expres-
sion, which subsequently induced ABCA1 protein ex-
pression and cholesterol efflux toward apoA-I in vitro
(Chawla et al., 2001; Chinetti et al., 2001; Claudel et al.,
2001; Cabrero et al., 2003; Li et al., 2004, 2015; Llaverias
et al., 2006; Panzenboeck et al., 2006;Nakaya et al., 2007;
Lee et al., 2008; Tanabe et al., 2008; Ogata et al., 2009;
Cocks et al., 2010; Ozasa et al., 2011; Wang et al., 2014b,
2015b; Jiang and Li, 2017) (Table 2). Contradictory to
these results with pioglitazone in THP-1 macrophages
and J774 macrophages, an attenuated or unaffected
ABCA1 expression was found in peritoneal macrophages
isolated from 15PGJ2-, troglitazone-, and pioglitazone-
treated C57BL/6 mice, and in the liver of pioglitazone-
treated LDLR2/2 C57BL/6 mice (Ruan et al., 2003;
Ogata et al., 2009; Ozasa et al., 2011; Zhao et al., 2015;
Jiang and Li, 2017; Silva et al., 2018). Clinically, the
cardioprotective antiatherosclerotic effects of thiazoli-
dinediones have been heavily debated (Liebson, 2010).
Although increased HDL-C levels were observed after
pioglitazone and rosiglitazone treatment, increased
cardiovascular morbidity and heart failure have been
associated with rosiglitazone (Gerstein et al., 2006;

Home et al., 2009; Liebson, 2010; Chandra et al., 2017).
Although in various clinical trials cardioprotective
effects have been observed with pioglitazone (Chandra
et al., 2017), its chronic use is limited by the observed
association with an increased risk of developing blad-
der cancer, bone fractures, and congestive heart failure
(Tang et al., 2018). Another PPARg agonist, GW7845,
which is an analog of the PPARa agonist GW7647, did
not affect apoA-I–mediated cholesterol efflux, whereas
ABCA1mRNA expression was enhanced (Chawla et al.,
2001; Oliver et al., 2001). The PPARg agonist, GW1929,
reduced ABCA1 protein expression in HepG2 cells,
whereas ABCG1 gene expression was increased prob-
ably due to an interplay between PPARg and LXRb,
resulting in dissociation of LXRb from the ABCA1/LXRb
complex (Mogilenko et al., 2010). In contrast, mycophe-
nolic acid, 4010B-30, telmisartan, propofol, and lyso-
phosphatidylcholine exposure did result in an increased
in vitro ABCA1 expression and apoA-I–mediated cho-
lesterol efflux, mediated via the PPARg–LXRa–ABCA1
axis (Hou et al., 2007; Nakaya et al., 2007; Xu et al.,
2011; Du et al., 2015b; Ma et al., 2015; Hsu et al., 2018).
Lysophoshatidylcholine treatment enhanced apoE se-
cretion from peritoneal macrophages (Hou et al., 2007)
and 4010B-30 enhanced apoA-I production, whereas
telmisartan and propofol also enhanced ABCG1 expres-
sion inmacrophages (Nakaya et al., 2007;Du et al., 2015b;
Ma et al., 2015). The clinical antiatherosclerotic appli-
cability of propofol seems limited, because of its sedative
effect and risk of hypertriglyceridemia induced by the
lipid emulsion formulation (Eddleston and Shelly,
1991). Additionally, E3317 enhanced in vitro ABCA1
expression and apoA-I–dependent cholesterol efflux
via PPARg, and a novel thiazolidine, GQ-11, which is
a partial PPARg and PPARa agonist, increased hepatic
ABCA1,APOA-I, andHDLmRNAexpression inLDLR2/2

C57BL/6mice (Silva et al., 2018;Wang et al., 2018). Thus,
PPARg agonists show controversial results in the stimu-
lation of ABCA1 expression, which could be due to their

TABLE 2—Continued

Compound Primary Action ABCA1 ABCG1 Cholesterol Efflux Reference

55 macropd 5 macropd

5 Atherosclerotic
lesiond

5 Aortad

GW501515 PPARd agonist ↑↑ THP-1 5 HSKM ↑ THP-1 Oliver et al., 2001; Sprecher
et al., 2007; Ogata et al., 2009↑↑ W138 fibroblast ↑ W138

fibroblast
↑ 1BR3N fibroblast ↑ 1BR3N

fibroblast
↑ Intestinal FHS74 ↑ Intestinal
↑ HSKM HSKM

BMM, bone marrow– derived macrophage; gBECS, gallbladder epithelial cells; HMC, human mast cell; HSKM, human skeletal muscle cell; macrop, macrophage; pBCECs,
porcine brain capillary endothelial cells; PM, peritoneal macrophages; RAECs, rat aortic endothelial cells.

aC75BL/6 mice.
bLDLR2/2 C75BL/6 mice.
cHuman.
dLDLR2/2 C75BL/6 hypercholesterolemic mice.
eNew Zealand White rabbits.
fMale Wistar rats.
gMale Zucker diabetic fatty rats.
h129SV mice.
iFemale E3L transgenic mice.
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relatively low potency for PPARa and high PPARg
potency.
Although explored to a lesser extent, activation of

PPARb/dmay be promising, as activationwithGW501515
promoted RCT by enhancing in vitro apoA-I and HDL
levels, ABCA1 expression, and apoA-I–mediated choles-
terol efflux (Oliver et al., 2001; Sprecher et al., 2007; Ogata
et al., 2009) (Table 2). Another PPARb/d agonist, GW0742,
did not affect ABCA1 or ABCG1 mRNA expression
and only stimulated cholesterol efflux in bone marrow–

derivedmacrophages, but not in peritoneal macrophages
from LDLR2/2 mice (Li et al., 2004; Briand et al., 2009).
Carbaprostacyclin, a PPARb/d agonist, only increased
cholesterol efflux in macrophages (Chawla et al., 2001).
Combinations of PPAR and LXR agonists were in-

vestigated to overcome disadvantages observed with
either PPAR or LXR agonists (e.g., increased plasma
triglyceride concentrations), which demonstrated to be
a promising strategy. Fenofibrate could abolish the
LXR-mediated induction of SREBP1 by T0901317 in
THP-1 macrophages without affecting the endogenous
ABCA1 expression (Thomas et al., 2003). Similar results
were observed after coadministration of T0901317 and
Wy14643, as shown by the attenuation of T0901317-
induced increases in serum and plasma triglycerides,
without posing an effect on ABCA1 mRNA levels in
C57BL/6 mice (Beyer et al., 2004).
In summary, bothPPARa andPPARg agonists increase

ABCA1 and ABCG1 expression in an LXRa-dependent
manner, whereas PPARa agonists were more effective
inducers of apoA-I levels and apoA-I–mediated choles-
terol efflux. Furthermore, coadministration of LXR and
PPARa agonists may overcome the adverse effects on
plasma triglyceride levels of LXR agonists. However,
more studies are needed to elucidate themechanism and
effectivity of such combinatorial strategies for treat-
ment of atherosclerosis.

