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Abstract——The leukotrienes and lipoxins are bio-
logically active metabolites derived from arachidonic
acid. Their diverse and potent actions are associated
with specific receptors. Recent molecular techniques
have established the nucleotide and amino acid se-
quences and confirmed the evidence that suggested
the existence of different G-protein-coupled receptors
for these lipid mediators. The nomenclature for these
receptors has now been established for the leukotri-
enes. BLT receptors are activated by leukotriene B4
and related hydroxyacids and this class of receptors
can be subdivided into BLT1 and BLT2. The cysteinyl-

leukotrienes (LT) activate another group called CysLT
receptors, which are referred to as CysLT1 and
CysLT2. A provisional nomenclature for the lipoxin
receptor has also been proposed. LXA4 and LXB4 acti-
vate the ALX receptor and LXB4 may also activate
another putative receptor. However this latter recep-
tor has not been cloned. The aim of this review is to
provide the molecular evidence as well as the proper-
ties and significance of the leukotriene and lipoxin
receptors, which has lead to the present nomencla-
ture.

I. Introduction

Feldberg, Kellaway, and coworkers (Feldberg and
Kellaway, 1938; Feldberg et al., 1938; Kellaway and
Trethewie, 1940) observed that perfusion of guinea pig
lungs with antigen induced the release of a material
named “slow reaction smooth muscle-stimulating sub-
stance (SRS1)” that caused a contraction of the isolated
guinea pig ileum bioassay tissue. These observations
were confirmed by several workers (Schild et al., 1951;
Brocklehurst, 1960) who demonstrated that SRS (re-
named slow-reacting substance of anaphylaxis or
SRS-A) was also released from the human lung following
antigen challenge. Sweatman and Collier (1968) re-
ported that SRS-A constricted human airways and the
compound FPL 55712 (Augstein et al., 1973) was shown
to inhibit SRS-A-induced contractions in the guinea pig
ileum assay. These observations provoked an intense
interest in elucidating the biochemical nature of this
entity. Initial attempts to characterize this substance
revealed that the factor was a low-molecular weight
derivative of arachidonic acid (Orange et al., 1973; Bach
et al., 1977; Jakschik et al., 1977) containing sulfur
(Orange et al., 1973, Parker et al., 1979). SRS-A was

identified subsequently to be a family of lipid mediators
known as leukotrienes, a name derived from their cell
source (leukocytes) and their conjugated double bonds
(triene) structure (Borgeat et al., 1976; Borgeat and
Samuelsson, 1979a,b,c; Murphy et al., 1979; Corey et al.,
1980; Lewis et al., 1980; Morris et al., 1980; Rokach et
al., 1980). Leukotriene B4 (LTB4) was the first of the
leukotrienes to be isolated (Borgeat et al., 1976).

The elucidation of the structures and synthetic path-
ways for the leukotrienes lead to a considerable amount
of research on these arachidonic acid metabolites (Fig.
1). This work involved comprehensive assessments of
the biological profiles of both the cysteinyl-leukotrienes
(cys-LTs: LTC4, LTD4, and LTE4) as well as dihydroxy-
leukotriene (LTB4) and, more recently, the lipoxins. Li-
poxins (LX), an acronym for eicosanoids, which are often
generated during the transcellular metabolism of ara-
chidonic acid via the sequential actions of the 15- and 5-
or 5- and 12-lipoxygenase enzymatic pathways (Serhan
et al., 1984; Samuelsson et al., 1987). When the syn-
thetic ligands were made available many studies docu-
mented a myriad of actions for these lipid mediators
(Table 1) providing pertinent evidence for their possible
patho-physiological roles in inflammatory diseases, in
particular asthma. During the last 20 years significant
efforts involving diverse chemical strategies have been
directed toward the identification and development of
receptor antagonists. These compounds have facilitated
the identification and characterization of distinct recep-
tors, which are activated by either the dihydroxy- or
cysteinyl-leukotrienes.

II. General Considerations

A. Biochemical Pathways

The leukotrienes are formed via activation of the 5-li-
poxygenase enzyme (5-LO) in collaboration with the “5-

1Abbreviations: SRS, slow reaction smooth muscle-stimulating
substance; SRS-A, slow reacting substance of anaphylaxis; LT, leu-
kotriene; LX, lipoxin; LO, lipoxygenase; HETE, hydroxyeicosatetra-
enoic acid; PMN, polymorphonuclear leukocyte; cys-LT, cysteinyl-
leukotriene; IUPHAR, International Union of Pharmacology; GPCR,
G-protein-coupled receptor; kbp, kilobase pair(s); ORF, open reading
frame; bp, base pair(s); CHO, Chinese hamster ovary; IL, interleu-
kin; UTR, untranslated region; HPETE, hydroperoxyeicosatetrae-
noic acid; PAF, platelet-activating factor; HEK, human embryonic
kidney; FPR, formyl peptide receptor; fMLP, formyl-methionyl-
leucyl-phenylalanine; PTX, pertussis toxin; PKC, protein kinase C;
HUVEC, human umbilical vein endothelial cell; GST, glutathione
S-transferase; ATL, aspirin-triggered lipoxin; HIV, human immuno-
deficiency virus.
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lipoxygenase activating protein” (FLAP). A prerequisite
for this enzymatic reaction is the hydrolyzation of ara-
chidonic acid from membrane phospholipids by phospho-
lipase A2. The principal 5-LO products of arachidonic
acid metabolism are LTC4 and LTB4 as well as 5-hy-
droxyeicosatetranoic acid (5-HETE). In addition, eico-
sanoids that are formed by pathways that involve the
dual lipoxygenation of arachidonic acid by either 15- and
5-LO or 5- and 12-LO are referred to as lipoxins (Serhan
et al., 1984; Samuelsson et al., 1987). The transcellular
metabolism of intermediates such as LTA4 and 15(S)-
HETE is associated with LX formation (Serhan, 1994).
LX and their carbon 15-epimer-LXs (aspirin-triggered
lipoxins; ASA-15-epi-LX) are bioactive and structurally
distinct from other eicosanoids in that they carry a
conjugated tetraene system and are present in bio-
logical matrix in two main forms that are positional
isomers, namely, lipoxin A4 (5S,6R,15S-trihydroxyei-
cosa-7E,9E,11Z,13E-tetraenoic acid) and lipoxin B4
(5S,14R,15S-trihydroxyeicosa-6E,8Z,10E,12E-tetrae-

noic acid; Serhan, 1997; Fig. 1). The aspirin-triggered
form carry their C15 alcohol in the R configuration,
which is inserted by COX-2 following aspirin treat-
ment (denoted ASA-15-epi-LX). These metabolites are
often produced during cell-to-cell interactions, and the
principal targets appear to be platelets and leukocytes.
During these cellular interactions, platelets convert
neutrophil derived LTA4 to 5,6,-epoxytetraene through
the action of platelet 12-LO. However, under these con-
ditions the term 12-LO is a misnomer since this enzy-
matic activity was originally based on an interaction
with arachidonic acid. This enzyme functions as a 15-LO
(LX synthase) when the substrate is LTA4. Thus in an
inflammatory condition LTA4 serves as a pivotal inter-
mediate for both leukotriene and lipoxin formation.

B. Cellular Origins

The leukotrienes are formed in different cell types as
well as via transcellular metabolism involving multiple
cells such as neutrophil and platelets and vascular cells

FIG. 1. Major pathways for leukotriene and lipoxin formation. The leukotrienes and lipoxins are lipid mediators derived from arachidonic acid,
which is released from cell membrane phospholipids by the action of phospholipase A2. Leukotriene formation is initiated by 5-lipoxygenase, which
catalyzes the dioxygenation of arachidonic acid to 5-HPETE and the subsequent conversion to LTA4. This latter unstable epoxide is transformed either
to LTB4 or LTC4, and LTC4 is further catalyzed to LTD4 and LTE4. The tetraene epoxide intermediate can be formed either from LTA4 or 15-HPETE
depending upon the interactions of the different lipoxygenases, and this metabolite is enzymatically hydrolyzed to the lipoxins (LXA4 and LXB4).
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(Feinmark and Cannon, 1986; Maclouf and Murphy,
1988; Sala et al., 1993). Human eosinophils and neu-
trophils synthesize both LTC4 and LTB4, respectively
(Bray et al., 1980; Ford-Hutchinson et al., 1980).
Monocytes and macrophages also synthesize both
LTB4 and the cys-LTs (Samuelsson, 1983). LTC4 is
metabolized to LTD4 and LTE4 by the cells in which
this mediator is formed. In addition, the cys-LTs can
be transformed into 6-trans-LTB4 by hypochlorous
acid, which is generated during the respiratory burst
in leukocytes (Henderson et al., 1982; Lee et al., 1983).
LTB4 is also metabolized in the cells which produce
this metabolite, by a unique membrane bound cyto-
chrome P450 enzyme. LTB4 is metabolized to 20-hy-
droxy-LTB4 (Hansson et al., 1981; Shak and Gold-
stein, 1985; Soberman et al., 1985). There is also
evidence for a reductase dehydrogenase in polymor-
phonuclear leukocytes (PMN) that appears to be spe-
cific for LTB4 (Powell et al., 1989).

C. Nomenclature for Leukotriene Receptors

The previous IUPHAR publication (Coleman et al.,
1995) introduced two main classes of leukotriene recep-
tors. One based on the biological activities of leukotriene
B4 and related hydroxyacids, referred to as BLT recep-
tors, and a second class identified by the cysteinyl-leu-

kotrienes (cys-LTs). The different profiles of biological
activity for these two classes of metabolites were the
initial basis for these categories and were supported by
structure-activity data obtained in studies with a vari-
ety of compounds that selectively antagonized the differ-
ent ligands. Activation of the BLT receptors initially was
shown to produce potent chemotactic activities on leu-
kocytes whereas the latter class (CysLT receptors) stim-
ulated smooth muscle as well as other cells. However,
the structures of the leukotriene receptors have recently
been deduced from the nucleotide sequences of the cD-
NAs and the encoding proteins are now known for hu-
man, mouse, and rat. These data have permitted the
IUPHAR committee to establish the nomenclature for
the leukotriene receptors, and this is presented in Table
2. The phylogenic tree for the different eicosanoid and
bioactive lipid G-protein-coupled receptors (GPCR) is
illustrated in Fig. 2 and shows the molecular families
with the relationship between leukotrienes and lipoxins
as well as other proteins with seven transmembrane
helices.

The lipoxins, are chemically and functionally different
from the leukotrienes (Fig. 1). Although LXA4 and LXB4
are similar in structure, these mediators display biolog-
ical activities that are quite distinct. LXA4 interactions
with neutrophils involves binding sites that are not rec-

TABLE 1
Major biological actions of leukotrienes and lipoxins

Actions References

Dihydroxy-leukotrienes (LTB4)
Leukocyte activation Bray et al., 1980; Ford-Hutchinson et al., 1980; Goetzl and Picket,

1980; Serhan et al., 1982
Cytokine secretion Luscinskas et al., 1990; Rola-Pleszczynski et al., 1993
Nuclear transcription (PPAR�) Devchand et al., 1996
IgE synthesis Odlander et al., 1988; Yamaoki et al., 1994

Cysteinyl-leukotrienes (LTC4, LTD4, LTE4)
Bronchospasm Drazen et al., 1980; Weiss et al., 1982; Barnes et al., 1984; Jones et

al., 1985; Davidson et al., 1987; Smith et al., 1993
Plasma exudation Woodward et al., 1983; Evans et al., 1985; Obata et al., 1992
Vasoconstriction Smedegard et al., 1982; Filep et al., 1985; Fiedler and Abram, 1987;

Garcia et al., 1987; Evans et al., 1989
Vasodilation Secrest et al., 1985; Sakuma and Levi, 1988; Lawson et al., 1989;

Pawloski and Chapwick, 1993b; Ortiz et al., 1995
Eosinophil recruitment Foster and Chan, 1991; Laitinen et al., 1993; Smith et al., 1993;

Spada et al., 1994; Underwood et al., 1996
Cardiodepression Levi et al., 1980; Burke et al., 1982; Letts and Piper, 1983; Bittl et

al., 1985; Roth et al., 1985
Smooth muscle proliferation Wang et al., 1993; Panettieri et al., 1998
Mucus secretion Shelhamer et al., 1980; Coles et al., 1983; Labat et al., 1999

Lipoxins (LX) and Aspirin-Triggered Lipoxin Analogs (ATLa)
Regulation of cellular function Fiore et al., 1994; Chiang et al., 2000; Kang et al., 2000; Gronert et

al., 2001
Inhibition of PMN-mediated inflammation in skin, lung and kidney Badr et al., 1989; Takano et al., 1998; Clish et al., 1999; Chiang et

al., 2000; Godson and Brady, 2000
Protection in reperfusion injury Chiang et al., 1999
Enhancement of macrophage phagocytosis of leukocytes Godson and Brady, 2000
Redirection of chemokine, cytokine expression and gene regulation Gewirtz et al., 1998; Hachicha et al., 1999; Sodin-Semrl et al., 2000;

Qui et al., 2001
Enhancement of clearance and accelerate resolution of pulmonary

edema
Bandeira-Melo et al., 2000

Anti-angiogenic properties Fierro and Serhan, 2001
Reduction of COX-2 traffic in pain responses Serhan et al., 2001
Inhibition of cell proliferation Clària et al., 1996
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ognized by LXB4 (Nigam et al., 1990; Fiore et al., 1992).
LXB4 is a potent agonist for stimulating proliferation
and differentiation of granulocyte-monocyte colonies
from human mononuclear cells (Popov et al., 1989), in-
creasing the S-phase in the cell cycle and enhancing
nuclear protein kinase C activity (Beckman et al., 1992)
actions, which have not been reported for LXA4. How-
ever, LXB4 has also been shown to share actions with
LXA4, such as, both selectively stimulate human periph-
eral blood monocytes (Maddox and Serhan, 1996) and

enhance growth of myeloid progenitor cells (Stenke et
al., 1991). Furthermore, LXA4 does not activate BLT
(Fiore et al., 1992) but activates FPRL-1 receptors
(Chiang et al., 2000; Resnati et al., 2002; Perretti et al.,
2002). These investigators have shown that ALX and
FPRL-1 are the same receptor and that LXA4 is the
natural and most potent ligand. In addition, Takano et
al. (1997) have identified the amino acid sequence for
the receptor associated with the LXA4 responses. In line
with the IUPHAR nomenclature directives, this commit-
tee recommends that ALX be used to designate the re-
ceptor that has been cloned and is activated by the
native ligand LXA4 (Table 2). LXB4-induced responses,
although different from those of LXA4, have not to date
provided sufficient evidence to specify another receptor.
Since this receptor has not been cloned, the LXB4
response is associated with activation of a putative
receptor.

The aim of this review is to present the evidence that
led to the leukotriene nomenclature. To this end, infor-
mation not only from the molecular database but also
derived from the properties and significance of leukotri-
ene receptors will be presented. Furthermore, the above
nomenclature for the LX receptors is recommended as
the framework for this evolving area of receptor re-
search.

III. Molecular Database for Leukotriene
Receptors

A. Molecular and Structural Aspects of Dihydro-
Leukotriene Receptors

1. BLT1. The cloning and characterization of the
BLT1 receptor was achieved by cDNA subtraction using
human leukemic cells HL-60, which were differentiated

TABLE 2
Human cloned leukotriene receptorsa

Data are from the following references: Fiore et al., 1992, 1994; Perez et al., 1992; Maddox et al., 1997; Takano et al., 1997; Yokomizo et al., 1997;
Lynch et al., 1999; Sarau et al., 1999; Heise et al., 2000; Nothacker et al., 2000; Takasaki et al., 2000; Figueroa et al., 2001.

