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Abstract——In humans, the combination of all sex-
specific genetic, epigenetic, andhormonal influences of
biologic sex produces different in vivo environments
for male and female cells. We dissect how these
influences of sex modify the pharmacokinetics and
pharmacodynamics of multiple drugs and provide
examples for common drugs acting on specific organ
systems. We also discuss how gender of physicians and
patients may influence the therapeutic response to
drugs. We aim to highlight sex as a genetic modifier

of the pharmacological response todrugs,which should
be considered as a necessary step toward precision
medicine that will benefit men and women.

Significance Statement——This study discusses the
influences of biologic sex on the pharmacokinetics and
pharmacodynamics of drugs and provides examples for
common drugs acting on specific organ systems. This
study also discusses how gender of physicians and
patients influence the therapeutic response to drugs.

ABBREVIATIONS: ACE, angiotensin-converting enzyme; ACEI, ACE inhibitor; ADR, adverse drug reaction; AhR, aryl hydrocarbon receptor; ARB,
angiotensin receptor blocker; CAD, coronary artery disease; CIBIS II, Cardiac Insufficiency Bisoprolol Study II; CVOT, cardiovascular outcome trial; DPD,
dihydropyrimidine dehydrogenase; DPP-4, dipeptidyl peptidase 4; ET, endothelin; 5FU, 5-fluorouracil; GFR, glomerular filtration rate; GI, gastrointestinal;
GLP-1, glucagon-like peptide-1; GLP-1A, GLP-1 analog; GLP-1R, GLP-1 receptor; HF, heart failure; HFpEF, heart failure with preserved ejection fraction;
HFrEF, heart failure with reduced ejection fraction; ICI, immune checkpoint inhibition; IKr, rapidly activating delayed rectifier potassium channels; IKs,
slowly activating delayed rectifier potassium channels; MERIT-HF, Metoprolol CR/XL Randomized Intervention Trial in Congestive Heart Failure; LDL,
low-density lipoprotein; LQTS, long QT-interval syndrome; MACE, major adverse cardiac event; MI, myocardial infarction; NIH, National Institutes of
Health; NO, nitric oxide; OC, oral contraceptive; PCSK9, proprotein convertase subtilisin/kexin type 9; PD, pharmacodynamics; PK, pharmacokinetics;
POMC, pro-opiomelanocortin; RCT, randomized controlled trial; SGLT2, sodium/glucose cotransporter 2; TIV, trivalent inactivated influenza vaccine;
TOPCAT, Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist; Vd, volume of distribution of a drug.
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I. Introduction

Historically, women’s health was nicknamed “bikini
medicine” because medical practitioners considered
the only thing making women biologically different
frommen to be those body parts that could be covered
with a bikini (Talesnik, 2018). For the safety of
women and their offspring, women of fertile age were
excluded from clinical trials, turning male physiol-
ogy into the reference of the species in medical
research and drug discovery (Clayton, 2016). In
1993, National Institutes of Health (NIH) Revitali-
zation Act in the United States mandated the in-
clusion of women in NIH-funded clinical trials, but
many investigators did not follow this policy or failed
to analyze the results by sex (Schiebinger et al., 2016;
Geller et al., 2018), minimizing the effectiveness of
this mandate. Preclinical drug discovery has also
predominantly used male cells and animal models
(Danska, 2014; Klein et al., 2015; Mauvais-Jarvis
et al., 2017). Perhaps as a result of these failures to
consider sex in basic and clinical research, in 2001,
a US Government Accountability Office report found
that 80% of prescription drugs withdrawn from the
market between 1997 and 2000 exhibited greater
adverse effects and toxicity in women than in men
(http://www.gao.gov/). To correct this error, in 2014,
the NIH took the next step to mandate researchers to
consider sex as a biologic variable in basic research
by including both sexes in research designs (Clayton
and Collins, 2014). Still, the field of sex-based biology
and medicine is wrongly considered as peripheral
and superficial.
In this review, we outline the fundamental genetic

and hormonal differences betweenmales and females and
the resulting differences in pharmacokinetics (PK) and
pharmacodynamics (PD) between male and female bi-
ologic systems. We also provide examples of sex-specific
responses to drugs acting on different organ systems.
Finally, we discuss the effect of physician and patient
gender in drug response.

