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Abstract——This summary article presents an
overview of the molecular relationships among the
voltage-gated cyclic nucleotide-modulated channels
and a standard nomenclature for them, which is de-
rived from the IUPHAR Compendium of Voltage-

Gated Ion Channels.1 The complete Compendium,
including data tables for each member of the cyclic
nucleotide-modulated channel family can be found
at <http://www.iuphar-db.org/iuphar-ic/>.

Cyclic Nucleotide-Gated Channels

The family of cyclic nucleotide-modulated channels
comprises two groups: the cyclic nucleotide-gated (CNG)
channels, and the hyperpolarization-activated, cyclic
nucleotide-gated (HCN) channels. Cyclic nucleotide-
gated (CNG) cation channels are ion channels whose
activation is mediated by the direct binding of cGMP or
cAMP to the channel protein (Finn et al., 1996; Biel et
al., 1999; Flynn et al., 2001). CNG channels are ex-
pressed in the cilia of olfactory neurons and in outer
segments of rod and cone photoreceptor neurons, where
they play key roles in sensory transduction. Low levels
of CNG channel transcripts have also been found in a
variety of other tissues including brain, testis, kidney,
and heart. Despite the fact that their gating is only
slightly voltage-dependent, CNG channels are members
of the superfamily of voltage-gated cation channels. Like
other members of this large gene family, CNG channel
subunits contain six transmembrane segments (S1–S6)
including a positively charged S4 segment and an ion-
conducting pore loop between S5 and S6. CNG channels
pass monovalent cations, such as Na� and K� but do not
discriminate between them. Calcium is also permeable
but at the same time acts as a voltage-dependent blocker

of monovalent cation permeability (Frings et al., 1995;
Dzeja et al., 1999). The C terminus of all CNG channels
contains a cyclic nucleotide-binding domain (CNBD)
that has significant sequence similarity to the CNBDs of
other cyclic nucleotide receptors (Kaupp et al., 1989).
CNG channels reveal a higher sensitivity for cGMP than
for cAMP. The extent of ligand discrimination varies
significantly between the individual CNG channel types.
Photoreceptor channels strongly discriminate between
cGMP and cAMP whereas the olfactory channel is al-
most equally sensitive to both ligands.

Based on phylogenetic relationship, the six CNG
channel subunits identified in mammals are divided in
two subfamilies, the � subunits (CNGA1–CNGA4) and
the � subunits (CNGB1 and CNGB3) (Bradley et al.,
2001). When expressed in heterologous expression sys-
tems, � subunits—with the exception of CNGA4—form
functional homomeric channels. By contrast, � subunits
and CNGA4 do not yield functional channels. However,
when co-expressed with CNGA1–CNGA3 these subunits
confer novel properties (e.g., single channel flickering,
increased cAMP sensitivity) that are characteristic of
native CNG channels. Native CNG channels are be-
lieved to be tetramers composed of � and � subunits.
Although the exact stoichiometry of native channels has
not yet been determined, the subunit composition is
known for the rod photoreceptor channel CNGA1
(Kaupp et al., 1989), CNGB1a (Körschen et al., 1995), for
the cone photoreceptor channel CNGA3 (Bönigk et al.,
1993), CNGB3 (Gerstner et al., 2000), and for the olfac-
tory channel CNGA2 (Dhallan et al., 1990; Ludwig et al.,
1990), CNGA4 (Bradley et al., 1994; Liman and Buck,
1994), CNGB1b (Sautter et al., 1998; Bönigk et al.,
1999).
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Drugs That Act on CNG Channels

Several drugs have been reported to block CNG chan-
nels, although not with very high affinity. The most
specific among these drugs is L-cis diltiazem which
blocks CNG channels in a voltage-dependent manner at
micromolar concentration (Haynes, 1992). The D-cis en-
antiomer of diltiazem that is used therapeutically as a
blocker of the L-type calcium channel, is much less ef-
fective than the L-cis enantiomer in blocking CNG chan-
nels. High affinity binding of L-cis diltiazem is only seen
in heteromeric CNG channels containing the CNGB1
subunit (Leinders-Zufall and Zufall, 1995). CNG chan-
nels are also moderately sensitive to block by some other
inhibitors of the L-type calcium channel (e.g., nifedi-
pine), the local anesthetic tetracaine and calmodulin
antagonists (Finn et al., 1996). Interestingly, LY83583
[6-(phenylamino)-5,8-quinolinedione] blocks both the
soluble guanylate cyclase and some CNG channels at
similar concentrations (Leinders-Zufall and Zufall,
1995). H-8 [N-2-(methylamino)ethyl-5-isoquinoline-sul-
fonamide], which has been widely used as a nonspecific
cyclic nucleotide-dependent protein kinase inhibitor,
blocks CNG channels, though at significantly higher
concentrations than needed to inhibit protein kinases
(Wei et al., 1997).