D. Enhancement of ATP-Binding Cassette A1 and
ATP-Binding Cassette G1 Expression by Retinoid X
Receptor Agonists

The notion that RXR activates and orchestrates the
signaling of other nuclear receptors, including LXR and
PPAR, led to the idea that RXR stimulation could be of
special interest to stimulate RCT (Costet et al., 2003;
Nishimaki-Mogami et al., 2008; Cui et al., 2011; Zhang
et al., 2013a; Zhou et al., 2015). Such crosstalk with
other nuclear receptors is illustrated by RXR/LXRa
heterodimer formation after stimulation of RXR by endog-
enously synthesized 9-cis-RA (Manna et al., 2015; Zhou
et al., 2015) and with synthetic RXR agonists, including
PA024 and HX630 (Nishimaki-Mogami et al., 2008; Zhou
et al., 2015), which all increased ABCA1 expression
(Table 3). In RAW264 cells, PA024, unlike HX630,
directly influenced LXRE and positively modified the
promoter activity to enhance ABCA1 mRNA expression,
resulting in generation of HDL particles and stimulation

of cholesterol efflux (Nishimaki-Mogami et al., 2008).
In contrast, HX630 is expected to stimulate ABCA1
expression by activating PPARg/RXR heterodimer, lead-
ing to an enhanced LXR expression in RAW264 cells
(Nishimaki-Mogami et al., 2008). Similar mechanisms
were observed with two other RXR agonists, tributyltin
chloride and LG268, which activated PPARg/RXR and
LXRa/RXR signaling. This treatmentmodulated cellular
lipid homeostasis and cholesterol efflux in RAW264 and
THP-1 macrophages via increased expression of ABCA1
and ABCG1 (Repa et al., 2000; Chawla et al., 2001; Cui
et al., 2011; Sun et al., 2015). Additionally, LG101305
enhanced ABCA1 mRNA expression and cholesterol
efflux in macrophages (Claudel et al., 2001). The RXR
agonists, bexarotene and methoprene, enhanced ABCA1
expression and cholesterol efflux in astrocytes and in-
creased the overall cerebral cholesterol efflux into the
circulation (LaClair et al., 2013; Kuntz et al., 2015;
Tachibana et al., 2016).

However, as RXR interacts with many other nuclear
receptors, RXR agonists are associated with a wide
spectrum of adverse events (Costet et al., 2003),
including enhanced lipogenesis due to LXR/RXR heter-
odimerization (Manna et al., 2015), which severely
limits their therapeutic potential to stimulate RCT.

Compounds that stimulate RAR do not suffer from
these adverse mechanisms, as they are less ambiguous
in the targets they activate. The RAR agonists, 4-[(E)-2-
(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphtalenyl)-
1-propenyl]benzoic acid (TTNPB) and Am580, enhanced
ABCG1 expression bymodulatingABCG1 promoter activ-
ity, especially by interactingwithLXRE-B inmacrophages
(Ayaori et al., 2012). Furthermore, TTNPB stimulated
ABCA1 expression in mouse and human macrophages
mediated via a stimulatory effect of RARg/RXR on the
ABCA1 promoter (Costet et al., 2003). Chen et al.
(2011b) found opposite effects of TTNPB in astrocytes,
indicating that the effects may be cell-type dependent.
The beneficial effects in macrophages are, however,
most relevant for a potential antiatherosclerotic effect
of RAR agonists, whichmakes them an interesting class
of compounds to target RCT.

V. ATP-Binding Cassette A1 and ATP-Binding
Cassette G1 mRNA Stability

A. mRNA Degradation as a Post-Translational
Mechanism to Regulate ATP-Binding Cassette A1 and
ATP-Binding Cassette G1 Expression

Another mechanism regulating plasma membrane
abundance of ABCG1 and ABCA1 transporters is the
rapid post-translational degradation of their mRNA
transcripts. For ABCG1 this depends on the inter-
action of the 39 untranslated region of its transcript
with miRNAs, resulting in repression of transla-
tion or mRNA degradation (Li et al., 2010; Rayner
et al., 2011; Rotllan and Fernandez-Hernando, 2012;
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Lv et al., 2014). Consequently, these small noncoding
RNAs appear to be important modulators of gene expres-
sion (Rotllan andFernandez-Hernando, 2012),whichupon
binding with other mRNA regions can lead to degradation
as well as increased mRNA expression and translation
(Rotllan and Fernandez-Hernando, 2012) (Fig. 5). Several
miRNAs, which are summarized in Table 4, are known to
affect ABCA1 mRNA expression. Although less is known
about ABCG1 regulation, some miRNAs directly de-
creased ABCG1 mRNA expression levels (Table 4)
Moore et al., 2010; 2011; Fernández-Hernando et al.,
2011; Fernández-Hernando andMoore, 2011; Rayner et
al., 2011, 2012; Hazen and Smith, 2012; Iatan et al.,
2012; Rotllan and Fernandez-Hernando, 2012; Sun et
al., 2012; Wang et al., 2012, 2014a; Adlakha et al., 2013;
Dávalos and Fernandez-Hernando, 2013; de Aguiar
Vallim et al., 2013; Kang et al., 2013; Ramárez et al.,
2013; Canfrán-Duque et al., 2014; Goedeke et al., 2014;
Mao et al., 2014; DiMarco and Fernandez, 2015; He et
al., 2015; Mandolini et al., 2015; Yang et al., 2015;
Feinberg and Moore, 2016; Ono, 2016; Rotllan et al.,
2016; Aryal et al., 2017).

B. Targeting Post-Transcriptional Regulation of
ATP-Binding Cassette A1 mRNA

The therapeutic potential of miRNA in the regulation
of cholesterol metabolism will not be further addressed

in this review, as this was extensively reviewed by
others (Moore et al., 2010, 2011; Fernández-Hernando
and Moore, 2011; Rotllan and Fernandez-Hernando,
2012; Dávalos and Fernandez-Hernando, 2013; Canfrán-
Duque et al., 2014; Goedeke et al., 2014; DiMarco and
Fernandez, 2015;Rotllan et al., 2016; Aryal et al., 2017). In
this study, other drugable mechanisms involved in the
post-transcriptional regulation of ABCA1 and ABCG1
mRNA expression will be discussed (Moore et al., 2011;
Rotllan and Fernandez-Hernando, 2012; Dangwal and
Thum, 2014; van Rooij and Kauppinen, 2014; Rotllan
et al., 2016). One of these mechanisms is mediated by
the cellular energy sensor AMP-activated protein
kinase (AMPK), through its regulation of cholesterol
metabolism. AMPK activation by 5-aminoimidazole-
4-carboxyyamide ribonucleoside (AICAR; an AMP mi-
metic) has led to enhanced ABCG1 mRNA and protein
expression, reduced ox-LDLuptake, and enhancedHDL-
mediated cholesterol efflux (Table 5). These effects were
found to be independent of LXRa, but mediated through
ABCG1 mRNA 39 untranslated region without affecting
ABCA1, SR-A, CD36, and SR-B1 protein expression
(Li et al., 2010). In contrast, Kemmerer et al. (2016)
demonstrated predominant LXRa-mediated upregula-
tion of ABCA1 mRNA expression in macrophages after
exposure to AICAR and the allosteric AMPK activators
A769662 and salicylate (Li et al., 2010). The increased

TABLE 3
Synthetic retinoid nuclear receptor agonists

Overview of retinoid nuclear receptor agonists, including their primary pharmacological action, effects on ABCA1 and ABCG1 expression (arrows: mRNA, protein), and
effects on cellular cholesterol efflux. Effects on ABCA1, ABCG1, and cholesterol efflux are presented as follows: (↓) decreased; (5 ) no effect; (↑) increased. Italicized symbols
indicate changes in ABCA1 and ABCG1 mRNA levels, whereas nonitalicized symbols indicate protein levels.

Compound Primary Action ABCA1 ABCG1 Cholesterol
Efflux Reference

RXR agonists
Bexarotene pan-RXR agonist ↑↑ BLECs — ↑ BLECs LaClair et al., 2013; Kuntz et al., 2015;

Tachibana et al., 2016↑ Cortexa

↑ Cortexb

↑ Cortexc

HX630 RXR agonist ↑ THP-1 ↑ THP-1 ↑ THP-1 Nishimaki-Mogami et al., 2008
↑ RAW264.7

LG101305 RXR agonist ↑ RAW264.7 — ↑ RAW264.7 Claudel et al., 2001
LG268 RXR agonist ↑ Small intestined — ↑ THP-1 Chawla et al., 2001

↑ PM
Methoprene RXR agonist ↑ Astrocyte ↑ Astrocyte Astrocyte Repa et al., 2000; Chen et al., 2011b

↑ apoA-I
↑ HDL

PA024 RXR agonist ↑ THP-1 ↑ THP-1 ↑ THP-1 Nishimaki-Mogami et al., 2008
↑ RAW264.7

Tri-butylin
chloride

RXRa agonist ↑↑ RAW264.7 ↑↑ Primary mouse
astrocyte cells

↑ RAW264.7 Cui et al., 2011; Sun et al., 2015

↑↑ Primary mouse
astrocyte cells

↑↑ Cortexc

↑↑ Cortexc

RAR agonists
AM580 RARa agonist — ↑ THP-1 — Ayaori et al., 2012
TTNPB Synthetic RAR

agonist
↑ THP-1 ↑ THP-1 ↑ RAW264.7 Costet et al., 2003; Chen et al., 2011b;

