International Union of Basic and Clinical Pharmacology. LXXIV. Apelin Receptor Nomenclature, Distribution, Pharmacology, and Function ===================================================================================================================================== * Sarah L. Pitkin * Janet. J. Maguire * Tom I. Bonner * Anthony P. Davenport ## Abstract A gene encoding a novel class a G-protein-coupled receptor was discovered in 1993 by homology cloning and was called APJ. It was designated an “orphan” receptor until 1998, when its endogenous ligand was identified and named apelin (for APJ endogenous ligand). Since this pairing, both apelin and its receptor have been found to have a widespread distribution in both the central nervous system and the periphery. A number of physiological and pathophysiological roles for the receptor have emerged, including regulation of cardiovascular function, fluid homeostasis, and the adipoinsular axis. This review outlines the official International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification nomenclature, designating the receptor protein as the apelin receptor, together with current knowledge of its pharmacology, distribution, and functions. ## I. Introduction Since the discovery of the gene encoding the apelin receptor, originally called *APJ*, and pairing of the protein with its cognate ligands, the apelin peptides, a number of physiological and pathophysiological roles for the receptor have emerged. These include cardiovascular regulation, fluid homeostasis, modulation of the adipoinsular axis, and HIV coreceptor function in vitro. Here we summarize the discovery, deorphanization, and recommended nomenclature with subsequent characterization of the physiological and pathophysiological roles of the apelin receptor. The primary aim of this review is to outline the recommended nomenclature for this receptor. For comprehensive overviews of the apelin field, see Kleinz and Davenport (2005), Masri et al. (2005), Carpéné et al. (2007), Davenport et al. (2007), and Ladeiras-Lopes et al. (2008). Details of the pairing of APJ with apelin are outlined in Hinuma et al. (1999). For more information on the roles of apelin and its receptor in cardiovascular function, see Lee et al. (2006), Sorli et al. (2006), Chandrasekaran et al. (2008), Japp and Newby (2008), Quazi et al. (2009), and Kalea and Batlle (2010). The involvement of apelin in fluid homeostasis is described by Brown et al. (2008), Bundzikova et al. (2008) and Llorens-Cortes and Moos (2008). Castan-Laurell et al. (2005), Bełtowski (2006), Lee et al. (2006), and Rayalam et al. (2008) specifically review the contribution of this system in the adipoinsular axis. ## II. The Apelin Receptor: Recommendations for Nomenclature In 1993, a gene encoding a novel class A G-protein-coupled receptor (GPCR1) was discovered by homology cloning. It was located on chromosome 11 band q12 and showed greatest sequence homology with the angiotensin AT1 receptor (54% in the transmembrane regions) but did not bind angiotensin II. It was therefore designated an “orphan” GPCR, having no known ligand, and was named APJ by O'Dowd et al., (1993). The approved Human Genome Organization (HUGO) gene symbol for *APJ* is now *APLNR*. The gene has a number of other aliases, including *AGTRL1*, *APJ*, *APJR*, and *FLJ90771*. The endogenous ligand for this receptor was later identified as apelin, which led the International Union of Pharmacology (IUPHAR) to recommend “apelin receptor” as the nomenclature for the receptor protein (Davenport and Kleinz, 2008) (Table 1). This follows the convention of naming the receptor protein after its endogenous ligand. View this table: [TABLE 1](http://pharmrev.aspetjournals.org/content/62/3/331/T1) TABLE 1 IUPHAR recommendations on receptor nomenclature ## III. Receptor Structure The human apelin receptor comprises 380 amino acid residues and has the typical 7-transmembrane domain structure of a class A GPCR. It contains consensus sites for phosphorylation by cAMP-dependent protein kinase, palmitoylation, and glycosylation (O'Dowd et al., 1993). The apelin receptor has been identified in a number of other species, including mouse, rat, cow, rhesus macaque, *Xenopus laevis*, and *Danio rerio*. The mouse apelin receptor has 377 amino acids and 91% sequence homology with the human receptor, whereas the rat apelin receptor has 377 amino acids and 89% sequence homology with the human receptor (Fig. 1). ![Fig. 1.](http://pharmrev.aspetjournals.org/http://pharmrev.aspetjournals.org/content/pharmrev/62/3/331/F1.medium.gif) [Fig. 1.](http://pharmrev.aspetjournals.org/content/62/3/331/F1) Fig. 1. Alignment of human, rat, and mouse apelin receptors. *, identical amino acids, **:**, conserved amino acid substitution; **.**, semiconserved amino acid substitution. To date, there is no evidence for multiple receptor subtypes in mammals. During the initial receptor identification, a polymerase chain reaction strategy using oligonucleotides based on the apelin receptor yielded no closely related genes (O'Dowd et al., 1993). In addition, saturation binding experiments in human tissues gave Hill coefficients close to unity, indicating that the radioligand bound to a single receptor population (Katugampola et al., 2001), although this does not exclude the possibility of two receptor subtypes with the same affinity. Activation of apelin receptors expressed in cell lines inhibited forskolin-stimulated cAMP production, suggesting that the receptor is coupled to inhibitory G-proteins (Gi) (Habata et al., 1999), which is supported by the finding that apelin actions are pertussis toxin-sensitive (Hosoya et al., 2000; Masri et al., 2002). A number of interactions between the apelin and angiotensin systems have been reported, including recent evidence that the apelin receptor forms heterodimers with the angiotensin AT1 receptor (Chun et al., 2008). ## IV. Endogenous Agonists In 1998, the endogenous ligand for APJ was identified as a 36-amino acid peptide named apelin (for APJ endogenous ligand), isolated from bovine stomach extracts. This peptide induced extracellular acidification in CHO cells expressing apelin receptors (Tatemoto et al., 1998). cDNA encoding a 77-amino acid prepropeptide (preproapelin) was identified in human and bovine tissue (Tatemoto et al., 1998), showing considerable sequence similarity across all species examined, with the last 23 residues of the C terminus being identical in mammals (Fig. 2). ![Fig. 2.](http://pharmrev.aspetjournals.org/http://pharmrev.aspetjournals.org/content/pharmrev/62/3/331/F2.medium.gif) [Fig. 2.](http://pharmrev.aspetjournals.org/content/62/3/331/F2) Fig. 2. Sequence alignment of mammalian, fish and amphibian apelin-36 amino acid sequences. *, identical amino acids; **:**, conserved amino acid substitution; **.**, semiconserved amino acid substitution. Residues that differ from the human sequence are highlighted in red. Native preproapelin exists as a dimer, stabilized by disulfide bridges, in mouse heart (Lee et al., 2005). Preproapelin contains a number of paired basic amino acids residues (Arg-Arg and Arg-Lys) that are possible cleavage sites for endopeptidases (Habata et al., 1999). Cleavage at these sites would produce a predicted family of C-terminal fragments, including apelin-36, apelin-17, apelin-13, and the post-translationally modified (Pyr1)apelin-13 (Fig. 3), which are all agonists at the apelin receptor (Table 2). The lack of cysteine residues in these C-terminal fragments suggests that the mature peptides are monomeric. ![Fig. 3.](http://pharmrev.aspetjournals.org/http://pharmrev.aspetjournals.org/content/pharmrev/62/3/331/F3.medium.gif) [Fig. 3.](http://pharmrev.aspetjournals.org/content/62/3/331/F3) Fig. 3. Amino acid sequence of the endogenous apelin receptor agonists apelin-36 (a), apelin-17 (b), (Pyr1)apelin-13 (c), and apelin-13 (d). Shaded residues are those identical in all peptides. The post-translational modification of the N-terminal glutamate of apelin-13 to pyroglutamate is shown in dark gray. ACE2 cleaves apelin-36 and apelin-13 at the position shown (Vickers et al., 2002). *, residues found to be important for binding and activation of the apelin receptor by apelin-13 (Fan et al., 2003; Medhurst et al., 2003; El Messari et al., 2004). View this table: [TABLE 2](http://pharmrev.aspetjournals.org/content/62/3/331/T2) TABLE 2 Actions and affinities of endogenous apelin receptor agonists The degradative pathway for apelin peptides is unknown, but the recently identified angiotensin-converting enzyme 2 (ACE2) cleaves the C-terminal phenylalanine from apelin-13 and apelin-36 (Vickers et al., 2002). However, this cleavage is unlikely to inactivate the peptide, because an in vitro structure activity study showed that a fragment lacking this residue retained binding and functional activity at the rat apelin receptor expressed in CHO cells (El Messari et al., 2004). However, this fragment did not induce apelin receptor internalization in vitro and lost hypotensive activity in the rat in vivo, suggesting that cleavage by ACE2 may produce apelin fragments that induce a conformational state of the apelin receptor different from that induced by the full-length peptides (El Messari et al., 2004). It has recently been reported that (Pyr1)apelin-13, lacking the C-terminal phenylalanine, has comparable affinity and agonist activity at the native apelin receptor in human tissues in vitro (Pitkin et al., 2009), suggesting that cleavage of apelin by ACE2 is not an inactivating step in man. The existence of multiple predicted apelin isoforms raises the question of which isoform is most important in vivo. All of these predicted isoforms have been shown to be present in vivo, but the predominant apelin isoform in human cardiac tissue is (Pyr1)apelin-13 (Maguire et al., 2009), which is not unexpected because the pyroglutamate moiety protects the N terminus of peptides from exopeptidase degradation (Van Coillie et al., 1998). The predominant isoforms in plasma are (Pyr1)apelin-13, apelin-13 and apelin-17 (De Mota et al., 2004; Miettinen et al., 2007; Azizi et al., 2008), whereas apelin-36 is the major isoform present in colostrom (Hosoya et al., 2000). Rat brain was found to contain both (Pyr1)apelin-13 and apelin-17 (De Mota et al., 2004). The relative potency of the apelin peptides varies between experimental systems, (Pyr1)apelin-13 and apelin-13 being the most potent activators of apelin receptors expressed in cell lines (Tatemoto et al., 1998; Habata et al., 1999; Kawamata et al., 2001; Medhurst et al., 2003), whereas apelin-36 is the most potent inhibitor of HIV infection of cells in vitro (Zou et al., 2000). However, (Pyr1)apelin-13, apelin-13, and apelin-36 are equipotent mediators of vascular tone and cardiac contractility in human tissues in vitro, with pD2 (negative log10 of the molar concentration required to produce half-maximal response) values in the range of 8.8 to 10.4 (Maguire et al., 2009). ## V. Receptor Distribution ### A. Rat Within the rat central nervous system (CNS), mRNA encoding the apelin receptor is found in a number of areas, including the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus, the pineal gland, and the pituitary (De Mota et al., 2000; Lee et al., 2000; O'Carroll et al., 2000). Apelin receptor protein also has a widespread distribution within the rat brain, including the cerebral cortex, basal ganglia, hypothalamus, thalamus, midbrain, and reticular formation (Medhurst et al., 2003). It is noteworthy that apelin receptor mRNA and protein colocalize with vasopressin in a subset of magnocellular neurons within the SON and PVN of the rat hypothalamus (Reaux et al., 2001; O'Carroll and Lolait, 2003; De Mota et al., 2004), suggesting a role for the receptor in water balance. Apelin receptor transcripts are found in most peripheral rat tissues, the highest levels being found in the lung, heart, and kidney (Hosoya et al., 2000; O'Carroll et al., 2000; Medhurst et al., 2003). Receptor protein is present in rat lung and heart and at lower levels in the kidney cortex (Katugampola et al., 2001). ### B. Human mRNA encoding the apelin receptor is widely distributed within the human CNS but