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I. Introduction and Historical Perspective

The classification of histamine receptors has to date
been based on rigorous classical pharmacological analy-
sis, and as yet, the classification of the three histamine
receptors that have been defined by this process, (i.e.,
the H1-, H2-, and H3-receptors) have not been added to
because of more recent molecular biological approaches
(Schwartz et al., 1991, 1995; Hill, 1990; Leurs et al.,
1995b). The scant number of known histamine recep-
tors, compared with the plethora of receptors for some
other endogenous substances, probably reflects the rel-
ative neglect of histamine rather than a paucity of its
receptors. There is some preliminary evidence of heter-
ogeneity of the known histamine receptors (which will be

reviewed later in this article), but the acceptance of
additional subtypes still awaits the identification of “se-
quence differences” within a single species and the de-
velopment of selective agonists and antagonists provid-
ing the structural, recognition, and transductional
information necessary for reliable classification.

The first histamine receptor antagonists (popularly
referred to as the classical antihistamines but now
called H1-receptor antagonists) were synthesized (Bovet
and Staub, 1936; Bovet, 1950) over 20 years after the
discovery (Barger and Dale, 1910) and descriptions of
some of the physiological effects (Dale and Laidlaw,
1910) of histamine. These accomplishments had been
preceded, as for some other endogenous biogenic amines,
by its synthesis as a chemical curiosity (Windaus and
Vogt, 1907). Early studies of the antihistamines were
qualitative, for example, the demonstration of their ef-
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fectiveness in protecting against bronchospasm pro-
duced in guinea pigs by anaphylaxis or administration of
histamine (Bovet and Staub, 1936). Though qualitative,
these studies yielded compounds, e.g., mepyramine
(pyrilamine), that remain major ligands to define hista-
mine receptors.

These antagonists were shown to reduce the effects of
histamine on many tissues, notably vascular and ex-
travascular smooth muscle (e.g., guinea pig ileum), but
it became apparent that some of the effects of histamine
were refractory to these classical antihistamines (Loew,
1947). For example, histamine-stimulated gastric secre-
tion was shown to be unresponsive to three different
antihistamines (Ashford et al., 1949). The vasodilator
response to histamine in the cat was shown to be only
partly sensitive to an antihistamine, leading to the sug-
gestion that histamine causes vasodilatation by combin-
ing with more than one receptor (Folkow et al., 1948).
The application of the method of Schild (Arunlakshana
and Schild, 1959) to the classification of receptors re-
vealed that the pA2 (2log KB) value of mepyramine for
antagonism of the positive chronotropic effect of hista-
mine on the right atrium of the guinea pig differed from
mepyramine’s pA2 value for antagonism of the contrac-
tile response to histamine in guinea pig ileum, implying
that the receptors involved were distinct (Arunlakshana
and Schild, 1959; Trendelenburg, 1960). The histamine
receptor in guinea pig ileum and in other tissues that
showed the same or similar pA2 value for these early
antihistamines was then named the H1-receptor (Ash
and Schild, 1966). As the relative potencies of these
histamine antagonists and histamine agonists on gastric
acid secretion, relaxation of rat uterus, and chronotropy
of the guinea pig right atrium differed from those on the
H1-receptor, it was concluded that a separate histamine
receptor was involved in these responses.

The development of specific antagonists (H2-antago-
nists) for this novel receptor represents a classic exam-
ple of rational drug design (Black et al., 1972; Black,
1989) and showed the “practical value” (Green and
Maayani, 1987; Jenkinson, 1987) of a quantitative ap-
proach to the analysis of receptor antagonism (Arunlak-
shana and Schild, 1959). Burimamide was the first com-
pound to be described (Black et al., 1972) that had a
higher pA2 for antagonism of the histamine-mediated
responses on guinea pig atrium and rat uterus than the
pA2 determined for antagonism of the contractile re-
sponse to histamine in guinea pig ileum. Burimamide
was also able to reduce gastric acid secretion in dogs and
humans and to reduce the blood pressure response of the
cat to histamine (Black et al., 1972). A large number of
more potent and selective H2-receptor antagonists have
since been developed (Cooper et al., 1990), although
further quantitative investigations of the antagonist po-
tency of burimamide on other histamine-mediated re-
sponses contributed to the definition and classification
of the histamine H3-receptor (Arrang et al., 1983).

The third histamine receptor was also defined by a
functional assay. Histamine was found to inhibit its own
synthesis and release in rat cerebral cortical slices, and
the effects of H1- and H2- receptor agonists and antago-
nists indicated a distinct receptor (Arrang et al., 1983,
1987b). A highly selective agonist, R-(a)-methylhista-
mine, and antagonist, thioperamide, clearly defined the
H3-receptor (Arrang et al., 1987). Since that time, con-
siderable efforts have been made to develop other H3-
receptor–selective agonists and antagonists (Garbarg et
al., 1992; Jansen et al., 1992; Van der Goot et al., 1992;
Vollinga et al., 1994; Ganellin et al., 1995; Ligneau et al.,
1995; Stark et al., 1996b,c).

Table 1 summarizes some of the operational charac-
teristics used to define the nature of the histamine re-
ceptor involved in different tissue responses. Histamine
derivatives are numbered according to the system given
in figure 1 (Black and Ganellin, 1974).

II. Histamine H1-Receptor

A. Distribution and Function

The study of the distribution of histamine H1-recep-
tors in different mammalian tissues has been greatly
aided by the development of selective radioligands for
this particular histamine receptor subtype. [3H]mepyra-
mine was originally developed in 1977 (Hill et al., 1977)
and since that time has been used successfully to detect
H1-receptors in a wide variety of tissues including: mam-
malian brain; smooth muscle from airways, gastrointes-
tinal tract, genitourinary system, and the cardiovascu-
lar system; adrenal medulla; and endothelial cells and
lymphocytes (Hill, 1990). In some tissues and cells, how-
ever, it is notable that [3H]mepyramine additionally
binds to secondary non-H1–receptor sites (Chang et al.,
1979a; Hill and Young, 1980; Hadfield et al., 1983; Mit-
suhashi and Payan, 1988; Arias-Montano and Young,
1993; Dickenson and Hill, 1994; Leurs et al., 1995b). In
rat liver, in which [3H]mepyramine predominantly
binds to a protein homologous with debrisoquine 4-hy-
droxylase cytochrome P450 (Fukui et al., 1990), quinine
can be used to inhibit this nonspecific binding. This
observation has led Liu et al. (1992) to suggest that
quinine may be used to inhibit binding to other lower
affinity sites. However, it is clear that not all secondary
binding sites for [3H]mepyramine are sensitive to inhi-
bition by quinine (Dickenson and Hill, 1994). Thus, in
DDT1MF-2 cells, a 38 to 40 kDa protein has been iso-
lated, which binds H1-receptor antagonists with KD val-
ues in the micromolar range (Mitsuhashi and Payan,
1988, Mitsuhashi et al., 1989) but which is not sensitive
to inhibition by quinine (Dickenson and Hill, 1994). Nev-
ertheless, DDT1MF-2 cells can be shown to additionally
possess [3H]mepyramine binding sites that have the
characteristics of H1-receptors (i.e., KD values in the
nanomolar range) and to mediate functional responses,
which are clearly produced by histamine H1-receptor
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activation (Dickenson and Hill, 1992; White et al., 1993;
Dickenson and Hill, 1994).

Other radioligands that have been used to study his-
tamine H1-receptors are [3H]mianserin (Peroutka and
Snyder, 1981), [3H]doxepin (Tran et al., 1981; Kamba and
Richelson, 1984; Taylor and Richelson, 1982), [125I]iodobo-
lpyramine (Bouthenet et al., 1988), [125I]iodoazidophen-
pyramine (Ruat et al., 1988), and [3H](1)-N-methyl-4-
methyldiphenhydramine (Treherne and Young, 1988b).
[125I]Iodobolpyramine has been used for autoradiographic
localization of H1-receptors in guinea pig brain, although
less success has been achieved in rat brain (Körner et al.,

1986; Bouthenet et al., 1988). The very slow dissociation of
[3H]mepyramine from H1-receptors at low temperatures
(e.g., 4°C) does, however, mean that this ligand can also be
used for autoradiography (Palacios et al., 1981a,b; Rotter
and Frostholm, 1986). [125I]Iodoazidophenpyramine is a
very potent H1-receptor antagonist that can bind irrevers-
ibly to H1-receptors following irradiation with ultraviolet
light (Ruat et al., 1988). [11C]Mepyramine and [11C]dox-
epin have also proved useful for imaging histamine H1-
receptors in the living human brain (Villemagne et al.,
1991; Yanai et al., 1992, 1995).

H1-receptors have been extensively studied in blood
vessels (Barger and Dale, 1910; Dale and Laidlaw, 1910;
Folkow et al., 1948; Black et al., 1972) and other smooth
muscle preparations (Ash and Schild, 1966; Black et al.,
1972; Marshall, 1955; Hill, 1990). In smooth muscles,
such as the guinea pig ileum, which freely generate
muscle action potentials, modulation of action-potential
discharge by low concentrations of histamine is an im-
portant mechanism by which tension is increased
(Bolton, 1979; Bolton et al., 1981; Bülbring and Burn-
stock, 1960). In guinea pig ileum, there is also evidence

FIG. 1. Numbering for histamine derivatives.

TABLE 1
Operational characteristics of histamine receptors

Receptor Location Response Agonists Antagonists

Histamine H1 Most smooth muscle,
endothelial cells,
adrenal medulla,
heart, CNS

Smooth muscle contraction,
stimulation of NO formation,
endothelial cell contraction,
increased vascular permeability,
stimulation of hormone release,
negative inotropism, depolarization
(block of leak potassium current) and
increased neuronal firing, inositol
phospholipid hydrolysis and calcium
mobilization, hyperpolarization by
Ca21-dependent potassium current

Histaminea

2-[3-(Trifluoromethyl)-
phenyl]histamine

2-Thiazolylethylamine
2-Pyridylethylamine
2-Methylhistamine

Mepyramine
(1) and (2)

Chlorpheniramine
Triprolidine
Temelastine
Diphenhydramine
Promethazine

Histamine H2 Gastric parietal cells,
vascular smooth
muscle, suppressor T
cells, neutrophils,
CNS, heart, uterus
(rat)

Stimulation of gastric acid secretion,
smooth muscle relaxation,
stimulation of adenylyl cyclase,
positive chronotropic and inotropic
effects on cardiac muscle, decreased
firing rate, hyperpolarization or
facilitation of signal transduction in
CNS, block of Ca21-dependent
potassium conductance (I AHP,
accommodation of firing, after-
hyperpolarization), increase of
hyperpolarization-activated current,
inhibition of lymphocyte function

Histaminea

Amthamine
Dimaprit
Impromidineb

Arpromidineb

Cimetidine
Ranitidine
Tiotidine
Zolantidine
Famotidine

Histamine H3 CNS, peripheral nerves
(heart, lung,
gastrointestinal tract),
endothelium,
enterochromaffin cells

Inhibition of neurotransmitter release,
endothelium-dependent relaxation of
rabbit middle cerebral artery,
inhibition of gastric acid secretion
(dog), increase in smooth muscle
voltage-dependent Ca21 current,
inhibition of firing of
tuberomammilary (histaminergic)
neurons

Histaminea

R-a-methylhistamine
Imetit
Immepip
Na-methylhistaminea

Thioperamide
Clobenpropit
Iodophenpropit
Iodoproxyfan

CNS, central nervous system.
a Nonselective.
b H3-antagonist.
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that a component of the contractile response to hista-
mine is mediated by inositol 1,4,5-trisphosphate–in-
duced mobilization of intracellular calcium (Morel et al.,
1987; Bolton and Lim, 1989; Donaldson and Hill, 1986b).
In nonexcitable smooth muscles, such as airway and vas-
cular smooth muscle, contractile responses to H1-receptor
stimulation primarily involve mobilization of calcium from
intracellular stores as a consequence of inositol phospho-
lipid hydrolysis (Matsumoto et al., 1986; Kotlikoff et al.,
1987; Takuwa et al., 1987; Hall and Hill, 1988; Paniettieri
et al., 1989; Van Amsterdam et al., 1989).