IUPHAR name BLT1 BLT2 CysLT1 CysLT2 ALX
IUPHAR code 2.1 :BLT :1

:BLT1
2.1 :BLT :2 :BLT2 2.1 :CLT :1 :CLT1 2.1 :CLT :2 :CLT2 2. :ALX

Alternate names Leukotriene B4 Leukotriene B4 Leukotriene D4/E4
b Leukotriene C4

b Lipoxin A4/FPRL-1
Amino acid

composition
352 (h) 358 (h) 337 (h) 346 (h) 351

Selective ligand None None None None None
Non-selective ligand LTB4 LTB4 LTC4/LTD4/LTE4 LTC4/LTD4/LTE4 LXA4/fMLP
Gene/chromosome 14q11.2-q12 14q11.2-q12 Xq13-q21 13q14.2 19q13.3
Primary couplingc G16, Gi2 Gq-like, Gi-like, Gz-

like
G�q G�q Gi, Gq

Primary expression Leukocytes,
thymus,
spleen

Ovary, liver,
leukocytes,
ubiquitous

Smooth muscle (lung,
intestine), spleen,
peripheral blood
leukocytes

Heart, spleen,
peripheral blood
leukocytes, adrenal
medulla, brain

Lung, peripheral
blood leukocytes,
spleen

Accession number
(Swiss-Prot)

Q15722 (h) Q9NPC1 (h) Q9Y271 (h) Q9NS75 (h) P25090 (h)

a The reader is referred to the text for the mouse cloned receptors.
b No longer acceptable since all ligands activate the same receptor in isolated human bronchi.
c These observations should be considered with some reserve since there is marked variation between the types of G-proteins present in cells (see text). (h) indicates

human.

FIG. 2. Dendogram of several GPCRs. The major receptor families for
lipid mediators are indicated in this phylogenic tree. There are four
known cell surface GPCRs for the leukotrienes, which are classified as
either chemoattractants (BLT1 and BLT2) or nucleotide receptors
(CysLT1 and CysLT2). The lipoxin receptor (ALX) is also included in the
chemoattractant receptor class along with formyl peptide receptors
(FPL). This evolutionary tree was constructed using the sequences from
the receptors. Construction was performed by using the “All All Program”
at the Computational Biochemistry Server at ETHZ (http://cbrg.in-
f.ethz.ch/ServerBooklet/chapter2–3.html).
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into granulocyte-like cells (Yokomizo et al., 1997). The
BLT1 receptor was identified as a putative seven trans-
membrane domain receptor with 352 amino acids. This
receptor had been initially misidentified as a purinergic
receptor, P2Y7 (Akbar et al., 1996). BLT1 shares low
homology to P2Y receptors and belongs to a family of
receptors for chemoattractants including complement
receptors and a recently identified novel prostaglandin
D2 receptor, CRTH2 (Hirai et al., 2001). The homology
between the BLT1 receptor for mouse and humans is
presented in Fig. 3.

Kato et al. (2000) reported that the BLT1 gene consists
of three exons located in a region of 5 kbp on chromo-
some 14. Whereas the open reading frame (ORF) for
BLT1 is in the last exon (exon 3), the basal promoter
activity is found 100-bp upstream from the transcrip-
tional initiation site. This report and the data of
Yokomizo et al. (2000) demonstrated that there was no
TATA or CAT element near the transcription site. How-
ever, they did observe the presence of an Sp-1 site at
�50 bp, which played a major role in the basal transcrip-
tion of BLT1. Since the promoter region of BLT1 is rich in
GC sequences and methylated in nonleukocyte cells but
nonmethylated in leukocyte cells expressing BLT1, Kato
et al. (2000) have suggested that the methylation state
may, in part, be responsible for transcription of the BLT1
gene.

COS-7 membranes transfected with human BLT1 ex-
hibited [3H]LTB4 binding with a Kd of 0.15 nM, compa-
rable to the Kd of 0.14 nM for the differentiated HL-60
cells (Fiore et al., 1993; Yokomizo et al., 1997; Table 3).

Various eicosanoids also competed for the [3H]LTB4
binding to COS-7 membranes expressing human BLT1
and the potency ranking (Ki values) were: LTB4 (0.38
nM) � 20-hydroxy-LTB4 (7.6 nM) � 12-oxo-LTB4 (7.6
nM) � 12R-HETE (30 nM) � 20-COOH-LTB4 (190 nM).
This profile agrees with the previously characterized
LTB4 binding sites in human granulocytes. The struc-
tures and potencies of several antagonist for these re-
ceptors in Chinese hamster ovary (CHO) cells express-
ing human BLT (CHO-BLT) are presented in Table 4.

BLT1 mRNA is predominantly expressed in leuko-
cytes, granulocytes, macrophages, and eosinophils
with high amounts of BLT1 in human and mouse cells
(Yokomizo et al., 1997; Huang et al., 1998). In addi-
tion, BLT1 expression is inducible in activated macro-
phages (Toda et al., 1999) and eosinophils treated
with IL-5 (Huang et al., 1998), suggesting an associ-
ation of BLT1 with various inflammatory diseases.
BLT1-transgenic mice showed enhanced PMN re-
sponses in the lung following ischemia-reperfusion
and increased expression of 5-lipoxygenase in perito-
nitis (Chiang et al., 1999). Recently, two lines of BLT1-
deficient mice have been reported, and a reduction in
leukocytes migration was demonstrated (Haribabu et
al., 2000; Tager et al., 2000).

2. BLT2. During the analysis of transcriptional reg-
ulation of human BLT1 gene (Kato et al., 2000), a puta-
tive ORF for a novel GPCR with structural similarity to
BLT1 was identified (Yokomizo et al., 2000). This novel
receptor was also found in a human genome sequence
database, reported to act as a low-affinity receptor acti-

FIG. 3. The sequence alignment of BLT1 and BLT2 from human and mouse receptors. The amino acid sequences were aligned using ClustalW and
converted using Boxshade 3.21. The putative transmembrane domains of hBLT1 predicted by Kyte-Doolittle hydrophobicity analysis are overlined and
labeled as I–VII. Consensus matches are boxed and shaded with darker shading for identities and light shading for conservative substitutions. The
amino acid identity between human and mouse BLT1 was 78.6% whereas BLT2 was 92.7%. The mouse sequence data are available from Swiss-Prot
under accession numbers (mBLT1: no entry presently available) and (mBLT2: Q9JJL9).
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vated by LTB4 (Kamohara et al., 2000; Tryselius et al.,
2000; Wang et al., 2000) and subsequently referred to as
the BLT2 receptor (Yokomizo et al., 2001b). The gene
structure for BLT2 has also been established (Yokomizo
et al., 2001b). Of considerable interest is that the pro-
moter region (Fig. 4) of human BLT1 overlaps BLT2 ORF
(Kato et al., 2000). This represents the “promoter in
ORF”, as has been reported in prokaryotes but the bio-
logical significance of this rare gene structure is pres-
ently not clear. However, there is sufficient evidence
that BLT1 and BLT2 form a gene cluster both in human
(chromosome 14 q11.2-q12;) and mouse (Yokomizo et al.,
2000) chromosomes suggesting that these receptors may
be generated by gene duplication.

The Kd values for LTB4 derived from transfection
assays were 23 nM in human embryonic kidney (HEK)-
293 cells (Yokomizo et al., 2000), and a Kd value of 0.17
nM in COS-7 cells (Wang et al., 2000). Although there
are differences in the reported Kd values (Table 3 and
Table 4), generally BLT2 is considered as a low-affinity
receptor since the pEC50 value of LTB4 required for
adenylyl cyclase inhibition and the concentrations re-
quired for LTB4-dependent chemotaxis were higher
than those for BLT1 receptor activaton (Kamohara et al.,
2000; Yokomizo et al., 2000). The tissue distribution of
BLT2 assessed by different groups using Northern blots
are varied. Using the ORF probe of BLT2 (Kamohara et
al., 2000; Yokomizo et al., 2000) the highest expression
was found in spleen, followed by leukocytes and ovary.
Other groups reported that BLT2 is expressed highest in
liver and intestine (Tryselius et al., 2000; Wang et al.,
2000) using the 5�-UTR probes. The abundance of low-
affinity binding sites for LTB4 in spleen membrane sup-
ports the data showing BLT2 expression in spleen
(Showell et al., 1998). Of interest, the rank order of
potency of several eicosanoids for BLT2 activation was
LTB4 � 12-epi-LTB4 � 12S-HETE � 12S-HPETE �
12R-HETE � 20-hydroxy-LTB4, which is quite different
from BLT1 (Yokomizo et al., 2001c). Currently, there are
no data on specific in vivo functions for BLT2 receptors,
however, lymphocytes have been suggested to be the

TABLE 3
Recombinant BLT receptors in transfected cells and [3H]LTB4 binding

[3H]LTB4 binding in transfected cells. Kd and Bmax indicate affinity and receptor density, respectively. Values are mean data from the references
indicated.

Receptor Cells Kd Bmax References

nM fmol/mg protein

Human BLT1 COS-7 0.154 430 Yokomizo et al., 1997
Human BLT1 HEK293 1.1 3.8 pmol/mg protein Yokomizo et al., 2001c
Human BLT1 COS-7 2.1 17 pmol/mg protein Owman et al., 1997
Mouse BLT1 CHO 0.64 NR Huang et al., 1998
Guinea pig BLT1 HEK293 0.27 425 Masuda et al., 1999

COS-7 17 556
Guinea pig BLT1 EBNA293 0.4 9–12 pmol/mg protein Boie et al., 1999
Rat BLT1 HEK293 0.68 1245 Toda et al., 1999
Human BLT2 HEK293 22.7 925 Yokomizo et al., 2000
Human BLT2 COS-7 0.17 70 Wang et al., 2000

NR, not reported.

TABLE 4
Several BLT antagonists and structures

[3H]LTB4 (5 nM) radioligand binding to membrane fractions of CHO cells expressing
BLT receptors. IC50 values are indicated (see references: Yokomizo et al., 1997,
2001c).
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target, since BLT2 is highly expressed in splenic T-cells
(Yokomizo et al., 2001a).

3. Phenotypes Involving BLT Receptors. Investiga-
tions with transgenic mice expressing the human BLT1
receptor on leukocytes (Chiang et al., 1999) as well as
targeted gene disruption of the BLT1 receptor in knock-
out mice (BLT�/�) indicate that an apparent pheno-
typic difference (Haribabu et al., 2000; Tager et al.,
2000) from wild type littermates is not observed unless
the animals are subject to experimental disease or in-
jury, which are known to stress the effector immune
system (vide infra).

In BLT1�/� mice (Haribabu et al., 2000; Tager et al.,
2000) leukocytes exhibited a normal response to C5a and
platelet-activating factor (PAF), however, there was a
selective loss of responsiveness to exogenous LTB4.
Tager et al. (2000) also reported that adhesion to the
endothelium in response to LTB4 was diminished in
leukocytes from BLT1

�/� animals. These findings are in
line with earlier observations with LTB4 in the hamster
cheek pouch (Raud et al., 1991) and suggest that the
BLT receptor is pivotal for the LTB4-induced leukocyte
activation.

Unfortunately, there are only a limited number of
investigations examining the relative input of LTB4 in
chemotaxis during inflammation in vivo in genetically
modified animals. Two groups (Haribabu et al., 2000;
Tager et al., 2000) have provided evidence that perito-
neal inflammation is suppressed in these deficient mice.
Interestingly, Haribabu et al. (2000) described a loss of
this protection at 72 h between �/� and �/� animals,
whereas Tager and colleagues (2000) observed an in-
crease in protection between �/� and �/� with time
intervals greater than 50 h. These latter investigators
also reported a marked diminution in the number of
eosinophils, which accounted for virtually all of the
changes in cellular influx. In contrast, Haribabu et al.
(2000) noted reductions in both PMNs and macrophage
populations. The basis for these differences is presently
not known, but may be related to the different stimuli
(zymosan versus thioglycollate) used to induce the in-
flammatory cellular infiltration in vivo.

Expression of the human BLT1 receptor in leukocytes
has also been carried out using the CD11b promoter
(Chiang et al., 1999). BLT receptor-transgenic mice dis-
played enhanced leukocyte responsiveness in acute der-
mal inflammation, with leukocyte trafficking to remote
organs (as in secondary organ reperfusion injury), or in
leukocyte recruitment following a peritoneal challenge.
These results are consistent with the interpretation that
LTB4 is associated with an excessive activation of leu-
kocytes and the 5-LO pathway provoking leukocyte-me-
diated injury. Expression of the human BLT1 receptor in
vivo lead to an up-regulation of 5-LO expression and
leukotriene biosynthesis (Chiang et al., 1999). These
results suggest that receptor expression may amplify
proinflammatory circuits in vivo.

B. Molecular and Structural Aspects of Cysteinyl-
Leukotriene Receptors

1. CysLT1. The cloning and characterization of the
human CysLT1 receptor (hCysLT1) was achieved by two
groups under the general program of identifying cognate
ligands for orphan GPCRs, a process which has been
termed “ligand fishing” (Lynch et al., 1999; Sarau et al.,
1999). The hCysLT1 receptor was identified as a 337-
amino acid putative seven transmembrane domain re-
ceptor, termed either HG55 (Lynch et al., 1999) or
HMTMF81 (Sarau et al., 1999) (Fig. 5). The former
investigators demonstrated that LTD4 produced activa-
tion of a calcium-activated chloride channel in Xenopus
laevis oocytes expressing the cRNA for HG55 but not in
control cells or oocytes expressing other GPCRs. This
LTD4-induced stimulation of oocytes was blocked by the
selective CysLT1 receptor antagonist MK-571 (Lynch et
al., 1999) (Table 5). Similar results were obtained using
the X. laevis melanophore signaling assay and in mam-
malian monkey kidney COS-7 cells expressing the HG55
(hCysLT1) receptor (Lynch et al., 1999).

Researchers at SmithKline Beecham identified a
GPCR (HMTMF81) that, when expressed in HEK-293
cells, responded selectivity with calcium mobilization to
LTC4, LTD4, or LTE4 (0.1–10 �M) but not to more than
900 other ligands, including greater than 200 ligands for
GPCRs.

The genomic organization of the hCysLT1 receptor has
not been reported but consists of at least three exons
with all of the open reading frame of the receptor in one
exon (M. Metzker, Merck unpublished results). Three
single nucleotide polymorphisms have been identified in
the hCysLT1 receptor but none relate to the asthmatic
phenotype (J. Drazen, unpublished data). The hCysLT1
receptor is located to chromosome Xq13-q21 (Lynch et
al., 1999) and has 31% amino acid identity to the P2Y
purinoceptor (Sarau et al., 1999).

Full Scatchard analyses of [3H]LTD4 binding to the
HG55 (hCysLT1) COS-7 membranes demonstrated a Kd
of 0.3 nM and Bmax of 50 fmol/mg of protein (Lynch et al.,
1999). In the structure-affinity relationships, the IC50

FIG. 4. Structure of the human genomic DNA containing BLT1 and
BLT2 located on human chromosome 14q11.2-q12. Chromosome 14 is
indicated by the line; the transcribed segments are indicated by open
boxes; putative ORFs are shown as filled boxes. Note that the promotor
region for BLT1 is located in the ORF of BLT2. This is the first mamma-
lian example of “promotor in ORF” (Yokomizo et al., 2001b).
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for the agonists were LTD4 (0.9 nM), LTC4 (350 nM), and
LTE4 (200 nM). The affinities of antagonists (Table 5)
were similar to that demonstrated functionally in other
systems for the CysLT1 receptor as well as in binding
experiments on human lung or U937 cells (Frey et al.,
1993; Lynch et al., 1999). Likewise the HMTMF81
(hCysLT1) receptor expressed in HEK-293 cells re-
sponded selectively to the cys-LTs with rank order of
potency (pEC50 value) were LTD4 (2.5 nM) � LTC4 (24
nM) � LTE4 (240 nM) (Sarau et al., 1999). In these
functional studies LTE4 was shown to be a partial ago-
nist of the HMTMF18 (hCysLT1) receptor expressed in
HEK-293 cells (Sarau et al., 1999). This is similar to
evidence derived from the human bronchus (Labat et al.,
1992), sheep trachea (Mong et al., 1988), and U937 cells
(Saussy et al., 1989). [3H]LTD4 binding and LTD4-in-
duced calcium mobilization in HEK-293 cells expressing
the HMTMF18 (hCysLT1) receptor were potently inhib-
ited by the structurally distinct CysLT receptor antago-
nists and the rank order of potency in this system was
pranlukast � zafirlukast � montelukast � pobilukast
(Sarau et al., 1999). LTD4-induced calcium mobilization
in HEK-293 cells expressing the HMTMF18 (hCysLT1)
receptor was not affected by pertussis toxin and ap-
peared to result from the release of intracellular calcium

stores (Sarau et al., 1999). In X. laevis melanophore
signaling system, the HG55 (hCysLT1) receptor was
shown not to couple via G�i (Lynch et al., 1999).