is highest in the spinal cord, corpus callosum, and medulla (Matsumoto et al., 1996; Edinger et al., 1998; Medhurst et al., 2003;). The distribution of receptor protein within the human brain has not yet been determined. As in rats, apelin receptor mRNA is found in most human peripheral tissues. However, the highest levels are found in human spleen and placenta, whereas it is highest in lung in the rat. Receptor is also present in human heart, liver, lung, kidney, and stomach (Edinger et al., 1998; Medhurst et al., 2003). The widespread distribution of apelin receptor transcripts in the periphery was consistent with a vascular localization. Autoradiography revealed apelin binding sites within a range of human large-diameter blood vessels (Katugampola et al., 2001), which was confirmed by immunohistochemistry showing localization of apelin receptor to vascular endothelial and smooth muscle cells (Kleinz et al., 2005). The presence of the apelin receptor on both the vascular endothelium and smooth muscle suggested a role in endothelium-dependent and -independent modulation of vascular tone. Apelin receptors are also present on human cardiomyocytes (Kleinz et al., 2005), raising the possibility of effects on cardiac contractility. ## VI. Apelin Peptide Distribution ### A. Rat Like its receptor, apelin peptide has a widespread distribution throughout the CNS and periphery, and there is a large amount of overlap in the expression profiles of the receptor and peptide. In the rat, mRNA encoding apelin is found within a number of CNS regions, including the nucleus accumbens, spinal cord, cortex, striatum, midbrain, hippocampus, cerebellum, and pituitary (Lee et al., 2000; Medhurst et al., 2003). Apelin peptide is expressed at highest levels in the rat pineal gland, pituitary, arcuate nucleus, and SON and PVN of the hypothalamus (Reaux et al., 2002; De Mota et al., 2004). Within the SON and PVN, the majority of apelin-positive neurons also express vasopressin (De Mota et al., 2004; Reaux-Le Goazigo et al., 2004). In the rat periphery, apelin mRNA is highest in the lung, with high levels also found in the mammary gland and heart (Habata et al., 1999; O'Carroll et al., 2000; Kawamata et al., 2001; Medhurst et al., 2003). A similar distribution is shown by the peptide (Kawamata et al., 2001). ### B. Human Within the human CNS, apelin mRNA is present in all regions tested, with highest expression in the spinal cord, corpus callosum, amygdala, substantia nigra, and pituitary gland (Medhurst et al., 2003). Peripheral apelin mRNA, like its receptor, is found at highest levels in the placenta, with lower levels in the heart, lung, and kidney (Medhurst et al., 2003). Apelin is present in a range of cell types within the placenta, lung, and kidney (De Falco et al., 2002) but has a restricted distribution within the cardiovascular system, being expressed only by vascular and endocardial endothelial cells (Kleinz and Davenport, 2004). ## VII. Synthetic Agonists A number of synthetic apelin analogs have biological activity. Apelin-12 is the smallest C-terminal fragment to bind and activate the apelin receptor (El Messari et al., 2004), and any apelin fragment containing this 12 amino acid core maintains agonist function. Cyclic apelin analogs (Fig. 4) have been found to have binding and functional activity at the apelin receptor (Hamada et al., 2008; Macaluso et al., 2009), giving important structural insights into the apelin binding site. The first nonpeptidic agonist at the apelin receptor, E339–3D6, was reported by Iturrioz et al. (2009). ![Fig. 4.](http://pharmrev.aspetjournals.org/http://pharmrev.aspetjournals.org/content/pharmrev/62/3/331/F4.medium.gif) [Fig. 4.](http://pharmrev.aspetjournals.org/content/62/3/331/F4) Fig. 4. Cyclic apelin analogs drawn from the sequences reported by Hamada et al. (2008) (a) and Macaluso et al. (2009) (b). ## VIII. Antagonists A small-molecule antagonist of the chemokine receptor CXCR4, ALX40-4C, has been shown to directly bind apelin receptors expressed in cell lines and to block ligand-induced receptor internalization and signaling. It also inhibits apelin receptor-mediated cell membrane fusion. This suggests that ALX40-4C is a nonspecific apelin receptor antagonist (Table 3) (Zhou et al., 2003). View this table: [TABLE 3](http://pharmrev.aspetjournals.org/content/62/3/331/T3) TABLE 3 Actions and affinities of apelin receptor antagonists The role of the C-terminal phenylalanine of the apelin peptides has been of particular interest since the discovery that the recently identified homolog of ACE, ACE2, cleaves this residue from apelin peptides. Apelin-13 with the C-terminal phenylalanine mutated to alanine [Apelin-13(F13A); Gln-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-**Ala**] has been shown to act as an apelin-specific functional antagonist in rats in vivo, blocking the hypotensive effects of apelin-13 (Lee et al., 2005). However, no in vitro confirmation of its antagonist activity has been made, and there are conflicting reports as to the effect of alanine substitution at this position on the activity of apelins at the apelin receptor expressed in cell lines. De Mota et al. (2000) found that substitution of the C-terminal phenylalanine of (Pyr1)apelin-13 for alanine abolished the agonist activity of this peptide at the rat apelin receptor expressed in CHO cells. However, two studies showed that substitution of the C-terminal phenylalanine for alanine in (Pyr1)apelin-13 or apelin-13 had little effect on their affinity or agonist activity at the human apelin receptor expressed in human embryonic kidney 293 cells (Fan et al., 2003; Medhurst et al., 2003). Apelin-13(F13A) has been demonstrated to have comparable affinity and agonist activity at the native apelin receptor in human cardiovascular tissues in vitro (Pitkin et al., 2009), indicating that this peptide is a full agonist in man. The disparity of these reports may reflect species differences in the structure activity relationships of the human and rat apelin receptor. ## IX. Radiolabeled Ligands A number of radiolabeled ligands for the apelin receptor have been synthesized based on the structure of the endogenous ligands (Table 4), but most are based on (Pyr1)apelin-13. [125I](Pyr1)apelin-13 binds to receptors in human left ventricle with a *K*D of 0.35 nM. It associates rapidly, with a half-time for association of 6 min, and dissociates with a half-time for dissociation of 53 min (Katugampola et al., 2001). It is noteworthy that analogs of this radioligand have been made by others with modifications at position 75. Hosoya et al. (2000) replaced the methionine at this position with norleucine to prevent possible oxidation during the radiolabeling process, because they found oxidized (Pyr1)apelin-13 to be inactive. The resulting radioligand, [125I](Pyr1)[Nle75,Tyr77]apelin-13, is commercially available. Medhurst et al. (2003) oxidized the methionine at this position, because the unoxidized form of the radioligand was very unstable. View this table: [TABLE 4](http://pharmrev.aspetjournals.org/content/62/3/331/T4) TABLE 4 Radiolabelled ligands of the apelin receptor ## X. Physiological Roles Since the discovery of apelin as the endogenous ligand for APJ in 1998, a number of physiological roles for the receptor have emerged, including regulation of cardiovascular function, fluid homeostasis, and the adipoinsular axis. ### A. Cardiovascular Roles An important role for the apelin system in cardiovascular regulation is supported by cardiovascular phenotypes in both the apelin receptor and apelin peptide knockout mouse (see section XIII). Apelin modulates vascular tone in vivo, causing a reduction in blood pressure when infused into rats (Lee et al., 2000; Reaux et al., 2001; Tatemoto et al., 2001; Cheng et al., 2003; Ishida et al., 2004; El Messari et al., 2004; Lee et al., 2005; Mitra et al., 2006; Iturrioz et al., 2007) and vasodilation of resistance vessels when infused into the human forearm (Japp et al., 2008), both responses mediated primarily by nitric oxide. In vitro, apelin causes vasodilation of human splanchnic artery, largely via a nitric oxide-dependent mechanism (Salcedo et al., 2007). Apelin also causes vasoconstriction of human saphenous vein (Katugampola et al., 2001) and mammary artery (Maguire et al., 2009) in vitro by a direct action on vascular smooth muscle. These data support a role for the apelin system in modulation of vascular tone, where apelin released from endothelial cells would act on apelin receptors on the endothelium to cause vasodilation or on underlying smooth muscle cells to cause vasoconstriction. Apelin also modulates cardiac function. Apelin peptides have positive inotropic effects in rats (Berry et al., 2004; Jia et al., 2006; Atluri et al., 2007) and mice (Ashley et al., 2005) in vivo. In vitro studies have demonstrated that apelins are potent positive inotropic agents by a direct action on cardiac tissue in rat (Szokodi et al., 2002; Dai et al., 2006; Farkasfalvi et al., 2007) and human (Maguire et al., 2009). It is noteworthy that apelins are the most potent endogenous inotropic agents yet reported in isolated cardiac tissue, with EC50 values of 40 to 125 pM in human tissue (Maguire et al., 2009) and 33 pM in rat tissue (Szokodi et al., 2002). In addition, apelin is a potent angiogenic factor (Kasai et al., 2004; Cox et al., 2006) and mitogen of endothelial cells (Kasai et al., 2004; Masri et al., 2004) and vascular smooth muscle cells (Li et al., 2008). Apelin and its receptor are required for normal cardiovascular development. In the frog, apelin and its receptor are required for normal heart morphology (Inui et al., 2006) and for angiogenesis of intersomitic vessels (Cox et al., 2006; Kälin et al., 2007). In the zebrafish, either an excess or deficit of apelin impairs the migration of anterior lateral plate mesoderm cells during gastrulation, such that the myocardial progenitos cells are not in the correct position to receive inductive signals required for differentiation, resulting in a deficiency of the heart (Scott et al., 2007; Zeng et al., 2007, Nornes et al., 2009). Mice lacking the apelin gene show retardation of retinal vascular development (Kasai et al., 2008) and narrow blood vessels in intersomitic vessels during embryogenesis (Kidoya et al., 2008), whereas *APLNR*(−/−) mice have cardiac developmental defects (Charo et al., 2009). It has recently been shown that apelin acts downstream of Cripto (official gene name *tdgf-1*) to specify murine embryonic stem cells toward the cardiac lineage (D'Aniello et al., 2009). ### B. Fluid Homeostasis The colocalization of apelin and its receptor with vasopressin in magnocellular neurons of the SON and PVN of the hypothalamus triggered investigation of their role in fluid homeostasis. Apelin, given to mice by intracerebroventricular injection, inhibits vasopressin neuron activity and vasopressin release, decreasing plasma vasopressin concentration and increasing diuresis (De Mota et al., 2004). Dehydration increases apelin (Reaux-Le Goazigo et al., 2004) and apelin receptor (O'Carroll and Lolait, 2003) expression and decreases vasopressin expression in rat magnocellular neurons (Reaux-Le Goazigo et al., 2004). In addition to its central effects, apelin has direct actions on the microvasculature of the kidney (Hus-Citharel et al., 2008). *APLNR*(−/−) mice have abnormal fluid homeostasis and altered responses to osmotic stress (Roberts et al., 2009; Roberts et al., 2010) (see section XIII). Osmotic stimuli have been show to exert opposing effects on plasma apelin and vasopressin in man; increased plasma osmolality increases plasma vasopressin and decreases plasma apelin, and vice versa (Azizi et al., 2008). However, the role of the apelin system in drinking behavior is unclear. ### C. Adipoinsular Axis Apelin is expressed and released by cultured adipocytes, identifying it as a novel adipokine (Boucher et al., 2005), and adipose tissue is a possible source of plasma apelin. Apelin expression in adipose tissue is regulated by factors such as fasting and refeeding (Boucher et al., 2005), insulin (Boucher et al., 2005; Wei et al., 2005), hypoxia (Glassford et al., 2007; Kunduzova