Ayaori et al., 2012↑ HEK293 ↓ Astrocytes ↓ Astrocytes
↓ Astrocytes 5 Liverd

5 Liverd

↑ PMd

BLEC, bovine lens epithelial cells; PM, peritoneal macrophages.
aLrp1flox/flox; aCamKII-Cre2/2 mice.
bLrp1flox/flox; aCamKII-Cre1/2 mice.
cAPPSWE/PSE1ΔE mice.
dC75BL/6/A129Sv mice.
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ABCA1expressionbyA769662andAICARwasproposed to
be mediated via inhibition of extracellular signal-regulated
kinase (ERK) or the mammalian target of rapamycin
pathways (Kemmerer et al., 2016). Indeed, ERK signaling
is described as a negative regulator of ABCA1 protein
stability (Mogilenko et al., 2010). Compounds that affect the
ERK pathway will be discussed in Section VI.B (Pharma-
cological Inhibition of ATP-Binding Cassette A1 and
ATP-Binding Cassette G1 Protein Degradation). Thus,
AMPKagonists could increase cholesterol efflux via a dual
mechanism, either by enhancing ABCG1mRNA stability
or via increasedmRNA expression ofABCG1 andABCA1.

VI. ATP-Binding Cassette A1 and ATP-Binding
Cassette G1 Protein Degradation as a Target to

Increase Cholesterol Efflux

A. The Role of ATP-Binding Cassette A1 and ATP-
Binding Cassette G1 Reuptake and Degradation in the
Regulation of Their Plasma Membrane Abundance

Like other plasma membrane transporters and recep-
tors, ABCA1 andABCG1 protein abundance is dependent

on their cellular reuptake and degradation (Yokoyama
et al., 2012; Wang et al., 2017). After internalization,
ABCA1 ismainly degraded via lysosomal and ubiquitin-
or calpain-mediated proteolysis (Yokoyama et al., 2012;
Huang et al., 2015; Wang et al., 2017) (Fig. 5). Although
the function of lysosomal and ubiquitin-mediated pro-
teolytic degradation in ABCA1 turnover and activity
needs to be elucidated, the importance of calpain-mediated
ABCA1 breakdown has been established, especially
in THP-1 macrophages (Yokoyama et al., 2012; Wang
et al., 2017).

ABCA1 proteolysis is initiated by calpain binding to
a calpain-specific cleavage sequence [Pro-Glu-Ser-Thr
(PEST)] (Iwamoto et al., 2010; Huang et al., 2015; Wang
et al., 2017), which is located within the large cytosolic
loop of ABCA1 (Reiss and Cronstein, 2012) (Fig. 5). The
relevance of this region was illustrated by deletion of
the PEST sequence, which prevented the breakdown of
ABCA1 (Yokoyama et al., 2012). This region is also
important for ABCA1 half-life, which is 1 to 2 hours in the
absence of helical apolipoproteins, such as apoA-I, apoA-II,
and apoE (Iwamoto et al., 2010; Yokoyama et al., 2012).

TABLE 4
Overview of microRNAs enhancing or reducing ABCA1 and ABCG1 mRNA

Overview of microRNAs, including their effects on ABCA1 and ABCG1 expression. Effects on ABCA1, ABCG1, and cholesterol efflux are presented as follows: (↓) decreased;
(5 ) no effect; (↑) increased.

MicroRNA ABCA1 ABCG1 Reference

miR-10b ↓ ↓ Hazen and Smith, 2012; Wang et al., 2012; Dávalos and Fernandez-Hernando, 2013; Goedeke et al., 2014;
Rayner and Moore, 2014; Rotllan et al., 2016; Aryal et al., 2017

miR-17 ↓ He et al., 2015
miR-19b ↓ Lv et al., 2014, 2015; DiMarco and Fernandez, 2015
miR-20a/b ↓ Liang et al., 2017
miR-21 ↓ ↓ Canfrán-Duque et al., 2017
miR-26 ↓ ↓ (Indirect via

LXR)
Sun et al., 2012; Dávalos and Fernandez-Hernando, 2013; Canfrán-Duque et al., 2014; Goedeke et al., 2014;

Rayner and Moore, 2014; DiMarco and Fernandez, 2015; Yang et al., 2015; Feinberg and Moore, 2016;
Rotllan et al., 2016

miR-27a/b ↓ 5 (↓ Indirect) Kang et al., 2013; Canfrán-Duque et al., 2014; Goedeke et al., 2014, 2015b; Zhang et al., 2014; DiMarco and
Fernandez, 2015; Yang et al., 2015; Rotllan et al., 2016

miR-33a/
33b

↓ ↓ Moore et al., 2010, 2011; Fernandez-Hernando et al., 2011; Fernández-Hernando and Moore, 2011; Rayner
et al., 2011, 2012; Iatan et al., 2012; Rotllan and Fernandez-Hernando, 2012; Dávalos and
Fernandez-Hernando, 2013; Kang et al., 2013; Canfrán-Duque et al., 2014; Goedeke et al., 2014; Mao
et al., 2014; Rayner and Moore, 2014; DiMarco and Fernandez, 2015; He et al., 2015; Mandolini et al.,
2015; Yang et al., 2015; Feinberg and Moore, 2016; Ono, 2016; Rotllan et al., 2016; Aryal et al., 2017

miR-93 ↓ He et al., 2015
miR-96 ↓ Moazzeni et al., 2017
miR-101 ↓ Zhang et al., 2015a; Aryal et al., 2017
miR-106b ↓ Kim et al., 2012; Rotllan and Fernandez-Hernando, 2012; Dávalos and Fernandez-Hernando, 2013;

Goedeke et al., 2014; Rayner and Moore, 2014; Feinberg and Moore, 2016
miR-128-1 ↓ Wagschal et al., 2015; Feinberg and Moore, 2016; Rotllan et al., 2016; Aryal et al., 2017
miR-128-2 ↓ ↓ Adlakha et al., 2013; DiMarco and Fernandez, 2015
miR-130b ↓ Wagschal et al., 2015; Feinberg and Moore, 2016
miR-144 ↓ ↓ (Indirect via

RXR)
de Aguiar Vallim et al., 2013; Kang et al., 2013; Ramírez et al., 2013; Canfrán-Duque et al., 2014; Goedeke

et al., 2014; Rayner and Moore, 2014; DiMarco and Fernandez, 2015; Feinberg and Moore, 2016; Rotllan
et al., 2016; Aryal et al., 2017

miR-145 ↓ Kang et al., 2013; Canfrán-Duque et al., 2014; Goedeke et al., 2014; Sala et al., 2014; DiMarco and
Fernandez, 2015

miR-148a ↓ Kang et al., 2013; Goedeke et al., 2015a; Wagschal et al., 2015; Feinberg and Moore, 2016; Rotllan et al.,
2016; Aryal et al., 2017

miR-223 ↑ DiMarco and Fernandez, 2015; Rotllan et al., 2016
miR-301b ↓ Wagschal et al., 2015; Feinberg and Moore, 2016
miR-302a ↓ DiMarco and Fernandez, 2015; Meiler et al., 2015; Rotllan et al., 2016; Aryal et al., 2017
miR-378 ↓ (Indirect) Wang et al., 2014a; DiMarco and Fernandez, 2015; Yang et al., 2015
miR-613 ↓ Zhao et al., 2014; DiMarco and Fernandez, 2015
miR-758 ↓ Ramirez et al., 2011; Kim et al., 2012; Rayner et al., 2012; Rotllan and Fernandez-Hernando, 2012; Dávalos

and Fernandez-Hernando, 2013; Canfrán-Duque et al., 2014; Goedeke et al., 2014; Rayner and Moore,
2014; DiMarco and Fernandez, 2015; Mandolini et al., 2015; Yang et al., 2015; Feinberg and Moore, 2016