Northern analyses of human tissues showed that the
hCysLT1 mRNA was detected as an approximately
2.8-kb species and was expressed in spleen, peripheral
blood leukocytes, less strongly in lung, bronchus small
intestine, colon, skeletal muscle, pancreas, placenta,
and weakly in the prostate, heart, brain, liver, kidney,
and adipose tissues (Lynch et al., 1999; Sarau et al.,
1999). Further work is necessary to confirm whether
expression in some of these tissues may be attributable
to expression of the receptor on interstitial myeloid cells.
The receptor was also detected in U937 cells and HL-60
cells, with an increase observed in dimethyl sulfoxide-
differentiated HL-60 cells (Sarau et al., 1999). In HL-60
cells differentiated with sodium butyrate to eosinophilic-
like cells, interleukin-5 treatment resulted in a 5-fold
increase in the expression of the hCysLT1 (Thivierge et
al., 2000). Northern analysis in normal and asthmatic
lungs suggested no total differences in hCysLT1 mRNA
expression, although in situ studies in asthmatic tissues
have not been reported (Sarau et al., 1999). Using in situ
hybridization, the hCysLT1 mRNA was shown in lung
smooth muscle cells and interstitial macrophages, with

FIG. 5. Comparison of amino acid sequences of the human CysLT1 and CysLT2 receptors. A G-protein-coupled receptor snake diagram depiction
of the amino acid sequences of the human CysLT1 and CysLT2 receptors. The amino acid identities between the hCysLT1 and hCysLT2 receptors is
37.3%.
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TABLE 5
CysLT1-selective and nonselective antagonists and structures

Glossary of chemical names and codes of several cysteinyl-leukotriene antagonists:
BAYu9773 6-(4�-Carboxyphenylthio)-5(S)-hydroxy-7(E), 9(E), 11(Z), 14(Z)-eicosatetraenoic acid
BAYx7195 (4S)-(4-Carboxyphenylthio)-7-[4-(4-phenoxybutoxy)-phenyl]-hept-5-(Z)-enoic acid
CGS23131 5-(3-Carboxybenzoyl)-2-((6-(4-methoxyphenyl)-5-hexenyl)oxy)benzenepropanoic acid
CGS25019C 4-(5-[4-{Aminoiminomethyl} phenoxy]-pentoxy)-3-methoxy-N,N-bis(1-methylethyl)-

benzamide-(Z)-2-butenedioate
CP195543 (�)-2-(3-Benzyl-4-hydroxychroman-7-yl)-4-trifluoromethylbenzoic acid
FPL55712 Sodium 7-(3-(4-acetyl-3-hydroxy-2-propyl-phenoxy)-2-hydroxypropoxy)-4-oxo-8-

propyl-4H-1-benzopyran-2-carboxylate
ICI198615 (1-[2-Methoxy-4-{([phenylsulfonylamino]carbonyl)phenyl} methyl]-1H-indazol-6-yl)

carbamic acid cyclopentyl ester
ICI204219 Zafirlukast

(Accolate™)
4-(5-Cyclopentyloxy-carbonyl-amino-1-methyl-indol-3-ylmethyl)-3-methoxy-N-O-

tolylsufonylbanzamide
LY170680 Sulukast 5-(3-[2(R)-Carboxyethylthio)-1(S)-hydroxypentadeca-3(E),5(Z)-diethyl]phenyl-1H-

tetrazole
LY171883 Tomelukast 1-[2-Hydroxy-3-propyl-4-[4-(1H-tetrazol-5-yl)butoxy]phenyl]ethanone
LY223982 (E)-5-(3-Carboxybenzoyl)-2-([6-{4-methoxyphenyl}-5-hexenyl]oxy)benzenepropanoic

acid
LY293111 (2-[2-Propyl-3-{2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenyl}propoxy]phenoxy)benzoic

acid
MK476 Montelukast

(Singulair™)
(1-[{(R)-(-[2-{7-Chloro-2-quinolinyl}-(E)-ethenyl]phenyl)(3-2-[1-hydroxy-1-

methylethyl]phenyl)propyl}thio]methyl)cyclopropane acetic acid sodium
MK571 [3-{2-(7-Chloro-2-quinolinyl)ethenyl} phenyl][{3-(dimethylamino-3-

oxopropyl)thio}methyl]thio propanoic acid
SB209247 (E-3-(6-[{(2,6-Dichlorophenyl)-thio}methyl]-3-[2-phenylethoxy]-2-pyridinyl)-2-

propenoic acid
ONO1078 Pranlukast

(Onon™)
4-Oxo-8-[p-(4-phenylbutyloxy)benzoylamino]-2-(tetrazol-5-yl)-4H-1-benzopyran

hemihydrate
SB205312 4-Oxo-8-[p-(4-phenylbutyloxy)benzoylamino]-2-(tetrazol-5-yl)-4H-1-benzopyran

hemihydrate
SC53228 ((�)-(S)-7-[3-{2-Cyclopropylmethyl}-3-methoxy-4-{(methylamino)carbonyl}

phenoxy]propoxy)-3,4-dihydro-8-propyl-2H-1-benzopyran-2-propanoic acid
SKF104353 Pobilukast 2S-Hydroxy-3R-(2-carboxyethylthio)-3-(2-[8-phenyloctyl]phenyl)-propanoate
SR2640 2-(3-[2-Quinolylmethoxy]phenylamino)benzoic acid
WY48252 N-(3-[2-Quinolinylmethoxy]phenyl)-trifluoromethanesulphonamide
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little or no expression in epithelial cells (Lynch et al.,
1999). These in situ findings were confirmed with im-
munohistochemical localization of the receptor protein
using a specific hCysLT1 antiserum (Figueroa et al.,
2001). In addition, the hCysLT1 mRNA and protein have
been detected recently in normal peripheral blood eosin-
ophils, subsets of monocytes and macrophages and in
pregranulocytic CD34� cells (Figueroa et al., 2001). The
hCysLT1 protein was not observed on CD4� or CD8�
peripheral T cell populations (Figueroa et al., 2001). In
situ and immunohistochemical studies of the hCysLT1
in diseased lung and other tissues are needed to deter-
mine whether the expression of the hCysLT1 changes in
asthma, allergy, or other pulmonary and inflammatory
diseases.

Two isoforms of the mouse CysLT1 receptor
(mCysLT1) have been cloned from a mouse lung cDNA
library (Maekawa et al., 2001; Martin et al., 2001;
Mollerup et al., 2001). A short isoform cDNA containing
two exons encodes a polypeptide of 339 amino acids with
87.3% amino acid identity to the hCysLT1 (Lynch et al.,
1999; Sarau et al., 1999, Maekawa et al., 2001). A long
isoform has two additional exons and an in-frame up-
stream start codon resulting in a 13-amino acid exten-
sion at the N terminus of the receptor (Maekawa et al.,
2001). Northern blot analysis of the mCysLT1 detecting
both isoforms of the receptor showed expression of a
3.5-kb transcript in the lung and skin, whereas reverse
transcriptase polymerase chain reaction showed wide
expression of the long isoform, with strongest expression
in the lung and skin. Unlike the hCysLT1, neither form
of the mouse receptor is expressed in the spleen. In
addition, the long rather than the short isoform of the
mCysLT1 receptor is the closer counterpart to the hu-
man receptor, and that is expressed more abundantly in
the mouse tissues. The mCysLT1 receptor maps to the X
chromosome at band XD. LTD4-induced intracellular
calcium mobilization in CHO cells stably expressing ei-
ther isoform of mCysLT1 was blocked by the CysLT1
receptor antagonist MK-571 (Maekawa et al., 2001). The
rank order agonist functional potency for calcium mobi-
lization or the potency for competition of LTD4 binding
to the recombinant mouse receptor was similar to that
described above for the human receptor, except that
LTC4 was relatively less potent for the mouse than for
hCysLT1 (Lynch et al., 1999; Sarau et al., 1999;
Maekawa et al., 2001).

2. CysLT2. The cloning and characterization of the
CysLT2 receptor (hCysLT2) was initially reported by
Heise et al. (2000) (Fig. 5). This publication confirmed
the previous pharmacological characterization of a hu-
man CysLT2 receptor in different tissues, based upon
the relative potencies of the cys-LT agonists and the lack
of sensitivity of the responses to classical CysLT1 recep-
tor antagonists, and the antagonist activity of the par-
tial agonist BAY u9773 (Labat et al., 1992; Tudhope et
al., 1994; Heise et al., 2000). Subsequent to this initial

publication, the Takeda group published an article con-
firming the identification of the hCysLT2 (Takasaki et
al., 2000), and then a third report by the Nothacker et al.
(2000), on the characteristics of the hCysLT2 was pub-
lished, which revealed similar distribution and func-
tional data to the previous publications but with more
details on the partial agonist activity of BAY u9773
(Nothacker et al., 2000). Recently, the cloned mCysLT2
has also been reported (Hui et al., 2001).

The initial CysLT2 receptor identification was made
through homology to a rat CysLT receptor homolog,
namely, RSPBT32, followed by cloning of a human ho-
molog of RSPBT32 (Heise et al., 2000). Using FASTA,
the hCysLT2 was shown to have 37.5% amino acid iden-
tity with the hCysLT1 over a 315-amino acid overlap and
the extreme carboxyl termini of these proteins have
little homology (Heise et al., 2000). The hCysLT2 recep-
tor was also identified from the Helix Research Institute
database (Takasaki et al., 2000). The human chromo-
somal localization of the hCysLT2 in 13q14, a region that
has been identified as a polygenic atopic linkage
(Kimura et al., 1999).

The cRNA for the hCysLT2 was expressed in X. laevis
oocytes and either LTD4 or LTC4 produced a calcium-
dependent chloride flux in these cells that was not
blocked by the selective CysLT1 receptor antagonist,
MK-571, but was inhibited by the dual CysLT1/CysLT2
receptor antagonist BAY u9773 (Heise et al., 2000). In
addition, LTD4 and LTC4 elicited a concentration-depen-
dent activation of calcium flux in HEK-293 cells coex-
pressing the aequorin bioluminescent protein and the
recombinant hCysLT2 (Heise et al., 2000). This activa-
tion was blocked by BAY u9773 but not significantly by
the CysLT1 antagonists MK-571, montelukast,
zafirlukast, or pranlukast (Heise et al., 2000). Experi-
ments involving radiolabeled LTD4 binding to COS-7
cell membranes expressing the hCysLT2 demonstrated
high-affinity competition by LTD4 and LTC4, with
weaker competition by LTE4 and no effect by LTB4
(Heise et al., 2000). Similar studies using radiolabeled
LTD4 binding to COS-7 cell membranes expressing the
hCysLT2, showed that the dual antagonist BAY u9773
fully competed for the binding, whereas CysLT1 antag-
onists showed no or minimal competition (Heise et al.,
2000). Furthermore, Kamohara et al. (2001) have shown
by in situ hybridization the presence of hCysLT2 mRNA
in human atrium, ventricle, and at intermediate coro-
nary arteries with little detection of hCysLT1. These
investigators also reported that human coronary smooth
muscle cells stimulated with LTC4 caused an increase in
calcium mobilization. Thus the existence of a CysLT2
functional receptor in the human heart has been docu-
mented.

Northern blot analyses of hCysLT2 expression showed
high expression in the human heart, adrenals, periph-
eral blood leukocytes, placenta, spleen, and lymph nodes
with weaker expression in the brain (Heise et al., 2000;
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Nothacker et al., 2000; Takasaki et al., 2000). A reverse
transcription polymerase chain reaction comparison of
the CysLT receptors showed negligible hCysLT1 expres-
sion but high expression of hCysLT2, in the heart and
eosinophils (Mita et al., 2001), whereas only hCysLT1
was expressed in tracheal tissue (Takasaki et al., 2000).
Both receptors were highly expressed in spleen (Heise et
al., 2000; Nothacker et al., 2000; Takasaki et al., 2000).
In situ hybridization analyses in the human lung dem-
onstrated hCysLT2 mRNA strongly expressed on inter-
stitial macrophages and weak expression on smooth
muscle cells (Heise et al., 2000). In human peripheral
blood monocytes, about 30% of cells expressed the
hCysLT2, whereas greater than 90% of purified human
eosinophils expressed the receptor (Heise et al., 2000).
In the adrenal gland, in situ hybridization for the
hCysLT2 demonstrated localization to the chromaffin-
containing adrenal medulla cells (Heise et al., 2000). In
the heart, the hCysLT2 was expressed in Purkinje fiber
conducting cells (Heise et al., 2000).

The recent molecular cloning, expression and charac-
terization of the hCysLT1 and hCysLT2 receptors (Table
2) represents a significant milestone in the history of
CysLT research and is predicted to lead to a renaissance
in interest in this area of biology and therapeutics. The
findings have confirmed much of the earlier pharmaco-
logical characterization of the two receptors, which were
based solely on the functional profiling of the effects of
agonists and antagonists in different cellular and tissue
systems. However, there are some unexpected findings
with regard to genomic structure and tissue expression,
as well as the relatively low homology (38%) between the
two receptors. The cloning of the receptors allows the
generation of tools to investigate in more detail the
regulation of CysLT1 and CysLT2 receptor expression,
the roles of these CysLT receptors in normal and dis-
eased states, and their potential as new therapeutic
targets. The ultimate goals will be the identification of
potent and selective CysLT2 receptor antagonists and
combined CysLT1/CysLT2 receptor antagonists and
their clinical evaluation in the diverse diseases in which
the cys-LTs have been implicated as significant patho-
physiological mediators.

C. Lipoxin Receptors

Of the nonprostanoid eicosanoid GPCRs, the LXA4
receptor (ALX) was the first recognized at the molecular
level (Fiore et al., 1993, 1994). In addition, ALX was
initially identified as the only inhibitory or anti-inflam-
matory receptor that acts via an agonist role as a “stop
signal” (Fiore et al., 1994; Serhan, 1994, 1997; Takano et
al., 1997). This action appears to be a unique flexibility
of GPCR that functions within the immune system.
Since LXA4 shares some structural features with LTC4
and LTD4 as well as prostaglandins, LXA4 competed for
CysLT1 receptors identified on isolated human vascular
endothelial cells (Gronert et al., 2001) and mesangial

cells (McMahon et al., 2000) and antagonized either
LTC4- or LTD4-induced bronchoconstriction in humans
(Christie et al., 1992) and animals (Badr et al., 1989;
Gronert et al., 2001). In addition, lipoxin B4 has also
been reported to activate another receptor. The present
nomenclature for the lipoxin receptors is therefore based
on the cloned receptor sequence as well as the observa-
tion that LXA4 is the natural and most potent ligand. In
contrast, the putative receptor activated by LXB4 has
not been cloned. ALX activation has been reported to
generate intracellular stop signals (Serhan et al., 1994;
Levy et al., 1997, 1999) and thereby promote resolution
of inflammation.

1. Molecular and Structural Aspects of Lipoxin Recep-
tors. Based on the finding that functional ALX are
inducible in promyelocytic lineages (HL-60 cells) (Fiore
et al., 1993), several putative receptor cDNAs cloned
earlier from myeloid lineages and designated orphans
were screened for their ability to bind and signal in
response to LXA4 (Fiore et al., 1994). When transfected
into CHO cells, one of the orphans (previously denoted
as pINF114 or a formyl peptide receptor-like-1 (FPRL-
1), displayed both specific [3H]LXA4 binding with high
affinity (Kd of 1.7 nM) and demonstrated ligand selec-
tivity when compared with LXB4, LTB4, LTD4, and pros-
taglandin E2 (Fiore et al., 1994). LXB4 did not act via the
ALX receptor and interacted with a specific receptor
present on human leukocytes (Maddox and Serhan,
1996). In transfected CHO cells, LXA4 activated both
GTPase and released arachidonic acid from membrane
phospholipids, indicating that this cDNA encodes a func-
tional receptor for ALX in myeloid cells. A mouse ALX
receptor cDNA was also identified and cloned from a
spleen cDNA library. This receptor expressed in CHO
cells displayed specific [3H]LXA4 binding, and LXA4 ini-
tiated GTPase activity (Takano et al., 1997).