In vascular endothelial cells, H1-receptor stimulation
leads to several cellular responses including: (a) changes
in vascular permeability (particularly in postcapillary
venules) as a result of endothelial cell contraction (Ma-
jno and Palade, 1961; Majno et al., 1968; Meyrick and
Brigham, 1983; Grega, 1986; Killackey et al., 1986;
Svensjo and Grega, 1986); (b) prostacyclin synthesis
(McIntyre et al., 1985; Brotherton, 1986; Carter et al.,
1988; Resink et al., 1987); (c) synthesis of platelet-acti-
vating factor (McIntyre et al., 1985); (d) release of Von
Willebrand factor (Hamilton and Sims, 1987); and (e)
release of nitric oxide (Van De Voorde and Leusen, 1993;
Toda, 1984). The H1-receptor has also been character-
ized on human T lymphocytes using [125I]iodobolpyra-
mine (Villemain et al., 1990) and shown to increase
[Ca21]i (Kitamura et al., 1996).

Histamine H1-receptors have long been established to
be present in the adrenal medulla and to elicit the re-
lease of catecholamines (Emmelin and Muren, 1949;
Staszewska-Barczak and Vane, 1965; Robinson, 1982;
Livett and Marley, 1986; Noble et al., 1988). Thus, his-
tamine can induce the release of both adrenaline and
noradrenaline from cultured bovine adrenal chromaffin
cells (Livett and Marley, 1986). In these cells, histamine
can also stimulate phosphorylation of the catecholamine
biosynthesis enzyme tyrosine hydroxylase via a mecha-
nism that involves release of intracellular calcium
(Bunn et al., 1995). In addition to its effects on catechol-
amine synthesis and release from adrenal chromaffin
cells, histamine can also elicit the release of leucine- and
methionine-enkephalin (Bommer et al., 1987). Further-
more, after prolonged exposure to histamine, there is a
marked increase in messenger ribonucleic acid-encoding
proenkephalin A (Bommer et al., 1987; Kley, 1988; Wan
et al., 1989).

In human atrial myocardium and guinea pig ventricle,
histamine produces negative inotropic effects (Guo et al.,
1984; Genovese et al., 1988; Zavecz and Levi, 1978). In
human myocardium, this response is associated with
inhibitory effects on heart rate and can be unmasked
when the positive effects of histamine on the rate and

force of contraction (mediated via H2-receptors) are at-
tenuated by conjoint administration of adenosine or
adenosine A1-receptor agonists (Genovese et al., 1988).
However, in guinea pig left atria (Reinhardt et al., 1974,
1977; Steinberg and Holland, 1975; Hattori et al., 1983,
1988a) and rabbit papillary muscle (Hattori et al.,
1988b), histamine produces a positive inotropic response
via a mechanism that is not associated with a rise in
adenosine 3c,5c-cyclic monophosphate (cAMPb) levels
(see Hill, 1990).

Histamine H1-receptors are widely distributed in
mammalian brain (Hill, 1990; Schwartz et al., 1991). In
human brain, higher densities of H1-receptors are found
in neocortex, hippocampus, nucleus accumbens, thala-
mus, and posterior hypothalamus, whereas cerebellum
and basal ganglia show lower densities (Chang et al.,
1979b; Kamba and Richelson, 1984; Martinez-Mir et al.,
1990; Villemagne et al., 1991; Yanai et al., 1992). The
distributions in rat (Palacios et al., 1981a) and guinea
pig (Palacios et al., 1981b; Bouthenet et al., 1988) are
similar to each other and to humans with the exception
that the guinea pig cerebellum shows high density (Ruat
and Schwartz, 1989; Chang et al., 1979b; Hill and
Young, 1980; Palacios et al., 1981b; Bouthenet et al.,
1988). In most brain areas, there was overlap of H1-
receptor binding sites and messenger ribonucleic acid
levels except in hippocampus and cerebellum in which
the discrepancy is likely to reflect the presence of abun-
dant H1-receptors in dendrites of pyramidal and Pur-
kinje cells, respectively (Traiffort et al., 1994). Hista-
mine H1-receptor activation causes inhibition of firing
and hyperpolarization in hippocampal neurons (Haas,
1981) and an apamine-sensitive outward current in ol-
factory bulb interneurons (Jahn et al., 1995), effects
most likely produced by intracellular Ca21 release. How-
ever, many other notably vegetative ganglia (Christian
et al., 1989), hypothalamic supraoptic (Haas et al.,
1975), brainstem (Gerber et al., 1990; Khateb et al.,
1990), thalamic (McCormick and Williamson, 1991), and
human cortical neurons (Reiner and Kamondi, 1994) are
excited by histamine H1-receptor activation through a
block of a potassium conductance.

B. H1-Selective Ligands

Although a large number of compounds have been
synthesized as selective and competitive antagonists of
the histamine H1-receptor (see for example Casy, 1977;
Ganellin, 1982), chemical effort directed at the genera-
tion of highly potent and selective H1-receptor agonists
has not achieved the same success. Modification of the
ethylamine side chain of histamine is not favorable for
H1-receptor agonism (Leurs et al., 1995b). Furthermore,
resolution of the enantiomers of the chiral compounds
generated by methylation of the a- or b-positions did not
reveal any stereoselectivity of the side chain for the
H1-receptor (Arrang et al., 1987; Leurs et al., 1995).
Alkylation of the side chain amine group does not dras-

b Abbreviations: cAMP, cyclic adenosine 3c,5c-cyclic monophos-
phate; cNDA, complementary deoxyribonucleic acid; CNS, central
nervous system; DPPE, N-diethyl-2-[4-(phenylmethyl)phenoxy]ethana-
mine; GTPgS, guanosine 59O-(3-thiotriphosphate); NMDA, N-methyl-
D-aspartate; TM, transmembrane.
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tically reduce H1-receptor activity, but Na- and Na,Na-
dimethylhistamine are also potent agonists for the H3-
receptor (table 2; fig. 2; Arrang et al., 1983). Modification
of the imidazole moiety of histamine has been the most
successful approach for obtaining agonists with selectiv-
ity for the H1-receptor. Replacement of the imidazole
moiety of histamine by other aromatic heterocyclic ring
structures in 2-pyridylethylamine and 2-thiazolylethyl-
amine yields two compounds with selectivity for the
H1-receptor (table 2; fig. 2). Both compounds act as full
agonists in producing contraction of guinea pig ileum
(Donaldson and Hill, 1986c), but in other tissues (e.g.,
guinea pig cerebral cortical slices or DDT1MF-2 cells),
2-pyridylethylamine behaves as a low-efficacy agonist
(Donaldson and Hill, 1986a; White et al., 1993). Substi-
tutions in the 2-position of the imidazole ring of hista-
mine have produced compounds that are the most selec-
tive H1-agonists available (Zingel et al., 1995). Thus,
2(3-bromophenyl)histamine and 2[3-(trifluoromethyl)-
phenyl]histamine are both relatively potent and highly
selective H1-agonists (table 2; fig. 2; Leschke et al.,
1995). Both compounds appear to be potent H1-agonists
in guinea pig ileum (Leschke et al., 1995), although some
of the halogenated 2-phenylhistamines are low-efficacy
agonists in DDT1MF-2 cells (Zingel et al., 1990; White et

al., 1993) and in guinea pig aorta (Leschke et al., 1995)
and can exhibit partial agonist properties.

Mepyramine (also known as pyrilamine) is the refer-
ence selective and high-affinity H1-receptor antagonist
(table 3; Hill, 1990). Other classical H1-antagonists that
have been used for characterization purposes include
chlorpheniramine, tripelennamine, promethazine, and
diphenhydramine (fig. 3). Some of these, however, pos-
sess marked muscarinic receptor antagonist properties
(Hill, 1990, 1987), and consequently the selectivity of
these compounds between the three different histamine
receptors (table 3) does not guarantee an unambiguous
characterization. This can only be achieved by appropri-
ate quantitative assessment of receptor antagonism,
preferably with a range of compounds of very different
chemical structure. The stereoisomers of chlorphenira-
mine are particularly useful in this regard (table 3). The
enantiomers of 4-methyl-diphenhydramine and brom-
pheniramine also differ by two orders of magnitude in
their affinity for the H1-receptor (Chang et al., 1979b;
Treherne and Young, 1988b). The geometric isomer
trans-triprolidine is three orders of magnitude more po-
tent than its cis counterpart and is one of the most
potent H1-antagonists available for the guinea pig H1-
receptor (tables 3 and 4; Ison et al., 1973). The tricyclic
antidepressants amitriptyline and doxepin are also very
potent H1-receptor antagonists (KD 0.6 and 0.1 nM re-
spectively; Figge et al., 1979; Aceves et al., 1985).

At therapeutic dosages, many of the classical H1-an-
tihistamines give rise to sedative side effects that have
been attributed to occupancy of H1-receptors in the cen-
tral nervous system (CNS) (Schwartz et al., 1981; Ni-
cholson et al., 1991; Leurs et al., 1995b). Most of the
classical H1-antihistamines, including promethazine
and (1)-chlorpheniramine, readily cross the blood-brain
barrier. However, several compounds that penetrate
poorly into the CNS and appear to be devoid of central
depressant effects are now available (fig. 4). These in-
clude terfenadine (Rose et al., 1982; Wiech and Martin,
1982), astemizole (Laduron et al., 1982; Niemegeers et
al., 1982), mequitazine (Uzan and Le Fer, 1979), lorata-
dine (Ahn and Barnett, 1986), acrivastine (Leighton et
al., 1983; Cohen et al., 1985), cetirizine (Timmerman,
1992b), and temelastine (Brown et al., 1986; Calcutt et
al., 1987). The pKi values for these agents are given in
table 5 (Ter Laak et al., 1994).