II. Genetic and Hormonal Basis

Sex differences in physiology and pharmacological
response to drugs begin during development from
the interaction between genetic and hormonal events
and they continue after puberty. They stem from the
combination of three major events that have been
recently reviewed (Mauvais-Jarvis, 2015, 2017, 2020)
and are briefly described below.

A. Sex Chromosomes

The effect of sex chromosomes begins after fecundation
in embryos carrying either XX or XY sex chromosomes
(Arnold, 2017). The X and Y chromosomes are derived
from an autosomal chromosome pair but have evolved

separately such that the only region that still under-
goes recombination between X and Y chromosomes is
the pseudoautosomal region. As a result, the male-
specific region of the Y chromosome carries genes
that are not present in XX cells. The Y chromosome
also carries some genes that are homologous to genes
present on the X chromosome (e.g., ZFY vs. ZFX and
UTY vs. UTX), but because of independent evolution
on the X and Y, these gene pairs may exhibit
differential expression or function. Male-female dif-
ferences also arise because of the presence of two X
chromosomes in females versus a single X chromo-
some in males. The random inactivation of one of the
X chromosomes in female cells prevents differences
in X chromosome gene dosage between male and
female cells for most genes. However, some X-linked
genes escape inactivation in females (12%–20% in
humans), and therefore those genes are expressed at
higher levels in females than in males (Arnold,
2017). Differences also exist in the epigenetic marks
that are inherited on the X chromosome in males and
females. In males, the X chromosome carries mater-
nal imprints, which are epigenetic marks that are
established (“imprinted”) in the parental germ cells
(sperm or egg cells) and maintained in the somatic
cells of the offspring, where they influence the
expression levels of specific genes. Females inherit
X chromosomes from both parents and therefore
carry both maternal and paternal imprints, which
alter the expression of a different group of genes
than males. Thus, there are fundamental differences
in gene expression in human male and female cells
resulting from genetic heterogeneity between the X
and Y chromosome gene dosage as well as parent-of-
origin inheritance of epigenetic marks. These sex
differences persist throughout life and likely con-
tribute to sex differences in the pharmacological
response to drugs.

B. Testicular Testosterone Surge

The testis-determining sex-determining region Y
gene on the Y chromosome drives the development of
testes in males (Arnold, 2017). The differentiated
testis produces a testosterone surge in the second
trimester of pregnancy in humans (Forest et al., 1976;
Corbier et al., 1992). This surge is critical to mascu-
linize the reproductive tract and to masculinize and
defeminize the brain structure and function through
the organization of neural circuits responsible for the
activation of male behavior at puberty (Arnold and
Gorski, 1984; Morris et al., 2004; McCarthy et al.,
2009). This organizational effect of testosterone on
neural circuits is likely to promote sex differences in
the response to neurotropic drugs. Notably, in animal
models, developmental testosterone produces epige-
netic modifications of histone marks (Sinha et al.,
2020) and programs body composition and the mass
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and function of adipose tissue, liver, and kidney in
adults (Nilsson et al., 1998; Abbott et al., 2005; Nohara
et al., 2011, 2013), which likely influence sex differences
in the PK and PD of drugs.

C. Pubertal Gonadal Hormones

Most sex differences in biology and pharmacology
are believed to be the consequence of the gonadal
hormones after the onset of puberty. Although these
effects are reversible, they are the most potent factors
that make male and female tissues different in re-
sponse to drugs. Testosterone is the main male
gonadal hormone, whereas 17b-estradiol and proges-
terone (P4) are the main female gonadal hormones.
The actions of these sex hormones on pharmacokinet-
ics and pharmacodynamics will be described in the
next section.
In summary, the combination of all sex-specific influ-

ences on cells results in different in vivo environments
for male and female cells. Notably, genome-wide tran-
scriptome analysis has demonstrated that there are sex
biases in expression of genes across the genome; this
includes genes that are conserved across mammalian
species, and the differential expression levels in males
and females contribute to sex differences in human
traits (Naqvi et al., 2019). In addition, profiling of sex
differences in serum metabolites revealed major sex
differences in concentrations for over three-quarters of
the metabolites studied (Mittelstrass et al., 2011). The
sum of all genetic and hormonal sex-specific influences
that affect cellular systems and alter the transcriptome,
proteome, and metabolome—known as the “sexome”
(Arnold and Lusis, 2012)—is likely to confer sex differ-
ences in the pharmacokinetics and pharmacodynamics
of drugs, as we discuss below.