The ALX cDNA was originally cloned by several
groups who were evaluating fMLP receptor (FPR) using
the FPR cDNA as a probe under low-stringency hybrid-
ization conditions. ALX has high sequence homology
(�70%) to FPR. In light of this homology, the term
FPRL1 (FPR-like-1) (Murphy et al., 1992) or FPRH1
(Bao et al., 1992) was designated by different research
groups. Similarly this receptor was also known as FPR2
(Ye et al., 1992) or RFP (receptor related to FPR) (Perez
et al., 1992). ALX was also cloned by Nomura et al.
(1993) from human monocyte cDNA library and was
designated as an orphan receptor (HM63). Both human
and mouse ALX cDNA contain an open reading frame of
1051 nucleotides that encode a protein of 351 amino
acids. Northern blot analysis demonstrated that ALX
mRNA is �1.4 kb in both human and mouse (Takano et
al., 1997). Deduced amino acid sequences indicated that
ALX belongs to the GPCR superfamily characterized by
seven putative transmembrane segments with N ter-
mini on the extracellular side of the membrane and C
terminus on the intracellular side.
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The overall homology between human and mouse ALX
is 76% in nucleotide sequence and 73% in deduced amino
acid (Takano et al., 1997). A high homology was present
in the sixth transmembrane segment and the second
intracellular loop, a finding that suggests an essential
role for these regions in ligand recognition and signal-
ing. The molecular evolution, as assessed from comput-
er-based sequence analyses indicates that ALX (Fig. 2)
is not related to prostanoid receptors and belongs to a
rapidly growing cluster of chemoattractive peptide and
chemokine receptors, exemplified by fMLP, C5a, and
IL-8 receptors (Toh et al., 1995). The BLT1 receptor
cloned from human HL-60 cells (Yokomizo et al., 1997)
and mouse eosinophils (Huang et al., 1998) shares an
overall homology of �30% with ALX in deduced amino
acid sequences.

Human and mouse ALX cDNA, when transfected into
CHO cells, displayed specific binding to [3H]LXA4, with
a Kd of 1.7 nM (Fiore et al., 1994) and 1.5 nM (Takano et
al., 1997), respectively. Human ALX-transfected CHO
cells were also tested for binding with other eicosanoids,
including LXB4, LTD4, LTB4, and prostaglandin E2.
Only LTD4 shows competition with [3H]LXA4 binding,
with a Ki value of 80 nM (Fiore et al., 1994). Moreover,
LXA4 does not compete with radiolabeled LTB4 binding
to either recombinant human BLT1 or isolated human
peripheral blood neutrophils (Fiore et al., 1992; Chiang
et al., 2000). Hence, the ability of LXA4 and 15-epi-LXA4
to block LTB4-induced responses in vivo and in isolated
PMNs may not be via direct interactions at either BLT1
or BLT2. Although ALX shares �70% homology with

FPR, ALX binds [3H]fMLP with only low affinity (Kd �5
�M) and therefore is selective for LXA4 by 3 orders of
magnitude (Fiore and Serhan, 1995).

Preparation of radiolabeled [11,12-3H]LXA4 (Brezin-
ski and Serhan, 1991) enabled the direct characteriza-
tion of specific LXA4 binding sites present on PMNs
(Fiore et al., 1992). Intact PMN demonstrated specific
and reversible [11,12-3H]LXA4 binding (Kd �0.5 nM and
Bmax �1,830 sites/PMN) that are modulated by
guanosine stable analogs. These LXA4-specific binding
sites are inducible in HL-60 cells exposed to differenti-
ating agents (e.g., retinoic acid, dimethyl sulfoxide, and
phorbol 12-myristate 13-acetate) and confer LXA4-in-
duced phospholipase D activation in these cells (Fiore et
al., 1993). The various ligands that activate the ALX
receptor are presented in Table 6. These results pro-
vided further evidence that LXA4 interacts with specific
membrane-associated receptors on human leukocytes.
These binding data have corroborated with the func-
tional results for LXA4. In contrast, although functional
studies (Maddox et al., 1998) have indicated the exis-
tence of a receptor activated by LXB4, this receptor has
not been cloned and is presently referred to as a putative
receptor. In addition, the receptor binding investigations
with LXB4 must await the synthesis of a suitable LXB4
radiolabel with high specificity. Such an analog has
proven to be quite difficult to achieve.

Northern blot analysis of multiple murine tissues
demonstrated that, in the absence of challenge to the
host, ALX mRNA is most abundant in neutrophils,
spleen, and lung with lesser amounts in heart and liver

TABLE 6
Ligand specificity for human ALX
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(Takano et al., 1997). In humans, ALX mRNA is also
abundant in PMNs, as well as in spleen, lung, placenta,
and liver (Fiore et al., 1994; Takano et al., 1997). In
human enterocytes, ALX is inducible by IL-13 and in-
terferon present in crypt and brush-border colonic epi-
thelial cells (Gronert et al., 1998). The location of this
receptor provides additional evidence that ALX is not
associated with bacterial chemotaxis as observed for
N-formyl peptide FPR-signaling since the gastrointesti-
nal tract always has a very high level of bacteria
present.

D. Receptors and Cellular Signals

Whereas the cascades of cellular events subsequent to
GPCR activation have been the subject of many investi-
gations, the exact signal transduction mechanisms for
either the leukotrienes or the lipoxins have not been
completely elucidated. Generally, agonist interactions
with GPCRs involve activation of heterotrimeric G-pro-
teins associated with a group of conventional cellular
events. However, effectors for GPCRs that are indepen-
dent of G-proteins are also known to exist (Hall et al.,
1999). G-proteins, composed of �-, �-, and �-subunits
each encoded by a different gene, appear often to be cell
specific. Upon ligand-receptor activation, the G�- and
G��-subunits stimulate a variety of intracellular molec-
ular systems. Furthermore, G-protein activation leads
to increases in intracellular Ca2� and modifications in a
number of membrane ion channels.

The cellular responses to ligand activation of GPCRs
can also be up-regulated through priming of cells and
down-regulated by desensitization. Two types of desen-
sitization have been described, one that results from
phosphorylation of the agonist-occupied receptor by G-
protein-coupled receptor kinases. These phosphorylated
receptors are associated with the arrestin family of pro-
teins. A second type of rapid desensitization (loss of
response) following phosphorylation by either second
messenger-activated kinases (protein kinase A, protein
kinase C) or inhibition of phospholipase C, which are
activated by different receptors or signaling processes.
Generally, this second type of desensitization does not
require agonist-receptor occupancy. In addition, Dids-
bury et al. (1991) also demonstrated “cross-receptor de-
sensitization”, a phenomenon that has been reported for
the chemoattractant family receptors. Presently, an ex-
ploration of these latter mechanisms associated with the
actions of leukotrienes and lipoxins at the molecular
level has received little attention.

1. BLT. Investigations involving the intracellular
signaling of BLT receptor activation have been per-
formed in peripheral leukocytes specifically granulo-
cytes. One of the problems involved in such studies is
that these cells have a limited life span (24 h) making
drug and transfection studies difficult. These limitations
have caused several investigators to use either CHO
cells expressing human BLT receptors (Yokomizo et al.,

1997) or to perform reconstitutional studies with the
heterotrimeric GTP-binding proteins (Miki et al., 1990;
Igarashi et al., 1999). Although high-affinity binding of
LTB4 (BLT1 receptor) is found essentially in leukocytes
and macrophages, the G-proteins associated with the
functions in these cells has not been clearly established.
Furthermore, the intracellular signaling pathways for
BLT may depend on the G-proteins expressed in the
different cells. For example, most of the LTB4-dependent
signals in granulocytes appear to be mediated by Gi-like
G-proteins, (granulocytes express abundant G�i pro-
teins, mainly G�i2), whereas in the nervous system Gi1

and Go are mainly present (Simon et al., 1991). In sev-
eral cell types, LTB4 signals via Gi-proteins are inhib-
ited by pretreatment of pertussis toxin (PTX). However,
LTB4-induced calcium mobilization in CHO-BLT1 was
not affected by PTX, suggesting the coupling with Gq-
like molecules in these latter cells. Chemotaxis and in-
hibition of adenylyl cyclase by LTB4 were completely
PTX-sensitive in CHO-BLT1 cells. The coupling of BLT1

with various G�-subunits was examined by cotransfec-
tion studies using COS-7 cells, and BLT1-mediated
phospholipase C activation was shown to be mediated by
G�i6- and G��-subunits released from G�i (Gaudreau et
al., 1998). When expressed heterologously in CHO,
HeLa, and COS-7 cells, BLT2 activation led to the inhi-
bition of adenylyl cyclase and an increase in calcium.
However, BLT2 activation was less potent in mobilizing
calcium than BLT1 receptor activation (Yokomizo et al.,
2000). BLT2 was also shown to mediate LTB4-dependent
chemotaxis through Gi-like G-proteins (Kamohara et al.,
2000; Yokomizo et al., 2000). Recently, Woo et al. (2002)
have suggested that LTB4 stimulation of the Rac-extra-
cellular signal-regulated kinase cascade associated with
the generation of reactive oxygen species-mediated che-
motaxis in Rat-2 cells was via activation of the BLT2

receptor. This suggestion, although not conclusive, was
supported by the observations that BLT1 expression has
not been detected in Rat-2 fibroblasts whereas BLT2 was
expressed. Furthermore, the LTB4 stimulation of reac-
tive oxygen species was observed at high concentrations
(0.3–1 �M), which are within the range for BLT2 activa-
tion and are 2 orders of magnitude higher than that
observed for activation of BLT1. In addition, this LTB4

stimulation was blocked by ZK 158252. In an attempt to
understand the mechanisms involved in BLT receptor
desensitization, Gaudreau et al. (2002) have reported
some initial molecular evidence. These investigators
showed that the cytoplasmic tail of BLT1 receptor was
intimately involved in the regulation of desensitization
and that the amino acid threonine (Thr308) was impli-
cated in the GPCR-specific kinase phosphorylation as-
sociated with this phenomenon. This study therefore
provides pertinent leads for understanding those struc-
tural elements associated with BLT1 receptor regula-
tion.
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The exact role of calcium activation subsequent to the
interaction of LTB4 with a specific receptor exhibits
similar complexity. Chemotaxis of human PMN or
monocytes to LTB4 does not absolutely require the mo-
bilization of intracellular Ca2� (Romano et al., 1996;
Kuhns et al., 1998). While activation of the LTB4 recep-
tor does stimulate intracellular Ca2� mobilization (Pow-
ell et al., 1996), this Ca2� appears not to be essential for
chemotaxis and plays a role only in degranulation and
other responses of human neutrophils (Serhan et al.,
1982; Luscinskas et al., 1990; Rola-Pleszczynski et al.,
1993). Such studies indicate that the unraveling of the
intracellular events associated with the BLT receptor
activation with the second messenger cascades are only
beginning to be understood.

2. CysLT. Unfortunately, most studies concerning
the CysLT receptors have involved only LTD4 activation
of CysLT1 receptors. There is little information available
concerning G-protein and Ca2� mobilization when the
CysLT2 receptor is activated. Initial studies (Kuehl et
al., 1984; Crooke et al., 1989, 1990; Watanabe et al.,
1990) demonstrated that LTD4 activation of the CysLT1
receptor lead to G-protein activation and the release of
several second intracellular messengers, namely, diac-
ylglycerol, inositol phosphates, and Ca2�, events which
were followed by activation of protein kinase C (PKC)
and accompanied by the mobilization of Ca2� derived
from both intracellular and extracellular stores. Clark et
al. (1985) demonstrated that LTD4 activation of CysLT1
receptors also led to the release of arachidonic acid via
stimulation of phospholipase A2, which was associated
with an enhanced transciption of phospholipase A2 acti-
vating protein. Expression of this latter protein was
controlled by activation of topoisomerase I, which in
turn was regulated by PKC (Mattern et al., 1991).

LTD4 is known to induce either Ca2� influx through the
plasma membrane without any Ca2� release from intra-
cellular stores (Baud et al., 1987a; Oliva et al., 1994), or
Ca2� release without influx (Bouchelouche et al., 1990)
and in many cell types can induce both Ca2� influx and
release (Mong et al., 1984b, 1987a, 1988; Sjolander et al.,
1990). In human airways, Gorenne et al. (1998) demon-
strated that LTD4-induced contractions may mobilize
Ca2� via a receptor-operated channel. Recently, Accoma-
zzo et al. (2001) provided evidence that LTD4 contractions
in human airways did not elicit a marked elevation in
[Ca2�]i but rather activated Ca2� via a Ca2�-independent
isoform of protein kinase C (PKC�). These observations
supported an initial report that PKC activation may be
associated with increased force development at constant
[Ca2�]i (Masuo et al., 1994). In addition, PKC� was shown
to be necessary for the generation of the LTD4-induced
Ca2� signal in intestinal epithelial cells. Together these
results suggest that the Ca2� signaling for LTD4 contrac-
tions in human airways may involve several intracellular
pathways. Unfortunately, the other ligands (LTC4 and
LTE4) have not been examined in these studies. Interest-

ingly, Sjolander et al. (1990) proposed that LTD4 and LTE4
activated different receptors associated with different in-
tracellular signals. However, these observations have not
been pursued. The initial observations of Gronroos et al.
(1995, 1996, 1998) have recently received support from
several investigators (Hoshino et al., 1998; Thodeti et al.,
2000; Massoumi and Sjolander, 2001; Paruchuri et al.,
2002) and provided evidence that LTD4 activation of an
epithelial cell line (THP-1) led to an association of a
protein other than the heterotrimeric G-proteins and
this mobilization was necessary for the mobilization of
calcium. Although these investigators observed that
LTD4 activation of THP-1 cells altered mitogen-acti-
vated protein kinase via protein kinase C and Raf-1,
an effect which was PTX-insensitive, they also re-
ported that the chemotactic response of these cells
was PTX-sensitive. These observations suggest that
diverse pathways at the G-protein level may also exist
when LTD4 interacts with the receptor. However,
these investigators did not evaluate different receptor
antagonists to determine which receptor was associ-
ated with these different pathways.

3. Lipoxins. The cytoplasmic signaling cascade of the
ALX receptor is also highly specific and selective for
different cell types. In human PMNs, LXA4 stimulates
rapid lipid remodeling and release of arachidonic acid
via a PTX-sensitive G-protein (Nigam et al., 1990) and
blocked intracellular generation of inositol 1,4,5-
trisphosphate (Grandordy et al., 1990) as well as Ca2�

mobilization (Lee et al., 1989). In contrast, in human
monocytes and THP-1 cells, LXA4 triggers intracellular
calcium release (Romano et al., 1996; Maddox et al.,
1997), suggesting a different intracellular signaling
pathway than in PMNs despite identical receptor se-
quences. In addition, distinct signaling in monocyte and
PMNs was further supported by different responses to
LXA4 in these cell types. LXA4 modulates mitogen-acti-
vated protein kinase activities in mesangial cells in a
PTX-insensitive manner (McMahon et al., 2000), sug-
gesting the presence of an additional ALX receptor sub-
type and/or signaling pathway for ALX. Since the ALX
receptor has been shown to switch recognition and func-
tion with certain chemotactic peptides, the G-proteins
and intracellular pathways involved may prove to be a
difficult but fascinating area to explore. One of the prob-
lems presently confronting investigators in this area of
research is the availability of the ligands. Studies on
G-protein and intracellular messengers are presently
limited (Kang et al., 2000), since stable analogs for LXA4
and LXB4 have only recently become available.