miR, microRNA.
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Phosphorylation of the PEST sequence is suggested to
reduce ABCA1 half-life (Iwamoto et al., 2010; Yokoyama
et al., 2012), whereas apoA-I binding or pre-exposure
(i.e., apoA-I presence before internalization of prebiotiny-
lated surface ABCA1 expressed on THP-1) prolongs the
half-life by increasing the resistance of ABCA1 calpain-
mediated proteolysis (Lu et al., 2008; Iwamoto et al., 2010;
Yokoyama et al., 2012). This did not affect ABCA1
internalization in endosomes, but resulted in a larger
portion of ABCA1 that is recycled from the endosomes
to the plasma membrane. Besides apoA-I, calpain-
mediated ABCA1 degradation is regulated by various
endogenous ligands, including calmodulin, calpeptin, cal-
pastatin, protein kinase C (PKC)a, and heme oxygenase-1
(HO-1). Calmodulin interacts with a region in the large
cytoplasmic loop near the PEST sequence, which protects
ABCA1 against calpain-mediated proteolysis (Iwamoto
et al., 2010). In contrast to calmodulin, calpastatin and
the nuclear factor-like (Nrf)2–HO-1 axis directly inhibit
calpain activity and decrease ABCA1 degradation (Tsai
et al., 2010; Wissel et al., 2015). Finally, phosphorylation
of the PEST region by activation of apelin-13–mediated
PKCa also protects ABCA1 against calpain-mediated
proteolysis (Liu et al., 2013). In short, inhibition of
calpain activity and ABCA1 internalization, or stim-
ulation of its turnover rate, may result in an in-
creased ABCA1-mediated cellular cholesterol efflux
and increased HDL biosynthesis.

B. Pharmacological Inhibition of ATP-Binding
Cassette A1 and ATP-Binding Cassette G1
Protein Degradation

As proteolytic breakdown of ABCA1 and ABCG1
plays a significant role in the regulation of their plasma
membrane abundance, different pharmacological treat-
ments have been investigated and aimed at increasing
RCT via this mechanism (Table 6). One is the use of
inhibitors of thiol proteases (e.g., calpain), like leupeptin
and N-acetyl-leu-leu-norleucinal (ALLN), which both pre-
vented ABCA1 degradation (Arakawa and Yokoyama,
2002; Yokoyama, 2004). In contrast, other thiol protease
inhibitors (i.e., pepstatin A, aprotinin, and phosphor-
amidon) did not affect ABCA1 degradation (Arakawa
and Yokoyama, 2002), questioning the specificity of
the effect of leupeptin and ALLN. In addition, ABCA1

protein expression levels were not affected by non-
specific protease inhibitors like the proteasome inhibi-
tor lactacystin (Arakawa and Yokoyama, 2002).

The stabilizing role of PKC on ABCA1 also seems to
hold for ABCG1, as the ABCG1-dependent cholesterol
efflux is decreased by the PKC inhibitors calphostin C
and PKC19-36 (Gelissen et al., 2012). As mentioned
above, apelin-13, a cleaved peptide from the adipocyto-
kine apelin, phosphorylated ABCA1 in THP-1 macro-
phages, leading to ABCA1 stabilization and enhanced
cholesterol efflux (Liu et al., 2013). Remarkably, several
other PKC inhibitors (i.e., Gö6983, Gö6976, rottlerin,
and doxazosin) enhanced ABCA1 mRNA and protein
expression as well as cholesterol efflux in macrophages
via an inhibitory effect on protein kinase D (PKD), with
the strongest effect by Gö6983 (Iwamoto et al., 2007, 2008;
Tsunemi et al., 2014). This effect is probably mediated by
a decreased phosphorylation of activator protein 2a, which
represses transcription of ABCA1 as phosphorylated acti-
vator protein 2a binds to the promoter region of ABCA1
(Iwamoto et al., 2007, 2008; Remaley, 2007). The potential
of this promoter region as a target to increase cellular
cholesterol efflux is emphasized by pyrrole–imidazole
polyamides that bind to this region and enhanced ABCA1
mRNA and protein levels as well as cholesterol efflux in
3T3-L1 adipocytes and RCT in C57BL/6 mice (Tsunemi
et al., 2014). In this study,ABCA1 levelswere increasedvia
PKD inhibition, which illustrates the importance of the
balance between PKC and PKD activity.

A more specific calpain inhibitor, triacetyl-3
hydroxyphenyl-adenosine (IMM-H007), increased
ABCA1 plasma membrane expression in THP-1 cells
and enhanced ABCA1-mediated cholesterol efflux to
apoA-I (Huang et al., 2015). In apoE2/2mice, IMM-H007
delayed ABCA1 protein degradation, promoted ABCA1
cell surface localization, enhanced RCT, and suppressed
atherosclerotic lesion development (Huang et al., 2015).
Interestingly, IMM-H007 activated AMPK, which may
have also contributed to these effects via ABCA1 stabi-
lization, as described above. In summary, the adenosine
analog IMM-H007 may be a promising candidate to
upregulate ABCA1 expression with proven capacity to
increase RCT in vivo.

More indirect strategies to inhibit calpain, including
the induction of HO-1 production, have also been shown

TABLE 5
Compounds enhancing ABCA1 and ABCG1 mRNA stability

Overview of compounds that enhance ABCA1 and ABCG1 mRNA stability, including their primary pharmacological action, effects on ABCA1 and ABCG1 expression
(arrows: mRNA, protein), and effects on cellular cholesterol efflux. Effects on ABCA1, ABCG1, and cholesterol efflux are presented as follows: (↓) decreased; (5 ) no effect; (↑)
increased. Italicized symbols indicate changes in ABCA1 and ABCG1 mRNA levels, whereas nonitalicized symbols indicate protein levels.

Compound Primary Action ABCA1 ABCG1 Cholesterol
Efflux Reference

AICAR AMPK agonist 55 J774.A1 ↑↑ J774.A1 J774.A1 Li et al., 2010; Kemmerer et al., 2016
↑ THP-1 ↑↑ PMa ↑ HDL

A769662 Allosteric AMPK agonist ↑↑ THP-1 ↑ J774.A1 ↑ THP-1 Li et al., 2010; Kemmerer et al., 2016
Salicylate Allosteric AMPK agonist ↑ THP-1 — — Kemmerer et al., 2016
aapoE2/2 C75BL/6 mice.
PM, peritoneal macrophages.
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TABLE 6
Inhibitors of ABCA1 and ABCG1 protein breakdown

Overview of compounds that inhibit ABCA1 and ABCG1 protein breakdown, including their primary pharmacological action, effects on ABCA1 and ABCG1 expression
(arrows: mRNA, protein), and effects on cellular cholesterol efflux. Effects on ABCA1, ABCG1, and cholesterol efflux are presented as follows: (↓) decreased; (5 ) no effect; (↑)
increased. Italicized symbols indicate changes in ABCA1 and ABCG1 mRNA levels, whereas nonitalicized symbols indicate protein levels.

Compound Primary Action ABCA1 ABCG1 Cholesterol Efflux Reference

Acifran GPR109A
agonist

— — — Gaidarov et al., 2013

Acipimox GPR109A
agonist

— — — Gaidarov et al., 2013

ALLN Thiol-protease
inhibitor

5↑ THP-1 — ↑ THP-1 Arakawa and Yokoyama, 2002; Yokoyama,
2004

Calphostin C PKC inhibitor — — ↓ CHO-K1
ABCG1(112)

Gelissen et al., 2012

↓ CHO-K1
ABCG1(212)

Diphenoquinone Unknown,
probucol
metabolite

↑ THP-1 ↑ RAW264.7 ↑ THP-1 Arakawa et al., 2009; Lu et al., 2016;
Yakushiji et al., 2016↑ RAW264.7 RAW264.7

↑ HEK293 ↑ apoA-I
↑ Balb/3T3 ↑ HDL
↑ MEFs ↑ Hek293
5↑ Livera ↑ MEFs

Exendin-4 GLP-1R agonist ↑↑ 3T3-L1
adipocytes

↑↑ 3T3-L1
adipocytes

↑ 3T3-L1
adipocytes

Mostafa et al., 2015; Yin et al., 2016

↑↑ glomerulib ↑ glomerulib

Ezetimibe NPC1L1
inhibitor

↑ VSCMs — — Gong et al., 2014; Kannisto et al., 2014
↓↓ Liverc

↓↓ Proximal
small
intestinec

Gö6976 PKC inhibitor ↑↑ THP-1 — ↑ THP-1 Iwamoto et al., 2008
Gö6983 PKC inhibitor ↑↑