C. Receptor Structure

Photoaffinity binding studies using [125I]iodoazido-
phenpyramine and subsequent sodium dodecyl sulfate-
polyacrylamide gel electrophoresis analysis have indi-
cated that the H1-receptor protein has a molecular
weight of 56 kDa under reducing conditions in rat,
guinea pig, and mouse brain (Ruat et al., 1988, 1990b;
Ruat and Schwartz, 1989). Similarly, studies in bovine
adrenal medullar membranes with another photoaffin-
ity ligand [3H]azidobenzamide (Yamashita et al., 1991b)

TABLE 2
Agonist potency ratios of histamine receptors

Histamine H1
100

H2
100

H3
100

2-(3-(Trifluoromethyl)phenyl)-
histamine

128a ,0.1a n.d.

2-(3-Bromophenyl)histamine 112a ,0.1a n.d.
Na-methylhistamine 72b 74c 270d

2-(2-Thiazolyl)ethylamine 26b 2.2b ,0.008d

2-Methylhistamine 17c 4c ,0.08d

2-(2-Pyridyl)ethylamine 5.6b 2.5b n.d.

Arpromidine Antagoniste 10,230e

Impromidine Antagonistf 4,810f Antagonistd,o

Sopromidine 2g 740g Antagonisth,p

Amthamine 1i 150i 0.002i

Dimaprit ,0.0001j 71j Antagonistd,q

4-Methylhistamine 0.2c 43c ,0.008d

Imetit ,0.1k 0.6k 6200k

Immepip n.d. n.d. 2457l

R-a-methylhistamine 0.5m 1m 1550m

S-a-methylhistamine 0.5b 1.7b 13m

R-a,S-b-dimethylhistamine 0.07n 0.1n 1800n

Values determined from guinea pig ileum contraction (H1), guinea
pig atrium (chronotropic stimulation, H2), and inhibition of K1-
stimulated histamine release from rat cerebral cortical slices (H3), or
inhibition of electrically stimulated contraction of guinea pig ileum
(H3). n.d., not determined.
a Leschke et al. (1995)
b Ganelin (1982)
c Black et al. (1972)
d Arang et al. (1983)
e Sellier et al. (1992)
f Durant et al. (1978)

g Elz et al. (1989)
h Arrang et al. (1985c)
i Eriks et al. (1992)
j Durant et al. (1977)
k Garbarg et al. (1992)
l Vollinga et al. (1994)

m Arrang et al. (1987)
n Lipp et al. (1992)
o See table 4.
p KB 5 56 nM.
q KB 5 3 mM.
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found labeled peptides in the size range 53 to 58 kDa.
Interestingly, the specifically labeled H1-receptor (with
[125I]iodoazidophenpyramine) in guinea pig heart was
found to have a substantially higher molecular weight,
although there is no obvious difference in the pharma-

cological characteristics of the H1-receptor in this tissue
(Ruat et al., 1990a).

The bovine adrenal medulla H1-receptor was cloned in
1991 by expression cloning in the Xenopus oocyte system
(Yamashita et al., 1991a). The deduced amino acid se-

FIG. 2. Histamine receptor agonists (H1, H2, and H3).
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quence represents a 491 amino acid protein with a cal-
culated molecular weight of 56 kDa (table 6). The pro-
tein has the seven putative transmembrane (TM)
domains expected of a G-protein–coupled receptor and
possesses N-terminal glycosylation sites. A striking fea-
ture of the proposed structure is the very large third

intracellular loop (212 amino acids) and relatively short
(17 amino acids) intracellular C terminal tail. The avail-
ability of the bovine sequence and lack of introns has
enabled the H1-receptor to be cloned from several spe-
cies (table 6) including rat (Fujimoto et al., 1993), guinea
pig (Horio et al., 1993; Traiffort et al., 1994), mouse
(Inove et al., 1996), and human (De Backer et al., 1993;
Fukui et al., 1994; Moguilevsky et al., 1994; Smit et al.,
1996c). The human histamine H1-receptor gene has now
been localized to chromosome 3 bands 3p14-p21 (Le Co-
niat et al., 1994).

At the present time, these different clones should be
regarded as true species homologues of the histamine
H1-receptor, even though there are notable differences
between them in some antagonist potencies (table 4).
Unfortunately, the number of H1-receptor antagonists
evaluated in binding studies in cells transfected with the
different recombinant receptors is rather limited. Nev-
ertheless, it is clear that the stereoisomers of chlorphe-
niramine show marked differences between species. For
example, the guinea pig H1-receptor has a KD of 0.9 nM

for (1)-chlorpheniramine, whereas for the rat H1-recep-
tor, the value is nearer 8 nM (table 4). Similar differences
for this compound and others (notably mepyramine and
triprolidine) have been reported for the native H1-recep-
tors in guinea pig and rat brain, respectively (table 4;
Chang et al., 1979b; Hill and Young, 1980; Hill, 1990).
Such species differences may also explain why
[125I]iodobolpyramine can label guinea pig CNS H1-re-
ceptors but is unable to detect H1-receptors in rat brain
(Körner et al., 1986; Bouthenet et al., 1988). The native
H1-receptor protein has been solubilized from both
guinea pig and rat brain membranes (Toll and Snyder,
1982; Treherne and Young, 1988a), and the solubilized
receptor retains the same differences in H1-antagonist
potency for (1)-chlorpheniramine as that observed in
membranes (Toll and Snyder, 1982). What is not clear,
however, is why mepyramine appears to be more potent
as an antagonist of the recombinant rat H1-receptor
(expressed in C6 cells) than it is of the native H1-recep-
tor in rat brain membranes (table 4; Chang et al., 1979b;
Hill and Young, 1980; Fujimoto et al., 1993). The recom-
binant study performed in rat C6 cells (Fujimoto et al.,
1993) is complicated by the presence of a low level of
endogenous H1-receptors (Peakman and Hill, 1994), but
a high affinity for mepyramine (KD 5 1 nM) has been
deduced from functional studies in untransfected C6
cells (table 4; Peakman and Hill, 1994).

Site-directed mutagenesis has begun to shed some
light on the binding domains for H1-agonists and -an-
tagonists. Amino acid sequence alignment of the cloned
histamine H1- and H2-receptors (see fig. 5) has led to the
suggestion that the third (TM3) and fifth (TM5) trans-
membrane domains of the receptor proteins are respon-
sible for binding histamine (Birdsall, 1991; Timmerman,
1992a). Aspartate (107) in TM3 of the human H1-recep-
tor, which is conserved in all aminergic receptors, has

TABLE 3
Antagonist dissociation constants at histamine receptors

KB values

H1 H3 H2

Doxepin 0.06 nMa n.d. n.d.
Triprolidine (trans) 0.1 nMb n.d. n.d.
Temelastine 0.3 nMc .10 mMc n.d.
Mepyramine (pyrilamine) 0.4 nMd 5.2 mMe .1 mMf

(1)-Chlorpheniramine 0.4 nMg 1.2 mMh .58 nMi

(2)-Chlorpheniramine 204 nMg 1.2 mMh .58 nMi

Diphenhydramine 1.0 nMj n.d. n.d.
Promethazine 1.2 nMk 3.0 mMl n.d.
Chlorpromazine 1.2 nMk 5.9 mMl n.d.
Tripelenamine 3.2 nMd n.d. n.d.
Arpromidine 20 nMm agonistah

Cimetidine 450 mMn 800 nMn 33 mMi

Metiamide n.d. 920 nMo 2.5 mMj

Ranitidine .100 mMp 200 nMp .1.2 mMi

Famotidine n.d. 17 nMq n.d.
Zolantidine 6.2 mMr 25 nMr .10 mMs

Mifentidine .24 mMt 24 nMt 100 nMs

Tiotidine .30 mMu 15 nMv .12 mMi

Iodoaminopotentidine 1.1 mMw 2.5 nMw n.d.

Impromidine 3.4 mMx agonistx 65 nMi

Burimamide 320 mMy 7.8 mMz 70 nMi

Thioperamide .100 mMaa .10 mMaa 4 nMaa

Iodophenpropit n.d. n.d. 0.25 nMab

Clobenpropit .10 mMac .10 mMac 0.13 nMac

Iodoproxyfan 1.4 mMad 5.3 mMad 5 nMad, ag

Impentamine 126 mMae 250 mMae 4 nMae

GR174737 .10 mMaf .10 mMaf 8 nMaf

Values determined in functional assays from guinea pig ileum
contraction (H1), biochemical determinations in guinea pig cerebral
cortical slices (H1), chronotropic responses in guinea pig atria (H2),
cyclic AMP accumulation in guinea pig hippocampal slices (H2),
inhibition of histamine release in rat cerebral cortical slices (H3), and
inhibition of transmurally stimulated guinea pig ileum (H3). n.d., not
determined.

a Figge et al. (1979)
b Ison et al. (1973)
c Brown et al. (1986)
d Marshall (1955)
e Trendelenburg (1960)
f Hew et al. (1990)
g Hill et al. (1981)
h Hill (1990)
i Arrang et al. (1983)
j Ganellin (1982)
k Hill and Young (1981)
l Tuong et al. (1980)
m Sellier et al. (1992)
n Brimblecombe et al. (1975)
o Black et al. (1974)
p Cavanagh et al. (1983)
q Takeda et al. (1982)

r Calcutt et al. (1988)
s Schwartz et al. (1990)
t Donetti et al. (1984)
u Donaldson et al. (1988)
v Yellin et al. (1979)
w Hirschfeld et al. (1992)
x Durant et al. (1978)
y Buschauer et al. (1992)
z Black et al. (1972)
aa Arrang et al. (1987)
ab Jansen et al. (1992)
ac Van der Goot et al. (1992)
ad Ligneau et al. (1994)
ae Vollinga et al. (1995)
af Clitherow et al. (1996)
ag Stark et al. (1996a)
ah Buschauer (1989)
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been shown to be essential for the binding of histamine
and H1-receptor antagonists to the H1-receptor (Ohta et
al., 1994). In the a2- and b2-adrenoceptors, two serine
residues in TM5 accept the phenolic hydroxyl groups of
the catechol ring of noradrenaline. In the H1-receptor,
the residues corresponding to asparagine (198) and
threonine (194) are in corresponding positions in TM5 of
the human H1-receptor. However, substitution of an ala-
nine for threonine (194) did not influence either agonist
or antagonist binding (Ohta et al., 1994; Moguilevsky et
al., 1995). Substitution of alanine (198) for asparagine

(198) substantially decreased agonist, but not antago-
nist affinity (Ohta et al., 1994; Moguilevsky et al., 1995).
Similar mutations to the corresponding residues (threo-
nine (203) and asparagine (207) in the guinea pig H1-
receptor sequence produce very similar results (Leurs et
al., 1994a). It is interesting to note, however, that
whereas 2-methylhistamine is similarly affected by the
asparagine207 alanine mutation, the H1-selective ago-
nists 2-thiazolylethylamine, 2-pyridylethylamine, and
2-(3-bromophenyl)histamine are much less affected by
this mutation (Leurs et al., 1994a). These data suggest

FIG. 3. Histamine H1-receptor antagonists.