et al., 2008), growth hormone (Kralisch et al., 2007), tumor necrosis factor α (Daviaud et al., 2006), and peroxisome proliferator-activated receptor γ coactivator 1α (Mazzucotelli et al., 2008). Whereas insulin stimulates adipose apelin expression (Boucher et al., 2005; Wei et al., 2005), apelin inhibits insulin secretion (Sörhede Winzell et al., 2005), presenting an interesting interaction between the two systems. There is evidence for a role for apelin regulation of adiposity, peripherally administered apelin causing no change in food intake (Sunter et al., 2003; Higuchi et al., 2007) but decreasing adiposity, possibly by up-regulating uncoupling proteins and increasing energy expenditure (Higuchi et al., 2007). However, investigation of the role of central apelin on food intake and body weight has yielded disparate results (Taheri et al., 2002; O'Shea et al., 2003; Sunter et al., 2003; Valle et al., 2008). Apelin may also be involved in vascularization of adipose tissue (Kunduzova et al., 2008). ### D. Other Roles There is evidence for a role for the apelin system in gastrointestinal function, with expression of apelin and its receptor in several areas of the gastrointestinal tract during embryonic development and adulthood in rodents (Wang et al., 2004; Susaki et al., 2005; Wang et al., 2009). Proposed functions include stimulation of gastric cell proliferation and cholecystokinin secretion (Wang et al., 2004) and regulation of gastric acid secretion (Lambrecht et al., 2006). Apelin is expressed in osteoblasts and may have a role in stimulating proliferation and suppressing apoptosis in this cell type (Xie et al., 2006; Tang et al., 2007; Xie et al., 2007). Apelin has also been shown to inhibit apoptosis in neurons in vitro (Zeng et al., 2010) and to have antinociceptive effects (Xu et al., 2009). It has also been suggested that apelin may have an immunomodulatory role (Habata et al., 1999; Horiuchi et al., 2003; Leeper et al., 2009). ## XI. Pathophysiological Roles ### A. Cardiovascular Disease A growing body of evidence links the apelin system with cardiovascular disease. A number of studies have noted changes in human plasma apelin levels in conditions of cardiac dysfunction, with sometimes conflicting results and reporting a very wide range of concentrations (20–4000 pg/ml) depending on the assay used and sample preparation. Overall, plasma apelin seems to rise in early heart failure (Chen et al., 2003) but to normalize or decrease in later stages (Chen et al., 2003; Chong et al., 2006; Miettinen et al., 2007). Treatments such as chronic resynchronization therapy and placement of a left ventricular assist device increase apelin peptide levels (Chen et al., 2003; Francia et al., 2007). Apelin receptor mRNA was found to be decreased in left ventricle from patients with idiopathic dilated cardiomyopathy (Földes et al., 2003). It is noteworthy that the apelin receptor is the most significantly up-regulated gene of >12,000 after mechanical offloading of failing myocardium (Chen et al., 2003). These data suggest that apelin may be up-regulated in early disease as a compensatory mechanism, increasing the force of contraction of the heart. Both apelin and its receptor may then be down-regulated later in disease when its positive inotropic effects would be detrimental, owing to the resultant increase in oxygen demand. A beneficial role of apelin in heart failure is supported by data from animal models. Cardiac apelin is increased in response to hypoxia via hypoxia-inducible factor-1 (Ronkainen et al., 2007), and both apelin and its receptor are up-regulated in ischemic heart failure in rats (Atluri et al., 2007; Sheikh et al., 2008). Apelin protects against cardiac ischemia reperfusion injury (Simpkin et al., 2007; Zeng et al., 2009) and inhibits glucose deprivation induced cardiomyocyte apoptosis (Zhang et al., 2009c), suggesting that apelin may be up-regulated in response to cardiac hypoxia to protect the tissue from ischemia reperfusion injury. The apelin system has recently been implicated in the pathogenesis of atherosclerosis by evidence from transgenic mouse models (see section XIII), although there are conflicting reports as to whether apelin signaling is beneficial or detrimental in these models. In man, apelin peptide is up-regulated in atherosclerotic coronary artery (Pitkin et al., 2009), and both apelin and its receptor are up-regulated in aortic valve stenosis, a process that displays some hallmarks of atherosclerosis (Peltonen et al., 2009), supporting an involvement of the apelin system in human atherosclerosis. Apelin also prevents aortic aneurism formation in mice (Leeper et al., 2009). A role for the apelin system in hypertension has also been proposed. Spontaneously hypertensive rats have decreased cardiovascular apelin receptor and apelin mRNA and protein compared with control rats. Exercise training or long-term all-*trans* retinoic acid treatment improves hypertension in line with an increase in apelin receptor and apelin expression (Zhong et al., 2005; Zhang et al., 2006), consistent with the predominantly hypotensive effect seen in healthy individuals and animals. Spontaneously hypertensive rats have increased apelin expression in the rostral ventrolateral medulla, and overexpression of apelin in this area causes chronic hypertension in normotensive rats (Zhang et al., 2009b). Some single-nucleotide polymorphisms (SNPs) in the gene encoding the apelin receptor (*APLNR*) and apelin peptide (*APLN*) are associated with hypertension (see section XII). There is also evidence for a role in pulmonary hypertension (Andersen et al., 2009; Falcão-Pires et al., 2009) and portal hypertension (Tiani et al., 2009). It is noteworthy that apelin is able to cause vasodilation by a prostanoid-dependent mechanism in blood vessels from patients with atherosclerotic heart disease (Maguire et al., 2009). This suggests that apelin may have beneficial vasodilatory effects even in patient groups that display a degree of endothelial dysfunction. The apelin system is proposed to have a role in pathophysiological angiogenesis, contributing to portosystemic collateralization and splanchnic neovascularization in portal hypertensive rats (Tiani et al., 2009), neoangiogenesis in liver cirrhosis (Principe et al., 2008), and tumor neoangiogenesis (Kälin et al., 2007; Sorli et al., 2007). However, angiogenic effects (Eyries et al., 2008) and induction of larger nonleaky vessels by apelin (Kidoya et al., 2010) appear to be beneficial in recovery from ischemia. ### B. Obesity and Diabetes Plasma apelin is positively correlated with body mass index in humans (Heinonen et al., 2005), and increased plasma and adipose tissue apelin expression in obese patients can be reversed by hypocaloric diet associated with weight loss (Castan-Laurell et al., 2008). However in mouse models of obesity, insulin level, rather than adiposity, is the major determinant of increased apelin expression (Boucher et al., 2005). This suggests that apelin expression may be increased in response to hyperinsulinemia associated with obesity rather than to obesity itself, although investigation of the effect of type 2 diabetes mellitus on plasma apelin has yielded disparate results (Li et al., 2006; Erdem et al., 2008). The up-regulation of apelin in obesity may be beneficial in metabolic syndrome because peripheral apelin treatment improves glucose tolerance and enhances glucose utilization in obese insulin-resistant mice (Dray et al., 2008); conversely, apelin knockout mice have reduced insulin sensitivity (Yue et al., 2010). Apelin also decreases body adiposity, without altering food intake, in obese mice by increasing the expression of uncoupling proteins and energy expenditure (Higuchi et al., 2007). The up-regulation of apelin in obesity may also have beneficial cardiovascular effects; limiting hypertension and increasing cardiac contractility (see section XI.A). ### C. Other Roles Roles for the apelin system in cardiovascular disease and obesity, conditions associated with inflammation, have raised interest in a possible connection between apelin and inflammation. Apelin expression is induced by inflammatory mediators, such as tumor necrosis factor α (Daviaud et al., 2006), interleukin-6, and interferon-γ (Han et al., 2008) and plasma apelin levels correlate with markers of inflammation (Malyszko et al., 2008). It is possible that up-regulation of apelin in response to inflammation is a compensatory mechanism to limit the onset of metabolic disorders, such as insulin resistance and cardiovascular dysfunction. The apelin system has also been suggested to be involved in HIV infection of CD4 positive cells (Choe et al., 1998; Edinger et al., 1998; Zhang et al., 1998), gastrointestinal disorders (Han et al., 2007), liver cirrhosis (Principe et al., 2008), and obstructive sleep apnea (Henley et al., 2009). ## XII. Single-Nucleotide Polymorphisms A number of SNPs within the gene encoding the apelin receptor (*APLNR*) are associated with cardiovascular disease risk. The G212A variant is associated with slower heart failure progression (Sarzani et al., 2007), whereas a SNP in the 5′ flanking region is associated with susceptibility to brain infarction (Hata et al., 2007). Three SNPs within *APLNR*, and two in the gene encoding apelin (*APLN*), have been found to be associated with hypertension (Li et al., 2009), and a number of SNPs in *APLNR* were associated with blood pressure responses to dietary sodium intervention (Zhao et al., 2010) in Han Chinese. In addition, one SNP in *APLN* is associated with fasting plasma glucose levels in Han Chinese male subjects (Zhang et al., 2009a). ## XIII. Knockout Mouse Models Mice lacking the gene encoding the apelin receptor [*APLNR*(−/−)] are not born in the expected Mendelian ratio (Charo et al., 2009). They have normal baseline blood pressure and heart rate but lack the hypotensive response to apelin seen in wild-type mice. In addition, angiotensin II produces a greater pressor effect in apelin receptor-deficient mice compared with wild-type mice, and double mutant mice, lacking both the apelin receptor and AT1a, have a higher baseline blood pressure than mice lacking AT1a only (Ishida et al., 2004). These data suggest a role for the apelin receptor in blood pressure regulation, particularly in opposing the effects of angiotensin II. *APLNR*(−/−) mice show cardiac developmental defects and modest decrements in contractile function under basal conditions, but under exercise stress, they have strikingly reduced exercise capacity (Charo et al., 2009), supporting a role for the apelin receptor in cardiac function. It is noteworthy that apelin receptor-deficient mice on an ApoE(−/−) background have a reduced atherosclerotic burden compared with *APLNR*(+/+) ApoE(−/−) mice (Hashimoto et al., 2007). Likewise, apelin knockout mice show decreased neointima formation in a carotid ligation model (Kojima et al., 2010), implying that activation of the apelin receptor is detrimental in atherosclerosis. This contrasts with the findings of Chun et al. (2008), where apelin signaling opposed angiotensin II-induced atherosclerosis in ApoE(−/−)mice. *APLNR*(−/−) mice have been shown to have abnormal fluid homeostasis, drinking significantly less water, showing an inability to concentrate their urine to the same extent as wild-type mice (Roberts et al., 2009) and having altered responses to osmotic stress (Roberts et al., 2010), supporting a role for the apelin receptor in fluid homeostasis. Apelin knockout mice are viable, fertile, appear healthy, and have normal body weight, normal water and food intake, and normal heart rates and heart morphology (Kuba et al., 2007; Charo et al., 2009). However, similar to *APLNR*(−/−) mice, these mice have slightly impaired cardiac function under basal conditions and markedly decreased exercise capacity (Charo et al., 2009). They also develop progressive impairment of cardiac contractility with age and present with more severely impaired heart function in response to pressure overload than wild-type mice (Kuba et al., 2007). This indicates that apelin is important in the maintenance of cardiac function in conditions of exercise stress, pressure overload and aging. Apelin-deficient mice also show impaired retinal vascularization and ocular development (Kasai et al., 2008) and narrow blood vessels in intersomitic vessels during embryogenesis (Kidoya et al., 2008). In addition, apelin knockout mice have diminished insulin sensitivity (Yue et al., 2010). ## XIV. Conclusion In conclusion, since the pairing of the apelin receptor with its endogenous ligand apelin in 1998, a number of physiological and pathophysiological roles have emerged for this receptor, including modulation of the cardiovascular system, fluid homeostasis, and the adipoinsular axis. Development of additional pharmacological tools, particularly a competitive antagonist, and further investigation of the roles of endogenous apelin will aid validation of this system as a drug target in a range of conditions. ## Acknowledgments. This work was supported by the British Heart Foundation [Grants PS/02/001, PG/09/050/27734, FS/06/017]. ## Footnotes * This article is available online at [http://pharmrev.aspetjournals.org](http://pharmrev.aspetjournals.org). doi:10.1124/pr.110.002949. * 1 Abbreviations: GPCR : G-protein-coupled receptor IUPHAR : International Union of Pharmacology AT : angiotensin CHO : Chinese hamster ovary ACE : angiotensin-converting enzyme CNS : central nervous system SON : supraoptic nucleus PVN : paraventricular nucleus SNP : single-nucleotide polymorphism p*K*D : the negative log 10 of the equilibrium dissociation constant of a ligand determined directly in a binding assay using a labeled form of the ligand. * Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics ## References 1. Andersen CU, Markvardsen LH, Hilberg O, Simonsen U (2009) Pulmonary apelin levels and effects in rats with hypoxic pulmonary hypertension. Respir Med 103:1663–1671. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.rmed.2009.05.011&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=19539454&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 2. Ashley EA, Powers J, Chen M, Kundu R, Finsterbach T, Caffarelli A, Deng A, Eichhorn J, Mahajan R, Agrawal R, et al. (2005) The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res 65:73–82. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTM6ImNhcmRpb3Zhc2NyZXMiO3M6NToicmVzaWQiO3M6NzoiNjUvMS83MyI7czo0OiJhdG9tIjtzOjIzOiIvcGhhcm1yZXYvNjIvMy8zMzEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 3. Atluri P, Morine KJ, Liao GP, Panlilio CM, Berry MF, Hsu VM, Hiesinger W, Cohen JE, Joseph Woo Y (2007) Ischemic heart failure enhances endogenous myocardial apelin and APJ receptor expression. Cell Mol Biol Lett 12:127–138. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.2478/s11658-006-0058-7&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17119870&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000244632300011&link_type=ISI) 4. Azizi M, Iturrioz X, Blanchard A, Peyrard S, De Mota N, Chartrel N, Vaudry H, Corvol P, Llorens-Cortes C (2008) Reciprocal regulation of plasma apelin and vasopressin by osmotic stimuli. J Am Soc Nephrol 19:1015–1024. [FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiam5lcGhyb2wiO3M6NToicmVzaWQiO3M6OToiMTkvNS8xMDE1IjtzOjQ6ImF0b20iO3M6MjM6Ii9waGFybXJldi82Mi8zLzMzMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 5. Bełtowski J (2006) Apelin and visfatin: unique ”beneficial“ adipokines upregulated in obesity? Med Sci Monit 12:RA112–RA119. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=16733497&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000238542000022&link_type=ISI) 6. Berry MF, Pirolli TJ, Jayasankar V, Burdick J, Morine KJ, Gardner TJ, Woo YJ (2004) Apelin has in vivo inotropic effects on normal and failing hearts. Circulation 110:II187–II193. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=15364861&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000224023600033&link_type=ISI) 7. Boucher J, Masri B, Daviaud D, Gesta S, Guigné C, Mazzucotelli A, Castan-Laurell I, Tack I, Knibiehler B, Carpéné C, et al. (2005) Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146:1764–1771. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1210/en.2004-1427&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=15677759&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000227667400016&link_type=ISI) 8. Brown CH, Ruan M, Scott V, Tobin VA, Ludwig M (2008) Multi-factorial somato-dendritic regulation of phasic spike discharge in vasopressin neurons. Prog Brain Res 170:219–228. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/S0079-6123(08)00419-6&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18655885&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 9. Bundzikova J, Pirnik Z, Zelena D, Mikkelsen JD, Kiss A (2008) Response of substances co-expressed in hypothalamic magnocellular neurons to osmotic challenges in normal and Brattleboro rats. Cell Mol Neurobiol 28:1033–1047. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1007/s10571-008-9306-x&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18773290&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 10. Carpéné C, Dray C, Attané C, Valet P, Portillo MP, Churruca I, Milagro FI, Castan-Laurell I (2007) Expanding role for the apelin/APJ system in physiopathology. J Physiol Biochem 63:359–373. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18457011&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000254350900008&link_type=ISI) 11. Castan-Laurell I, Boucher J, Dray C, Daviaud D, Guigné C, Valet P (2005) Apelin, a novel adipokine over-produced in obesity: friend or foe? Mol Cell Endocrinol 245:7–9. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.mce.2005.09.012&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=16298469&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000235327600002&link_type=ISI) 12. Castan-Laurell I, Vítkova M, Daviaud D, Dray C, Kováciková M, Kovacova Z, Hejnova J, Stich V, Valet P (2008) Effect of hypocaloric diet-induced weight loss in obese women on plasma apelin and adipose tissue expression of apelin and APJ. Eur J Endocrinol 158:905–910. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiZWplIjtzOjU6InJlc2lkIjtzOjk6IjE1OC82LzkwNSI7czo0OiJhdG9tIjtzOjIzOiIvcGhhcm1yZXYvNjIvMy8zMzEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 13. Chandrasekaran B, Dar O, McDonagh T (2008) The role of apelin in cardiovascular function and heart failure. Eur J Heart Fail 10:725–732. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.ejheart.2008.06.002&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18583184&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000258556700001&link_type=ISI) 14. Charo DN, Ho M, Fajardo G, Kawana M, Kundu RK, Sheikh AY, Finsterbach TP, Leeper NJ, Ernst KV, Chen MM, et al. (2009) Endogenous regulation of cardiovascular function by apelin-APJ. Am J Physiol Heart Circ Physiol 297:H1904–13. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYWpwaGVhcnQiO3M6NToicmVzaWQiO3M6MTE6IjI5Ny81L0gxOTA0IjtzOjQ6ImF0b20iO3M6MjM6Ii9waGFybXJldi82Mi8zLzMzMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 15. Chen MM, Ashley EA, Deng DX, Tsalenko A, Deng A, Tabibiazar R, Ben-Dor A, Fenster B, Yang E, King JY, et al. (2003) Novel role for the potent endogenous inotrope apelin in human cardiac dysfunction. Circulation 108:1432–1439. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTQ6ImNpcmN1bGF0aW9uYWhhIjtzOjU6InJlc2lkIjtzOjExOiIxMDgvMTIvMTQzMiI7czo0OiJhdG9tIjtzOjIzOiIvcGhhcm1yZXYvNjIvMy8zMzEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 16. Cheng X, Cheng XS, Pang CC (2003) Venous dilator effect of apelin, an endogenous peptide ligand for the orphan APJ receptor, in conscious rats. Eur J Pharmacol 470:171–175. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/S0014-2999(03)01821-1&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=12798955&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000183642600007&link_type=ISI) 17. Choe H, Farzan M, Konkel M, Martin K, Sun Y, Marcon L, Cayabyab M, Berman M, Dorf ME, Gerard N, et al. (1998) The orphan seven-transmembrane receptor apj supports the entry of primary T-cell-line-tropic and dualtropic human immunodeficiency virus type 1. J Virol 72:6113–6118. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoianZpIjtzOjU6InJlc2lkIjtzOjk6IjcyLzcvNjExMyI7czo0OiJhdG9tIjtzOjIzOiIvcGhhcm1yZXYvNjIvMy8zMzEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 18. Chong KS, Gardner RS, Morton JJ, Ashley EA, McDonagh TA (2006) Plasma concentrations of the novel peptide apelin are decreased in patients with chronic heart failure. Eur J Heart Fail 8:355–360. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.ejheart.2005.10.007&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=16464638&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000238750400004&link_type=ISI) 19. Chun HJ, Ali ZA, Kojima Y, Kundu RK, Sheikh AY, Agrawal R, Zheng L, Leeper NJ, Pearl NE, Patterson AJ, et al. (2008) Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J Clin Invest 118:3343–3354. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18769630&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000259828600016&link_type=ISI) 20. Cox CM, D'Agostino SL, Miller MK, Heimark RL, Krieg PA (2006) Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev Biol 296:177–189. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.ydbio.2006.04.452&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=16750822&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000239359800014&link_type=ISI) 21. Dai T, Ramirez-Correa G, Gao WD (2006) Apelin increases contractility in failing cardiac muscle. Eur J Pharmacol 553:222–228. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.ejphar.2006.09.034&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17055480&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000242772600031&link_type=ISI) 22. D'Aniello C, Lonardo E, Iaconis S, Guardiola O, Liguoro AM, Liguori GL, Autiero M, Carmeliet P, Minchiotti G (2009) G protein-coupled receptor APJ and its ligand apelin act downstream of Cripto to specify embryonic stem cells toward the cardiac lineage through extracellular signal-regulated kinase/p70S6 kinase signaling pathway. Circ Res 105:231–238. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNpcmNyZXNhaGEiO3M6NToicmVzaWQiO3M6OToiMTA1LzMvMjMxIjtzOjQ6ImF0b20iO3M6MjM6Ii9waGFybXJldi82Mi8zLzMzMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 23. 1. Offermanns S, 2. Rosenthal W Davenport AP, Pitkin SL, Maguire JJ (2007) Apelins, in Encyclopedic Reference of Molecular Pharmacology (Offermanns S, Rosenthal W eds) pp 201–206, Springer, Berlin. 24. Davenport AP, Kleinz MJ (2008) Apelin receptor. IUPHAR database (IUPHAR-DB). Available at [http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=7](http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=7). 25. Daviaud D, Boucher J, Gesta S, Dray C, Guigne C, Quilliot D, Ayav A, Ziegler O, Carpene C, Saulnier-Blache JS, et al. (2006) TNFalpha up-regulates apelin expression in human and mouse adipose tissue. FASEB J 20:1528–1530. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiZmFzZWJqIjtzOjU6InJlc2lkIjtzOjk6IjIwLzkvMTUyOCI7czo0OiJhdG9tIjtzOjIzOiIvcGhhcm1yZXYvNjIvMy8zMzEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 26. De Falco M, De Luca L, Onori N, Cavallotti I, Artigiano F, Esposito V, De Luca B, Laforgia V, Groeger AM, De Luca A (2002) Apelin expression in normal human tissues. In Vivo 16:333–336. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=12494873&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000179866200010&link_type=ISI) 27. De Mota N, Lenkei Z, Llorens-Cortès C (2000) Cloning, pharmacological characterization and brain distribution of the rat apelin receptor. Neuroendocrinology 72:400–407. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1159/000054609&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=11146423&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000166275400009&link_type=ISI) 28. De Mota N, Reaux-Le Goazigo A, El Messari S, Chartrel N, Roesch D, Dujardin C, Kordon C, Vaudry H, Moos F, Llorens-Cortes C (2004) Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci USA 101:10464–10469. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTAxLzI4LzEwNDY0IjtzOjQ6ImF0b20iO3M6MjM6Ii9waGFybXJldi82Mi8zLzMzMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 29. Dray C, Knauf C, Daviaud D, Waget A, Boucher J, Buléon M, Cani PD, Attané C, Guigné C, Carpéné C, et al. (2008) Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab 8:437–445. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.cmet.2008.10.003&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=19046574&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000260675300010&link_type=ISI) 30. Edinger AL, Hoffman TL, Sharron M, Lee B, Yi Y, Choe W, Kolson DL, Mitrovic B, Zhou Y, Faulds D, et al. (1998) An orphan seven-transmembrane domain receptor expressed widely in the brain functions as a coreceptor for human immunodeficiency virus type 1 and simian immunodeficiency virus. J Virol 72:7934–7940. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoianZpIjtzOjU6InJlc2lkIjtzOjEwOiI3Mi8xMC83OTM0IjtzOjQ6ImF0b20iO3M6MjM6Ii9waGFybXJldi82Mi8zLzMzMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 31. El Messari S, Iturrioz X, Fassot C, De Mota N, Roesch D, Llorens-Cortes C (2004) Functional dissociation of apelin receptor signaling and endocytosis: implications for the effects of apelin on arterial blood pressure. J Neurochem 90:1290–1301. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1111/j.1471-4159.2004.02591.x&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=15341513&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000223642600002&link_type=ISI) 32. Erdem G, Dogru T, Tasci I, Sonmez A, Tapan S (2008) Low plasma apelin levels in newly diagnosed type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 116:289–292. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1055/s-2007-1004564&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18484561&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000256533500007&link_type=ISI) 33. Eyries M, Siegfried G, Ciumas M, Montagne K, Agrapart M, Lebrin F, Soubrier F (2008) Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ Res 103:432–440. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNpcmNyZXNhaGEiO3M6NToicmVzaWQiO3M6OToiMTAzLzQvNDMyIjtzOjQ6ImF0b20iO3M6MjM6Ii9waGFybXJldi82Mi8zLzMzMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 34. Falcão-Pires I, Gonçalves N, Henriques-Coelho T, Moreira-Gonçalves D, Roncon-Albuquerque R Jr., Leite-Moreira AF (2009) Apelin decreases myocardial injury and improves right ventricular function in monocrotaline-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 296:H2007–14. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYWpwaGVhcnQiO3M6NToicmVzaWQiO3M6MTE6IjI5Ni82L0gyMDA3IjtzOjQ6ImF0b20iO3M6MjM6Ii9waGFybXJldi82Mi8zLzMzMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 35. Fan X, Zhou N, Zhang X, Mukhtar M, Lu Z, Fang J, DuBois GC, Pomerantz RJ (2003) Structural and functional study of the apelin-13 peptide, an endogenous ligand of the HIV-1 coreceptor, APJ. Biochemistry 42:10163–10168. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1021/bi030049s&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=12939143&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000185025100012&link_type=ISI) 36. Farkasfalvi K, Stagg MA, Coppen SR, Siedlecka U, Lee J, Soppa GK, Marczin N, Szokodi I, Yacoub MH, Terracciano CM (2007) Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochem Biophys Res Commun 357:889–895. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.bbrc.2007.04.017&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17466269&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000246648400012&link_type=ISI) 37. Földes G, Horkay F, Szokodi I, Vuolteenaho O, Ilves M, Lindstedt KA, Mäyränpää M, Sármán B, Seres L, Skoumal R, et al. (2003) Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure. Biochem Biophys Res Commun 308:480–485. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/S0006-291X(03)01424-4&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=12914775&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000184945400013&link_type=ISI) 38. Francia P, Salvati A, Balla C, De Paolis P, Pagannone E, Borro M, Gentile G, Simmaco M, De Biase L, Volpe M (2007) Cardiac resynchronization therapy increases plasma levels of the endogenous inotrope apelin. Eur J Heart Fail 9:306–309. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.ejheart.2006.06.005&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=16891152&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000245560600013&link_type=ISI) 39. Glassford AJ, Yue P, Sheikh AY, Chun HJ, Zarafshar S, Chan DA, Reaven GM, Quertermous T, Tsao PS (2007) HIF-1 regulates hypoxia- and insulin-induced expression of apelin in adipocytes. Am J Physiol Endocrinol Metab 293:E1590–E1596. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYWpwZW5kbyI7czo1OiJyZXNpZCI7czoxMToiMjkzLzYvRTE1OTAiO3M6NDoiYXRvbSI7czoyMzoiL3BoYXJtcmV2LzYyLzMvMzMxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 40. Habata Y, Fujii R, Hosoya M, Fukusumi S, Kawamata Y, Hinuma S, Kitada C, Nishizawa N, Murosaki S, Kurokawa T, et al. (1999) Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim Biophys Acta 1452:25–35. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10525157&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 41. Hamada J, Kimura J, Ishida J, Kohda T, Morishita S, Ichihara S, Fukamizu A (2008) Evaluation of novel cyclic analogues of apelin. Int J Mol Med 22:547–552. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18813863&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 42. Han S, Wang G, Qiu S, de la Motte C, Wang HQ, Gomez G, Englander EW, Greeley GH Jr. (2007) Increased colonic apelin production in rodents with experimental colitis and in humans with IBD. Regul Pept 142:131–137. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.regpep.2007.02.002&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17391779&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000248091400008&link_type=ISI) 43. Han S, Wang G, Qi X, Englander EW, Greeley GH Jr. (2008) Involvement of a Stat3 binding site in inflammation-induced enteric apelin expression. Am J Physiol Gastrointest Liver Physiol 295:G1068–78. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NToiYWpwZ2kiO3M6NToicmVzaWQiO3M6MTE6IjI5NS81L0cxMDY4IjtzOjQ6ImF0b20iO3M6MjM6Ii9waGFybXJldi82Mi8zLzMzMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 44. Hashimoto T, Kihara M, Imai N, Yoshida S, Shimoyamada H, Yasuzaki H, Ishida J, Toya Y, Kiuchi Y, Hirawa N, et al. (2007) Requirement of apelin-apelin receptor system for oxidative stress-linked atherosclerosis. Am J Pathol 171:1705–1712. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.2353/ajpath.2007.070471&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17884970&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000250736100028&link_type=ISI) 45. Hashimoto Y, Ishida J, Yamamoto R, Fujiwara K, Asada S, Kasuya Y, Mochizuki N, Fukamizu A (2005) G protein-coupled APJ receptor signaling induces focal adhesion formation and cell motility. Int J Mol Med 16:787–792. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=16211245&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000232574300002&link_type=ISI) 46. Hata J, Matsuda K, Ninomiya T, Yonemoto K, Matsushita T, Ohnishi Y, Saito S, Kitazono T, Ibayashi S, Iida M, et al. (2007) Functional SNP in an Sp1-binding site of AGTRL1 gene is associated with susceptibility to brain infarction. Hum Mol Genet 16:630–639. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiaG1nIjtzOjU6InJlc2lkIjtzOjg6IjE2LzYvNjMwIjtzOjQ6ImF0b20iO3M6MjM6Ii9waGFybXJldi82Mi8zLzMzMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 47. Heinonen MV, Purhonen AK, Miettinen P, Pääkkönen M, Pirinen E, Alhava E, Akerman K, Herzig KH (2005) Apelin, orexin-A and leptin plasma levels in morbid obesity and effect of gastric banding. Regul Pept 130:7–13. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.regpep.2005.05.003&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=15970339&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000230973700002&link_type=ISI) 48. Henley DE, Buchanan F, Gibson R, Douthwaite JA, Wood SA, Woltersdorf WW, Catterall JR, Lightman SL (2009) Plasma apelin levels in obstructive sleep apnea and the effect of continuous positive airway pressure therapy. J Endocrinol 203:181–188. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoiam9lIjtzOjU6InJlc2lkIjtzOjk6IjIwMy8xLzE4MSI7czo0OiJhdG9tIjtzOjIzOiIvcGhhcm1yZXYvNjIvMy8zMzEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 49. Higuchi K, Masaki T, Gotoh K, Chiba S, Katsuragi I, Tanaka K, Kakuma T, Yoshimatsu H (2007) Apelin, an APJ receptor ligand, regulates body adiposity and favors the messenger ribonucleic acid expression of uncoupling proteins in mice. Endocrinology 148:2690–2697. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1210/en.2006-1270&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17347313&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000246572400017&link_type=ISI) 50. Hinuma S, Onda H, Fujino M (1999) The quest for novel bioactive peptides utilizing orphan seven-transmembrane-domain receptors. J Mol Med 77:495–504. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1007/s001090050403&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10475064&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 51. Horiuchi Y, Fujii T, Kamimura Y, Kawashima K (2003) The endogenous, immunologically active peptide apelin inhibits lymphocytic cholinergic activity during immunological responses. J Neuroimmunol 144:46–52. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.jneuroim.2003.08.029&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=14597097&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000186688200006&link_type=ISI) 52. Hosoya M, Kawamata Y, Fukusumi S, Fujii R, Habata Y, Hinuma S, Kitada C, Honda S, Kurokawa T, Onda H, et al. (2000) Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem 275:21061–21067. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyNzUvMjgvMjEwNjEiO3M6NDoiYXRvbSI7czoyMzoiL3BoYXJtcmV2LzYyLzMvMzMxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 53. Hus-Citharel A, Bouby N, Frugière A, Bodineau L, Gasc JM, Llorens-Cortes C (2008) Effect of apelin on glomerular hemodynamic function in the rat kidney. Kidney Int 74:486–494. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1038/ki.2008.199&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18509323&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000258064100015&link_type=ISI) 54. Inui M, Fukui A, Ito Y, Asashima M (2006) Xapelin and Xmsr are required for cardiovascular development in Xenopus laevis. Dev Biol 298:188–200. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.ydbio.2006.06.028&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=16876154&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000241071100017&link_type=ISI) 55. Ishida J, Hashimoto T, Hashimoto Y, Nishiwaki S, Iguchi T, Harada S, Sugaya T, Matsuzaki H, Yamamoto R, Shiota N, et al. (2004) Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem 279:26274–26279. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyNzkvMjUvMjYyNzQiO3M6NDoiYXRvbSI7czoyMzoiL3BoYXJtcmV2LzYyLzMvMzMxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 56. Iturrioz X, El Messari S, De Mota N, Fassot C, Alvear-Perez R, Maigret B, Llorens-Cortes C (2007) [Functional dissociation between apelin receptor signaling and endocytosis: implications for the effects of apelin on arterial blood pressure.] Arch Mal Coeur Vaiss 100:704–708. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17928781&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 57. Iturrioz X, Alvear-Perez R, De Mota N, Franchet C, Guillier F, Leroux V, Dabire H, Le Jouan M, Chabane H, Gerbier R, et al. (2009) Identification and pharmacological properties of E339–3D6, the first nonpeptidic apelin receptor agonist. FASEB J doi:[10.1096/fj.09-140715](http://pharmrev.aspetjournals.org/lookup/doi/10.1096/fj.09-140715). 58. Japp AG, Cruden NL, Amer DA, Li VK, Goudie EB, Johnston NR, Sharma S, Neilson I, Webb DJ, Megson IL, et al. (2008) Vascular effects of apelin in vivo in man. J Am Coll Cardiol 52:908–913. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.jacc.2008.06.013&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18772060&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000258911700004&link_type=ISI) 59. Japp AG, Newby DE (2008) The apelin-APJ system in heart failure: pathophysiologic relevance and therapeutic potential. Biochem Pharmacol 75:1882–1892. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.bcp.2007.12.015&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18272138&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000256144600002&link_type=ISI) 60. Jia YX, Pan CS, Zhang J, Geng B, Zhao J, Gerns H, Yang J, Chang JK, Tang CS, Qi YF (2006) Apelin protects myocardial injury induced by isoproterenol in rats. Regul Pept 133:147–154. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.regpep.2005.09.033&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=16278022&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000234796200021&link_type=ISI) 61. Kalea AZ, Batlle D (2010) Apelin and ACE2 in cardiovascular disease. Curr Opin Investig Drugs 11:273–282. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=20178040&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 62. Kälin RE, Kretz MP, Meyer AM, Kispert A, Heppner FL, Brändli AW (2007) Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Dev Biol 305:599–614. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.ydbio.2007.03.004&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17412318&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000246461000019&link_type=ISI) 63. Kasai A, Shintani N, Oda M, Kakuda M, Hashimoto H, Matsuda T, Hinuma S, Baba A (2004) Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem Biophys Res Commun 325:395–400. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.bbrc.2004.10.042&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=15530405&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000225279600004&link_type=ISI) 64. Kasai A, Shintani N, Kato H, Matsuda S, Gomi F, Haba R, Hashimoto H, Kakuda M, Tano Y, Baba A (2008) Retardation of retinal vascular development in apelin-deficient mice. Arterioscler Thromb Vasc Biol 28:1717–1722. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYXR2YmFoYSI7czo1OiJyZXNpZCI7czoxMDoiMjgvMTAvMTcxNyI7czo0OiJhdG9tIjtzOjIzOiIvcGhhcm1yZXYvNjIvMy8zMzEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 65. Katugampola SD, Maguire JJ, Matthewson SR, Davenport AP (2001) [125I]-(Pyr1)Apelin-13 is a novel radioligand for localizing the APJ orphan receptor in human and rat tissues with evidence for a vasoconstrictor role in man. Br J Pharmacol 132:1255–1260. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1038/sj.bjp.0703939&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=11250876&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000167499200012&link_type=ISI) 66. Kawamata Y, Habata Y, Fukusumi S, Hosoya M, Fujii R, Hinuma S, Nishizawa N, Kitada C, Onda H, Nishimura O, et al. (2001) Molecular properties of apelin: tissue distribution and receptor binding. Biochim Biophys Acta 1538:162–171. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=11336787&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000168519100006&link_type=ISI) 67. Kidoya H, Ueno M, Yamada Y, Mochizuki N, Nakata M, Yano T, Fujii R, Takakura N (2008) Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. EMBO J 27:522–534. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1038/sj.emboj.7601982&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18200044&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000253408900005&link_type=ISI) 68. Kidoya H, Naito H, Takakura N (2010) Apelin induces enlarged and nonleaky blood vessels for functional recovery from ischemia. Blood 115:3166–3174. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTI6ImJsb29kam91cm5hbCI7czo1OiJyZXNpZCI7czoxMToiMTE1LzE1LzMxNjYiO3M6NDoiYXRvbSI7czoyMzoiL3BoYXJtcmV2LzYyLzMvMzMxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 69. Kleinz MJ, Davenport AP (2004) Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul Pept 118:119–125. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.regpep.2003.11.002&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=15003827&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000220320300001&link_type=ISI) 70. Kleinz MJ, Davenport AP (2005) Emerging roles of apelin in biology and medicine. Pharmacol Ther 107:198–211. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.pharmthera.2005.04.001&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=15907343&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000234189900004&link_type=ISI) 71. Kleinz MJ, Skepper JN, Davenport AP (2005) Immunocytochemical localisation of the apelin receptor, APJ, to human cardiomyocytes, vascular smooth muscle and endothelial cells. Regul Pept 126:233–240. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.regpep.2004.10.019&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=15664671&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000226955000010&link_type=ISI) 72. Kojima Y, Kundu R, Cox CM, Leeper NJ, Anderson JA, Chun HJ, Ali ZA, Ashley EA, Krieg PA, Quertermous T (2010) Upregulation of the apelin-APJ pathway promotes neointima formation in the carotid ligation model in mouse. Cardiovasc Res doi:[10.1093/cvr/cvq052](http://pharmrev.aspetjournals.org/lookup/doi/10.1093/cvr/cvq052). 73. Kralisch S, Lossner U, Bluher M, Paschke R, Stumvoll M, Fasshauer M (2007) Growth hormone induces apelin mRNA expression and secretion in mouse 3T3–L1 adipocytes. Regul Pept 139:84–89. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.regpep.2006.10.009&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17126924&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000244767000012&link_type=ISI) 74. Kuba K, Zhang L, Imai Y, Arab S, Chen M, Maekawa Y, Leschnik M, Leibbrandt A, Markovic M, Makovic M, et al. (2007) Impaired heart contractility in Apelin gene-deficient mice associated with aging and pressure overload. Circ Res 101:e32–42. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNpcmNyZXNhaGEiO3M6NToicmVzaWQiO3M6OToiMTAxLzQvZTMyIjtzOjQ6ImF0b20iO3M6MjM6Ii9waGFybXJldi82Mi8zLzMzMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 75. Kunduzova O, Alet N, Delesque-Touchard N, Millet L, Castan-Laurell I, Muller C, Dray C, Schaeffer P, Herault JP, Savi P, et al. (2008) Apelin/APJ signaling system: a potential link between adipose tissue and endothelial angiogenic processes. FASEB J 22:4146–4153. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiZmFzZWJqIjtzOjU6InJlc2lkIjtzOjEwOiIyMi8xMi80MTQ2IjtzOjQ6ImF0b20iO3M6MjM6Ii9waGFybXJldi82Mi8zLzMzMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 76. Ladeiras-Lopes R, Ferreira-Martins J, Leite-Moreira AF (2008) The apelinergic system: the role played in human physiology and pathology and potential therapeutic applications. Arq Bras Cardiol 90:343–349. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18516406&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 77. Lambrecht NW, Yakubov I, Zer C, Sachs G (2006) Transcriptomes of purified gastric ECL and parietal cells: identification of a novel pathway regulating acid secretion. Physiol Genomics 25:153–165. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTU6InBoeXNpb2xnZW5vbWljcyI7czo1OiJyZXNpZCI7czo4OiIyNS8xLzE1MyI7czo0OiJhdG9tIjtzOjIzOiIvcGhhcm1yZXYvNjIvMy8zMzEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 78. Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, Osmond DH, George SR, O'Dowd BF (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74:34–41. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1046/j.1471-4159.2000.0740034.x&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10617103&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000084294600003&link_type=ISI) 79. Lee DK, Saldivia VR, Nguyen T, Cheng R, George SR, O'Dowd BF (2005) Modification of the terminal residue of apelin-13 antagonizes its hypotensive action. Endocrinology 146:231–236. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1210/en.2004-0359&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=15486224&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000225766500032&link_type=ISI) 80. Lee DK, George SR, O'Dowd BF (2006) Unravelling the roles of the apelin system: prospective therapeutic applications in heart failure and obesity. Trends Pharmacol Sci 27:190–194. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.tips.2006.02.006&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=16530855&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000237259300004&link_type=ISI) 81. Leeper NJ, Tedesco MM, Kojima Y, Schultz GM, Kundu RK, Ashley EA, Tsao PS, Dalman RL, Quertermous T (2009) Apelin prevents aortic aneurysm formation by inhibiting macrophage inflammation. Am J Physiol Heart Circ Physiol 296:H1329–1335. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYWpwaGVhcnQiO3M6NToicmVzaWQiO3M6MTE6IjI5Ni81L0gxMzI5IjtzOjQ6ImF0b20iO3M6MjM6Ii9waGFybXJldi82Mi8zLzMzMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 82. Li L, Yang G, Li Q, Tang Y, Yang M, Yang H, Li K (2006) Changes and relations of circulating visfatin, apelin, and resistin levels in normal, impaired glucose tolerance, and type 2 diabetic subjects. Exp Clin Endocrinol Diabetes 114:544–548. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1055/s-2006-948309&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17177135&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000243186100002&link_type=ISI) 83. Li F, Li L, Qin X, Pan W, Feng F, Chen F, Zhu B, Liao D, Tanowitz H, Albanese C, et al. (2008) Apelin-induced vascular smooth muscle cell proliferation: the regulation of cyclin D1. Front Biosci 13:3786–3792. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18508473&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000255885000048&link_type=ISI) 84. Li WW, Niu WQ, Zhang Y, Wu S, Gao PJ, Zhu DL (2009) Family-based analysis of apelin and AGTRL1 gene polymorphisms with hypertension in Han Chinese. J Hypertens 27:1194–1201. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1097/HJH.0b013e32832a3eb1&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=19307984&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000266721300015&link_type=ISI) 85. Llorens-Cortes C, Moos F (2008) Opposite potentiality of hypothalamic coexpressed neuropeptides, apelin and vasopressin in maintaining body-fluid homeostasis. Prog Brain Res 170:559–570. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/S0079-6123(08)00443-3&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18655909&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 86. Macaluso NJ, Pitkin SL, Sanderson PN, Davenport AP, Glen RC (2009) Development and characterization of cyclic analogs of apelin-13 through replica-exchange molecular dynamics and experimental validation; COMP 182; in 237th ACS National Meeting; 2009 March 22–26; Salt Lake City, UT. American Chemical Society, Washington DC. Available at [http://oasys2.confex.com/acs/237nm/techprogram/P1240153.HTM](http://oasys2.confex.com/acs/237nm/techprogram/P1240153.HTM). 87. Maguire JJ, Kleinz MJ, Pitkin SL, Davenport AP (2009) [Pyr1]apelin-13 identified as the predominant apelin isoform in the human heart: vasoactive mechanisms and inotropic action in disease. Hypertension 54:598–604. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTU6Imh5cGVydGVuc2lvbmFoYSI7czo1OiJyZXNpZCI7czo4OiI1NC8zLzU5OCI7czo0OiJhdG9tIjtzOjIzOiIvcGhhcm1yZXYvNjIvMy8zMzEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 88. Malyszko J, Malyszko JS, Pawlak K, Wolczynski S, Mysliwiec M (2008) Apelin, a novel adipocytokine, in relation to endothelial function and inflammation in kidney allograft recipients. Transplant Proc 40:3466–3469. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.transproceed.2008.06.059&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=19100414&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 89. Masri B, Lahlou H, Mazarguil H, Knibiehler B, Audigier Y (2002) Apelin (65–77) activates extracellular signal-regulated kinases via a PTX-sensitive G protein. Biochem Biophys Res Commun 290:539–545. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1006/bbrc.2001.6230&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=11779205&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000173480900082&link_type=ISI) 90. Masri B, Morin N, Cornu M, Knibiehler B, Audigier Y (2004) Apelin (65–77) activates p70 S6 kinase and is mitogenic for umbilical endothelial cells. FASEB J 18:1909–1911. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiZmFzZWJqIjtzOjU6InJlc2lkIjtzOjEyOiIwNC0xOTMwZmpldjEiO3M6NDoiYXRvbSI7czoyMzoiL3BoYXJtcmV2LzYyLzMvMzMxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 91. Masri B, Knibiehler B, Audigier Y (2005) Apelin signalling: a promising pathway from cloning to pharmacology. Cell Signal 17:415–426. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.cellsig.2004.09.018&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=15601620&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000226274900002&link_type=ISI) 92. Matsumoto M, Hidaka K, Akiho H, Tada S, Okada M, Yamaguchi T (1996) Low stringency hybridization study of the dopamine D4 receptor revealed D4-like mRNA distribution of the orphan seven-transmembrane receptor, APJ, in human brain. Neurosci Lett 219:119–122. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/S0304-3940(96)13198-0&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=8971794&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=A1996VW51700013&link_type=ISI) 93. Mazzucotelli A, Ribet C, Castan-Laurell I, Daviaud D, Guigné C, Langin D, Valet P (2008) The transcriptional co-activator PGC-1alpha up regulates apelin in human and mouse adipocytes. Regul Pept 150:33–37. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.regpep.2008.04.003&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18501443&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 94. Medhurst AD, Jennings CA, Robbins MJ, Davis RP, Ellis C, Winborn KY, Lawrie KW, Hervieu G, Riley G, Bolaky JE, et al. (2003) Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J Neurochem 84:1162–1172. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1046/j.1471-4159.2003.01587.x&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=12603839&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000181055900025&link_type=ISI) 95. Miettinen KH, Magga J, Vuolteenaho O, Vanninen EJ, Punnonen KR, Ylitalo K, Tuomainen P, Peuhkurinen KJ (2007) Utility of plasma apelin and other indices of cardiac dysfunction in the clinical assessment of patients with dilated cardiomyopathy. Regul Pept 140:178–184. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.regpep.2006.12.004&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17223209&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000246086400012&link_type=ISI) 96. Mitra A, Katovich MJ, Mecca A, Rowland NE (2006) Effects of central and peripheral injections of apelin on fluid intake and cardiovascular parameters in rats. Physiol Behav 89:221–225. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.physbeh.2006.06.006&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=16839572&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 97. Nornes S, Tucker B, Lardelli M (2009) Zebrafish aplnra functions in epiboly. BMC Res Notes 2:231. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1186/1756-0500-2-231&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=19922670&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 98. O'Carroll AM, Selby TL, Palkovits M, Lolait SJ (2000) Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues. Biochim Biophys Acta 1492:72–80. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=11004481&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 99. O'Carroll AM, Lolait SJ (2003) Regulation of rat APJ receptor messenger ribonucleic acid expression in magnocellular neurones of the paraventricular and supraopric nuclei by osmotic stimuli. J Neuroendocrinol 15:661–666. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1046/j.1365-2826.2003.01044.x&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=12787050&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000183194000005&link_type=ISI) 100. O'Dowd BF, Heiber M, Chan A, Heng HH, Tsui LC, Kennedy JL, Shi X, Petronis A, George SR, Nguyen T (1993) A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136:355–360. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/0378-1119(93)90495-O&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=8294032&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=A1993MU76700055&link_type=ISI) 101. O'Shea M, Hansen MJ, Tatemoto K, Morris MJ (2003) Inhibitory effect of apelin-12 on nocturnal food intake in the rat. Nutr Neurosci 6:163–167. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1080/1028415031000111273&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=12793520&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000183234000003&link_type=ISI) 102. Peltonen T, Näpänkangas J, Vuolteenaho O, Ohtonen P, Soini Y, Juvonen T, Satta J, Ruskoaho H, Taskinen P (2009) Apelin and its receptor APJ in human aortic valve stenosis. J Heart Valve Dis 18:644–652. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=20099713&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000273134600009&link_type=ISI) 103. Pitkin SL, Maguire JJ, Kuc RE, Davenport AP (2010) Modulation of the apelin/APJ system in heart failure and atherosclerosis in man. Br J Pharmacol doi: [10.1111/j.1476–5381.2010.00821.x](http://pharmrev.aspetjournals.org/lookup/doi/10.1111/j.1476-5381.2010.00821.x). 104. Principe A, Melgar-Lesmes P, Fernández-Varo G, del Arbol LR, Ros J, Morales-Ruiz M, Bernardi M, Arroyo V, Jiménez W (2008) The hepatic apelin system: a new therapeutic target for liver disease. Hepatology 48:1193–1201. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1002/hep.22467&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18816630&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000259757000021&link_type=ISI) 105. Quazi R, Palaniswamy C, Frishman WH (2009) The emerging role of apelin in cardiovascular disease and health. Cardiol Rev 17:283–286. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1097/CRD.0b013e3181b3fe0d&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=19829178&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 106. Rayalam S, Della-Fera MA, Krieg PA, Cox CM, Robins A, Baile CA (2008) A putative role for apelin in the etiology of obesity. Biochem Biophys Res Commun 368:815–819. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.bbrc.2008.02.008&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18275845&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000253925900057&link_type=ISI) 107. Reaux A, De Mota N, Skultetyova I, Lenkei Z, El Messari S, Gallatz K, Corvol P, Palkovits M, Llorens-Cortès C (2001) Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem 77:1085–1096. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1046/j.1471-4159.2001.00320.x&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=11359874&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000168771600014&link_type=ISI) 108. Reaux A, Gallatz K, Palkovits M, Llorens-Cortes C (2002) Distribution of apelin-synthesizing neurons in the adult rat brain. Neuroscience 113:653–662. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/S0306-4522(02)00192-6&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=12150785&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000177844300018&link_type=ISI) 109. Reaux-Le Goazigo A, Morinville A, Burlet A, Llorens-Cortes C, Beaudet A (2004) Dehydration-induced cross-regulation of apelin and vasopressin immunoreactivity levels in magnocellular hypothalamic neurons. Endocrinology 145:4392–4400. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1210/en.2004-0384&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=15166125&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000223401600048&link_type=ISI) 110. Roberts EM, Newson MJ, Pope GR, Landgraf R, Lolait SJ, O'Carroll AM (2009) Abnormal fluid homeostasis in apelin receptor knockout mice. J Endocrinol 202:453–462. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoiam9lIjtzOjU6InJlc2lkIjtzOjk6IjIwMi8zLzQ1MyI7czo0OiJhdG9tIjtzOjIzOiIvcGhhcm1yZXYvNjIvMy8zMzEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 111. Roberts EM, Pope GR, Newson MJ, Landgraf R, Lolait SJ, O'Carroll AM (2010) Stimulus-specific neuroendocrine responses to osmotic stimuli in apelin receptor knockout mice. J Neuroendocrinol 22:301–308. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1111/j.1365-2826.2010.01968.x&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=20136689&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000275730400009&link_type=ISI) 112. Ronkainen VP, Ronkainen JJ, Hänninen SL, Leskinen H, Ruas JL, Pereira T, Poellinger L, Vuolteenaho O, Tavi P (2007) Hypoxia inducible factor regulates the cardiac expression and secretion of apelin. FASEB J 21:1821–1830. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NjoiZmFzZWJqIjtzOjU6InJlc2lkIjtzOjk6IjIxLzgvMTgyMSI7czo0OiJhdG9tIjtzOjIzOiIvcGhhcm1yZXYvNjIvMy8zMzEuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 113. Salcedo A, Garijo J, Monge L, Fernández N, Luis García-Villalón A, Sánchez Turrión V, Cuervas-Mons V, Diéguez G (2007) Apelin effects in human splanchnic arteries. Role of nitric oxide and prostanoids. Regul Pept 144:50–55. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.regpep.2007.06.005&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17628718&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000251601800008&link_type=ISI) 114. Sarzani R, Forleo C, Pietrucci F, Capestro A, Soura E, Guida P, Sorrentino S, Iacoviello M, Romito R, Dessì-Fulgheri P, et al. (2007) The 212A variant of the APJ receptor gene for the endogenous inotrope apelin is associated with slower heart failure progression in idiopathic dilated cardiomyopathy. J Card Fail 13:521–529. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.cardfail.2007.04.002&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17826642&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000257502400003&link_type=ISI) 115. Scott IC, Masri B, D'Amico LA, Jin SW, Jungblut B, Wehman AM, Baier H, Audigier Y, Stainier DY (2007) The G protein-coupled receptor Agtrl1b regulates early development of myocardial progenitors. Dev Cell 12:403–413. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.devcel.2007.01.012&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17336906&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000245291400012&link_type=ISI) 116. Sheikh AY, Chun HJ, Glassford AJ, Kundu RK, Kutschka I, Ardigo D, Hendry SL, Wagner RA, Chen MM, Ali ZA, et al. (2008) In vivo genetic profiling and cellular localization of apelin reveals a hypoxia-sensitive, endothelial-centered pathway activated in ischemic heart failure. Am J Physiol Heart Circ Physiol 294:H88–H98. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiYWpwaGVhcnQiO3M6NToicmVzaWQiO3M6OToiMjk0LzEvSDg4IjtzOjQ6ImF0b20iO3M6MjM6Ii9waGFybXJldi82Mi8zLzMzMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 117. Simpkin JC, Yellon DM, Davidson SM, Lim SY, Wynne AM, Smith CC (2007) Apelin-13 and apelin-36 exhibit direct cardioprotective activity against ischemia-reperfusion injury. Basic Res Cardiol 102:518–528. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1007/s00395-007-0671-2&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17694254&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000250131800007&link_type=ISI) 118. Sörhede Winzell M, Magnusson C, Ahrén B (2005) The apj receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice. Regul Pept 131:12–17. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.regpep.2005.05.004&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=15970338&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000232709100002&link_type=ISI) 119. Sorli SC, van den Berghe L, Masri B, Knibiehler B, Audigier Y (2006) Therapeutic potential of interfering with apelin signalling. Drug Discov Today 11:1100–1106. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.drudis.2006.10.011&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17129829&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000242973300009&link_type=ISI) 120. Sorli SC, Le Gonidec S, Knibiehler B, Audigier Y (2007) Apelin is a potent activator of tumour neoangiogenesis. Oncogene 26:7692–7699. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1038/sj.onc.1210573&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17563744&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000251537800011&link_type=ISI) 121. Sunter D, Hewson AK, Dickson SL (2003) Intracerebroventricular injection of apelin-13 reduces food intake in the rat. Neurosci Lett 353:1–4. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/S0304-3940(03)00351-3&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=14642423&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000186810700001&link_type=ISI) 122. Susaki E, Wang G, Cao G, Wang HQ, Englander EW, Greeley GH Jr. (2005) Apelin cells in the rat stomach. Regul Pept 129:37–41. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.regpep.2005.01.013&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=15927696&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000230072400006&link_type=ISI) 123. Szokodi I, Tavi P, Földes G, Voutilainen-Myllylä S, Ilves M, Tokola H, Pikkarainen S, Piuhola J, Rysä J, Tóth M, et al. (2002) Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91:434–440. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNpcmNyZXNhaGEiO3M6NToicmVzaWQiO3M6ODoiOTEvNS80MzQiO3M6NDoiYXRvbSI7czoyMzoiL3BoYXJtcmV2LzYyLzMvMzMxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 124. Taheri S, Murphy K, Cohen M, Sujkovic E, Kennedy A, Dhillo W, Dakin C, Sajedi A, Ghatei M, Bloom S (2002) The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats. Biochem Biophys Res Commun 291:1208–1212. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1006/bbrc.2002.6575&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=11883945&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000174466300016&link_type=ISI) 125. Tang SY, Xie H, Yuan LQ, Luo XH, Huang J, Cui RR, Zhou HD, Wu XP, Liao EY (2007) Apelin stimulates proliferation and suppresses apoptosis of mouse osteoblastic cell line MCM-E1 via JNK and PI3-K/Akt signaling pathways. Peptides 28:708–718. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17109997&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 126. Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, et al. (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251:471–476. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1006/bbrc.1998.9489&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=9792798&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000076638900013&link_type=ISI) 127. Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K, Fujimiya M (2001) The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism. Regul Pept 99:87–92. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/S0167-0115(01)00236-1&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=11384769&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000169181100003&link_type=ISI) 128. Tiani C, Garcia-Pras E, Mejias M, de Gottardi A, Berzigotti A, Bosch J, Fernandez M (2009) Apelin signaling modulates splanchnic angiogenesis and portosystemic collateral vessel formation in rats with portal hypertension. J Hepatol 50:296–305. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.jhep.2008.09.019&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=19070926&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000263309000011&link_type=ISI) 129. Valle A, Hoggard N, Adams AC, Roca P, Speakman JR (2008) Chronic central administration of apelin-13 over 10 days increases food intake, body weight, locomotor activity and body temperature in C57BL/6 mice. J Neuroendocrinol 20:79–84. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=18081555&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000251553900003&link_type=ISI) 130. Van Coillie E, Proost P, Van Aelst I, Struyf S, Polfliet M, De Meester I, Harvey DJ, Van Damme J, Opdenakker G (1998) Functional comparison of two human monocyte chemotactic protein-2 isoforms, role of the amino-terminal pyroglutamic acid and processing by CD26/dipeptidyl peptidase IV. Biochemistry 37:12672–12680. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1021/bi980497d&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=9730840&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000075909800033&link_type=ISI) 131. Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, Godbout K, Parsons T, Baronas E, Hsieh F, et al. (2002) Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 277:14838–14843. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiamJjIjtzOjU6InJlc2lkIjtzOjEyOiIyNzcvMTcvMTQ4MzgiO3M6NDoiYXRvbSI7czoyMzoiL3BoYXJtcmV2LzYyLzMvMzMxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 132. Wang G, Anini Y, Wei W, Qi X, O'Carroll AM, Mochizuki T, Wang HQ, Hellmich MR, Englander EW, Greeley GH Jr. (2004) Apelin, a new enteric peptide: localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion. Endocrinology 145:1342–1348. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1210/en.2003-1116&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=14670994&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000189035500044&link_type=ISI) 133. Wang G, Kundu R, Han S, Qi X, Englander EW, Quertermous T, Greeley GH Jr. (2009) Ontogeny of apelin and its receptor in the rodent gastrointestinal tract. Regul Pept 158:32–39. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.regpep.2009.07.016&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=19660504&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 134. Wei L, Hou X, Tatemoto K (2005) Regulation of apelin mRNA expression by insulin and glucocorticoids in mouse 3T3–L1 adipocytes. Regul Pept 132:27–32. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.regpep.2005.08.003&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=16137778&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000233711500005&link_type=ISI) 135. Xie H, Tang SY, Cui RR, Huang J, Ren XH, Yuan LQ, Lu Y, Yang M, Zhou HD, Wu XP, et al. (2006) Apelin and its receptor are expressed in human osteoblasts. Regul Pept 134:118–125. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.regpep.2006.02.004&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=16563531&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000237889300008&link_type=ISI) 136. Xie H, Yuan LQ, Luo XH, Huang J, Cui RR, Guo LJ, Zhou HD, Wu XP, Liao EY (2007) Apelin suppresses apoptosis of human osteoblasts. Apoptosis 12:247–254. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1007/s10495-006-0489-7&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17136493&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000242968200019&link_type=ISI) 137. Xu N, Wang H, Fan L, Chen Q (2009) Supraspinal administration of apelin-13 induces antinociception via the opioid receptor in mice. Peptides 30:1153–1157. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.peptides.2009.02.011&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=19463749&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 138. Yue P, Jin H, Aillaud M, Deng AC, Azuma J, Asagami T, Kundu RK, Reaven GM, Quertermous T, Tsao PS (2010) Apelin is necessary for the maintenance of insulin sensitivity. Am J Physiol Endocrinol Metab 298:E59–E67. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYWpwZW5kbyI7czo1OiJyZXNpZCI7czo5OiIyOTgvMS9FNTkiO3M6NDoiYXRvbSI7czoyMzoiL3BoYXJtcmV2LzYyLzMvMzMxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 139. Zeng XX, Wilm TP, Sepich DS, Solnica-Krezel L (2007) Apelin and its receptor control heart field formation during zebrafish gastrulation. Dev Cell 12:391–402. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.devcel.2007.01.011&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=17336905&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000245291400011&link_type=ISI) 140. Zeng XJ, Zhang LK, Wang HX, Lu LQ, Ma LQ, Tang CS (2009) Apelin protects heart against ischemia/reperfusion injury in rat. Peptides 30:1144–1152. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.peptides.2009.02.010&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=19463748&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000267006700018&link_type=ISI) 141. Zeng XJ, Yu SP, Zhang L, Wei L (2010) Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons. Exp Cell Res doi:[10.1016/j.yexcr.2010.02.005](http://pharmrev.aspetjournals.org/lookup/doi/10.1016/j.yexcr.2010.02.005). 142. Zhang YJ, Dragic T, Cao Y, Kostrikis L, Kwon DS, Littman DR, KewalRamani VN, Moore JP (1998) Use of coreceptors other than CCR5 by non-syncytium-inducing adult and pediatric isolates of human immunodeficiency virus type 1 is rare in vitro. J Virol 72:9337–9344. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoianZpIjtzOjU6InJlc2lkIjtzOjEwOiI3Mi8xMS85MzM3IjtzOjQ6ImF0b20iO3M6MjM6Ii9waGFybXJldi82Mi8zLzMzMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 143. Zhang J, Ren CX, Qi YF, Lou LX, Chen L, Zhang LK, Wang X, Tang C (2006) Exercise training promotes expression of apelin and APJ of cardiovascular tissues in spontaneously hypertensive rats. Life Sci 79:1153–1159. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/j.lfs.2006.03.040&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=16674982&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000239701200004&link_type=ISI) 144. Zhang R, Hu C, Wang CR, Ma XJ, Bao YQ, Xu J, Lu JY, Qin W, Xiang KS, Jia WP (2009a) Association of apelin genetic variants with type 2 diabetes and related clinical features in Chinese Hans. Chin Med J (Engl) 122:1273–1276. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=19567136&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 145. Zhang Q, Yao F, Raizada MK, O'Rourke ST, Sun C (2009b) Apelin gene transfer into the rostral ventrolateral medulla induces chronic blood pressure elevation in normotensive rats. Circ Res 104:1421–1428. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNpcmNyZXNhaGEiO3M6NToicmVzaWQiO3M6MTE6IjEwNC8xMi8xNDIxIjtzOjQ6ImF0b20iO3M6MjM6Ii9waGFybXJldi82Mi8zLzMzMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 146. Zhang Z, Yu B, GZ (2009c) Apelin protects against cardiomyocyte apoptosis induced by glucose deprivation. Chin Med J (Engl) 122:2360–2365. [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=20079140&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 147. Zhao Q, Hixson JE, Rao DC, Gu D, Jaquish CE, Rice T, Shimmin LC, Chen J, Cao J, Kelly TN, et al. (2010) Genetic variants in the apelin system and blood pressure responses to dietary sodium interventions: a family-based association study. J Hypertens 28:756–763. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1097/HJH.0b013e3283370d32&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=20125035&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000275729300021&link_type=ISI) 148. Zhong JC, Huang DY, Liu GF, Jin HY, Yang YM, Li YF, Song XH, Du K (2005) Effects of all-trans retinoic acid on orphan receptor APJ signaling in spontaneously hypertensive rats. Cardiovasc Res 65:743–750. [Abstract/FREE Full Text](http://pharmrev.aspetjournals.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTM6ImNhcmRpb3Zhc2NyZXMiO3M6NToicmVzaWQiO3M6ODoiNjUvMy83NDMiO3M6NDoiYXRvbSI7czoyMzoiL3BoYXJtcmV2LzYyLzMvMzMxLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 149. Zhou N, Fang J, Acheampong E, Mukhtar M, Pomerantz RJ (2003) Binding of ALX40–4C to APJ, a CNS-based receptor, inhibits its utilization as a co-receptor by HIV-1. Virology 312:196–203. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/S0042-6822(03)00185-5&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=12890632&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) 150. Zou MX, Liu HY, Haraguchi Y, Soda Y, Tatemoto K, Hoshino H (2000) Apelin peptides block the entry of human immunodeficiency virus (HIV). FEBS Lett 473:15–18. [CrossRef](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10.1016/S0014-5793(00)01487-3&link_type=DOI) [PubMed](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=10802050&link_type=MED&atom=%2Fpharmrev%2F62%2F3%2F331.atom) [Web of Science](http://pharmrev.aspetjournals.org/lookup/external-ref?access_num=000086972700004&link_type=ISI)