↑↑
THP-1 — ↑ THP-1 Iwamoto et al., 2008
Liverc

IMM-H007 AMPK agonist ↑ THP-1 — ↑ J774 Huang et al., 2015
↑ Liverd ↑ THP-1

↑ RCTc

LD211 MC1-R agonist ↑ BMDMd ↑ BMDMd BMDMd Rinne et al., 2017
↑ apoA-I
↑ HDL

Leupeptin Thiol-protease
inhibitor

5↑ THP-1 — — Arakawa and Yokoyama, 2002

MK-0354 GPR109A
agonist

5 MDMd 5 MDMd 5 MDMd Gaidarov et al., 2013

MK-1903 GPR109A
agonist

↑ MDMd ↑ MDMd ↑ MDMd Gaidarov et al., 2013

MSG606 MC1-R agonist ↑ BMDMd ↑ BMDMd BMDMd Rinne et al., 2017
5 Aortad 5 Aortad ↑ apoA-I
↑ Liverd ↑ Liverd ↑ HDL

N-acetyl cysteine Glutathione
synthase
stimulator

↓ J774 ↑ J774 J774 Machado et al., 2014
↓ apoA-I
↑ HDL

Niacin GPR109A
agonist

↑↑ HepG2 ↑ MDMd ↑ THP-1 Rubic et al., 2004; Siripurkpong and
Na-Bangchang, 2009; Wu and Zhao, 2009;
Yvan-Charvet et al., 2010a; Zhang et al.,
2012; Gaidarov et al., 2013

↑↑ 3T3-L1
adipocytes

↑ HepG2

↑ MM6sr ↑ 3T3-L1
adipocytes

↑ MDMd ↑ MM6sr
↑ Monocyted ↑ MDMd

↑↑ Livere

Nicardipine Calcium channel
blocker

— — ↑ THP-1 Suzuki et al., 2004
↑ RAW264.7

Nifedipine Calcium channel
blocker

↑↑ RAW264.7 ↑↑ RAW264.7 ↑ THP-1 Suzuki et al., 2004; Ishii et al., 2010; Zhang
et al., 2013b↑↑ Aorta sinusf RAW264.7

↑↑ PMa ↑ apoA-I
↑ HDL

PD98059 MEK1/2
inhibitor

↑ THP-1 ↑ THP-1 ↓ CHO Zhou et al., 2010; Mulay et al., 2013; Zhang
et al., 2016↑↑ RAW264.7 ↑↑ RAW264.7 PMd

↓ HuH7 ↓ CHO ↑ HDL
↓ CHO ↓ HEK293

↑↑ Mouse
primary
macrop

↑ PMd

PKC19-36 PKC inhibitor — — ↓ CHO-K1
ABCG1(112)

Gelissen et al., 2012

(continued )
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to suppress ABCA1 degradation. Tertiary-butyl-
hydroquinone, a synthetic phenolic antioxidant, medi-
ates these effects by activation of Nrf2 via its dissociation
from kelch-like ECH-associated protein (Keap) 1, trans-
location of Nrf2 toward the nucleus, and activation of
antioxidant responsive element (ARE)-dependent tran-
scription of HO-1 gene. The increased production of
HO-1, which is an endogenous inhibitor of calpain,
resulted in reduced ABCA1 degradation (Lu et al., 2013).
In addition, two oxidative products of probucol,

spiroquinone and diphenoquinone, suppressed ABCA1
and ABCG1 degradation both in vitro and in vivo, and
thereby increased RCT and reduced lipid deposition
in atherosclerotic plaques in vivo (Yokoyama, 2004;
Arakawa et al., 2009; Lu et al., 2016; Yakushiji et al.,
2016). These effects are expected to be due to disruption
of the caveolin-1 interaction with ABCA1 by spiroqui-
none and diphenoquinone, resulting in the stabilization
of ABCA1 protein against degradation (Arakawa et al.,
2009). This mechanism is also expected to mediate
the increase in ABCA1 abundance by ezetimibe,
which lowers caveolin-1 expression through suppres-
sion of SREBP-1 expression (Lu et al., 2016). Another
mechanism directly affecting ABCA1 stability is the
reduction of its disulfide bonds (Bungert et al., 2001), as
described withN-acetyl-cysteine (Machado et al., 2014).
N-acetyl-cysteine treatment is, however, associated with
an increased cellular cholesterol efflux, which was medi-
ated by increasedABCG1expression andHDL-dependent

cholesterol efflux, whereas ABCA1 expression and
apoA-I–dependent cholesterol efflux were decreased
in J774 cells (Machado et al., 2014).

Finally, calpain-mediated ABCA1 proteolysis can
also be inhibited by alteration of the phosphorylation
status of the ABCA1PEST sequence, as described above
(Reiss et al., 2008; Chen et al., 2011a). This could
explain the beneficial effects of the ERK1/2 inhibitors,
PD98059 and U0126, on ABCA1 and ABCG1 mRNA
and protein expression, cholesterol efflux inmacrophages,
and RCT in apoE2/2 mice (Mulay et al., 2013; Kemmerer
et al., 2016; Xue et al., 2016; Zhang et al., 2016). Besides
a direct effect, ERK1/2 inhibition could also increase
ABCA1 and ABCG1 mRNA stability and expression via
an LXRa-dependent mechanism, possibly, by enhancing
the LXRa to LXRE-A binding, without affecting PPARg
and LXRa expression (Xue et al., 2016; Liu et al., 2019).
In addition to an increased cholesterol efflux, lipid
deposition and CD36 expression were suppressed upon
U0126 treatment in ox-LDL–stimulated macrophages
(Xue et al., 2016). The effect of ERK1/2 inhibition is cell-
type dependent, as ABCA1 and ABCG1 protein stability
was reduced in CHO and HuH7 cells after ERK1/2
inhibition (Gelissen et al., 2012; Mulay et al., 2013). In
addition, the beneficial effect on ABCA1 and ABCG1
expression of zerumbone (i.e., a wild ginger-derived
natural compound) and tanshinone IIA was abolished
in THP-1 macrophages by ERK inhibitor PD98059 (Liu
et al., 2014;Mostafa et al., 2015, 2016; Zhu andLiu, 2015;

TABLE 6—Continued

Compound Primary Action ABCA1 ABCG1 Cholesterol Efflux Reference

↓ CHO-K1
ABCG1(212)

Rottlerin PKC inhibitor ↑↑ THP-1 — 5 THP-1 Iwamoto et al., 2008
Spiroquinone Unknown,

probucol
metabolite

↑ THP-1 ↑ RAW264.7 ↑ THP-1 Yokoyama, 2004; Arakawa et al., 2009; Lu
et al., 2016; Yakushiji et al., 2016↑ RAW264.7 RAW264.7

↑ HEK293 ↑ apoA-I
↑ Balb/3T3 5 HDL
↑ MEFs ↑ Hek293
5↑ Livera ↑ MEFs

Tert-
butylhydroquinone

Synthetic
phenolic
antioxidant

↑↑ THP-1 — ↑ THP-1 Lu et al., 2013

U0126 MEK1/2
inhibitor

↑↑ RAW264.7 ↑ THP-1 RAW264.7 Mogilenko et al., 2010; Zhou et al., 2010;
Mulay et al., 2013; Xue et al., 2016; Zhang
et al., 2016; Liu et al., 2019