TABLE 4
Species variation in H1-receptor antagonist potency (Ki, nM)

Antagonist

Guinea pig Human Rat Bovine

h1
a (CHO) H1

b (brain) h1
(CHO) H1 (brain) h1 (C6) H1 (brain) h1 (COS-7) H1 (Adrenal

Medulla)

Mepyramine 0.7 0.8 1.1, 4.0 1.0 1.7 (1.0)c 9.1 2.6 0.9
(1)-Chlorpheniramine 0.9 0.8 3.5, 2.5 4.2 7.5 (4.4)c 9.1 8.0 4.4
(2)-Chlorpheniramine 103 200 316 350 540 (.620)c 500 760 350
Triprolidine 0.7 0.2 1.0 3.7 2.0 5.6 n.d. 0.8

Unless otherwise stated, values show Ki determinations from inhibition of [3H]mepyramine binding. n.d., not determined.
a h1 5 transfected H1-receptor cDNA.
b H1 5 native/endogenous H1-receptor.
c Values in parentheses show the values obtained from functional studies of the endogenous H1-receptor present in rat C6 cells (Peakman

& Hill, 1994).
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that asparagine (207) interacts with the Nt-nitrogen of
the imidazole ring of histamine. Furthermore, Leurs et
al. (1995a) have recently shown that lysine (200) inter-
acts with the Np-nitrogen of histamine and is important
for the activation of the H1-receptor by histamine and
the nonimidazole agonist, 2-pyridylethylamine. Inter-
estingly, however, the lysine (200) alanine mutation did
not alter the binding affinity of 2-pyridylethylamine to
the guinea pig H1-receptor (Leurs et al., 1995).

D. Signal Transduction Mechanisms

The primary mechanism by which histamine H1-re-
ceptors produce functional responses in cells is the acti-
vation of phospholipase C via a pertussis toxin-insensi-
tive G-protein that is probably related to the Gq/11 family
of G-proteins (Hill, 1990; Leurs et al., 1995b). The num-
ber of tissues and cell types in which a histamine H1-
receptor–mediated increase in either inositol phosphate
accumulation or intracellular calcium mobilization has
been described is extensive, and further details are pro-
vided in several comprehensive reviews (Hill, 1990; Hill
and Donaldson, 1992; Leurs et al., 1995b). Stimulation
by histamine of [3H]inositol phosphate accumulation
and calcium mobilization has also been observed in Chi-
nese hamster ovary (CHO) cells transfected with the
human, bovine, and guinea pig H1-receptor complemen-
tary deoxyribonucleic acid (cDNA) (Leurs et al., 1994c;
Smit et al., 1996c; Iredale et al., 1993; Megson et al.,
1995). It is worth noting, however, that in some tissues,
histamine can stimulate inositol phospholipid hydroly-
sis independently of H1-receptors. Thus, in the longitu-
dinal smooth muscle of guinea pig ileum and neonatal

FIG. 4. “Nonsedating” H1-receptor antagonists. †, The pharmaceutical product may be a mix of (E) and (Z) forms.

TABLE 5
“Nonsedating” H1-receptor antagonists

Agent pKi value Reference

Temelastine 9.5 Ter Laak et al. (1993)
Acrivastine 9.2 Leurs et al. (1995b)
Epinastine 8.9 Ter Laak et al. (1994)
Astemizole 8.3 Ter Laak et al. (1993)
Cetirizine 7.5 Ter Laak et al. (1993)
Terfenadine 7.1 Ter Laak et al. (1993)
Loratidine 6.8 Ter Laak et al. (1993)

Values are pKi (2log dissociation constant) determined from in-
hibition of [3H]mepyramine binding in homogenates of guinea pig
cerebellum.
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rat brain (Donaldson and Hill, 1985, 1986b; Claro et al.,
1987), a component can be identified in the response to
histamine that is resistant to inhibition by H1-receptor
antagonists. It remains to be established, however,
whether these effects are due to “tyramine-like” effects
of histamine on neurotransmitter release (Bailey et al.,
1987; Young et al., 1988a) or direct effects of histamine
on the associated G-proteins (Seifert et al., 1994).

In addition to effects on the inositol phospholipid sig-
naling systems, histamine H1-receptor activation can

lead to activation of several other signaling pathways,
many of which appear to be secondary to changes in
intracellular calcium concentration or the activation of
protein kinase C. Thus, histamine can stimulate nitric
oxide synthase activity (via a Ca21/calmodulin-depen-
dent pathway) and subsequent activation of soluble gua-
nylyl cyclase in a variety of different cell types (Schmidt
et al., 1990; Leurs et al., 1991a; Yuan et al., 1993; Casale
et al., 1985; Duncan et al., 1980; Hattori et al., 1990;
Sertl et al., 1987). Arachidonic acid release and the
synthesis of arachidonic acid metabolites such as pros-
tacyclin and thromboxane A2 can also be enhanced by
H1-receptor stimulation (Carter et al., 1988; Resink et
al., 1987; Leurs et al., 1994c; Muriyama et al., 1990).
Interestingly, in CHO-K1 cells transfected with the
guinea pig H1-receptor, the histamine-stimulated re-
lease of arachidonic acid is partially inhibited (approxi-
mately 40%) by pertussis toxin, whereas the same re-
sponse in HeLa cells possessing a native H1-receptor
was resistant to pertussis toxin treatment (Leurs et al.,
1994c). The reason for this difference remains to be
established, but it does caution against the use of signal
transduction pathways in highly expressed recombinant
cell systems as a primary receptor classification tool.
This point is best illustrated by the fact that in intact
cellular systems, H1-receptor activation can produce
substantial changes in the intracellular levels of cAMP.
In most tissues, histamine H1-receptor activation does
not activate adenylyl cyclase directly but acts to amplify
direct cAMP responses to histamine H2-, adenosine A2-,
and vasoactive intestinal polypeptide receptors (Pala-
cios et al., 1978; Al-Gadi and Hill, 1987, 1985; Donaldson
et al., 1989; Garbarg and Schwartz, 1988; Magistretti
and Schorderet, 1985; Marley et al., 1991). In many of
these cases, a role for both intracellular Ca21 ions and
protein kinase C has been implicated in this augmenta-
tion response (Al-Gadi and Hill, 1987; Schwabe et al.,
1978; Garbarg and Schwartz, 1988). In CHO cells trans-
fected with the bovine or guinea pig H1-receptor, H1-

FIG. 5. Alignment of amino acid sequences of the human hista-
mine H1- and H2-receptors. Residues that are identical in the two
sequences are shown in bold. Lines show the putative transmem-
brane spanning domains.

TABLE 6
Comparison of recombinant histamine receptors

Receptor Species Tissue of origin Amino acid
residues

Calculated mean
weight (kDa)

Accession
number

% Homology
to human

H1-receptor Human Genomica 487 55.7 P35367 100
Bovine Adrenal medullab 491 55.9 P30546 89.9
Rat Genomicc 486 55.6 P31390 87.8
Guinea pig Genomicd 488 55.6 P31389 82.9
Mouse Genomici 489 55.6 D50095 84.0

H2-receptor Human Genomice 359 40.1 P25021 100
Canine Genomicf 359 40.2 P17124 92.5
Rat Genomicg 358 40.2 P25102 91.1
Guinea pig Liverh 359 40.5 JC4120 93.3
Mouse Genomicj 359 40.4 D50096 91.1

a De Backer et al. (1993)
b Yamashita et al. (1991b)
c Fujimoto et al. (1993)
d Horio et al. (1993)

e Gantz et al. (1991b)
f Gantz et al. (1991a)
g Ruat et al. (1991)

h Traiffort et al. (1995)
i Inove et al. (1996)
j Kobayashi et al. (1996)
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receptor activation can also lead to both direct cAMP
responses and to an enhancement of forskolin-stimu-
lated cAMP formation (Leurs et al., 1994c; Sanderson et
al., 1996).

III. Histamine H2-Receptor

A. Distribution and Function

Unlike the situation with H1-selective radioligands,
attempts to map the distribution of H2-receptors by us-
ing radiolabeled H2-receptor antagonists have met with
variable success (Hill, 1990). Thus, [3H]cimetidine and
[3H]ranitidine have proved unsuitable as H2-radioli-
gands, and in the case of cimetidine, the binding to sites
specifically labeled with the radioligand is potently in-
hibited by imidazoles that have very low H2-receptor
binding affinities (Burkard, 1978; Kendall et al., 1980;
Smith et al., 1980; Bristow et al., 1981; Warrender et al.,
1983). More success has been achieved with [3H]tioti-
dine, which has a higher affinity for the H2-receptor
(table 7) in guinea pig brain, lung parenchyma, and
CHO-K1 cells transfected with the human H2-receptor
cDNA (Gajtkowski et al., 1983; Norris et al., 1984; Sterk
et al., 1986; Foreman et al., 1985a; Gantz et al., 1991a),
although studies in rat brain were not successful
(Maayani et al., 1982). At the present time, [125I]iodoam-
inopotentidine is the most successful H2-radioligand
(Hirschfeld et al., 1992). It has high affinity (KD 5 0.3
nM) for the histamine H2-receptor in brain membranes
(Martinez-Mir et al., 1990; Ruat et al., 1990b; Traiffort
et al., 1992a) and CHO-K1 cells expressing the cloned
rat H2-receptor (Traiffort et al., 1992b). The compound
has also been used for autoradiographic mapping of H2-
receptors in mammalian brain (Ruat et al., 1990a; Traif-
fort et al., 1992a). In human brain, histamine H2-recep-
tors are widely distributed with highest densities
(measured using [125I]iodoaminopotentidine) in the
basal ganglia, hippocampus, amygdala, and cerebral

cortex (Traiffort et al., 1992a). Lowest densities were
detected in cerebellum and hypothalamus (Traiffort et
al., 1992a). A similar distribution has been observed in
guinea pig brain (Ruat et al., 1990b). [125I]Iodoazidopo-
tentidine has successfully been used for irreversible la-
beling (Ruat et al., 1990b; Hirschfeld et al., 1992).