III. Pharmacokinetics and Pharmacodynamics

A. Pharmacokinetics

Sex differences in PK are well described and reported
in numerous reviews (Anderson, 2005; Soldin and
Mattison, 2009; Soldin et al., 2011; Franconi and
Campesi, 2014a). Here, we provide an update of the
most well characterized sex differences in absorption,
distribution, metabolism, and elimination of drugs.
They are summarized in Supplemental Table 1.
1. Absorption. Drugs can be administered through

numerous routes. The oral route is the most common,
although this route poses complications regarding
reaching the intended pharmacological target. In gen-
eral, drugs are absorbed in the gut and reach the liver
through the portal circulation. Thus, the oral bioavailabil-
ity of a drug depends on first-pass liver metabolism or
presystemic metabolism and drug degradation. During
this process, a portion of the drug is lost. For example,
propranolol, spironolactone, and lidocaine undergo a sig-
nificant first-pass liver metabolism. In men, propranolol

metabolism is stimulated by testosterone, whereas
in women androgen and estrogen do not modify the
metabolism of this b blocker (Walle et al., 1994). Gastric
secretion and emptying are important for drug absorp-
tion. Gastric secretion is higher in men than in women,
whereas gastric and intestinal emptying time is shorter
in men than in women (Soldin and Mattison, 2009;
Soldin et al., 2011; Franconi and Campesi, 2014a). At
baseline, the higher gastric pH of women can elevate the
ionization of weak acids (e.g., aspirin), attenuating their
absorption. It can also decrease the ionization of weak
bases (e.g., caffeine), increasing their absorption (Soldin
and Mattison, 2009; Soldin et al., 2011; Franconi and
Campesi, 2014a). The longer time of gastric and in-
testinal emptying in women suggests that they should
wait longer than men after eating before taking drugs
that should be administered on an empty stomach. This
is observed with captopril and felodipine (Whitley and
Lindsey, 2009).

Little information is available on the influence of sex
on drug absorption for routes other than oral adminis-
tration. Still, intramuscular absorption seems to be
slower in women than in men. For example, intramus-
cular aspirin is absorbed more slowly in women than in
men (Aarons et al., 1989). Interestingly, there is a sex
difference regarding the site of intramuscular injection:
After intramuscular injection of cephradine in gluteus
maximus, vastus lateralis, or deltoid muscles, the area
under the curve of drug concentration in plasma as
a function of time and absorption rate is smaller in
women than in men, the difference being the strongest
when intramuscular injection is performed in the
gluteus maximus (Vukovich et al., 1975). Notably, the
depth of gluteal fat varies between men and women
(Cockshott et al., 1982; Dayananda et al., 2014), but the
length of the injection needle does not vary. In women,
the rate of success of intramuscular injections is lower
than in men (Soliman et al., 2018). In addition, sex
differences are described in the composition of skeletal
muscle fiber type. In particular, women have a higher
capillarity for type II fibers in the vastus lateralis than
men (Croley et al., 2005). In women, type II fibers have
higher fiber type–specific capillary length than in men
(Lyon et al., 2007). This is associated with over 3000
genes differentially expressed in male and female
muscle (Welle et al., 2008; Haizlip et al., 2015). Together
these studies highlight the complex differences that
exist in skeletal muscle from both sexes and which may
be associated with differences in blood flow and in-
tramuscular drug absorption.