↑↑ HepG2 ↑↑ RAW264.7 ↑ apoA-I
↑↑ PMb ↑↑ Mouse

primary
macrop

↑ HDL

↑↑ Jurkat ↑ PMd PM
↑↑ PMg ↑ apoA-I
↑↑ Jurkat ↑ HDL

Jurkat
↑ apoA-I

Verapamil Calcium channel
blocker

↑↑ RAW264.7 ↓ RAW264.7 ↑ THP-1 Suzuki et al., 2004
↑ RAW264.7

Vildagliptin GLP-1R agonist ↑↑ 3T3-L1
adipocytes

↑↑ 3T3-L1
adipocytes

↑ 3T3-L1
adipocytes

Mostafa et al., 2015, 2016

ALLN, N-acetyl-leu-leu-norleucinal; GLP-1R, glucagon-like peptide-1 receptor; MDM, monocyte-derived macrophage; MEF, murine embryonic fibroblast; MEK, mitogen-
activated protein kinase kinase; NPC1L1, Niemann-Pick C1-like 1; PM, peritoneal macrophages.

aNew Zealand White rabbits.
bapoE2/2 C75BL/6 diabetic mice.
capoE2/2 C75BL/6 mice.
dC75BL/6 mice.
eGolden Syrian Hamster.
fC3H/He mice.
gSprague Dawley rats.
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Yin et al., 2016). Moreover, LXRa, PPARa, ABCA1, and
ABCG1 expression were not altered after inhibition of
c-Jun N-terminal kinase and P38 mitogen-activated
protein kinase (MAPK) phosphorylation by SP600125
and SB203580, respectively (Liu et al., 2019). The un-
certainty about the precise role of ERK inhibition in
cellular cholesterol efflux is emphasized by the observation
that stimulation of MAPK/ERK increased LXR-mediated
ABCA1 expression, as found for the glucagon-like
peptide 1 receptor agonist exendin-4 and the dipep-
tidyl peptidase-4 inhibitor vildagliptin (Mostafa et al.,
2015, 2016; Yin et al., 2016). Similar effects upon
MAPK/ERK stimulation were observed using the mel-
anocortin 1 receptor (MC1-R) agonist MSG606, which
upregulates cholesterol efflux and ABCA1 and ABCG1
protein levels in bone marrow–derived macrophages,
probably via ERK stimulation without increasing cAMP
levels (Rinne et al., 2017). The MC1-R agonist, LD211,
which stimulated ERK1/2 and p38 MAPK phosphory-
lation along with a strong increase in cAMP levels, also
positively affected cholesterol efflux (Rinne et al., 2017).
However, the exact mechanism behind the effect of
MC1-R agonists on ERK1/2 is yet unidentified.
Stimulation of the ERK1/2–PPARg–LXLa axis has

been associated with the favorable effects of the G
protein–coupled receptor (GPR)109 agonist, niacin,
on triglyceride and total, LDL, and HDL cholesterol
levels in plasma. Moreover, it has been shown that
this first clinically available cholesterol-lowering drug
may upregulate ABCA1 expression, stabilize newly
produced HDL, and promote cholesterol efflux possibly
via cAMP/protein kinase A (PKA) and PPARg–LXRa
pathways (Rubic et al., 2004; Siripurkpong and Na-
Bangchang, 2009; Wu and Zhao, 2009; Yvan-Charvet
et al., 2010a; Zhang et al., 2012; Connolly et al., 2013;
Gaidarov et al., 2013). The GPR109A agonists, acifran
and acipimox, but not isoniacin, also activated ERK1/2
and Ca21 flux (Gaidarov et al., 2013). Although niacin
exerted beneficial effects, it is also associated with
vasodilation and flushing side effects, possibly medi-
ated via the secretion of prostaglandins as a result of
activation of GPR109A (Rubic et al., 2004; Gaidarov
et al., 2013). Besides niacin, the full GPR109A agonist,
MK-1903, gave similar effects on ABCA1- and apoA-
I–mediated cholesterol efflux, whereas the effect on
ABCG1 expression was lower compared with niacin
(Gaidarov et al., 2013). Another GPR109A agonist,
MK-0354, induced neither flushing nor activation of
GPR109A signaling in macrophages and HDL modula-
tion (Gaidarov et al., 2013). This suggests that GPR109A
agonists that do not cause flushing are probably also
unable to exert an antiatherogenic effect.
ERK1/2 inhibition by the commonly used calcium

channel blocker nifedipine leads to in vitro anthia-
therogenic effects at clinically relevant low nanomolar
concentrations via inhibition of monocyte chemoattrac-
tant protein-1 and stimulation of ABCA1 expression

(Ishii et al., 2010). Two other calcium channel blockers,
verapamil and nicardipine, also increased ABCA1- but
not ABCG1-mediated cholesterol and phospholipid
efflux at suprapharmacological concentrations in the
low micromolar range (Suzuki et al., 2004). Verapa-
mil was able to enhance ABCA1 promotor activity in
an LXR-independent manner (Suzuki et al., 2004). In
summary, ERK1/2 has the potential to beneficially
affect cellular cholesterol efflux, but some of the contro-
versies of this relation will need to be clarified to assess
its true therapeutic relevance.

To conclude, inhibition of ABCA1 and ABCG1 degra-
dation has demonstrated to be a promising strategy to
enhance their plasma membrane expression, in combi-
nation with beneficial in vivo effects on RCT and the
progression of atherosclerotic plaque formation. How-
ever,many compounds are rather unspecific, whichmay
limit their therapeutic applicability due to adverse
effects as a consequence of off-target activities.

VII. ATP-Binding Cassette A1 Function and
Cyclic Adenosine Monophosphate

A. cAMP Is a Potent Regulator of ATP-Binding
Cassette A1 Function and Expression

ABCA1 expression and function can also be enhanced
by increasing cellular cAMP levels (Sakr et al., 1999).
The transporter is phosphorylated upon cAMP-mediated
activation of PKA, which leads to an increased capacity to
interact with apoA-I and subsequent apoA-I–dependent
cellular cholesterol efflux (Haidar et al., 2002, 2004)
(Fig. 5). PKA has twomajor phosphorylation sites, Ser-
1042 and Ser-2054, which are located at the NBDs of
ABCA1 (See et al., 2002). These effects are most likely
specific to macrophages (Bortnick et al., 2000; Suzuki
et al., 2004). Interestingly, phosphorylation can also be
autoregulatory, as apoA-I binding to ABCA1 has been
demonstrated to stimulate adenylate cyclase (AC) activ-
ity by an unknown mechanism and boost intracellular
cAMP levels (Haidar et al., 2002). Besides influencing
cholesterol efflux, cAMP is also involved in the regulation
of glucose, lipid, and cholesterol metabolism (Haidar
et al., 2002, 2004; Tresguerres et al., 2011), and its
cellular concentrations are a result of a delicate balance
between its production from ATP by AC and its hydro-
lysis into AMP by phosphodiesterases (PDEs) and
cellular efflux by the ABC transporters multidrug re-
sistance protein 4/ABCC4 and multidrug resistance pro-
tein 5/ABCC5 (Lin and Bornfeldt, 2002; Wielinga et al.,
2003; Copsel et al., 2011; Tresguerres et al., 2011)
(Fig. 5). The activity of AC is regulated by different
adenosine receptor subtypes, of which A1 and A3 recep-
tors have an inhibitory and A2a and A2b a stimulatory
effect (Reiss and Cronstein, 2012). Consequently, A2a

receptor activation enhanced cAMP levels and promoted
RCT via ABCA1-mediated cholesterol efflux (Bingham
et al., 2010).
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B. Stimulation of cAMP Levels Enhances ATP-
Binding Cassette A1–Mediated Cholesterol Efflux