Most information to date on the distribution of hista-
mine H2-receptor, however, has been provided by func-
tional studies in different tissues (Hill, 1990). Histamine
H2-receptor–stimulated cAMP accumulation or adenylyl
cyclase activity has been demonstrated in a variety of
tissues including brain (Hegstrand et al., 1976; Green et
al., 1977; Kanof et al., 1977; Palacios et al., 1978; Gajt-
kowski et al., 1983; Al-Gadi and Hill, 1985, 1987), gas-
tric cells (Soll and Wollin, 1979; Gespach et al., 1982),
and cardiac tissue (Johnson et al., 1979a,b; Kanof and
Greengard, 1979a; Johnson, 1982). Histamine H2-recep-
tors have a potent effect on gastric acid secretion, and
the inhibition of this secretory process by H2-receptor
antagonists has provided evidence for an important
physiological role of histamine in the regulation of gas-
tric secretion (Black et al., 1972; Black and Shankley,
1985; Soll and Berglindh, 1987). High concentrations of
histamine are also present in cardiac tissues of most
animal species and can mediate positive chronotropic
and inotropic effects on atrial or ventricular tissues via
H2-receptor stimulation (Black et al., 1972; Inui and
Imamura, 1976; Levi et al., 1982; Hattori et al., 1983;
Hattori and Levi, 1984; Hescheler et al., 1987; Levi and
Alloatti, 1988). H2-receptor–mediated smooth muscle re-
laxation has also been documented in airway, uterine,
and vascular smooth muscle (Black et al., 1972; Rein-
hardt and Ritter, 1979; Gross et al., 1981; Eyre and
Chand, 1982; Edvinsson et al., 1983; Foreman et al.,
1985b; Ottosson et al., 1989). Finally, histamine H2-
receptors can inhibit a variety of functions within the
immune system (Hill, 1990). H2-receptors on basophils

TABLE 7
Histamine receptor radioligands

Receptor Ligand KD Tissue

H1-receptor [3H]Mepyramine 0.8 nM Guinea pig braina

[125I]Iodobolpyramine 0.1 nM Guinea pig brainb

[125I]Iodoazidophenpyramine 0.01 nM Guinea pig cerebellumc

[11C]Mepyramine 1.0 nM Human brain (in vivo)d

[11C]Doxepin 0.1 nM Human brain (in vivo)e

H2-receptor [3H]Tiotidine 25 nM Guinea pig brainf

[125I]Iodoaminopotentidine 0.3 nM Guinea pig braing

[125I]Iodoazidopotentidine 10 nM Guinea pig braing

H3-receptor [3H]R-(a)-methylhistamine 0.5 nM Rat brainh

[3H]Na-methylhistamine 2.0 nM Rat cerebral cortexi

[125I]Iodophenpropit 0.3 nM Rat cerebral cortexj

[125I]Iodoproxyfan 0.065 nM Rat striatumk

[3H]GR168320 0.1 nM Rat cerebral cortexl

a Hill et al. (1981)
b Körner et al. (1986)
c Ruat et al. (1988)
d Villemagne et al. (1991)

e Yanai et al. (1995)
f Gajtkowski et al. (1983)
g Ruat et al. (1990a)
h Arrang et al. (1990)

i Clark and Hill (1995)
j Jansen et al. (1992)
k Ligneau et al. (1994)
l Brown et al. (1994)
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and mast cells have been shown to negatively regulate
the release of histamine (Bourne et al., 1971; Lichten-
stein and Gillespie, 1975; Lett-Brown and Leonard,
1977; Ting et al., 1980; Plaut and Lichtenstein, 1982).
Furthermore, there is increasing evidence that H2-re-
ceptors on lymphocytes can inhibit antibody synthesis,
T-cell proliferation, cell-mediated cytolysis, and cytokine
production (Bourne et al., 1971; Melmon et al., 1974, 1981;
Griswold et al., 1984; Khan et al., 1985, 1986; Sansoni et
al., 1985; Melmon and Khan, 1987). In the CNS, histamine
H2-receptor activation can inhibit nerve cells (Haas and
Bucher, 1975; Haas and Wolf, 1977), but the most intrigu-
ing action is a block of the long-lasting after-hyperpolar-
ization and the accommodation of firing, an effect with a
remarkably long duration leading to potentiation of exci-
tation in rodents (Haas and Konnerth, 1983; Haas and
Greene, 1986) and human brain (Haas et al., 1988). A slow
excitation is also common (Greene and Haas, 1989; Phelan
et al., 1990). Synaptic transmission in the hippocampus is
profoundly enhanced (Kostopoulos et al., 1988), and syn-
aptic plasticity is induced or enhanced (Brown et al., 1995).
An increase of the hyperpolarization-activated current has
also been described in thalamic relay neurons (McCormick
and Williamson, 1991). Indications for non-cAMP medi-
ated actions of H2-receptor activation are given by Haas et
al. (1978) and Jahn et al. (1995).

B. H2-Selective Ligands

The initial definition of the H1- and H2-subclasses of
histamine receptor by Ash and Schild (1966) and Black
and colleagues (1972) led to a successful search for H2-
receptor selective antagonists with clinical relevance for
the treatment of peptic ulcer. Burimamide was the first
compound developed that showed selectivity for the H2-
receptor (Black et al., 1972), but more recent work has
shown that this compound is a more potent H3-receptor
antagonist (Arrang et al., 1983). Cimetidine and meti-
amide were developed directly from burimamide (Black
et al., 1974; Brimblecombe et al., 1975; Ganellin, 1978).
Since then, a large number of compounds have been
developed with H2-receptor antagonist properties [see
Ganellin (1992) for review]. These include ranitidine
(Bradshaw et al., 1979), tiotidine (Yellin et al., 1979),
nizatidine (Lin et al., 1986), famotidine (Takeda et al.,
1982), and mifentidine (Donetti et al., 1984), which have
been extensively used for characterization purposes (ta-
ble 3; fig. 6). Iodoaminopotentidine (KD 5 2.5 nM) is one
of the most potent H2-receptor antagonists available,
and, as mentioned above, this compound has been used
as a successful radioligand (Hirschfeld et al., 1992).
Most H2-receptor antagonists are polar compounds and
penetrate poorly into the CNS. Although this property is
of great use for selective actions on peripheral tissues
(e.g., gastric mucosa), it does limit the use of the com-

FIG. 6. Histamine H2-receptor antagonists.
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pounds for the in vivo evaluation of H2-receptor function
within the CNS. However, one compound (zolantidine) is
a potent and selective brain-penetrating histamine H2-
receptor antagonist (table 3; Calcutt et al., 1988; Young
et al., 1988b). Both cimetidine and ranitidine have been
shown to demonstrate inverse agonism on histamine
H2-receptors transfected into CHO cells (Smit et al.,
1996a). Thus, in CHO cells expressing high levels of
H2-receptors, in which a considerable constitutive acti-
vation of H2-receptors was demonstrated, cimetidine
and ranitidine inhibited basal adenylyl cyclase activity
(Smit et al., 1996a). In contrast, burimamide behaved as
a neutral antagonist (Smit et al., 1996a).

4-Methylhistamine was the first agonist described
that had any selectivity for the H2-receptor (Black et al.,
1972), although more potent and selective H2-agonists
are now available (table 2). It is noteworthy that many of
the selective H2-agonists exhibit H1- or H3-antagonist
properties (see table 2); consequently the demonstration
of H2-agonism in a given tissue or cell type needs con-
firming with H2-antagonists. Impromidine is approxi-
mately 48 times more potent than histamine in mediat-
ing atrial chronotropic responses, but in several other
H2-receptor–containing tissues, its relative potency and
efficacy are lower (Durant et al., 1978; Leurs et al.,
1995b). A large number of impromidine analogues have
been synthesized and evaluated for H2-agonism. These
studies have led to the development of the potent H2-
agonists, sopromidine and arpromidine (table 2; Tim-
merman, 1992c). Arpromidine and analogues are poten-
tial candidates for treatment of congestive heart failure
(Buschauer, 1989; Buschauer and Baumann, 1991; Mör-
sdorf et al., 1990). Another potent H2-agonist has been
derived as an analogue of dimaprit by considering cyclic
forms of the isothiourea group (Eriks et al., 1992).

C. Receptor Structure

Photoaffinity binding studies using [125I]iodoazidopo-
tentidine and sodium dodecyl sulfate-polyacrylamide gel
electrophoresis have suggested that the H2-receptor in
guinea pig hippocampus and striatum has a molecular
weight of 59 kDa (Ruat et al., 1990b). However, compar-
ison with the calculated molecular weights (40.2 to 40.5
kDa) for the recently cloned H2-receptors (table 6) sug-
gests that the native H2-receptor in guinea pig brain is
glycosylated. Consistent with this proposal, it is note-
worthy that all of the cloned H2-receptor proteins pos-
sess N-glycosylation sites in the N-terminus region
(Gantz et al., 1991a,b; Ruat et al., 1991; Traiffort et al.,
1995). Removal of these glycosylation sites by site-di-
rected mutagenesis, however, has shown that N-glyco-
sylation of the H2-receptor is not essential for cell sur-
face localization, ligand binding, or coupling via Gs to
adenylyl cyclase (Fukushima et al., 1995).

The H2-receptor was first cloned by Gantz and col-
leagues using the polymerase chain reaction to amplify a
partial length H2-receptor sequence from canine gastric

parietal cDNA using degenerate oligonucleotide primers
(Gantz et al., 1991b). This sequence was then used to
identify a full length H2-receptor clone following screen-
ing of a canine genomic library (Gantz et al., 1991b).
Rapid cloning of the rat, human, guinea pig, and mouse
H2-receptors followed (Gantz et al., 1991a; Ruat et al.,
1991; Traiffort et al., 1995; Kobayashi et al., 1996).
These DNA sequences encode for a 359 (canine, human,
guinea pig) or 358 (rat) receptor protein that has the
general characteristics of a G-protein-coupled receptor.
The most notable difference between the structure of the
cloned H2- and H1- receptors is the much shorter 3rd intra-
cellular loop of the H2-receptor and the longer H2-receptor
C terminus. Expression of the rat and human H2-receptor
proteins in CHO cells has revealed the expected pharma-
cological specificity of H2-receptors as judged by radioli-
gand binding studies using [125I]iodoaminopotentidine
(Traiffort et al., 1992b; Leurs et al., 1994c). Recent chro-
mosomal mapping studies have assigned the H2-receptor
gene to human chromosome 5 (Traiffort et al., 1995).

Comparison of the H2-receptor sequence with other
biogenic amine G-protein–coupled receptors has indi-
cated that an aspartate in TM3 and an aspartate and
threonine residue in TM5 are responsible for binding
histamine (Birdsall, 1991). Replacement of aspartate
(98) by an asparagine residue in the canine H2-receptor
results in a receptor that does not bind the antagonist
tiotidine and does not stimulate cAMP accumulation in
response to histamine (Gantz et al., 1992). Similarly,
changing the aspirate (186) of TM5 to an alanine re-
sulted in complete loss of tiotidine binding without af-
fecting the EC50 for histamine-stimulated cAMP forma-
tion (Gantz et al., 1992). Changing the threonine (190) to
an alanine, however, resulted in a lower KD for tiotidine
and a reduction in both the maximal cAMP response and
histamine EC50 value (Gantz et al., 1992). Mutation of
Asp (186) and Gly (187) in the canine H2-receptor (to Ala
(186) and Ser (187), however, produces a bifunctional
receptor that can be stimulated by adrenaline and in-
hibited by both propranolol and cimetidine (Delvalle et
al., 1995). Thus, these data suggest that the pharmaco-
logical specificity of the H2-receptor resides in only a few
key amino acid residues.

Other site-directed mutagenesis studies on the H2-
receptor have been very limited. However, Smit et al.
(1996) have identified a residue in the second intracel-
lular loop [leucine (124)] of the rat H2-receptor, which
appears necessary for efficient coupling to Gs.