Some drugs (clonidine, nitroglycerin, steroid hor-
mones) can be administered transdermally. Sex differ-
ences exist in the integrity and barrier qualities of the
skin (Singh and Morris, 2011). For example, women
have more subcutaneous adipose tissue than men and
male keratinocytes, and skin pores are larger in male
than in female skin (Soldin et al., 2011). However, the
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paucity of data does not permit any clear conclusions
about sex-based variations in transdermal absorption.
The transdermal absorption of nitroglycerin is influ-
enced by body weight, which is higher in obese subjects
of both sexes. However, nitroglycerin-induced temper-
ature elevation has been reported especially in women
who are obese (Haebisch, 1995). Given that skin
parameters involved in drug absorption, such as hydra-
tion, transepidermal water loss, sebum, microcircula-
tion, pigmentation, pH, and thickness, differ between
men and women (Rahrovan et al., 2018), the trans-
dermal absorption drug is likely to be sexually biased.
Finally, there is a paucity of data on the effect of sex
in pulmonary absorption (Soldin and Mattison, 2009;
Soldin et al., 2011), although the architecture of the
airways exhibits numerous sex differences (LoMauro
and Aliverti, 2018), and therefore sex differences in
pulmonary absorption are likely to occur.
2. Distribution. The distribution of a drug is essen-

tial to reach its target site and depends on several
factors that differ between women and men (Table 1).
Compared with men, women are smaller and have
a lower total body water volume, extracellular and
intracellular water volumes, total blood volume, red
blood cell content, cardiac output, and organ blood-
flow rate, all of which influence the volume of distri-
bution of a drug (Vd) (Fadiran and Zhang, 2015). In
premenstrual and in late luteal phases, water retention
and hyponatremia are observed, and this alters Vd
(Ciccone and Holdcroft, 1999). Interestingly, isosorbide
dinitrate—a drug used to prevent chest pain in patients
with coronary artery disease—penetrates red blood
cells where it is metabolized, and the metabolic rate is
higher in men than in women. Thus, penetration in red
blood cells not only modifies drug distribution but may
alter drug metabolism, and this seems to be influenced
by sex (Bennett et al., 1983).
The Vd is also influenced by plasma protein binding

(Soldin and Mattison, 2009). Endogenous and exoge-
nous estrogens decrease the levels of a-1 acid glycopro-
tein (Kishino et al., 2002), which binds neutral drugs
and is the primary carrier of basic drugs, such as
lidocaine. As a result, the amount of free lidocaine in
the plasma of women treated with oral contraceptives
(OCs) is significantly higher than in men of similar age
(Routledge et al., 1981). Albumin does not vary between
sexes, and there is no significant sex difference in
albumin drug binding (Routledge et al., 1981; Soldin
and Mattison, 2009; Soldin et al., 2011).
Body composition diverges between the two sexes:

Women have a greater amount of fat mass, whereas
men have a greater amount of lean mass, and this
difference decreases with age (Soldin and Mattison,
2009; Soldin et al., 2011). Therefore, if men and women
receive the same dose of a water-soluble drug, the Vd
will be higher in men who have greater lean mass
and total body water volume. Conversely, the Vd of
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lipid-soluble drugs will be higher in women who have
a greater percentage of fat mass. Thus lipid-soluble
drugs, such as amiodarone, lidocaine, procainamide,
and digoxin, can reach higher Cmax (peak concentra-
tion) in women, elevating the risk of adverse drug
reaction (ADR) (Stolarz and Rusch, 2015), especially
with long-term therapy.
3. Metabolism. The first pharmacological sex differ-

ence was described in 1932, when Nicholas and Barron
described that the hypnotic effect of hexobarbital lasted
longer in female rats than in male rats (Nicholas and
Barron, 1932). Years later, Quinn et al. (1958) showed
that it depended on the metabolism of hexobarbital. In
particular, the presystemic metabolism may diverge
between sexes. This is the case for the calcium-channel
blocker verapamil (Dadashzadeh et al., 2006), as nor-
verapamil production is higher in women than in men
because of higher activity of CYP3A4 or lower activity of
P-glycoprotein in women. P-glycoprotein is located in
the gut, liver, and kidney and mediates drug efflux out
of the cells. At the level of the intestinal epithelium, it
reduces the absorption of numerous drugs, including
digoxin (Shi et al., 2011).
The liver is the main site of drug metabolism, which