Treatment with cAMP analogs, 8-bromo-cAMP, 8-(4-
chlorophenylthio)adenosine-cAMP, (Bu)2cAMP, and
dibutyryl cAMP, stimulated apoA-I–dependent choles-
terol efflux in different cell types (Sakr et al., 1999; Abe-
Dohmae et al., 2000; Haidar et al., 2002; Lin and
Bornfeldt, 2002; Kellner-Weibel et al., 2003; Bingham
et al., 2010; Gaidarov et al., 2013; Manna et al., 2015)
(Table 7). The 8-bromo-cAMP enhanced cholesterol efflux
toward apoA-I, most likely via increased PKA-mediated
ABCA1 phosphorylation (Iwamoto et al., 2008; Katz et al.,
2009), as PKA inhibition by H89 reversed the beneficial
effects of 8-bromo-cAMP on D4-F–mediated cholesterol
efflux in RAW264.7 macrophages (Bingham et al.,
2010; Xie et al., 2010). Similar results were observed
with 8-(4-chlorophenylthio)adenosine-cAMP, which el-
evated ABCA1 protein expression (Sakr et al., 1999;
Haidar et al., 2002; Lin and Bornfeldt, 2002; Kellner-
Weibel et al., 2003). A direct PKA agonist, 6-Benz-
cAMP, also stimulated ABCA1 protein expression and
cellular cholesterol expression, which emphasizes the
role of PKA-dependent phosphorylation in enhancing
ABCA1-mediated cholesterol efflux capacity (Bingham
et al., 2010). Surprisingly, PKA seemed to have contra-
dictory effects on ABCG1 as inhibition of its activity by
H89 or KT5720 in CHO-K1 cells enhanced ABCG1-
mediated cholesterol efflux and stabilized ABCG1. How-
ever, this effect was only observed in cells overexpressing
a mutant ABCG1 containing a 12-amino-acid internal
segment (Gelissen et al., 2012). Interestingly, treatment
with the platelet inhibitor dipyradimole, which increases
intracellular cAMP levels, demonstrated antiatheroscler-
otic effects in the ESPRIT trial (Halkes et al., 2006)).
In line with a central role for cAMP, modulation of AC

and PDEs has demonstrated to be another useful strategy
to enhance RCT. The AC activator forskolin enhanced
RCT via elevated ABCA1 protein levels and phosphory-
lation (Haidar et al., 2002; Lin and Bornfeldt, 2002). AC
stimulation via A2a receptor activation with CGS-21680
and ATL313 enhanced cholesterol efflux and ABCA1
protein expression (Bingham et al., 2010; Voloshyna
et al., 2013). Moreover, stimulation with 8-pcPT-29-O-
Me-cAMP of Epac, a signaling molecule downstream
of A2a receptor activation, showed similar results. A2a

receptor activation decreased foam cell formation in
THP-1–derived macrophages by regulation of choles-
terol influx and efflux (Bingham et al., 2010). Activation
of this adenosine receptor is also associated with an
increased ABCA1 expression in peripheral blood mono-
nuclear cells by methotrexate, which is used to treat
cancer and autoimmune diseases (Reiss et al., 2008;
Chen et al., 2011a).
Increased cAMP levels as a result of reduced breakdown

withPDE4 inhibitors (3-isobutyl-1-methylxanthine (IBMX),
rolipram, and cilomast) also resulted in elevated ABCA1

expression levels and apoA-I–dependent cholesterol efflux
inmacrophages (Haidar et al., 2002; Lin and Bornfeldt,
2002). Similar effects were observed with the PDE3
inhibitor cilostazol through increased ABCA1 and
ABCG1 expression and cholesterol efflux in vitro and
in vivo (Nakaya et al., 2010).

In summary, cAMP analogs, A2a receptor agonists,
and other compounds that increase intracellular cAMP
levels have the potential to induce ABCA1 expression,
which could increase apoA-I–mediated cholesterol
efflux. The involvement of cAMP in many different
metabolic pathways (i.e., glucose, lipid, and cholesterol
metabolism) may though render these strategies
vulnerable to adverse effects.

VIII. Increasing Cellular Cholesterol Efflux via
Unknown Mechanisms

Stimulation of cellular cholesterol efflux has also
been observed with various other compounds by yet
unidentified mechanisms, including four antimicrobial
drugs (aclarubicin, daidzein, pratensein, pyrromycin) that
upregulated ABCA1 expression in ABCA1-overexpressing
HepG2 cells (Table 8). Similar effects were observed
with the sphingolipid synthesis inhibitor 1-phenyl-2-
decanoylamino-3-morpholino-1-propanol (a potential
therapeutic for Gaucher’s disease), which was accom-
panied by an increased ABCA1-dependent cholesterol
efflux (Glaros et al., 2005). Although the mechanism
remains unknown, a structurally similar sphingolipid
synthesis inhibitor,N-butyldeoxy-nojirimycin, did not
increase cellular cholesterol efflux. Enhanced choles-
terol efflux was also observed in macrophages of
patients treated with the CETP inhibitors anacetra-
pib, dalcetrapib and torcetrapib, whereas torcetrapib
also increased ABCA1 expression (Yvan-Charvet et al.,
2007, 2010a; Brodeur et al., 2017). This is, however,
expected to be a result of the increased HDL-C levels
due to CETP inhibition. The clinical application of these
drugs seems to be limited, as the development of all
three CETP inhibitors has been discontinued because
of an unfavorable benefit–risk ratio (Tall and Rader,
2018). Upregulation of ABCA1 has also been observed
with ibrutinib and MCC950, which decreased ox-LDL
uptake in THP-1 macrophages mediated via inhibition
of nucleotide binding oligomerization domain receptor
family pyrin domain-containing protein (NLRP) 3 inflam-
masome (Chen et al., 2018). Inhibition of the NLRP3
inflammasome resulted in reduced foam cell formation in
macrophages and promoted cholesterol efflux (Chen et al.,
2018). Moreover, inhibition of soluble epoxide hydrolase
using trans-4-[4-(3-Adamanthan-1-yl-uneido)-cyclohexyloxy]-
benzoic acid (t-AUCB) increased hepatic ABCA1 expression
and cholesterol efflux in LDLR2/2 mice via a yet un-
known mechanism, whereas hepatic ABCG1 expression
was not affected (Shen et al., 2014; Shen et al., 2015).
The blood glucose–lowering drug, metformin, which
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among other effects is an AMPK activator, did not
alter ABCA1 expression and apoA-I–dependent cho-
lesterol efflux, but enhanced ABCG1 expression and
HDL-dependent cholesterol efflux in RAW264.7 mac-
rophages (He et al., 2019).
Finally, an experimental xanthone compound,

IMB2026791, enhanced the binding between apoA-I
and ABCA1 and consequently increased apoA-I–mediated
cholesterol in vitro. Although the exact mechanism
underlying the effect of this xanthone still needs to be
elucidated, it is the only compound to date that di-
rectly affects the mechanism of ABCA1 cholesterol
efflux (Liu et al., 2012).

IX. Conclusions and Future Directions

The discovery of the inverse association between
HDL and risk of atherosclerosis and the consequent
potency of ABCA1- and ABCG1-mediated cholesterol
transport as cardioprotective therapeutic targets
(Tang and Oram, 2009; Kuhnast et al., 2015) started
the search for strategies to enhance this transport
step and thereby enhance RCT. A decade of research
resulted in several lipoprotein mimetics, many natu-
ral compounds, and miRNA-based strategies with the
ability to increase the cellular cholesterol efflux to
HDL and over 100 small-molecule–based approaches
discussed in this review.

TABLE 7
Compounds increasing cAMP levels

Overview of compounds that increase intracellular cAMP levels, including their primary pharmacological action, effects on ABCA1 and ABCG1 expression (arrows: mRNA,
protein), and effects on cellular cholesterol efflux. Effects on ABCA1, ABCG1, and cholesterol efflux are presented as follows: (↓) decreased; (5 ) no effect; (↑) increased.
Italicized symbols indicate changes in ABCA1 and ABCG1 mRNA levels, whereas nonitalicized symbols indicate protein levels.