D. Signal Transduction Mechanisms

It is generally accepted that histamine H2-receptors
couple to adenylyl cyclase via the GTP-binding protein
Gs (Johnson, 1982; Hill, 1990; Leurs et al., 1995b). His-
tamine is a potent stimulant of cAMP accumulation in
many cell types (Johnson, 1982), particularly those of
CNS origin (Daly, 1977). Thus, H2-receptor–mediated
effects on cAMP accumulation have been observed in
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brain slices (Al-Gadi and Hill, 1985; Palacios et al.,
1978), gastric mucosa (Soll and Wollin, 1979; Chew et
al., 1980; Batzri et al., 1982; Gespach et al., 1982), fat
cells (Grund et al., 1975; Keller et al., 1981), cardiac
myocytes (Warbanow and Wollenberger, 1979), vascular
smooth muscle (Reinhardt and Ritter, 1979), basophils
(Lichtenstein and Gillespie, 1975), and neutrophils
(Busse and Sosman, 1977). Furthermore, H2-receptor–
mediated cAMP accumulation has been demonstrated in
CHO cells transfected with the rat, canine, or human
H2-receptor cDNA (Gantz et al., 1991a,b; Leurs et al.,
1994b; Fukushima et al., 1995).

Direct stimulation of adenylyl cyclase activity in cell-
free preparations has been detected in both brain and
cardiac muscle membranes (Hegstrand et al., 1976;
Green et al., 1977; Green and Maayani, 1977; Kanof et
al., 1977; Johnson et al., 1979a,b; Kanof and Greengard,
1979a,b; Newton et al., 1982; Olianas et al., 1984). How-
ever, caution is required regarding the interpretation of
receptor characterization studies using histamine-stim-
ulated adenylyl cyclase activity alone (Hill, 1990). A
striking feature of studies of histamine H2-receptor–
stimulated adenylyl cyclase activity in membrane prep-
arations is the potent antagonism observed with certain
neuroleptics and antidepressants (table 8; Spiker et al.,
1976; Green et al., 1977; Green and Maayani, 1977;
Kanof and Greengard, 1978; Green, 1983). It is notable,
however, that most of the neuroleptics and antidepres-
sants are approximately 2 orders of magnitude weaker
as antagonists of histamine-stimulated cAMP accumu-
lation in intact cellular systems (table 8; Tuong et al.,
1980; Kamba and Richelson, 1983; Hill, 1990). One po-
tential explanation of these differences resides within
the buffer systems used for the cell-free adenylyl cyclase
assays. Some differences in potency of some antidepres-
sants and neuroleptics have been observed when mem-

brane binding of H2-receptors has been evaluated using
[125I]iodoaminopotentidine (table 8; Traiffort et al.,
1991). However, invariably the differences observed in
the Ki values deduced from ligand binding studies in
different buffers are not as large as the differences in KB

values obtained from functional studies (table 8). For
example, in the case of amitriptyline, no difference was
observed in binding affinity in Krebs and Tris buffers
(Traiffort et al., 1991).

In addition to Gs-coupling to adenylyl cyclase, there
are reports of H2-receptors coupling to other signaling
systems. For example, in gastric parietal cells, H2-recep-
tor stimulation has been shown to increase the intracel-
lular free concentration of calcium ions (Chew, 1985,
1986; Chew and Petropoulos, 1991; Malinowska et al.,
1988; Delvalle et al., 1992a). A similar calcium response
to histamine H2-receptor stimulation has also been ob-
served in HL-60 cells (Mitsuhashi et al., 1989; Seifert et
al., 1992) and in hepatoma-derived cells transfected
with the canine H2-receptor cDNA (Delvalle et al.,
1992b). In these latter cells, the influence on [Ca21]i was
accompanied by both an increase in inositol trisphos-
phate accumulation and a stimulation of cAMP accumu-
lation (Delvalle et al., 1992b). Interestingly, the H2-
receptor–stimulated calcium and inositol trisphosphate
responses in these cells were both inhibited by cholera
toxin treatment (but not by pertussis toxin), whereas
cholera toxin produced the expected increase in cAMP
levels (Delvalle et al., 1992a,b). In single parietal cells,
H2-receptors have been shown to release calcium from
intracellular calcium stores (Negulescu and Machen,
1988). It should be noted, however, that no effect of
H2-agonists was observed on inositol phosphate accumu-
lation or intracellular calcium levels in CHO cells trans-
fected with the human H2-receptor (Leurs et al., 1994a).

TABLE 8
Comparison of antagonist KB values for inhibition of H2-receptor-stimulated adenylyl cyclase activity in membranes and cyclic AMP

accumulation in intact cellular systems

Antagonist
Antagonist KB value (mM) Binding studies

(Ki, mM)

Slicesa Dissociated cellsb Homogenatesc,d,e Krebs buffer Tris buffer

Cimetidine 0.6 0.5 0.9
Metiamide 0.8 n.d. 1.0
Tiotidine n.d. 0.03 0.03 0.02 0.007
Cyproheptadine 5.7 n.d. 0.04
Mianserin 10.0 2.8 0.07 1.01 0.20
Imipramine .10 3.3 0.2
Amitriptyline 3.5 1.9 0.05 0.09 0.09
Chlorpromazine 5.9 3.0 0.04
Haloperidol .10 29 0.08 1.61 0.42

Measurements were made of H2-mediated adenylyl cyclase activity in homogenates of guinea pig hippocampus, impromidine-stimulated
cyclic AMP accumulation in guinea pig hippocampal slices, and of H2-mediated cyclic AMP accumulation in dissociated hippocampal tissue.
n.d., not determined.

a Tuong et al. (1980)
b Kamba et al. (1983)
c Green et al. (1977)

d Kanof and Greengard (1978)
e Kanof and Greengard (1979a,b)
f Traiffort et al. (1991)
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Thus, the effect of H2-receptor stimulation on intracel-
lular calcium signaling may be very cell-specific.

In CHO cells transfected with the rat H2-receptor,
H2-receptor stimulation produces both an increase in
cAMP accumulation and an inhibition of P2u-receptor–
mediated arachidonic acid release (Traiffort et al.,
1992b). Interestingly, however, the effect on phospho-
lipase A2 activity (i.e., arachidonic acid release) was not
mimicked by forskolin, PGE1, or 8-bromo-cAMP, sug-
gesting a mechanism of activation that is independent of
cAMP-mediated protein kinase A activity (Traiffort et
al., 1992b). However, in CHO cells transfected with the
human H2-receptor, no inhibitory effects of H2-receptor
stimulation were observed on phospholipase A2 activity
(Leurs et al., 1994b). This observation suggests that
these cAMP-independent effects might depend on the
level of receptor expression or subtle differences be-
tween clonal cell lines.

IV. Histamine H3-Receptor

A. Distribution and Function

The high apparent affinity of R-(a)-methylhistamine
for the histamine H3-receptor has enabled the use of this
compound as a radiolabeled probe (Arrang et al., 1987).
This compound has been successfully used to identify a
single binding site in rat cerebral cortical membranes,
which in phosphate buffer has the pharmacological char-
acteristics of the H3-receptor (Arrang et al., 1987, 1990).
[3H]R-(a)-methylhistamine binds with high affinity (KD
5 0.3 nM) to rat brain membranes, although the binding
capacity is generally low (approximately 30 fmol/mg pro-
tein; (Arrang et al., 1987). Autoradiographic studies
with [3H]R-(a)-methylhistamine have demonstrated the
presence of specific thioperamide-inhibitable binding in
several rat brain regions, particularly cerebral cortex,
striatum, hippocampus, olfactory nucleus, and the bed
nuclei of the stria terminalis, which receive ascending
histaminergic projections from the magnocellular nuclei
of the posterior hypothalamus (Arrang et al., 1987; Pol-
lard et al., 1993). H3-receptors have also been visualized
in human brain and the brain of nonhuman primates
(Martinez-Mir et al., 1990). H3-receptor binding has
been additionally characterized using [3H]R-(a)-methyl-
histamine in guinea pig cerebral cortical membranes
(Kilpatrick and Michel, 1991), guinea pig lung (Arrang
et al., 1987), guinea pig intestine, and guinea pig pan-
creas (Korte et al., 1990). Na-methylhistamine has also
proved successful as a radiolabeled probe for the H3-
receptor. Although the relative agonist activity of Na-
methylhistamine (with respect to histamine) is fairly
similar for all three histamine receptor subtypes (table
2), the binding affinity of histamine and Na-methylhis-
tamine for the H3-receptor is several orders of magni-
tude higher than for either the H1- or H2-receptors (Hill
et al., 1977; Ruat et al., 1990b). This ligand can identify
high-affinity H3-receptor sites in both guinea pig (Korte

et al., 1990) and rat (West et al., 1990; Kathman et al.,
1993; Clark and Hill, 1995) brain.

The binding of 3H-agonists to H3-receptors in brain
tissues has been shown to be regulated by guanine nu-
cleotides, implying a linkage to heterotrimeric G-pro-
teins (Arrang et al., 1987, 1990; Zweig et al., 1992; Clark
and Hill, 1995). The binding of H3-receptor agonists also
seems to be sensitive to several cations. Magnesium and
sodium ions have been shown to inhibit [3H]R-(a)-meth-
ylhistamine binding in rat and guinea pig brain (Kil-
patrick and Michel, 1991), and the presence of calcium
ions has been reported to reveal heterogeneity of agonist
binding (Arrang et al., 1990). The inhibitory effect of
sodium ions on agonist binding means that higher Bmax
values are usually obtained in sodium-free Tris buffers
compared with that in Na/K phosphate buffers (Clark
and Hill, 1995). West et al. (1990) have suggested that
multiple histamine H3-receptor subtypes exist in rat
brain (termed H3A and H3B) on the basis of [3H]Na-
methylhistamine binding in rat cerebral cortical mem-
branes in 50 mM Tris buffer. Under these conditions, the
selective H3-antagonist thioperamide can discriminate
two affinity binding states (West et al., 1990). However,
Clark and Hill (1995) have noted that the observed
heterogeneity of thioperamide binding is dependent on
the concentration of sodium ions or guanine nucleotides
within the incubation medium. Thus, in the presence of
100 mM sodium chloride, thioperamide binding conforms
to a single binding isotherm (Clark and Hill, 1995). The
simplest interpretation of these data is that the H3-
receptor can exist in different conformations for which
thioperamide, but not agonists or other H3-antagonists
(e.g., clobenpropit), can discriminate. Clark and Hill
(1995) have suggested that the equilibrium between
these conformations is altered by guanine nucleotides or
sodium ions. If this hypothesis is correct, it is likely that
the different binding sites represented resting, active, or
G-protein–coupled conformations of the H3-receptor.
Furthermore, if thioperamide preferentially binds to un-
coupled receptors, then this compound should exhibit
negative efficacy in functional assays.