depends on cardiac output and liver blood flow, both of
which are lower in women than in men. It also depends
on phase 1 and 2 drug-metabolizing enzymes and
transporters that exhibit sex differences in expression
and activity (Soldin and Mattison, 2009; Soldin et al.,
2011; Yang et al., 2012; Franconi andCampesi, 2014a,b)
(summarized in Supplemental Table 1). The expression
and activity of these enzymes and multidrug resistance
protein are regulated by endogenous factors, such as
genetics, age, sex, sex hormones, and microbiota, as
well as by exogenous factors, such as drugs, diet, and
environmental pollutants, which in part act through the
nuclear receptors constitutive androstane receptor,
pregnane X receptor, and aryl hydrocarbon receptor
(AhR) (Smirnova, 2012; Bright et al., 2016). Notably,
AhR, constitutive androstane receptor, and pregnane X
receptor exhibit sexually biased expression and mode of
action (Hernandez et al., 2009; Lu et al., 2013). Bota-
nicals may also induce CYP enzymes through these
nuclear receptors, which is of special interest in women
because they are the most prevalent users of botanicals
(Campesi et al., 2019). In particular, focusing on
374 drug-metabolizing enzymes and transporters in
a published gene expression data set of human male
(n = 234) and female (n = 193) liver samples, Yang et al.
(2012) identified 77 genes showing differential expres-
sion due to sex. Finally, the gut microbiota have recently
emerged as an important player in drug metabolism
and drug interactions in a sexually dimorphic manner
(Carmody and Turnbaugh, 2014). This will be discussed
further in a later section.
4. Elimination. Renal elimination depends on tubu-

lar secretion, reabsorption, and glomerular filtration rate,

which are lower in women than in men (Soldin and
Mattison, 2009). It also depends on body weight (Soldin
andMattison, 2009). Drugs that aremainly or exclusively
excreted unchanged by the renal route are cleared more
slowly in women than in men (Schwartz, 2003). This is
the case of commonly used drugs, such as gabapentin,
pregabalin, aminoglycosides, cephalosporins, fluoro-
quinolones, or vancomycin, all of which have shown
decreased renal clearance in women (Anderson, 2005;
2008). Other remarkable examples are methotrexate
(Schwartz, 2003) and digoxin (Yukawa et al., 1997),
which have a 17% and 13% slower clearance in women,
respectively. Similarly, the anticoagulant lepirudin,
exhibits a longer half-life in women (up 48 hours) than
inmen (2 hours), which increases the risk of bleeding in
women (Abdel-Rahman, 2017). Being aware of these
differencesmay allow the prescription of lower dosages
of these medications based on glomerular filtration
rate (GFR) in women to avoid adverse effects.

Sex differences in expression of drug transporters in
human kidney also contribute to changes in sex-specific
pharmacokinetics. In a study of human kidney, 23 genes
coding for drug transporters exhibited sex differences in
their mRNA expression. Twenty-one of them were
expressed at higher levels in men, whereas two were
expressed at higher levels in women (Joseph et al.,
2015).

5. Influence of the Gut Microbiome. The absolute
bioavailability of a drug administered orally is often less
than 100% and typically less than 60%. Thus, the
gastrointestinal (GI) microbiome is likely to be exposed
to drugs during oral administration. In fact, the efficacy
of some drugs may be enhanced or worsened because
they modulate the GI microbiome. Recent data demon-
strate sex differences in the GI microbiota populations
of rodents (Bernbom et al., 2006; Markle et al., 2013)
and humans (Li et al., 2008; Dominianni et al., 2015).
The sexually dimorphic GI microbiome may alter
exposure to a drug in females differently than males
by differentially modulating digestion, absorption, dis-
tribution, and elimination. Men have faster mean GI
transit rates, greater stool weights, greater bile acid
excretion, and less fiber fermentation than women
(Lampe et al., 1993). The opposite appears to be true
in mice. Male mice consuming a control chow have
slower gastric emptying and GI transit rate than
female mice (France et al., 2016). Conjugation of
xenobiotic drugs, such as steroids and nonsteroidal
anti-inflammatory drugs, with sugars is an impor-
tant mechanism for detoxification and clearance. If
the conjugates are secreted from the hepatobiliary
system into the small intestine, they can be deconju-
gated by b-glucuronidase of several commensal bac-
teria species in the gut and reabsorbed (Leung et al.,
2001; LoGuidice et al., 2012). Sex differences in
abundance of such taxa are reported (Haro et al., 2016).
Thus, the GImicrobiomemaymodulate pharmacokinetic
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properties of drugs, particularly those administered
orally.
6. Influence of Sex-Specific Factors. In women, PK