Compound Primary Action ABCA1 ABCG1 Cholesterol Efflux Reference

6-Benz-cAMP PKA agonist ↑ THP-1 — ↑ THP-1 Bingham et al., 2010
8-Bromo-cAMP cAMP analog 5↑ Skin

fibroblastsa
— ↑ THP-1 Haidar et al., 2002; Lin and

Bornfeldt, 2002
↑ PM ↑ Skin fibroblastsa

8-(4-Chlorophenylthio)
adenosine-cAMP

cAMP analog ↑ J774.A1 — 5 THP-1 Sakr et al., 1999;
Kellner-Weibel et al.,
2003

↑ J774.A1
↑ L cells
5 CHO
5 Fu5AH
5 Skin fibroblastsa

↑ Mouse PM
8-pcPT-29-O-Me-cAMP Epac agonist ↑ THP-1 — ↑ THP-1 Bingham et al., 2010
ATL313 A2AR agonist ↑↑ THP-1 ↑↑ THP-1 — Voloshyna et al., 2013
(Bu)2cAMP cAMP analog ↑ RAW264.7 — ↑ RAW264.7 Manna et al., 2015
CGS-21680 A2AR agonist ↑↑ THP-1 ↑↑ THP-1 ↑ THP-1 Bingham et al., 2010;

Voloshyna et al., 2013
Cilomast PDE4 inhibitor ↑ THP-1 — ↑ THP-1 Lin and Bornfeldt, 2002

↑ J774.A1 ↑ J774.A1
Cilostazol PDE3 inhibitor ↑↑ THP-1 ↑↑ THP-1 ↑ THP-1 Nakaya et al., 2010

↑↑ RAW264.7 ↑↑ RAW264.7 ↑ RAW264.7
↑ MDMa ↑ MDMa ↑ MDMa

↑ PMb ↑ RCTb

5 Liverb

5 Small intestineb

Dibutyrl cyclic AMP cAMP analog ↑ RAW264 ↑ Monocyte-derived
macropa

↑ RAW264.7 Abe-Dohmae et al., 2000;
Gaidarov et al., 2013↑ Monocyte-derived

macropa
↑ Monocyte-derived

macropa

Doxazosin a-A1 adrenergic
receptor antagonist

↑↑ THP-1 — ↑ THP-1 Iwamoto et al., 2007;
Tsunemi et al., 2014↑↑ RAW264.7 ↑ RAW264.7

↑ NCTC clone
1469

↑ CHO-K1
↑↑ Liverb

Forskolin Adenylyl cyclase
activator

↑ Skin
fibroblastsa

— ↑ THP-1 Haidar et al., 2002; Lin and
Bornfeldt, 2002↑ Skin fibroblastsa

H89 PKA inhibitor — ↑ CHO-K1
ABCG1(112)

↑ CHO-K1
ABCG1(112)

Gelissen et al., 2012

5 CHO-K1
ABCG1(212)

5 CHO-K1
ABCG1(212)

IBMX Nonselective PDE
inhibitor

— — ↑ THP-1 Haidar et al., 2002; Lin and
Bornfeldt, 2002↑ Skin fibroblastsa

KT5720 PKA inhibitor — — ↑ CHO-K1
ABCG1(112)

Gelissen et al., 2012

5 CHO-K1
ABCG1(212)

Methotrexate Dihydrofolate
reductase inhibitor

↑ PBMCsa — Chen et al., 2011a

Rolipram PDE4-selective
inhibitor

↑↑ THP-1 — ↑ THP-1 Lin and Bornfeldt, 2002
↑ J774.A1 ↑ J774.A1

IBMX, 3-isobutyl-1-methylxanthine; macrop, macrophage; MDM, monocyte-derived macrophage; PBMC, peripheral blood mononuclear cell; PM, peritoneal macrophages.
aHuman.
bC57BL/6 mice.
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Besides the discovery of a large variety of different
experimental compounds and existing drugs that en-
hance ABCA1- and ABCG1-mediated cholesterol efflux,
this quest has also provided us with enhanced insights
into the mechanisms that regulate the expression and
function of these two key players in the initiation and
propagation of RCT. It also demonstrated one of the
important challenges in this field, namely to develop
specific and potent therapies, which is currently amajor
limiting factor in the clinical applicability of many
compounds described in this review. Most of them are
also involved in other mechanisms, including stim-
ulation of lipogenesis by LXR and RXR agonists, and
regulation of other metabolic pathways (e.g., lipo-
genesis, fatty acid b-oxidation, glycolysis) by AMPK
and cAMP agonists. In addition, several other drugs
that increased ABCA1- or ABCG1-dependent cho-
lesterol efflux can probably not be directly used as

cardioprotectants due to their toxic effects. Recent
developments though seem to be promising in over-
coming these adverse mechanisms, like combining LXR
and PPARa agonists (Thomas et al., 2003; Beyer et al.,
2004), or the use of novel RAR agonists instead of
promiscuous RXR agonists (Costet et al., 2003; Ayaori
et al., 2012; Chen et al., 2012).

Interestingly, a high-throughput screening ap-
proach searching for compounds that directly affect
apoA-I and ABCA1 binding identified the xanthone
compound IMB2026791 as a first direct activator of
ABCA1-mediated cellular cholesterol efflux (Liu et al.,
2012). Along with many other novel experimental as
well as existing drugs, such developments indicate that
we are heading toward promising compounds for clin-
ical evaluation, as these steps have previously been
limited by unforeseen adverse effects due to lack of
specificity.

TABLE 8
Compounds increasing ABCA1/G1 expression or function by an unknown mechanism

Overview of compounds that increase ABCA1 or ABCG1 expression or function by a yet unknown mechanism, including their primary pharmacological action, effects on
ABCA1 and ABCG1 expression (arrows: mRNA, protein), and effects on cellular cholesterol efflux. Effects on ABCA1, ABCG1, and cholesterol efflux are presented as follows:
(↓) decreased; (5 ) no effect; (↑) increased. Italicized symbols indicate changes in ABCA1 and ABCG1 mRNA levels, whereas nonitalicized symbols indicate protein levels.

Compound Primary Action ABCA1 ABCG1 Cholesterol Efflux Reference

1-Phenyl-2-Decanoylamino-3-
morpholino-1-propanol

Glycosylceramide
transferase inhibitor

↑↑ Skin
fibroblastsa

— ↑ Skin
fibroblastsa

Glaros et al., 2005

↑ MDMa

Aclarubicin Topoisomerase I and II
inhibitor

↑↑ HepG2 — — Gao et al., 2008

Anacetrapib CETP inhibitor — — ↑ THP-1 Yvan-Charvet et al.,
2010a; Brodeur et al.,
2017

↑ BHK
↑ ABCA1-

expressing
BHK

Daidzein Mitochondrial aldehyde
dehydrogenase inhibitor

↑↑ HepG2 — — Gao et al., 2008

Dalcetrapib CETP inhibitor — — ↑ BHK Brodeur et al., 2017
↑ ABCA1-

expressing
BHK

Ibrutinib NLRP3 inflammasome
inhibitor

↑ THP-1 5 THP-1 THP-1 Chen et al., 2018
5 apoA-I
↑ HDL

IMB2026791 Unknown — — ↑ THP-1 Liu et al., 2012
↑ CHO-ABCA1
↑ CHO

MCC950 NLRP3 inflammasome
inhibitor

↑ THP-1 5 THP-1 THP-1 Chen et al., 2018
5 apoA-I
↑ HDL

Metformin Antihyperglycemic agent 55 RAW264.7 ↑↑ RAW264.7 RAW264.7 He et al., 2019
5 apoA-I
↑ HDL

N-butyldeoxynojirimycin Glycosylceramide
transferase inhibitor

— — 5 Skin
fibroblastsa

Glaros et al., 2005

Pratensein Unknown ↑↑ HepG2 — — Gao et al., 2008
Pyrromycin Microbial protein synthesis

inhbitor
↑↑ HepG2 — — Gao et al., 2008

t-AUCB Soluble epoxide hydrolase
inhibitor

↑↑ Liverb 55 Liverb ↑ 3T3-L1
adipocytes

Shen et al., 2015

↑ Epididymal
fatc

↑ RCTb

Torcetrapib CEPT inhibitor ↑ THP-1 ↑ THP-1 Yvan-Charvet et al.,
2007

BHK, baby hamster kidney cell; fatc., fat cell; MDM, monocyte-derived macrophage; NLRP3, nucleotide binding oligomerization domain receptor family, pyrin domain-
containing protein 3; t-AUCB, trans-4-[4-(3-Adamanthan-1-yl-uneido)-cyclonexyloxy]-benzoic acid.

aHuman.
bLXRa2/2 C75BL/6 mice.
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To conclude, increasing ABCA1- and ABCG1-mediated
cellular efflux seems to be a promising strategy to lower
cardiovascular risk and, combined with cholesterol-
lowering therapies, to reduce mortality and morbidity
associated with atherosclerosis.
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