Hyperpolarization-Activated, Cyclic Nucleotide-
Gated Channels

The hyperpolarization-activated, cyclic nucleotide-
gated (HCN) cation channels are members of the super-
family of voltage-gated cation channels (Biel et al., 1999;
Santoro and Tibbs, 1999; Kaupp and Seifert, 2001). In
contrast to most other voltage-gated channels, HCN
channels open upon hyperpolarization and close at pos-
itive potential. The cyclic nucleotides, cAMP and cGMP,
enhance HCN channel activity by shifting the activation
curve of the channels to more positive voltages. The
stimulatory effect of cyclic nucleotides is not dependent
on protein phosphorylation but is due to a direct inter-
action with the HCN channel protein. The current pro-
duced by HCN channels, termed Ih, If, or Iq, is found in
a variety of excitable cells including neurons, cardiac
pacemaker cells, and photoreceptors (Pape, 1996). The
best understood function of Ih is to control heart rate and
rhythm by acting as “pacemaker current” in the sino-
atrial (SA) node (DiFrancesco, 1993). Ih is activated dur-
ing the membrane hyperpolarization following the ter-
mination of an action potential and provides an inward
Na� current that slowly depolarizes the plasma mem-
brane. Sympathetic stimulation of SA node cells raises
cAMP levels and increases Ih, thus accelerating diastolic
depolarization and heart rate. Stimulation of muscarinic
acetylcholine receptors slows down heart rate by the
opposite action. In neurons, Ih fulfills diverse functions,
including generation of pacemaker potentials, “neuronal
pacemaking” (Pape, 1996), determination or resting po-

tential (Pape, 1996), transduction of sour taste (Stevens
et al., 2001), and control of synaptic plasticity (Mellor et
al., 2002).

In mammals, the HCN channel family comprises four
members (HCN1–HCN4) that share about 60% se-
quence identity to each other (Gauss et al., 1998; Ludwig
et al., 1998, 1999; Santoro et al., 1998). HCN channels
contain six transmembrane helices (S1–S6) and are be-
lieved to assemble in tetramers. The S4 segment of the
channels is positively charged and serves as voltage
sensor. The C terminus of all HCN channels contains a
cyclic nucleotide-binding domain that confers regulation
by cyclic nucleotides. When expressed in heterologous
systems, all four HCN channels generate currents dis-
playing the typical features of native Ih: (i) activation by
membrane hyperpolarization; (ii) permeation of Na�

and K� with a permeability ratio PNa/PK of about 0.2;
(iii) positive shift of voltage dependence of channel acti-
vation by direct binding of cAMP; (iv) channel block by
extracellular Cs�. The channels HCN1–HCN4 mainly
differ from each other with regard to their speed of
activation and the extent by which they are modulated
by cAMP. HCN1 is the fastest channel, followed by
HCN2, HCN3, and HCN4. Unlike HCN2 and HCN4,
whose activation curves are profoundly shifted by cAMP
(Ludwig et al., 1998, 1999; Ishii et al., 1999; Seifert et
al., 1999), HCN1 is only weakly affected by cAMP
(Wainger et al., 2001).

HCN channels are found in neurons and heart cells. In
SA node cells, HCN4 represents the predominantly ex-
pressed HCN channels isoform (Ishii et al., 1999; Moos-
mang et al., 2001). In mouse brain, all four HCN sub-
units have been detected (Moosmang et al., 1999;
Santoro et al., 2000). The expression levels and the
regional distribution of the HCN channel mRNAs vary
profoundly between the respective channel types. HCN2
is the most abundant neuronal channel and is found
almost ubiquitously in the brain. By contrast, HCN1 and
HCN4 are enriched in specific regions of the brain such
as thalamus (HCN4) or hippocampus (HCN1). HCN3
mRNA is uniformly expressed throughout the brain at
very low levels. HCN channels have also been detected
in the retina and some peripheral neurons such as dor-
sal root ganglion neurons (Moosmang et al., 2001).

Drugs That Act on HCN Channels

Given the key role of HCN channels in cardiac pace-
making, these channels are promising pharmacological
targets for the development of drugs used in the treat-
ment of cardiac arrhythmias and ischemic heart disease.
Several blockers of native Ih channels are known. The
most extensively studied blocker is ZD7288 [4-(N-ethyl-
N-phenylamino)-1,2-dimethyl-6-(methylamino)pyrimi-
dinium chloride] (BoSmith et al., 1993). Low micromolar
concentrations of this agent specifically block both na-
tive Ih and cloned HCN channels in a voltage-dependent
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manner. The bradycardic agent ivabradine, which is
chemically unrelated to ZD7288, reveals a similar affin-
ity and specificity for Ih as ZD7288 (Bois et al., 1996).
Other blockers of Ih are zatebradine (Raes et al., 1998),
a derivative of verapamil, and alinidine (Van Bogaert
and Goethals, 1987), a derivative of clonidine. These
agents block Ih at comparable concentrations as ZD7288.
However, they are less selective for Ih because they can
also inhibit the current mediated by some Kir channels
at concentrations that reduce Ih.
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