is influenced by endogenous or exogenous sex hor-
mones, menopausal hormone therapy, and xenobiotics,
including phytoestrogens, which influence hormonal
status. In particular, exogenous sex hormones may
modify drug clearance through inhibition or induction
of CYP enzymes (Brunton, 2018; Campesi et al., 2019).
For example, 17b-estradiol attenuates CYP1A1/2
gene expression via inhibition of AhR transcription
(Lai et al., 2004), and treatment with OC may require
a modification of the dosage to avoid overdosing or
underdosing.
In women, oral absorption, distribution, metabolism,

and elimination can be influenced by the phase of the
menstrual cycle, pregnancy, and lactation. We focus on
pregnancy because 1%–2% of pregnancies are compli-
cated by cardiovascular diseases and because more
women with congenital heart diseases survive reaching
reproductive age (Regitz-Zagrosek et al., 2018). In
addition, at least in Western countries, pregnancy at
an advanced age is increasing, and age may increase
cardiovascular diseases, such as hypertension (Regitz-
Zagrosek et al., 2018; Cooke and Davidge, 2019).
During pregnancy, the physiology of women changes

in a time-dependent manner, and these changes alter
PK and PD (Supplemental Table 1). In pregnancy, there
are additional compartments—the fetus and the amni-
otic fluid—that may lead to increased drug accumula-
tion and to an apparent increase in Vd of certain drugs
(Feghali et al., 2015). Furthermore, cardiac output is
enhanced beginning in the first trimester, whereas
glomerular filtration rate is increased by 50% starting
in the second trimester and until 3 months postpartum.
Therefore, during pregnancy, the clearance of drugs
that are excreted unchanged in the urine, such as
heparin, is increased (Ansari et al., 2016). Furthermore,
liver enzymes involved in drug metabolism are in-
creased in expression and activity, resulting in en-
hanced in drug metabolism (Supplemental Table 1)
(Ansari et al., 2016). For example, pregnancy induces
CYP2D6, resulting in increased metabolism of meto-
prolol, a b blocker, and thus plasma levels of metoprolol
are reduced in women who are pregnant compared with
womenwho are nonpregnant (Ansari et al., 2016). A few
liver drug metabolism enzymes exhibit decreased ac-
tivity (Supplemental Table 1), such as CYP1A2, which
is the primary enzyme for caffeine metabolism (Ansari
et al., 2016). Finally, the placenta and fetus can also
metabolize drugs, thus participating in the changes in
drug PK associated with pregnancy (Ansari et al., 2016).
The effect of pregnancy on drug transporters is not well
understood (Moyer et al., 2019). Significant hormonal
changes that can modify PK profile also occur in women
who are menopausal and in women taking menopausal
hormone therapy. For example, intestinal CYP3A4

activity is reduced by about 20% during menopause,
reducing the first-pass effect for substrates of in-
testinal CYP3A4 (Paine et al., 2005). Conversely, in
adult men, testosterone remains quite stable and
has minimal effects on PK parameters.

Additionally, the excipients [small or large molecules
present in the final drug, defined by the US Food and
Drug Administration as “inactive” substances] can have
a role in inducing sex differences in PK. For example,
the bioavailability of ranitidine, a selective histamine
H2–receptor antagonist, is enhanced by polyethylene
glycol in healthy men but not in women (Ashiru et al.,
2008). These results suggest the complexity of sex
influences in the context of drug delivery.

Finally, and most importantly, PK is largely influ-
enced by stress, which exhibits a strong sexual di-
morphism (Kokras et al., 2019). Stress can modify
gastrointestinal function, metabolism, lipid distribu-
tion, blood flow, albumin binding capacity, and renal
excretion (Kokras et al., 2019). This is of particular
relevance in women who are more frequently exposed
to some types of stress conditions thanmen (American
Psychologic Association, 2017).

B. Pharmacodynamics

Sex differences in PD are less studied than sex
differences in PK. In part, this is a consequence of
a lower number of women being included in clinical
trials than men and the predominance of male animals
used in preclinical studies (Franconi et al., 2015, 2017,
2019; Regitz-Zagrosek et al., 2016; Mauvais-Jarvis
et al., 2017; Ventura-Clapier et al., 2017). Here, we
discuss sex differences in PD with focus on cardiovas-
cular signaling and the influence of the gut microbiome.