E. Summary

Within the last few years, a considerable effort at the
molecular level has been undertaken to identify the leu-
kotriene receptors. However, data involving chimeric
constructs of the leukotriene receptors have only re-
cently been reported (Gaudreau et al., 2002). In contrast,
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there are several observations that warrant further in-
vestigation. For example, the mouse CysLT1 cloned re-
ceptor is activated by all three native ligands and an-
tagonized by MK-571. However, the ligand profile for the
mCysLT1 is quite different from that observed in the
human CysLT1 receptor, since the mouse CysLT1 recep-
tor exhibited little response to LTC4. An explanation for
this difference is not readily apparent. In addition, MK-
571 potentiated Ca2� mobilization in CHO cells trans-
fected with mCysLT1 long isoform cDNA (Maekawa et
al., 2001). The exact reason for this specific effect has not
been explored. Recently, Ogasawara et al. (2002) re-
ported different pharmacological properties of the
CysLT2 receptor between human and mouse, and they
also showed that mCysLT1 and mCysLT2 tissue expres-
sion was different in some strains of mice. These data
suggest that receptor distributions may be different
within and between species.

IV. Properties and Significance of Leukotriene
Receptors

Well before the cloning of the leukotriene receptors, a
considerable amount of indirect evidence had already
suggested their existence. To date, the molecular data-
base has confirmed the pharmacological database. How-
ever, a more thorough appreciation of ligand-receptor
interactions under both physiological and pathophysio-
logical conditions can only be achieved by an assessment
of both these databases. Therefore, an effort has been
made in this section to provide the evidence that re-
ported the properties and significance of leukotriene
receptors and to highlight those observations that sug-
gested other receptor subtypes may exist.

A. BLT Functional and Radioligand Binding Studies

As early as 1974, certain monohydroxy eicosanoids,
including the platelet arachidonate lipoxygenase prod-
uct (12-HETE), were shown to be neutrophil chemoat-
tractants (Turner et al., 1975) as well as other monohy-
droxy products (5-HETE, 12-HETE) (Goetzl and Pickett,
1980; Powell et al., 1996). In addition, certain deriva-
tives of LTB4, namely, 12-oxo-LTB4 and 20-hydroxy-
LTB4 were reported to induce chemotaxis (Yokomizo et
al., 1993, 1996). However, each required higher concen-
trations than LTB4 to induce chemotaxis in experiments
when cells were placed in isolated Boyden-type cham-
bers (Ford-Hutchinson et al., 1980). Furthermore, radio-
ligand binding studies (Goldman and Goetzl, 1982; Snyder
et al., 1984; Goldman et al., 1985; Gorman et al., 1985;
Falcone and Aharony, 1990; Maghni et al., 1991) provided
more support for the existence and distribution of specific
receptors for LTB4. The differences in relative potencies
between LTB4 and the mono-HETEs (LTB4 �� HETE) also
provided evidence and facilitated the identification and
classification of the cognate receptor. However, the leuko-
cyte surface receptors on neutrophils involved in chemo-

taxis by which other mono-HETEs activate these cells
(Powell et al., 1996; Falgueyret and Riendeau, 2000) have
not been identified.

B. Cysteinyl-Leukotriene Functional Studies

1. Airway Smooth Muscle Contraction. Drazen et al.
(1980) reported that LTC4 and LTD4 were equipotent in
guinea pig tracheal smooth muscle preparations whereas
LTD4 was a more selective peripheral airway agonist,
since LTD4 exhibited a 100-fold greater potency than LTC4
in the lung parenchymal strip suggesting the presence of
two CysLT receptors. The heterogeneity of leukotriene re-
ceptors received further support from Krell et al. (1983)
who showed that the potency of LTD4 in the guinea pig
lung parenchymal tissues (pEC50, 9.2) was significantly
different from that observed in the tracheal preparations
(pEC50, 7.8). In addition, Fleisch et al. (1982) demon-
strated that the potency of LTD4 was different in tissue
preparations derived from various organs. These investi-
gators reported that in the guinea pig ileum LTD4 had a
pEC50 of 9.2, whereas in the trachea from this species the
pEC50 was 8.5. However, when contractile studies were
performed on human airways, results showed that LTC4,
LTD4, and LTE4 were equipotent as contractile agonists
(Buckner et al., 1990; Labat et al., 1992) with pEC50 values
of approximately 10 nM, that is, about one-thousandth of
the pEC50 values for histamine in the same tissues
(Dahlén et al., 1980). However, LTE4 was markedly less
active than LTC4 and LTD4 in these tissues (Buckner et
al., 1986). A comparison of the cys-LT agonist potencies
between different tissues illustrates that considerable
variation exists in functional assays (pEC50 values 11 to 7)
(Jones et al., 1984; Hand and Schwalm, 1987; Gardiner et
al., 1990; Gieske et al., 1990; Norman et al., 1990; DeLegge
et al., 1993). Based solely upon agonist potencies, one is
unable to surmise whether either a single or several recep-
tors are present in these preparations. This requires addi-
tional information from structural, operational, and molec-
ular biological studies. However, the data suggest a
marked difference between LTE4 and the other cys-LTs.
Interestingly, human vascular preparations exhibited ex-
quisite sensitivity to these mediators (Allen et al., 1994).

Results using the SRS-A receptor antagonist, FPL
55712, further supported the hypothesis for the exis-
tence of distinct receptors for the cys-LTs. Drazen et al.
(1980) reported a pKB value for FPL 55712 of 6.9 in the
lung parenchymal tissues when LTD4 was used as the
agonist with a Schild plot slope of 0.72; similar results
were demonstrated by Krell et al. (1981). Furthermore,
these latter investigators showed that the potency of
FPL 55712 (pKB) for antagonism of LTD4-induced con-
traction in the parenchyma decreased with increasing
concentrations of this antagonist, suggesting that in this
tissue either factors may be released which were not
blocked by FPL 55712 or the profile of antagonism of this
compound was not competitive. In the guinea pig tra-
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chea, Krell et al. (1981) calculated a pKB (6.4) for FPL
55712 for inhibition of LTD4 contraction. When these
preparations were contracted with LTC4, the pKB for
FPL 55712 was similar to that obtained against LTD4.
In contrast, when tracheal tissues were treated with
indomethacin the pKB obtained against LTC4 was 5.7.
Thus, in the trachea, while FPL 55712 antagonized both
LTD4-induced and LTC4-induced contractions, the pKB
values differed (6.4 and 5.7, respectively). In parenchy-
mal tissues, contractions to LTD4, but not those to LTC4,
were inhibited. Fleisch et al. (1982) reported their re-
sults with FPL 55712 against LTD4 contractions in dif-
ferent tissues and demonstrated pKB values of 6.1 and
6.3 in parenchyma and trachea whereas in the ileum the
value was 7.1; the pA2 values were calculated to be 7.3
for the ileum, 6.5 for the trachea, and 6.0 for the paren-
chyma. These data also indicated that the dissociation
constants for FPL 55712 derived from the trachea and
parenchyma were markedly different from that obtained
in the ileum. Additional experiments with FPL 55712
supported the notion that different leukotriene receptors
existed, since FPL 55712 failed to antagonize the LTC4
contractions in the lung parenchymal strips and exhib-
ited a pKB of 9.2 against LTD4-induced contractions in
the guinea pig trachea. Since FPL 55712 was reported to
have effects other than leukotriene antagonism, includ-
ing PDE inhibition (Welton et al., 1981), the develop-
ment of other specific compounds was required to estab-
lish more definitive evidence for the presence of at least
two receptors. Many compounds with much greater po-
tency (Ki values of about 0.1–10 nM; pA2 values or pKB
values of 9.5–7.5) and markedly improved selectivity
compared with FPL 55712 have been pharmacologically
identified and comprehensively characterized (Jones et
al., 1983; Buckner et al., 1986; Tucker and Weichman,
1986; Hay et al., 1987; Krell et al., 1987, 1990; Muccitelli
et al., 1987; Jones et al., 1989, 1995; Torphy et al., 1989;
Labat et al., 1992; Gardiner et al., 1994). Collectively,
the results with these chemically distinct antagonists
(Table 5) provided pertinent pharmacological support
for the presence of two receptors in the various tissue
preparations.

2. Vascular Smooth Muscle Contraction. Hanna et
al. (1981) reported that cys-LTs contracted not only iso-
lated human airways but also human pulmonary veins
and noted that the maximum responses on human pul-
monary arteries were small (Schellenberg and Foster,
1984; Bourdillat et al., 1987). Berkowitz et al. (1984)
studied vascular preparations from several species (rat,
rabbit, and guinea pig) and observed small contractions
in guinea pig pulmonary veins, the inferior vena cava
and jugular vein; the effects of LTC4 were not examined.
In the rabbit renal vein, LTC4- and LTD4-induced con-
tractions (Kito et al., 1981), although only small or no
contractile responses, were observed in pulmonary and
portal veins. Gleason et al. (1983) also reported that
LTD4-induced contractions in the guinea pig-isolated

pulmonary artery were small. Together these observa-
tions suggested that a number of vascular preparations
exhibited little or no contractile response to the cys-LTs.
Whether this lack of contraction was due to the absence
of receptors or to factors that are released and mask the
response has not been systematically studied (Bäck et.,
2002). However, in human vascular preparations, Allen
et al. (1992) reported a pronounced constriction by LTC4
and LTD4 in human-isolated saphenous veins and the
agonists were equipotent.

Nishiye et al. (1988) showed that FPL 55712 and
ONO-RS-411 blocked the LTD4 contractions in the
guinea pig basilar artery demonstrating a single specific
receptor. However, in human pulmonary veins, unlike
those in human airways, the contractions induced by
cys-LTs were not affected by the CysLT1 receptor-selec-
tive antagonists MK-571 and ICI 198615 (Labat et al.,
1992; Gorenne et al., 1996). These results suggested the
presence of distinct CysLT receptors on the human pul-
monary veins compared with either human bronchus or
trachea (Jones et al., 1982; Buckner et al., 1986). In
contrast, Rinkema et al. (1993) showed that the LTD4
contractions in the guinea pig inferior vena cava were
blocked by tomelukast and WY 48252. However, the
contractions induced by LTC4 were blocked in a biphasic
fashion by these two antagonists, that is, the low con-
centrations of LTC4 were not affected by the antagonists
suggesting two CysLT receptors. Therefore, in some spe-
cies, such as the guinea pig, vascular smooth muscle may
contain either one or two CysLT receptors associated with
the contractions. Whether the CysLT receptors in the hu-
man pulmonary veins, which are resistant to these CysLT1
receptor antagonists, are the same as the receptors in the
guinea pig vena cava, which are activated by LTC4, re-
mains to be established. Recently, Bäck et al. (2000b) have
reported that contractions induced by LTC4 in porcine
pulmonary arteries were resistant to MK-571 (CysLT1 an-
tagonist) as well as BAY u9773 (dual antagonist, CysLT1/
CysLT2), suggesting that another receptor may be associ-
ated with this tissue response.

3. Vascular Smooth Muscle Relaxation. Secrest et al.
(1985) reported that, in canine renal arteries where tone
had been induced by a contractile agonist, LTD4 pro-
voked relaxations. Similar results were obtained with
LTC4 and LTD4 in guinea pig pulmonary artery (Sa-
kuma et al., 1987; Sakuma and Levi, 1988) and isolated
human saphenous veins (Allen et al., 1992), and LTD4 in
isolated human pulmonary arteries and veins (Ortiz et
al., 1995). LTD4 relaxed canine renal blood vessels and
was approximately 100-fold more potent on veins than
arteries. Whether or not this latter difference is due to
receptor density or receptor-effector coupling is pres-
ently unknown. LTC4 was not examined in these tissues.
In canine splanchnic venous capacitance vessels similar
relaxations for LTC4 and LTD4 have been observed.
Furthermore, in canine coronary arteries both LTC4 and
LTD4 relaxed the tissues with the latter agonist being 10
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times more potent. The data reported indicate that the
agonist potencies for relaxation of human vascular prep-
arations (pEC50 values, approximately, 11–10) (Allen et
al., 1992; Ortiz et al., 1995) are markedly different from
the potencies required to produce contractions in the
same tissue (pEC50 values, approximately, 9–7) (Schel-
lenberg and Foster, 1984; Bourdillat et al., 1987; Allen et
al., 1992; Labat et al., 1992; Ortiz et al., 1995; Stanke-
Labesque et al., 2000). Such data suggest that either the
receptors on the endothelium associated with the relax-
ation are different from the receptors responsible for the
contraction or the G-protein second messengers may be
coupled more efficiently. In addition, CysLT1 receptor
antagonism of contractions in preparations from the hu-
man lung (Table 7) suggest that the receptor present in
vascular smooth muscle may be different from that in
the human airways. Interestingly, the LTD4-induced re-
laxation of isolated human pulmonary arteries and veins
has also been reported to be resistant to CysLT1 antag-
onists, MK-571 and ICI 198,615 (Ortiz et al., 1995). The
question remains as to whether or not the receptor
present on the endothelium and associated with the
relaxation is the same as that present on the vascular
smooth muscle and responsible for the contraction.

Secrest et al. (Secrest et al., 1985; Secrest and Chap-
nick, 1988) reported that the endothelium-dependent
relaxations were produced by activation of a specific
receptor since the response was attenuated by FPL
55712. Sakuma and Levi (1988) observed that the relax-
ations induced by LTC4 and LTD4 in the isolated guinea
pig thoracic aorta were antagonized with similar po-
tency by the CysLT1 receptor antagonist, ICI 198,615,
suggesting that both agonists activate a single receptor
(CysLT1). This antagonism was also observed in the
guinea pig pulmonary artery. Therefore, on the endothe-
lium of guinea pig arterial preparations, a single recep-
tor was present (Sakuma and Levi, 1988), and activation
was associated with relaxation. In contrast, this does not
appear to be the case in the canine renal arteries and

veins (Pawloski and Chapwick, 1993a; Pawloski and
Chapwick, 1993b) or in the human pulmonary arteries
and veins (Ortiz et al., 1995). In the latter study, the
endothelium present on the human pulmonary veins
contains two CysLT receptors: a CysLT2-type responsi-
ble for relaxation and a CysLT1 receptor associated with
the release of a contractile factor (Ortiz et al., 1995).

4. Cardiovascular Effects. Subsequent to the early
investigations (Levi and Burke, 1980; Levi et al., 1980),
which reported that partially purified SRS markedly
reduced coronary blood flow, a number of other investi-
gators have explored the cardiovascular effects of the
cys-LTs in a variety of different animal models. The
early studies have shown that the cys-LTs are potent
vasoconstrictors of the coronary vasculature in both iso-
lated perfused hearts (Woodman and Dusting, 1982;
Letts and Piper, 1983; Letts et al., 1983) and in a num-
ber of species in vivo (Michelassi et al., 1982; Panzen-
beck and Kaley, 1983; Fiedler et al., 1984, 1987; Leffler
et al., 1984; Fiedler and Abram, 1987; Kopia et al., 1987;
Michelassi et al., 1987) including human (Marone et al.,
1988). In sheep and pigs, cys-LTs induced not only cor-
onary vasoconstriction but also ischemia and impaired
left ventriclar function (Michelassi et al., 1982; Ezra et
al., 1983; Fiedler et al., 1985). In isolated perfused
guinea pig heart preparations (Terashita et al., 1982;
Letts and Piper, 1983; Roth et al., 1985), LTC4 and LTD4
caused a reduction in myocardial contractility concom-
mitant with the vasoconstriction. In perfused rat hearts
(Bittl et al., 1985), LTD4 caused not only a reduction in
flow but also reduced the spontaneous heart rate to a
greater extent than contractility, suggesting an action
on conductivity in this species (Feuerstein et al., 1981;
Zukowska-Grojec et al., 1982; Zukowska-Grojec et al.,
1984; Tomoike et al., 1987).

Burke et al. (1982) also showed that FPL 55712 an-
tagonized the cardiodepressant effects of the cys-LTs
suggesting that these effects were via activation of a
specific receptor and noted that the potency of FPL
55712 was greater against ventricular contraction in-
duced by LTD4 compared with those of LTC4, suggesting
that there may be two receptors present in the guinea
pig heart. These investigators also reported that in the
human heart, the negative inotropic effect of cys-LTs
was similar to that of the guinea pig and the rank order
potency (LTD4 � LTC4 �LTE4) was the same for both
species. In other studies using isolated guinea pig car-
diac muscle preparations, the data have been contradic-
tory. Letts and Piper (1983) reported no myocardial ef-
fects whereas other investigators (Falcone et al.,
1991a,b) have demonstrated positive inotropic affects.