More recently, radiolabeled H3-receptor antagonists
have become available. The first compound to be devel-
oped was [125I]iodophenpropit, which has been used to
successfully label H3-receptors in rat brain membranes
(Jansen et al., 1992). Inhibition curves for thioperamide
and iodophenpropit were consistent with interaction
with a single binding site, but H3-receptor agonists were
able to discriminate high- [4 nM for R-(a)-methylhista-
mine] and low- [0.2 mM for R-(a)-methylhistamine] affin-
ity binding sites (Jansen et al., 1992). More recently,
[3H]GR16820 (Brown et al., 1994) and [125I]iodoproxy-
fan (Ligneau et al., 1994) have also proved useful as
high-affinity radiolabeled H3-antagonists. [125I]iodo-
proxyfan (Stark et al., 1996a) is the most potent and
selective ligand available at the present time with a KD
of 65 pM (Ligneau et al., 1994). In rat striatum, in the
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presence of guanine nucleotides such as guanosine 59O-
(3-thiotriphosphate) (GTPgS), 40% of the binding sites
exhibited a 40-fold lower affinity for H3-agonists, provid-
ing further evidence for a potential linkage of H3-recep-
tors to G-proteins (Ligneau et al., 1994). [3H]thioperam-
ide and [3H]5-methylthioperamide have also been used
to label H3-receptors in rat brain membranes (Alves-
Rodrigues et al., 1996; Yanai et al., 1994). However,
[3H]thioperamide was shown to bind additionally to low-
affinity, high-capacity, non H3-receptor sites in this tis-
sue (Alves-Rodrigues et al., 1996).

In addition to data obtained from ligand binding stud-
ies, evidence for the localization of histamine H3-recep-
tors has also come from functional studies, primarily
involving inhibition of neurotransmitter release. The
H3-receptor was first characterized as an autoreceptor-
regulating histamine synthesis and release from rat ce-
rebral cortex, striatum, and hippocampus (Arrang et al.,
1983, 1985b,c 1987a, 1988a,b). H3-receptor–mediated
inhibition of histamine release has also been observed in
human cerebral cortex (Arrang et al., 1988a). Differ-
ences in the distribution of H3-receptor binding sites and
the levels of histidine decarboxylase (an index of hista-
minergic nerve terminals) suggested at an early stage
that H3-receptors were not confined to histamine-con-
taining neurons within the mammalian CNS (Arrang et
al., 1987; Van der Werf and Timmerman, 1989). This
has been confirmed by the observations that H3-recep-
tors can regulate serotonergic (Schlicker et al., 1988),
noradrenergic (Schlicker et al., 1989, 1992), cholinergic
(Clapham and Kilpatrick, 1992), and dopaminergic
(Schlicker et al., 1993) neurotransmitter release in
mammalian brain. Histamine H3-receptor activation in-
hibits the firing of the histamine-neurons in the poste-
rior hypothalamus through a mechanism different from
autoreceptor functions found on other aminergic nuclei,
presumably a block of Ca21-current (Haas, 1992). Elec-
trophysiological evidence for reduction of excitatory
transmitter release (glutamate) has been presented by
Brown and Reymann (unpublished data, 1996).

Inhibitory effects of H3-receptor activation on neuro-
transmission have also been documented in the periph-
ery. Thus, H3-receptors have been identified regulating
the release of sympathetic neurotransmitters in guinea
pig mesenteric artery (Ishikawa and Sperelakis, 1987),
human saphenous vein (Molderings et al., 1992), guinea
pig atria (Endou et al., 1994; Imamura et al., 1994), and
human heart (Imamura et al., 1995). Inhibition of para-
sympathetic nerve activity has also been observed in
guinea pig ileum and human bronchi and trachealis
(Trzeciakowski, 1987; Tamura et al., 1988; Ichinose et
al., 1989; Ichinose and Barnes, 1989; Hew et al., 1990;
Menkveld and Timmerman, 1990; Leurs et al., 1991a,b;
Poli et al., 1991). An inhibitory effect of H3-receptor
stimulation on release of neuropeptides (tachykinins or
calcitonin gene-related peptide) from sensory C fibers

has been reported from airways (Ichinose et al., 1990),
meninges (Matsubara et al., 1992), skin (Ohkubo and
Shibata, 1995), and heart (Imamura et al., 1996). A
modulation of acetylcholine, capsaicin, and substance P
effects by histamine H3-receptors in isolated perfused
rabbit lungs has also been reported (Delaunois et al.,
1995).

There is evidence that H3-receptor stimulation can
inhibit the release of neurotransmitters from nonadren-
ergic-noncholinergic nerves in guinea pig bronchioles
(Burgaud and Oudart, 1994) and ileum (Taylor and Kil-
patrick, 1992). Interestingly, in guinea pig ileum, the
H3-antagonists betahistine and phenylbutanoylhista-
mine were much less potent as inhibitors of H3-mediated
effects on nonadrenergic-noncholinergic transmission
than they were as antagonists of histamine release in
rat cerebral cortex (Taylor and Kilpatrick, 1992). A sim-
ilar low potency has been observed for these two antag-
onists for antagonism of H3-receptor–mediated [3H]ace-
tylcholine release from rat entorhinal cortex (Clapham
and Kilpatrick, 1992) and antagonism of H3-receptor–
mediated 5-hydroxytryptamine (5-HT) release from por-
cine enterochromaffin cells (Schworer et al., 1994).
These observations provide support for the possible ex-
istence of distinct H3-receptor subtypes, but these re-
sponses need to be investigated further to exclude alter-
native explanations. For example, Arrang et al. (1995)
have recently shown that phenylbutanoylhistamine can
inhibit [3H]acetylcholine release from rat entorhinal cor-
tex slices and synaptosomes via a nonhistamine receptor
mechanism. Thus, the potency of phenylbutanoylhista-
mine as an H3-receptor antagonist in these preparations
may be greatly underestimated because of the additional
nonspecific properties of the drug (Arrang et al., 1995).

The observed inhibitory effect of H3-receptor stimula-
tion on 5-HT release from porcine enterochromaffin cells
in strips of small intestine (Schworer et al., 1994) pro-
vides evidence for H3-receptors regulating secretory
mechanisms in nonneuronal cells. This observation sug-
gests that H3-receptors may also be present in gastric
mast cells or enterochromaffin cells and exert an inhib-
itory influence on histamine release and gastric acid
secretion. Consistent with this suggestion, H3-receptor
activation has been shown to inhibit gastric acid secre-
tion in conscious dogs (Soldani et al., 1993). An autoreg-
ulation of histamine synthesis by histamine H3-recep-
tors has also been reported in isolated rabbit fundic
mucosal cells (Hollande et al., 1993).

H3-receptors have been shown to relax rabbit middle
cerebral artery via an endothelium-dependent mecha-
nism involving both nitric oxide and prostanoid release
(Ea Kim and Oudart, 1988; Ea Kim et al., 1992). Finally,
there is a report that H3-receptor activation can stimu-
late adrenocorticotropic hormone release from the pitu-
itary cell line AtT-20 (Clark et al., 1992)
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B. H3-Receptor Selective Ligands

The initial characterization of the H3-receptor made
use of the relative high affinity of the agonists Na-meth-
ylhistamine and histamine for the H3-receptor com-
pared with the H1- and H2-receptors together with the
H3-antagonist properties of impromidine (H2-agonist),
burimamide (H2-antagonist), and betahistine (H1-ago-
nist) (Arrang et al., 1983, 1985a). Since then, several
selective ligands (both agonists and antagonists) have
been developed that show little effect on H1- and H2-
receptors. The first selective H3-agonist was R-(a)-meth-
ylhistamine (fig. 2), which capitalized on the marked
stereoselectivity of agonist binding to the H3-receptor
compared with that to the other histamine receptors
(Arrang et al., 1985c). Thus, R-(a)-methylhistamine is
two orders of magnitude more potent as an H3-agonist
than the corresponding S-isomer (table 2). R-a1S-b-dim-
ethylhistamine showed slightly higher potency and even
higher selectivity (Lipp et al., 1992). Imetit [S-[2–4(5)-
imidazolylethylisothiourea] is a highly selective, full H3-
agonist that appears to be more potent than R-(a)-meth-
ylhistamine (table 2; Garbarg et al., 1992; Howson et al.,
1992; Van der Goot et al., 1992). Both R-(a)-methylhis-
tamine and imetit have been shown to be active in vivo
at low doses (Arrang et al., 1987a; Garbarg et al., 1992).
Azomethine derivatives of R-(a)-methylhistamine were
prepared as lipophilic prodrugs to improve the bioavail-
ability of the hydrophilic drug, particularly its entry into
the brain (Krause et al., 1995). Immepip is another
potent H3-agonist that has been developed from hista-
mine by extending the alkyl side chain to four methylene
groups and incorporating the amino function within a
piperidine ring (table 2; Vollinga et al., 1994). Most
recently, the H3-agonist potency of a cyclic, conforma-
tionally restricted analogue of histamine (immepyr) has
been reported (Shih et al., 1995). This compound has been
resolved and the (1)-immepyr shown to have an H3-bind-
ing affinity (Ki 5 2.8 nM) one order of magnitude higher
than the corresponding (-)-isomer (Shih et al., 1995). In
guinea pig ileum, however, (1)-immepyr was one order of
magnitude less potent (pD2 7.1) than R-(a)-methylhista-
mine (pD2 8.2) as an H3-agonist (Shih et al., 1995).

Thioperamide was the first potent and selective H3-
receptor antagonist to be described (Arrang et al., 1987).
This compound appears to act as a competitive antago-
nist in most functional assays of H3-receptor activity
(Arrang et al., 1987; Hew et al., 1990; Menkveld and
Timmerman, 1990), although Clark and Hill (1995) have
suggested that it may possess inverse agonist proper-
ties. More recently, several other potent H3-antagonists
have been described (table 3; fig. 7), including cloben-
propit (Kathman et al., 1993), iodophenpropit (Jansen et
al., 1992), GR175737 (Clitherow et al., 1996), iodoproxy-
fan (Ligneau et al., 1994; Schlicker et al., 1996), impen-
tamine (Vollinga et al., 1995; Leurs et al., 1996), ethers
(Ganellin et al., 1996; Stark et al., 1996a), and carbam-

ates (Stark et al., 1996b). These compounds have initi-
ated some further discussion regarding potential H3-
receptor subtypes. Thus, iodoproxyfan behaves as a
partial agonist in both guinea pig ileum and mouse
cerebral cortical slices, whereas its noniodinated ana-
logue only exhibits slight agonist activity in the mouse
brain preparation (Schlicker et al., 1996). In guinea pig
ileum, the noniodinated analogue of iodoproxyfan is a
pure antagonist (pA2 7.12; Schlicker et al., 1996). These
observations point to differences in receptor structure in
the two preparations (perhaps species homologues?), but
they could equally well be accommodated by differences
in the efficiency of H3-receptor–effector coupling be-
tween the two tissues. A similar observation has been
made with a series of homologues of histamine in which
the ethylene side chain was modified (Leurs et al., 1996).
Lengthening the side chain of histamine from two to five
methylene groups results in the highly selective H3-
antagonist impentamine, which is equipotent with thio-
peramide as a competitive antagonist in guinea pig je-
junum (table 3; Vollinga et al., 1995). However, in mouse
brain cerebral cortical slices, impentamine (like iodo-
proxyfan) exhibits partial agonist activity (Leurs et al.,
1996). At the present time, differences in receptor-effec-
tor coupling (and hence H3-receptor reserve) between
mouse brain and guinea pig small intestine provide the
simplest explanation for these observations.