1. Renin-Angiotensin System. Regarding the renin-
angiotensin-aldosterone system, sex differences are not
limited to the receptors but also involve the synthesis of
the components of this system (Ahmed et al., 2019).
Preclinical evidence indicates that the renin-angioten-
sin-aldosterone system is under the control of sex
hormones: Estrogens increase angiotensinogen levels
and the number of angiotensin II receptor type 2
receptors and decrease renin levels, increased ACE,
and aldosterone production as well as the number of
angiotensin II receptor type 1 receptors (Hilliard et al.,
2013). Although the role of androgens is poorly studied,
testosterone appears to improve renin levels and ACE
activity (Fischer et al., 2002; Komukai et al., 2010). In
addition, women who are premenopausal have lower
renin levels than their male counterparts and women
who are postmenopausal (Schunkert et al., 1997). These
sex differences may lead to differences in drug treat-
ment efficacy and adverse reaction between the sexes
(see section A. Pharmacokinetics).

2. Adrenoreceptors. In the case of adrenoceptors, sex
differences are due to estrogens. Vessels of female rats
constrict less and relax more in response to adrenergic
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stimulation comparedwithmales; this sex differences is
eliminated by ovariectomy in female rodents (Riedel
et al., 2019). Ovariectomy elevates norepinephrine-
induced vasoconstriction and reduces isoprenaline and
b3-agonist vasorelaxation, and this is associated with
reduction of mRNA of b1 and b3 receptors. Estrogens
restore sex-specific differences in b1- and b3-adrenor-
eceptor expression (Riedel et al., 2019). Moreover, the
a-adrenergic constriction is lower in human mammary
artery from women than it is from men, and this sex
difference disappears with aging (Al-Gburi et al., 2017).
Some authors reported that norepinephrine reduces
forearm blood flow more in men than in women,
whereas flow increases more in women after selective
b-adrenergic stimulation (Kneale et al., 2000; Dart
et al., 2002).
3. Endothelin Receptors. The expression of endothe-

lin (ET) receptor subtypes exhibits sexual dimorphism,
even after menopause. Saphenous veins isolated from
men have higher ET receptor density than those
isolated from women (Mouat et al., 2018). Thus, the
maximum binding capacity for ETA and ETB receptors
is lower in women than in men (Ergul et al., 1998). The
ratio of ETA to ETB is also higher in men (3:1) than in
women (1:1), which explains the stronger vasoconstric-
tion induced by endothelin-1 in men than in women
(Mouat et al., 2018). There are clinical implications, as
women with pulmonary arterial hypertension treated
with antagonists of ET receptors (ambrisentan, bosen-
tan, sitaxsentan) seem to respond better than men
(Gabler et al., 2012).
4. Arachidonic Acid Cascade and Aspirin.

Arachidonic acid can be liberated by phospholipases A2,
C, and D and locally converted into prostaglandins,
prostacyclin, thromboxane A2, leukotrienes, lipoxins,
and hepoxylins and platelet-activating factor. More-
over, it is a substrate of CYP. The arachidonic acid
cascade is regulated by estrogens that decrease the
activity of cyclooxygenase 1 and cyclooxygenase 2
through the G protein–coupled estrogen receptor
(Mouat et al., 2018). In healthy men, acute testoster-
one treatment increases the density of thromboxane
A2 receptors in platelets, thus increasing platelet
aggregation (Ajayi et al., 1995). In contrast, estrogens
desensitize thromboxane receptors (Mouat et al.,
2018). In human endothelial cells, estradiol elevates
the generation of prostacyclin in a dose-dependent
manner, which is inhibited by tamoxifen and its
metabolites that compete with estrogens to occupy
estrogen receptors (Mikkola et al., 1995). Addition-
ally, the genetic deletion of prostacyclin receptor 1,
which is coupled to Gaq/11, reduces systolic blood
pressure only in men (Audoly et al., 1999). Prosta-
glandin E production and activities, the cytochrome
P450 metabolic pathway (epoxyeicosatrienoic acids and
20-hydroxyeicosatetraenoic acid), lypo-oxygenases, and
lipoxins are influenced by sex (Pace et al., 2017; Mouat