The use of potent and selective CysLT1 receptor an-
tagonists provided an alternate approach for establish-
ing the effects of cys-LTs in the perfused heart prepara-
tions. McLeod and Piper (1991) reported a differential
antagonistic effect against LTC4 and LTD4. ICI 198,615
selectively antagonized LTD4-induced increases in coro-

TABLE 7
CysLT1 antagonists: effects in human lung preparations

Tissue Agonists MK 571 ICI 198,615 BAYu9773

Contraction
Bronchus LTC4 8.6–8.3 9.8–8.5 5.4

LTD4 8.8–8.5 9.2–8.2 6.8–6.2
Pulmonary artery LTC4 NS NS NS

(7.20) (7.02) (6.26)
LTD4 NS NS NS

(NS) (NS) (NS)
Pulmonary vein LTC4 NS NS 6.7–5.8

LTD4 NS NS 6.8–6.5
Relaxation

Pulmonary artery LTD4 NS NS ND
Pulmonary vein LTD4 NS NS ND

The range of pKB values are shown. NS indicates no significant displacement of
the concentration effect curves. ND indicates no data available. Numbers in paren-
theses are the pKB values derived from tissues (Walch et al., 2002) where the
endothelium had been removed and the preparations treated with indomethacin.
The other values are from references: Hay et al., 1987; Jones et al., 1989; Buckner et
al., 1990; Labat et al., 1992; Ortiz et al., 1995; Gorenne et al., 1996; Bäck et al.,
2000b.
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nary vascular resistance with no significant effect
against LTC4. Pobilukast antagonized both LTC4 and
LTD4 responses whereas MK-571 was without effect on
cardiac vascular resistance. However, ICI 198,615 an-
tagonized both LTC4- and LTD4-induced ventricular
contractility. These data suggested that the reduction in
contractility by LTC4 may be more sensitive to the ac-
tions of the antagonists when compared with their ac-
tion against the vasoconstrictory effect of LTC4. The
failure of MK-571 to antagonize the coronary vasocon-
striction was also observed against ventricular contrac-
tility induced by LTC4 and LTD4. In contrast, Falcone et
al. (1990) showed specific binding of [3H]ICI 198,615 to
guinea pig cardiac ventricular membranes, suggesting
the existence of CysLT1 receptors in this tissue, whereas
Egan et al. (1989) demonstrated that selective antago-
nism of the leukotriene responses did not reduce myo-
cardial effects. Although the data from animal studies
remain controversial, the results derived from the
guinea pig indicate that the antagonist profile in the
guinea pig heart and lung preparations were not similar
and suggested that the receptors in cardiac vessels may
be different from those in the airways of this species.

Marone et al. (1988) reported the effects of cys-LTs
following intracoronary injection in man. These investi-
gators showed that low doses of exogenous LTD4 and
LTC4 induced immediate changes of cardiovascular
function consisting of a fall in blood pressure, a rise in
heart rate, and sympathoadrenergic activation. These
initial alterations were followed by a marked vasocon-
striction of small resistance coronary vessels. In another
study, Albazzaz et al. (1989) assessed the cardiopulmo-
nary effects of leukotriene C4 inhalation in nonasth-
matic and asthmatic patients. Although the mean car-
diac output decreased without changes in blood pressure
and heart rate in both subjects, there was difficulty in
separating the cardiac output modifications from the
relative contribution of the pulmonary vasoconstriction,
bronchoconstriction, and reduced cardiac output, which
followed the challenge. The use of the potent and selec-
tive CysLT1 receptor antagonists for such in vivo studies
in man may provide an alternative for understanding
the role of these mediators in cardiovascular disease.

5. Diverse Effects of Cysteinyl-Leukotrienes. Human
umbilical vein endothelial cells (HUVECs) have been
reported to produce (Sjostrom et al., 2001) as well as
respond to all cys-LTs (Datta et al., 1995) by releasing
von Willebrand Factor as well as an increased expres-
sion of P-selectin The effects were blocked by the CysLT1
receptor antagonist, pobilukast. These investigators
demonstrated a concomitant surface expression of P-
selectin and release of high-molecular weight von Wille-
brand Factor by the cys-LTs due to stimulation of exo-
cytosis of the Weibel-Palade body pools rather than
promoting the constitutive release from endothelial
cells. In contrast, Pedersen et al. (1997) showed that the
P-selectin secretion induced by LTD4 and LTC4 was not

inhibited by three different CysLT1 receptor antagonists
(zafirlukast, SB 205,312 and pobilukast). However, in
this latter study the pool of P-selectin monitored by their
assay was not described. The difference between the
effects of the CysLT1 antagonists may depend on which
pool of P-selectin was assayed rather than a subset of
receptors.

There are several reports that the cys-LTs increase
microvascular permeability in guinea pig airways
(Woodward et al., 1983a,b; Evans et al., 1989; Obata et
al., 1992; Bochnowicz and Underwood, 1995); the mech-
anism may involve contraction of endothelial cells re-
sulting in gaps in the endothelium of venules (Joris et
al., 1987). This influence of the cys-LTs, which appeared
to involve both direct and indirect pathways, was inhib-
ited by either FPL 55712 (Woodward et al., 1983a) or
pranlukast (Nakagawa et al., 1992; Bochnowicz and Un-
derwood, 1995) indicating that a CysLT1 receptor was
involved.

There is increasing evidence that the cys-LTs may
also influence inflammatory cell function since they en-
hance the recruitment of eosinophils. For example, in-
haled LTE4 (Laitinen et al., 1993) or LTD4 selectively
increased airway eosinophil numbers when assessed in
bronchoalveolar lavage from humans (Smith et al.,
1993). Similar results were obtained with LTC4 or LTD4
in guinea pigs (Foster and Chan, 1991; Underwood et al.,
1996), with single administration of inhaled LTD4 elic-
ited a marked increase in eosinophils, which was main-
tained for at least 4 weeks (Underwood et al., 1996). The
receptor responsible for this phenomenon of the cys-LTs
appears to be CysLT1 receptor (Foster and Chan, 1991;
Underwood et al., 1996) and, at least in guinea pigs,
appeared to involve IL-5 (Underwood et al., 1996), a key
cytokine in eosinophil proliferation, activation, and sur-
vival. Pobilukast inhibited LTD4-induced chemotaxis of
peripheral blood eosinophils from nonasthmatic volun-
teers (Spada et al., 1994). Furthermore, the CysLT1
receptor antagonists pranlukast, MK-571, ICI 198,615
inhibited antigen-induced eosinophil influx in rats
(Salmon et al., 1999), guinea pigs (Foster and Chan,
1991), and cynomolgus monkeys (Turner et al., 1994).

The effects of the cys-LTs on mucus secretion have
been explored only to a limited degree. Initial studies
involved the incorporation of radiolabels such as
[3H]glucosamine into secretory cells (Shelhamer et al.,
1980; Coles et al., 1983; Kim et al., 1989, 1993). Al-
though the cys-LTs were shown to increase release of
radiolabeled material from the secretory elements of the
human bronchus, there is little information on the ef-
fects of selective antagonists (Lundgren et al., 1990).
LTC4 or LTD4 induced an increase in mucus secretion
from cultured human airway mucosal explants, an effect
which was antagonized by FPL 55712 (Marom et al.,
1982; Coles et al., 1983). Pobilukast inhibited the aero-
solized LTD4-induced increase in epithelial mucus secre-
tion in guinea pig airways in vitro (Hoffstein et al.,
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1990), suggesting that the effects of the cys-LTs on mu-
cus secretion are CysLT1 receptor-mediated. Labat et al.
(1999) have reported that challenge of human bronchial
preparations with LTD4 failed to elicit increased
amounts of the MUC5AC gene product, suggesting that
there may or may not be alterations in the secretory
activity of human airways depending upon which secre-
tory product is monitored.

Panettieri et al. (1998) reported that although LTD4
alone had no significant effect on DNA synthesis in
human cultured airway smooth muscle cells, there was a
marked potentiation in the airway smooth muscle pro-
liferation induced by the classical mitogens, epidermal
growth factor, or thrombin. This effect of LTD4 was
inhibited by either pranlukast or pobilukast, but not
zafirlukast, suggesting activation of a CysLT receptor
other than CysLT1 (Panettieri et al., 1998). Evidence for
an influence of the cys-LTs on airway smooth muscle
proliferation is derived from the results of two in vivo
studies in rats following chronic antigen challenge
where airway smooth muscle proliferation and hyperre-
activity (Wang et al., 1993) or eosinophil infiltration
(Salmon et al., 1999) were attenuated by the CysLT1
receptor antagonists, MK-571 (Wang et al., 1993) or
pranlukast (Salmon et al., 1999).

There is also evidence in guinea pigs that the cys-LTs
may influence lung function by modulating the afferent
nervous system, specifically enhancing activity of capsa-
icin-sensitive sensory C fibers (Stewart et al., 1984; Un-
dem and Weinreich, 1993; Undem et al., 1993). For
example, LTD4 enhanced the release of substance P
(Bloomquist and Kream, 1990) and potentiated tachyki-
nin-mediated, nerve-induced responses (Ellis and Un-
dem, 1991) in guinea pig trachea. Vagal nerve-induced
contraction and microvascular permeability in guinea
pig airways are inhibited by CysLT1 receptor antago-
nists (Ellis and Undem, 1991), indicating that the effects
of the cys-LTs on tachykinin-containing sensory C fibers
are mediated via the CysLT1 receptor in guinea pig
airways.

There are a number of other observations concerning
the cys-LTs that require further investigation. Few
studies have been performed to examine these media-
tors in angiogenesis (Tsopanoglou et al., 1994) where
pobilukast has been reported to block responses to
LTD4, albeit with less potency than those to LTC4. The
effects of these mediators on liver metabolism has been
overlooked but an investigation has demonstrated that
both LTD4 and LTC4 are equipotent in altering glucose
and lactate output, and this modification is blocked by
CGP 35949, a CysLT1 antagonist (Iwai and Junger-
mann, 1988, 1989). In addition, investigations on the
actions of the cys-LTs on renal function (Chapnick, 1984;
Filep et al., 1985; Piper et al., 1985; Petric and Ford-
Hutchinson, 1995), the pulmonary circulation (Smede-
gard et al., 1982; Kadowitz and Hyman, 1984; Jones and
Masson, 1985; Malik et al., 1985; Garcia et al., 1987;

Ohtaka et al., 1987; Schreiber et al., 1987), systemic
circulation (Pfeffer et al., 1983), and on the microcircu-
lation (Dahlén et al., 1981; Bisgaard et al., 1982, 1985,
1986; Soter et al., 1983; Chan and Ford-Hutchinson,
1985; Hua et al., 1985) to established specific CysLT
receptors have not been pursued.

C. CysLT Radioligand Binding Studies

The presence of heterogeneous CysLT receptors was
also supported by data from experiments using classical
radioligand binding techniques. Cheng et al. (1985) pro-
vided evidence that the CysLT receptors were widely
distributed in different organs, tissues, and species. Fur-
thermore, autoradiographic studies with the labeled
agonists have also demonstrated the presence of CysLT
receptors in lung (Carstairs et al., 1988), endothelial
cells (Chau et al., 1986), uterus (Chegini and Rao,
1988b), corpus lutea (Chegini and Rao, 1988a), as well as
brain (Goffinet, 1986). In addition, a number of smooth
muscle or transformed cells in culture were also shown
to possess these receptors (Krilis et al., 1983; Mong et
al., 1988; Frey et al., 1993). The radioligand binding
studies have not only demonstrated the presence of spe-
cific sites for [3H]LTC4, [3H]LTD4, and [3H]LTE4 bind-
ing but also have shown that there is often a preferential
binding for one ligand and not the other (Mong et al.,
1984a, 1985; Cheng et al., 1985). These latter observa-
tions suggested that certain tissues may contain a single
class of receptor responsible for the physiological actions
of cys-LTs. Although a considerable amount of evidence
demonstrated that membrane preparations from a num-
ber of tissues bind all the radiolabeled agonists, there
are data suggesting the existence of at least two sites:
one associated with [3H]LTC4 and one that binds
[3H]LTD4 and [3H]LTE4 (Cheng and Townley, 1984b).

However, three major points became apparent from
the radioligand binding studies that need to be high-
lighted. First, interpretation of the results of [3H]LTC4
binding assays were complicated by the rapid metabolic
transformation of LTC4 to LTD4 if this was not con-
trolled by enzymatic inhibition. Inhibitors of this metab-
olism must frequently be incorporated in [3H]LTC4 bind-
ing studies. In addition, recent binding studies (Ravasi
et al., 2000) have also suggested the necessity to include
S-decyl-glutathione (a high-affinity ligand for nonrecep-
tor LTC4 binding sites) in the membrane preparations.
Second, there was often no correlation between the
[3H]LTC4 binding studies and the functional studies
(contraction) as in the case of either the guinea pig ileum
(Norman et al., 1990), guinea pig lung strip (Mong et al.,
1985; Norman et al., 1987), or guinea pig uterus (Weich-
man and Tucker, 1982; Levinson, 1984). In contrast, a
correlation was observed between the antagonist effects
in the [3H]LTD4 binding studies and the ability of the
antagonists to block LTD4-induced contractions (Fig. 6).
Furthermore, in the rat lung the radioligand binding
data provided evidence for the presence of two sites
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(Pong et al., 1983; Metters et al., 1991) whereas the
functional data (contraction) suggested a single receptor
was associated with the contractions with LTC4 as the
full agonist (Norman et al., 1994; Gardiner et al., 1994).
Third, the number of [3H]LTC4 binding sites in most
tissues was in excess of 10 pmol/mg of protein whereas
the number of binding sites for [3H]LTD4 was markedly
lower. These observations suggested that [3H]LTC4 may
bind to other cellular entities, such as glutathione S-
transferase (GST) as has been reported by several inves-
tigators (Sun et al., 1987; Metters et al., 1994; Bannen-
berg et al., 1999). In addition, LTC4 may also bind to
specific exporters in human eosinophils (Lam et al.,
1992), to ATP-dependent carriers in rat liver (Ishikawa
et al., 1990; Keppler et al., 1992), and to multidrug-
resistant protein 1 (Qian et al., 2001). The GST data
(Sun et al., 1987) supported the original observations of
Mong et al. (1985) who demonstrated that the glutathi-
one conjugates (SK&F 103,050 and SK&F 103,024),
which were devoid of contractile activity in the guinea
pig lung and trachea, exhibited a high affinity to the
specific site labeled by [3H]LTC4. Furthermore, these
glutathione conjugates did not antagonize the LTC4-
induced contractions in the guinea pig trachea. These
observations suggest [3H]LTC4 binding to GST may
mask the LTC4 receptors present in the preparations

and thereby explain the reason for the lower affinity for
LTC4 binding sites when compared with the functional
data. However, the evidence reported by several groups
in functional studies have shown that in guinea pig
tracheal preparations the LTC4-induced contractions, in
the presence of inhibitors of �-glutamyl transpeptidase
(Snyder and Krell, 1984; Charette and Jones, 1987), are
resistant to the classical CysLT1 antagonists suggesting
a distinct receptor for LTC4.