Although many of the H3-selective ligands have been
fully characterized in terms of selectivity for each of the
three histamine receptors, it is worth stressing that the
evaluation of H3-receptor ligands against other receptor
systems is more limited. This needs to be borne in mind,
particularly, when considering the in vivo use of these
compounds. For example, iodophenpropit (Ki 11 nM) and
thioperamide (Ki 120 nM) have both been shown to in-
teract with 5-HT3-receptors (Leurs et al., 1995c),
whereas iodoproxyfan did not (Schlicker et al., 1995).

C. Receptor Structure

Structural information on the histamine H3-receptor
is very limited, primarily because of a lack of success in
cloning the H3-receptor cDNA. At the present time,
there are only two reports of H3-receptor purification
studies. Using [3H]histamine as a radioligand, Zweig et
al. (1992) have reported the solubilization of an H3-
receptor protein from bovine whole brain. Size-exclusion
chromatography has revealed an apparent molecular
mass of 220 kDa (Zweig et al., 1992). However, because
the solubilized receptor retained its guanine nucleotide
sensitivity, it is likely that the molecular mass of 220
kDa represents a complex of receptor, G-protein, and
digitonin (Zweig et al., 1992). Cherifi et al. (1992) have
reported the solubilization (with Triton X-100) and pu-
rification of the H3-receptor protein from the human
gastric tumoral cell line HGT-1. After gel filtration and
sepharose-thioperamide affinity chromatography, pro-
tein has been purified with a molecular mass of approx-
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imately 70 kDa (Cherifi et al., 1992). However, it re-
mains to be established whether this protein is the
histamine H3-receptor.

D. Signal Transduction Mechanisms

The signal transduction pathways used by the hista-
mine H3-receptor remain largely subject to speculation,
but there is increasing evidence to suggest that this
receptor belongs to the superfamily of G-protein–cou-
pled receptors. Evidence for this has largely been ob-
tained from ligand-binding studies involving the modu-
lation by guanine nucleotides of H3-agonist binding
(Arrang et al., 1990; West et al., 1990; Kilpatrick and
Michel, 1991; Zweig et al., 1992; Clark and Hill, 1995)
and of H3-agonist inhibition of 3H-antagonist binding
(Jansen et al., 1992, 1994; Ligneau et al., 1994). The most
direct evidence for a functional H3-receptor–G-protein
linkage has come from studies of [35S]GTPgS binding to
rat cerebral cortical membranes (Clark and Hill, 1996). In
the presence of H1- and H2-receptor antagonists (0.1 mM

mepyramine and 10 mM tiotidine), both R-a-methylhista-
mine and Na-methylhistamine produced a concentration-
dependent stimulation of [35S]GTPgS binding (EC50 5 0.4
and 0.2 nM, respectively) in rat cerebral cortical mem-
branes (Clark and Hill, 1996). Furthermore, this response
was abolished by pretreatment of membranes with pertus-

sis toxin, implying a direct coupling to a Gi or Go protein
(Clark and Hill, 1996). Evidence for an involvement of
pertussis toxin-sensitive G-proteins in the response to H3-
receptor stimulation has also come from studies of hista-
mine H3-receptor signaling in human and guinea pig heart
(Endou et al., 1994; Imamura et al., 1995). In these tissues,
histamine H3-receptor–stimulation seems to lead to an
inhibition of N-type Ca21 channels responsible for voltage-
dependent release of noradrenaline (Endou et al., 1994;
Imamura et al., 1995).

Very little is known about the intracellular signal trans-
duction pathways initiated by histamine H3-receptor acti-
vation. Several research groups have failed to observe an
inhibition of adenylyl cyclase activity in different tissues
and cells (Garbarg et al., 1989; Schlicker et al., 1991;
Cherifi et al., 1992), which might indicate that H3-recep-
tors preferentially couple to Go proteins. There is one in-
teresting report of a negative coupling to phospholipase C
in the HGT-1 gastric tumor cell line (Cherifi et al., 1992),
but this observation needs confirmation by other research.

V. Other Responses to Histamine

A. Potentiation of Responses to N-Methyl-D-Aspartate

Studies in hippocampal cell cultures, acutely dissoci-
ated neurons, and Xenopus oocytes expressing the re-

FIG. 7. Histamine H3-receptor antagonists.
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combinant N-methyl-D-aspartate (NMDA) receptor sub-
units NR2B and NR1 have shown that histamine is able
to enhance NMDA-activated currents, independently of
the known histamine receptors, via a mechanism that
probably involves the polyamine-binding site on the
NMDA-receptor complex (Bekkers, 1993; Vorobjev et al.,
1993; Williams, 1994; Saysbasili et al., 1995). Histamine
and the polyamines spermine and spermidine have also
been shown to enhance glutamate toxicity in human
NT2-N neurons (Munir et al., 1996). Interestingly, at-
tempts to demonstrate a similar effect of histamine on
NMDA-induced currents in rat hippocampal slices, or
outside-out patches pulled from the somas of these cells,
were without success (Bekkers et al., 1996). However,
two studies using conventional and whole cell recording
of neurons in the CA1 region of slices of rat hippocampus
concluded that the modulation of NMDA-mediated syn-
aptic currents was dependent upon pH (Saysbasili et al.,
1995; Janovsky et al., 1995). Thus, at low pH (7.2),
histamine enhanced synaptic currents, whereas at pH
7.6 it reduced them. Interestingly, at physiological pH
(7.4), no significant action of histamine was seen (Says-
basili et al., 1995).

B. A Role as an Intracellular Messenger?

Although most actions of histamine can be attributed
to an extracellular action, there are reports that hista-
mine may have intracellular actions. The activity of the
enzyme, histidine decarboxylase, which catalyzes the
formation of histamine from histidine, has been ob-
served to be high in several tissues undergoing rapid
growth or repair (Ishikawa et al., 1970; Kahlson and
Rosengren, 1971; Watanabe et al., 1981; Bartholeyns
and Bouclier, 1984; Bartholeyns and Fozard, 1985).
These observations have led to the proposal that newly
synthesized (nascent) histamine may have a role in cel-
lular proliferation, perhaps via an intracellular site.
Some evidence has been accumulated that intracellular
histamine levels (or the activity of histidine decarboxyl-
ase) can be regulated by tumor-promoting phorbol esters
(Saxena et al., 1989). Furthermore, Brandes and col-
leagues (Saxena et al., 1989; Brandes et al., 1990, 1992)
have suggested that N, N-diethyl-2-[4-(phenylmethyl)-
phenoxy]ethanamine (DPPE) might be an inhibitor of a
specific intracellular histamine receptor (HIC). However,
at the present time, the evidence in favor of an intracel-
lular histamine receptor has not been generally ac-
cepted, and alternative possibilities need to be explored.
For example, the direct effects of histamine, or its ana-
logues, on polyamine sites (Vorobjev et al., 1993; Bek-
kers, 1993) and heterotrimeric G-proteins (Hagelüken et
al., 1995; Seifert et al., 1994) could explain many of the
observations to date.
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VAZQUEZ, S., WILSON, A. A., NATARAJAN, T. K., WONG, D. F., YANAI, K., AND
WAGNER, H. N., JR.: Imaging histamine H1 receptors in the living human
brain with carbon-11-pyrilamine. J. Nucl. Med. 32: 308–311, 1991.

VILLEMAIN, F. M., BACH, J. F., AND CHATENOUD, L. M.: Characterization of
histamine H1 binding sites on human T lymphocytes by means of 125I-
iodobolpyramine. J. Immunol. 144: 1449–1454, 1990.

VOLLINGA, R. C., MENGE, W. M. P. B., LEURS, R., AND TIMMERMAN, H. H.:
Homologs of histamine as histamine H3 receptor antagonists: a new potent
and selective H3 antagonist, 4(5)-(5-aminopentyl)-1H-imidazole. J. Med.
Chem. 38: 266–271, 1995.

VOLLINGA, R. J., DE KONING, J. P., JANSEN, F. P., LEURS, R., MENGE,

W. M. P. B., AND TIMMERMAN, H.: A new potent and selective histamine H3
receptor agonist, immepip (VUF 4708). J. Med. Chem. 37: 332–333, 1994.

VOROBJEV, V. S., SHARONOVA, I. N., WALSH, I. B., AND HAAS, H. L.: Histamine
potentiates N-methyl-D-aspartate responses in acutely isolated hippocam-
pal neurones. Neuron 11: 837–844, 1993.

WAN, D. C. C., MARLEY, P. D., AND LIVETT, B. G.: Histamine activates proen-
kephalin A mRNA but not phenylethanolamine-N-methyltransferase
mRNA expression in cultured bovine adrenal chromaffin cells. Eur. J. Phar-
macol. Mol. Pharmacol. Sect. 172: 117–129, 1989.

WARBANOW, W., AND WOLLENBERGER, A.: Mechanical responses of cultured
pre- and neonatal myocytes. J. Mol. Cell Cardiol. 11(suppl. 1): 64, 1979.

WARRENDER, S. E., NORRIS, D. B., RISING, T. J., AND WOOD, T. P.: 3H-cimetidine
and the H2-receptor. Life Sci. 33: 1119–1126, 1983.

WATANABE, T., TAGUSHI, Y., SASAKI, K., AND KITAMURA, Y.: Increase in histi-
dine decarboxylase activity in mouse skin after application of the tumor
promoter tetradecanoylphorbol acetate. Biochem. Biophys. Res. Commun.
100: 427–432, 1981.

WEST, R. E., JR., ZWEIG, A., SHIH, N. Y., SIEGEL, M. I., EGAN, R. W., AND CLARK,
M. A.: Identification of two H3-histamine receptor subtypes. Mol. Pharma-
col. 38: 610–613, 1990.

WHITE, T. E., DICKENSON, J. M., AND HILL, S. J.: Histamine H1-receptor-
mediated inositol phospholipid hydrolysis in DDT1 MF2 cells: agonist and
antagonist properties. Br. J. Pharmacol. 108: 196–203, 1993.

WIECH, N. L., AND MARTIN, J. S.: Absence of an effect of terfenadine on
guinea-pig brain histamine H1-receptors in vivo determined by receptor
binding techniques. Arzneim.-Forsch. Drug Res. 32(suppl. 11): 1167–1170,
1982.

WILLIAMS, K.: Subunit-specific potentiation of recombinant N-methyl-D-aspar-
tate receptors by histamine. Mol. Pharmacol. 46: 531–541, 1994.

WINDAUS, A., AND VOGT, W.: Synthese des Imidazolyl-äthylamins. Ber. Dtsch.
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