1. [3H]LTC4 Binding Sites. Despite the [3H]LTC4
binding to nonreceptor proteins, which is now well es-
tablished, [3H]LTC4 binding has been demonstrated in
the central nervous system (Schalling et al., 1986), brain
capillaries (Mayhan et al., 1986; Black et al., 1987),
endothelial cell membranes (Muller et al., 1987), as well
as human erythrocytes (Ghiglieri-Bertez et al., 1986)
and leukocytes (Baud et al., 1987b). Unfortunately, the
significance of this [3H]LTC4 binding is presently un-
known. Cheng et al. (1985) showed that membrane prep-
arations from the guinea pig uterus did not bind
[3H]LTD4, data that were also confirmed in kinetic bind-
ing experiments (Mong et al., 1985). The [3H]LTC4 bind-
ing Kd value (10 nM) in the membrane fractions in the
uterus (Levinson, 1984) was similar to that reported for
binding to intact cultured smooth muscle cells from the
hamster vas deferens (Krilis et al., 1983) but slightly

FIG. 6. Cysteinyl-leukotriene antagonists in binding versus functional assays. Data (pKB/pA2 values) are derived from guinea pig tissues contracted
with LTD4 and compared with results (pKi values) obtained in [3H]LTD4 radioligand binding assays performed on membrane fractions from the same
species. The different CysLT1 receptor antagonists are presented. There was a significant correlation (r2 � 0.92). The values are derived and modified
from Shaw and Krell (1991).
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lower than that reported for the guinea pig and rat lung
membranes (Hogaboom et al., 1983: Pong et al., 1983).
Similar concentrations of LTC4 competed for [3H]LTC4
binding in the guinea pig ileal muscle (Nicosia et al.,
1984). Together these data are consistent with the no-
tion that a specific high-affinity receptor was present in
the uterus. Further studies have been performed using
brain homogenates, which contain the highest activity of
[3H]LTC4 binding sites, and the potency order of the
cys-LTs for inhibition of the brain [3H]LTC4 binding is
identical to their inhibitory order in the uterine homog-
enate. In addition, these studies have demonstrated that
the relative ability of LTC4, LTD4, and LTE4 to inhibit
[3H]LTC4 binding in the brain and uterine membrane
fraction was the same as their ability to reduce binding
in the smooth muscle cell and lung homogenates (Krilis
et al., 1983, 1984; Pong et al., 1983; Cheng et al., 1985).
In contrast, the IC50 of LTC4 to inhibit brain [3H]LTC4
binding differs from that value obtained in the uterine
homogenate. This suggests a difference between the dis-
sociation constant (Kd) of brain and uterine [3H]LTC4
binding sites. Data from initial studies are comparable
with these results and have shown that the Kd of lung
[3H]LTC4 binding apparently differed from that demon-
strated in the smooth muscle cell (Krilis et al., 1983;
Pong et al., 1983). Whether this difference is due to the
existence of high- and low-affinity LTC4 receptor sites
(Krilis et al., 1983) awaits further studies. Interestingly,
Cheng and Townley (1984a) also demonstrated that
LTC4 was more potent than LTD4 in the ability to pro-
duce uterine contractions. These results would suggest
that in the guinea pig uterine preparations [3H]LTC4
binds to a receptor that may be responsible for cys-LT-
induced uterine contraction in this species.

2. [3H]LTD4 Binding Sites. The initial data from ra-
dioligand binding in a variety of membrane preparations
demonstrated the presence of [3H]LTD4 binding sites.
There was also a correlation between the tissue distri-
bution and the binding sites for [3H]LTD4 and [3H]LTE4
(Cheng et al., 1985). In addition, the apparent affinity
constants for agonists and antagonists (Mong et al.,
1985) suggested that [3H]LTD4 and [3H]LTE4 bound to
the same receptor in guinea pig lung preparations. Aha-
rony et al. (1989) provided the pertinent evidence that
this was indeed the case in the guinea pig lung. How-
ever, these investigators demonstrated that not only
was the rank order inhibition potency similar when ob-
tained against either ligand but also the absolute po-
tency for LTC4, LTD4, and LTE4 was higher against
[3H]LTE4 than that observed with [3H]LTD4. These re-
sults suggested a discriminative binding of [3H]LTE4
toward a subset of high-affinity LTD4 receptors. Al-
though ICI 198,615 exhibited equal potency for inhibit-
ing both [3H]LTE4 and [3H]LTD4, there were subtle
differences; namely, LTD4 was significantly less potent
than ICI 198,615 for inhibiting [3H]LTD4 binding
whereas no such difference was observed against

[3H]LTE4. Furthermore, the rank order antagonist po-
tency against [3H]LTD4 was ICI 198,615 analog � ICI
198,615 � zafirlukast whereas against [3H]LTE4 the
antagonists were equipotent. These investigators also
reported that there was a higher sensitivity to inhibition
by sodium ions and GTP analogs for [3H]LTE4 binding
compared with [3H]LTD4. These data provided evidence
for the existence of heterogeneous LTD4 receptors. This
suggestion has received some support from Shirley and
Cheng (1991) who demonstrated that either LTD4 (Ki �
0.49 nM) or ICI 198,615 (Ki � 6.89 nM) interacted with
a single homogeneous [3H]LTD4 binding site, whereas
the competitive binding results of either LTC4 (in the
presence of AT-125) or LTE4 exhibited high- and low-
affinity [3H]LTD4 binding sites.

While ligand binding studies have indicated that tis-
sues may contain different receptors (Rovati et al., 1985,
1992), the binding sites for the same radioligand in one
tissue may also be different from that observed in an-
other preparation. In guinea pig lung membranes,
[3H]LTD4 exhibits a Kd of �0.43 nM whereas in the
membranes obtained from the guinea pig myocardium
the Kd is 3.4 nM. In the latter study, Hogaboom et al.
(1985a,b) reported that the myocardial [3H]LTD4 bind-
ing sites were neither modulated by guanine nucleotides
nor divalent cations and the sulfhydryl-reducing re-
agents altered the maximum number of sites without
any effect on binding affinity. Unfortunately the signif-
icance of these myocardium sites has not been explored.

In a study involving [3H]ICI 198,615, Aharony et al.
(1988) reported that a CysLT receptor (which corre-
sponds to the current CysLT1 receptor) was coupled to a
G-protein and exhibited high- and low-affinity states. In
addition, Metters and Zamboni (1993) identified the
CysLT1 receptor as a single polypeptide with a molecu-
lar mass of 45 kDa using direct photoaffinity labeling.
These investigators demonstrated that this protein was
inhibited by both agonist and antagonists with potencies
(IC50) similar to those reported in radioligand binding
studies. Furthermore, both cations and nucleotide ana-
logs modulated the photolabeled protein. This latter
characteristic was analogous to [3H]LTD4 specific bind-
ing in the guinea pig lung membranes.

D. Evidence for Additional CysLT Receptor Subtypes

The reported functional data suggest that other
CysLT receptors may exist. Initial reports have shown
that the LTC4 contractions of the guinea pig trachea are
resistant to the classical CysLT1 antagonists (Snyder
and Krell, 1984). Furthermore, in the guinea pig lung
preparation, MK-571 exhibited a low affinity for the
cys-LTs (pKB 5.8) and BAY u9773 did not block the
cys-LT contractions (Gardiner et al., 1993; Sakata and
Bäck, 2002), data which do not fit the classical CysLT1
profile. One interpretation is that there may be a
CysLT1 receptor subtype. In addition, Tudhope et al.
(1994) observed a residual contraction in the guinea pig
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lung strip subsequent to CysLT1/CysLT2 antagonism by
BAY u9773. Recently, Bäck et al. (2000a,b) have re-
ported that the contractions to LTC4 in porcine and
human pulmonary arteries were not antagonized by ei-
ther MK-571 or BAY u9773, data which further suggest
the presence of another CysLT receptor responsible for
the LTC4-induced contractions. These latter observa-
tions have received support from the work of Northacker
et al. (2000) who demonstrated that BAY u9773 was a
selective CysLT2 agonist. Although BAY u9773 con-
tracted human pulmonary veins (Labat et al., 1992) in
porcine and human pulmonary arterial preparations,
this compound did not modify basal tone. These data
suggest that the CysLT receptor associated with the
contractions of human pulmonary arteries may be dif-
ferent from those receptors characterized as CysLT1 and
CysLT2. These observations have been extended by
Walch et al. (2002) who suggested a “novel CysLT recep-
tor” based on the data in the human pulmonary artery
(Table 7).

Panettieri et al. (1998) demonstrated an enhanced
LTD4 proliferation of human smooth muscle cells in the
presence of epidermal growth factor. These investigators
suggested that the CysLT1 receptor associated with pro-
liferation may be different from the CysLT1 receptor
activated in human airways responsible for contraction.
This interpretation was based on the low affinity of the
well known CysLT1 antagonists, pranlukast and pobi-
lukast, which blocked the effect of LTD4 in this assay. In
addition, the authors also reported that zafilukast did
not work at a high concentration. Together these data do
not suggest that based only on zafirlukast the receptor is
different but that all of the antagonists were less active
at concentrations that caused a significant shift of LTD4
contractions in the human airways. However, the con-
tractile response at CysLT1 receptors in human airways
was also induced by LTC4 and LTE4, the proliferative
response should therefore also be induced by these li-
gands as well. Until such data are presented, the results
are preliminary and not conclusive for the existence of
another receptor subtype.

Using molecular techniques, Ogasawara et al. (2002)
demonstrated different pharmacological characteristics
of mCysLT2 and hCysLT2. These investigators reported
that paranlukast, which inhibited hCysLT1, antago-
nized mCysLT2 responses as determined by Ca2� mobi-
lization and receptor-induced promoter activation. Fur-
thermore, the distribution of mRNA expression of
mCysLT1 and mCysLT2 in tissues between different
strains of mice was also different These results provide
further evidence that other CysLT receptor subtypes
may exist as has previously been suggested (Mellor et
al., 2001). Indeed the up-regulation of the CysLT1 recep-
tor by different cytokines (Mellor et al., 2001; Thivierge
et al., 2000, 2001) raises the further question as to
whether or not the “induced receptor” is similar to the
“constitutive receptor”.

Recently, results generated from radioligand binding
studies in human lung membrane preparations sug-
gested that [3H]LTC4 binding (Capra et al., 1998) may
be associated with a specific LTC4 receptor different
from the classical CysLT1 and CysLT2 receptors (Ravasi
et al., 2000, 2002). These latter investigators demon-
strated that the LTC4 contractions of human lung pa-
renchyma were via a classical CysLT1 receptor activa-
tion whereas the [3H]LTC4 binding (high-affinity site)
was insensitive to GTP. Furthermore, the CysLT1 recep-
tor antagonists, zafirlukast and iralukast, did not inter-
act with this site.

Although, the above results suggest that other recep-
tor subtypes may be present in different preparations,
this hypothesis is based solely on indirect pharmacolog-
ical assessment and should be interpreted cautiously.
Extension of the current CysLT receptor classification
requires additional investigation, namely, structural,
operational, and molecular biological information.

E. Clinical Studies Involving CysLT Receptors

Most molecules that have been identified as antago-
nists of the CysLT1 receptor in isolated guinea pig tissue
antagonize the effects of LTC4 and LTD4 to an equal
extent (Buckner et al., 1986, 1990) in human isolated
bronchial tissues. These data suggest that in healthy
human medium-sized airways CysLT1 is the only leuko-
triene receptor responsible for the contractile response.
These data have also received some support from Civelli
et al. (1987) who demonstrated that the number of
[3H]LTC4 binding sites in membrane preparations de-
rived from human segmental bronchi at different levels
of the respiratory tract were similar even though there
was large interindividual variation. Furthermore, these
investigators reported that [3H]LTC4 may actually label
LTD4 sites as well, since LTD4 bound with higher affin-
ity to the lower capacity class site. Although certainly
not conclusive, these latter observations suggest that
this uniform distribution of sites may reflect the func-
tional receptors reported by other investigators (Buck-
ner et al., 1986; Labat et al., 1992).

Inhalation of aerosols generated from solutions of cys-
teinyl leukotrienes results in airway obstruction mani-
fested as decreased specific airway conductance (SGaw)
or as decreased flow rates (measured from partial or full
expiratory flow-volume curves) (Drazen, 1986); LTC4
and LTD4 are nearly equipotent contractile agonists in
intact humans. Nebulizer concentrations on the order of
10 �M are required to reduce the maximal expiratory
flow rate (measured from a partial flow-volume curve,
V30-P) by 30% in nonasthmatic subjects. Approximately
30-fold greater concentrations of LTE4 are required for
an equivalent physiological effect in nonasthmatic sub-
jects. Comparable nebulizer concentrations are required
for reduction of a similar magnitude in the SGaw. Com-
pared with a reference agonist in nonasthmatic subjects
(with V30-P or SGaw as the index of airway obstruction),
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LTC4 and LTD4 are approximately 2000 times more
potent than histamine, whereas LTE4 is 30 to 100 times
more potent than histamine as a bronchoconstrictor ag-
onist (Weiss et al., 1982; Griffin et al., 1983; Barnes et
al., 1984; Smith et al., 1985; Adelroth et al., 1986; Green-
berger et al., 1986; Kern et al., 1986; Davidson et al.,
1987). Complete dose-response curves show that the pla-
teau response to LTD4 is greater than that to methacho-
line (Bel et al., 1989). Since no such difference is evident
with dose-response curves for 2- to 4-mm isolated bron-
chi, these findings are consistent with the hypothesis
that airways from physically distinct loci (i.e., small
versus large airways) respond to both stimuli (LTD4 and
methacholine) in normal human subjects.

Patients with asthma also exhibit bronchoconstrictor
responses when they inhale aerosols generated from
solutions of cys-LTs (Griffin et al., 1983; Adelroth et al.,
1986; Davidson et al., 1987; Pichurko et al., 1989; Smith
et al., 1993); the aerosol generator concentrations of
LTC4, LTD4, and LTE4 required to decrease the V30-P by
approximately 30% are about 30- to 100-fold less than is
required in normal human subjects. The bronchocon-
strictor responses of asthmatic subjects to these leuko-
trienes are all manifest within 3 to 5 min after aerosol
inhalation; the duration of the effect is related to the
severity of the bronchospasm but is on the order of 20 to
30 min when the decrement in the V30-P is 30%.

Thus the predominant biological effect of administra-
tion of leukotrienes by inhalation is broncoconstriction
mediated by the CysLT1 receptor. There may be other
effects when leukotrienes are administered systemically
but at present there are inadequate data to make a
statement.

F. Summary

The development of selective antagonist for specific
CysLT cell surface receptors was undertaken to harness
the detrimental aspects of the inflammatory process spe-
cifically in asthma. This research has lead to compounds
with clinical benefits in asthmatic patients and the mile-
stones in the sequence of events which have led to this
therapy are presented in Table 8.

Therefore, based on the CysLT1 antagonists, certain
therapeutic goals have been achieved. However, the ev-
idence to suggest that the metabolites of the 5-lipoxy-
genase enzymatic pathway activate other CysLT recep-
tors, which may have further implications in
pathophysiological conditions, needs to be addressed.
Unfortunately, there are no selective antagonists for the
CysLT2 receptor. Recent molecular studies have shown
that this receptor is expressed in several human tissues
(heart, brain, peripheral blood leukocytes) but an explo-
ration of their role in these tissues remains markedly
compromised until selective pharmacological com-
pounds become available.

Interestingly, there is some evidence from vascular
studies that a CysLT receptor may be induced during

pathological conditions, such as atherosclerosis (Allen et
al., 1993, 1998) since cys-LT-induced contractions were
only observed in tissues derived from patients with this
disease. In addition, the potency of the cys-LTs are
markedly altered during aging (Duncan and Douglas,
1985). Whether these data reflect modification in recep-
tor number, affinity, or second messenger pathways has
never been pursued. Recently, Mellor et al. (2001) have
reported that the CysLT1 receptor may function as a
UDP pyrimidinergic receptor. These latter results indi-
cate that the eicosanoid GPCRs may exhibit a dual re-
ceptor role. UDP acting with the CysLT1 receptor is
analogous in some respects to the peptides that can act
at the ALX. These observations provide future perspec-
tives for studies in receptor classification.

G. Lipoxins Receptors

1. Functional and Radioligand Binding Stud-
ies. Although LXs are ancient molecular structures
conserved and produced by fish as well as frog blood cells
(Rowley et al., 1994), the potential physiologic roles of
LX and related compounds have not been widely tested
outside of the context of inflammation and the immune
system. The principal actions reported for LX focus on
leukocytes, in particular neutrophils, monocytes, and
eosinophils in vitro and in vivo, suggesting that these
cells are the major targets. The potency of action of LX
on human leukocytes is in the nanomolar to subnano-
molar range. Experiments with LXA4 were initially per-
formed on guinea pig lung strips to establish structure-
activity relationships. These early reports indicated
stereospecificity, that is, the 5S,6R-orientation of the
two hydroxyl groups positioned immediately adjacent to
the carboxylic end of the conjugated tetraene was essen-
tial for the contractile activity in the submicromolar
range. These stereospecific requirements suggested the
presence of specific LXA4 recognition sites. Although
this evidence was essential in establishing the biological
activities evoked by LXA4, the use of isolated lung strip

TABLE 8
Milestones in the development of CysLT1 therapeutic antagonists

• 1938, identification of SRS (Feldberg and Kellaway, 1938)
• 1951, SRS-A generated by the human lung (Schild et al., 1951)
• 1973, SRS-A antagonist (Augstein et al., 1973)
• 1976–1980, structures and synthetic pathways for the

leukotrienes (Corey et al., 1980; Samuelsson, 1983)
• 1980–1990, CysLT selective antagonists (Laboratories: Merck,

Smith Kline & French, Abbott, Eli Lilly)
• 1985–1995, existence of two receptors in the human lung: a

single CysLT1 receptor in airways responsible for smooth muscle
contraction (Buckner et al., 1986) and a CysLT2 receptor in the
human pulmonary vasculature associated with vasoconstriction
(Labat et al., 1992)

• 1995, first CysLT1 antagonist marketed (Pranlukast)
• 1999, hCysLT1 receptor cloned expressed and characterized

(Lynch et al., 1999; Sarau et al., 1999)
• 2000, hCysLT2 receptor cloned expressed and characterized

(Heise et al., 2000; Nothacker et al., 2000; Takasaki et al., 2000).
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as a target tissue model for endogenous LX actions in
view of recent findings may be misleading. These com-
pounds, in particular LXA4, act in the subnanomolar
ranges to initiate protective actions. In this regard,
LXA4 possesses human leukocyte-selective actions that
implicate lipoxins as endogenous stop signals or cha-
lones (Serhan, 1994, 1997). In addition, LXA4 stimulates
rapid lipid remodeling and release of arachidonic acid in
human PMN, which is sensitive to PTX treatment
(Grandordy et al., 1990; Nigam et al., 1990). These re-
sults point to the involvement of a GPCR and indicate
that LXA4 stimulates selective functions of human leu-
kocytes (PMN and monocytes) that are markedly differ-
ent from the leukotrienes.

LXA4, in addition to activating ALX to regulate leu-
kocyte motility, may also interact at CysLT receptors
(Badr et al., 1989; Fiore et al., 1992; McMahon et al.,
2000; Gronert et al., 2001) and block LTD4 binding to
mesangial cells (Badr et al., 1989) and isolated HUVECs
(Takano et al., 1997). HUVECs specifically bind
[3H]LXA4 with a Kd of 11 nM, which can be inhibited by
LTD4 and the CysLT1 receptor antagonist, pobilukast
(Fiore et al., 1993). This receptor is inducible in
HUVECs and identical to the CysLT1 (Gronert et al.,
2001). Therefore, LXA4 interacts with at least two
classes of cell surface receptors: one specific for LXA4 on
leukocytes, the other shared by LTD4 that is present on
HUVEC and mesangial cells, namely, CysLT1.

In human PMNs, subcellular fractionation showed
that [3H]LXA4 binding sites are associated with plasma
membrane and endoplasmic reticulum (42.1%) and
granule (34.5%) as well as nuclear-enriched fractions
(23.3%), a distribution distinct from [3H]LTB4 binding
(Fiore et al., 1992). LXA4 was also reported recently to
bind to the Ah receptor, which is a ligand-activated
transcription factor (Schaldach et al., 1999). The finding
that LXA4 blocks either PAF- or fMLP-stimulated eosin-
ophil chemotaxis (Soyombo et al., 1994) suggests that
functional ALX is also present on eosinophils.

ALX activation on human PMNs evokes inhibition of
LTB4- and fMLP-stimulated PMN adhesion (by down-
regulating CD11/CD18), chemotaxis and transmigration
as well as degranulation (Serhan, 1997). In human en-
terocytes (T84), LX analogs inhibit TNF�-induced IL-8
release (Gronert et al., 1998) as well as pathogen-in-
duced IL-8 secretion at the mRNA level (Gewirtz et al.,
1998). In addition, LXA4 analogs inhibit rat leukocyte
rolling and adherence by attenuating P-selectin expres-
sion in mesenteric microvasculature (Scalia et al., 1997).
When applied to mouse ears, LX analogs markedly re-
duced LTB4-induced PMN infiltration and vascular per-
meability (Takano et al., 1998). Moreover, LXA4 inhibits
PMN recruitment to inflamed glomeruli in vivo (Papay-
ianni et al., 1995), further supporting the anti-inflam-
matory actions of LX to activate “stop signaling” via the
ALX receptor.

To further investigate ALX receptors and their func-
tion in inflammation, analogs based on the native struc-
tures of LXA4 and LXB4 were designed to resist rapid
inactivation (Serhan et al., 1995; Takano et al., 1998).
Methyl groups were placed on carbon-15 and carbon-5 of
LXA4 and LXB4 structures, respectively, to block dehy-
drogenation (Serhan et al., 1995; Clish et al., 2000).
15(R,S)-methyl-LXA4 is a racemic stable analog of both
LXA4 and the aspirin-triggered 15-epi-LXA4. Additional
analogs of LXA4 were synthesized with a phenoxy group
bonded to carbon-16 and replacing the �-end of the mol-
ecule. This design permits 16-phenoxy-LXA4 to resist
potential �-oxidation and to be protected from dehydro-
genation and potential �-oxidation in vivo by the stearic
hindrance of the bulky aromatic ring. The actions of LX
analogs were tested in vitro and in vivo and proved to be
potent LX mimetics (Clish et al., 1999, 2000). Further-
more, the topical application of LX and 15-epi-LX ana-
logs in a mouse ear model of acute inflammation dem-
onstrated that these analogs are potent inhibitors of
LTB4- and phorbol 12-myristate 13-acetate-initiated
neutrophil-recruitment as well as PMN-mediated vascu-
lar injury (Takano et al., 1997, 1998). These LX mimet-
ics proved to be more potent as topical agents than LTB4
receptor antagonists within the range of the clinically
used anti-inflammatory steroid dexamethasone (Takano
et al., 1998). In addition, in a rat model of endothelial
dysfunction characterized by reduced nitric oxide re-
lease and up-regulation of adhesion molecules such as
P-selectin, superfusion with LX analogs dramatically
inhibited leukocyte rolling (Scalia et al., 1997). Thus,
these analogs of LX and 15-epi-LX serve as potent top-
ically active agents that inhibit PMN recruitment and
PMN-mediated changes in vascular permeability.

In addition to LXA4 and aspirin-triggered LXA4 ana-
logs, ALX is activated by and competed with a series of
rogue synthetic peptides that are also chemotactic
(Chiang et al., 2000). CHO cells with Gq/o expressing
ALX can chemotax in response to either the synthetic
peptide MMK-1 or 15-epi-LXA4 analog. CHO cell chemo-
taxis to 15-epi-LXA4 was not only ligand-dependent but
also Gq/o-dependent in that without Gq/o neither LXA4
nor 15-epi-LXA4 or their analogs could stimulate chemo-
taxis. Several synthetic nonphysiological peptides inter-
act with ALX-related receptors such as FPRL2 (Chris-
tophe et al., 2001). The bioactive LX and 15-epi-LX
analogs, as well as select small peptides, each competed
for specific [3H]LXA4 binding with recombinant human
ALX, and the N-glycosylation of the receptor proved
essential for peptide but not LXA4 recognition. Several
chimeric receptors (Chiang et al., 2000) were con-
structed from receptors with opposing functions, namely
ALX and BLT1. Results with these chimeric receptors
also showed that the seven-transmembrane segment
and adjacent regions of ALX are essential for LXA4
recognition, and additional regions of ALX are required
for high-affinity binding of the peptide ligands. These
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initial findings indicated that a single seven-transmem-
brane receptor can switch recognition as well as function
with certain chemotactic peptides from stimulatory to
inhibitory with aspirin-triggered lipoxins (ATL) and LX
(lipid ligands). This evidence also raises the possibility
that ALX activation by LX or ATL can protect the host
from potentially deleterious PMN-induced responses as-
sociated with innate immunity and direct effector re-
sponses to sites of tissue injury by recognition of mito-
chondrial-derived peptide protein fragments. Hence,
activation of ALX by LXA4, aspirin-triggered 15-epi-
LXA4 or their analogs can dampen inflammation by
evoking a stop signal as well as blocking either LTC4 or
LTD4 responses at CysLT1 receptors (Gronert et al.,
2001). The in vivo combination of these sites of LXA4
action (ALX and CysLT1) favor resolution of inflamma-
tion and protection from acute PMN-mediated tissue
injury.

2. Summary. The ability to inhibit the expression of
pro-inflammatory messengers, regulate trafficking, and
sequestration of leukocytes as well as antagonize the
CysLT1 receptor, illustrate that LX and ATL by activat-
ing specific receptors have clearly established roles in a
variety of vascular-related inflammatory phenomenon.
Of considerable interest is the ability of the stable aspi-
rin-triggered lipoxin analogs (ATLa) to antagonize the
LTD4 activation of a CysLT1 receptor in the mouse ear
model (Gronert et al., 2001). Previous investigators (Or-
tiz et al., 1995) have reported that LTD4, via CysLT1
receptor activation, released a contractile factor from
endothelial cells in human pulmonary vessels. This fac-
tor masked the functional relaxations associated with
nitric oxide. Whether or not the CysLT1 receptor antag-
onized by ATLa in the murine vascular model is identi-
cal to that present on the endothelium of the human
pulmonary vessels remains to be determined. However,
lipoxin activation of an ALX receptor also inhibits LTD4-
induced mesangial cell proliferation (McMahon et al.,
2000). These investigators demonstrated that two recep-
tor subtypes were present in these cells, namely, an ALX
receptor and an ALX/CysLT shared receptor. Recently,
McMahon et al. (2002) have extended these observations
to include further cross-talk between receptors, since
leukotrienes and lipoxins also interact with PDGF re-
ceptor � in mesangial cell proliferation. These data pro-
vide evidence of the complex mechanisms involved in
mediator-receptor activation associated with cellular
proliferation.

V. General Conclusions

The classification of the receptors that are activated
by leukotrienes and lipoxins was initially derived from
data obtained in functional investigations. The pharma-
cological studies provided substantial evidence for the
existence of specific and distinct receptors that were
activated by these lipid mediators and are now well

supported by the recombinant systems. However, the
molecular cellular mechanisms for the contractions of
vascular smooth muscle by LTC4 and LTD4, which are
resistant to the classical CysLT1 antagonists has yet to
be elucidated. Since the observations of Labat et al.
(1992), no known selective antagonists has been re-
ported. Without such compounds the identification of
CysLT receptors is severely compromised and our no-
menclature for the receptors associated with vascular
inflammation will be difficult to postulate. In fact, the
CysLT receptor on the human pulmonary endothelium
is also resistant to the classical CysLT antagonists (Or-
tiz et al., 1995). Presently, there is no way of identifying
the receptor associated with the relaxations induced by
LTD4 in human pulmonary vessels from the receptor
responsible for the contractions induced by this same
ligand.

In addition to these areas of research, future work in
splice variants of the different receptors may lead to a
better understanding of the cellular signal transduction
pathways subsequent to activation by the ligand. Pres-
ently, little information is available based on this ap-
proach.

The use of transgenic animals have clearly demon-
strated that BLT1 plays a role in the recruitment of
eosinophils to the inflamed site as well as a gender-
associated effect related to mouse survival in an anaphy-
lactic model. These results strongly suggest that BLT1
receptors are intimately linked with acute inflammation
in vivo. One of the most promising aspects of knockout
mice is the uncovering of new receptors or the possible
roles for receptor subtypes. The role of CysLT receptors
in these knockout animals remains to be elucidated

The recent evidence provided by Ogasawara et al.
(2002) concerning the pharmacological differences be-
tween hCysLT2 and mCysLT2 together with CysLT re-
ceptor distribution in different mouse strains suggests
that the choice of the animal model and the extrapola-
tion to human inflammation warrants considerable re-
flection. Furthermore, in human airways activation of
the CysLT1 receptor is responsible for the bronchocon-
striction both in normal and asthmatic subjects. How-
ever, there is no evidence for airway constriction in mice
(Martin et al., 1988; Richter and Sirois, 2000), and the
mCysLT1 receptor has only been implicated in constric-
tion of the microvascular smooth muscles leading to
increased permeability and extravasation. Although the
genomic organization of the mCysLT1 has been reported
by Maekawa et al. (2001), there is a need for a similar
exploration of the human CysLT1 receptor.

The relative potencies of LTC4, LTD4, and LTE4 in a
number of functional studies demonstrated that LTE4 is
generally less potent and markedly less efficient in ac-
tivating the CysLT receptors. The receptor studies in-
volving cells transfected with specific CysLT receptors
have confirmed this observation. However, there are
now very few investigations that are based on the use of
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LTE4. This is unfortunate, since there are several re-
ports suggesting that this ligand may activate another
receptor (Snyder and Krell, 1984; Mong et al., 1985;
Sjolander et al., 1990; Sakata and Bäck, 2002) or may
not activate the known classical CysLT receptors (Walch
et al., 2002). Although these observations are only sug-
gestive, care should be taken so as not to overlook these
pertinent published data, which may offer interesting
leads to our understanding the leukotriene receptors.

Young (1989) postulated that a hydrophobic pocket
existed at the receptor for the tetraene chain (the unsta-
ble triene moiety found in LTC4 or LTD4). An earlier
report (Snyder and Bernstein, 1987) had demonstrated
that several leukotriene analogs, where the heptyl
(C7H15) was positioned either para, meta, or ortho on the
phenyl ring altered the pharmacological potency profile
of the analog. Whether or not the use of stable but
pharmacologically active analogs of the cys-LTs would
provide clearer results for the presence of two separate
CysLT receptors in functional studies based on agonist
potency has received little attention. Such tools may be
of some benefit in stereochemical investigations for the
identification of receptorial proteins. Interestingly, the
functional identification and classification of the ALX
receptor has been systematically evaluated using the LX
stable analogs.

The identification and classification of the CysLT re-
ceptors has been based essentially on the ability of an-
tagonists to block or not to block a physiological re-
sponse. Although this classification has proven to be
reliable at the functional and more recently at the mo-
lecular levels, future studies need to evaluate not only
several antagonists but also the different ligands, espe-
cially when the functional profiles of the antagonists do
not appear to match what has previously been reported.

Based on investigations involving ALX and BLT re-
ceptors, there are several phenomenon that need to be
highlighted. “Receptor induction” as seen in animal
models of vascular inflammation (mouse ear model)
(Gronert et al., 2001) has now been widely accepted.
These data demonstrated that receptor message is
markedly increased in tissues or cells where a pro-in-
flammatory agent has been used as a primer. In addi-
tion, other receptor subtypes may be induced, as in the
case of the human mast cell, where IL-4 induced a re-
ceptor with a pharmacological profile different from the
classical CysLT receptors (Mellor et al., 2001). These
data warrant further attention since inducible receptors
may not be identical to constitutive receptors (receptors
that are present under normal conditions). In addition,
the G-protein second messenger systems must equally
be explored. Along similar lines, there is an intriguing
observation that at least one receptor, namely, CysLT1
may act as a pyrimidinergic (UDP) receptor (Mellor et
al., 2001) suggesting that GPCRs may be quite versatile
at the ligand-G-protein interface. Although the signifi-
cance of these latter findings remains to be established,

both observations provide fruitful areas for future work.
Furthermore, the observations that LTB4 is associated
with an excessive activation of leukocytes as well as the
5-LO pathway suggests a role for BLT receptor “tone”
and indicates that receptor expression amplifies pro-
inflammatory circuits in vivo.

In the last few years there has been some controversy
as to whether or not the BLT receptor may act as a
coreceptor for macrophage-trophic human immunodefi-
ciency virus (HIV) of the type 1 strains. Owman et al.
(1998) reported that this receptor mediated entry of
primary HIV isolates into CD14 cells. However, results
from transfected cells apparently raise some question as
to such a role for the BLT1 receptor (Martin et al., 1999).
Whether or not BLT1 antagonists can be used to prevent
HIV infection warrants perhaps further pursuit.

Although there is considerable optimism about these
recent developments in lipid mediator receptor classifi-
cation, only by further work in this area, as well as in
vascular inflammation models, will a potential for ther-
apeutic exploitation be realized.
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