et al., 2018). The administration of low doses of aspirin
induces a direct relationship between age and aspirin-
triggered 15-epi-lipoxin A 4 in women but not in men
(Pace et al., 2017). Furthermore, women absorb aspi-
rin more rapidly, distribute it in larger apparent Vd,
and hydrolyze it more rapidly than men (Müller and
Fromm, 2011; Soldin et al., 2011). In addition, in
women, glycine and glucuronic conjugation of aspirin
is lower than inmen (Ho et al., 1985). However, the use
of OC in women elevates glycine and glucuronic acid
conjugation and makes aspirin bioavailability similar
to that of men (Spranger et al., 1989). Aspirin is
effective in the secondary prevention of cardiovascular
diseases in both sexes (Pace et al., 2017). However, the
situation is less clear in primary prevention: The
American College of Cardiology and the American
Heart Association downgraded the recommendation
for aspirin. Some studies indicate that the antithrom-
botic effects of aspirin are present only in men (Harris
et al., 1977; Canadian Cooperative Study Group,
1978). However, the Women’s Health Study revealed
that aspirin reduces the risk of total and ischemic
strokes in women, whereas the risk of MI or death
from cardiovascular events were not reduced (Ridker
et al., 2005). A meta-analysis including six random-
ized studies concluded that in primary prevention,
aspirin provides men and women with a similar re-
duction of cardiovascular events (Berger et al., 2006).
However, these are not unequivocal results, and
a second meta-analysis including the same six studies
concluded that aspirin lowers major coronary events
only in men (Baigent et al., 2009). Finally, resistance
to aspirin is higher in old women (Awidi et al., 2011).
Mechanistically, emerging evidence suggest the exis-
tence of agonist-dependent sex differences in platelet
responses to aspirin. Despite higher cyclooxygenase 1
inhibition in women, daily aspirin exposure for 4 weeks
resulted in a paradoxical attenuation of platelet in-
hibition in response to epinephrine and ADP over time
in women but not in men (Friede et al., 2020). These
data could explain at least in part the sexually di-
morphic outcome observed with antiplatelet drugs for
the prevention of cardiovascular diseases. The main
adverse effect of aspirin is bleeding, and a Swedish
study reported that aspirin-induced bleeding is lower in
men than in women (Rydberg et al., 2014). In contrast,
aspirin use is associated with a risk of hearing loss only
in men (Curhan et al., 2010). Beyond aspirin, other
antiplatelet therapies are more efficient in males than
in females (Becker et al., 2006; Mehta et al., 2006;
Qayyum et al., 2008; Capodanno and Angiolillo, 2010;
Patti et al., 2014).

5. Nitric Oxide. Another important sex-divergent
target is nitric oxide (NO) (Ahmed et al., 2019), which is
generated in part through differentNO synthases, some
of which are regulated by sex hormones (Duckles and
Miller, 2010); by chemical reduction of the inorganic
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anions nitrate and nitrite; and by microbiota (Kapil et al.,
2018). In basal conditions and after nitrate supplementa-
tion, females reduce oral nitrate to a greater extent, which
leads to higher levels of nitrite, a precursor of NO (Kapil
et al., 2018).
6. Influence of the Microbiome. As discussed above

for PK, the efficacy of some drugs may be mediated via
modulation of the GI microbiome. For example, oral
antibiotics (Iizumi et al., 2016) are a class of drugs that
inadvertently disrupt the GI microbiome. Metformin
was shown to not only modulate the GI microbiome but
likely has efficacy in improving glucose regulation by GI
microbiomemodulation (Forslund et al., 2015;Wu et al.,
2017; Vallianou et al., 2019). Additionally, PD of an oral
drug, which is at least partially dependent on drug-
microbiome interactions, may be confounded by modu-
lations of the gut microbiome because of diet (David
et al., 2014), sex hormones (Markle et al., 2013; Org
et al., 2016), and sex-by-diet interactions (Org et al.,
2016). Although early studies suggest that the human
GI microbiome is relatively stable and adult-like after
the first 3 years of life (Yatsunenko et al., 2012), recent
data indicate that the GI microbiota community of
preadolescent children is different than that of adults
when compared taxonomically (Hollister et al., 2015),
suggesting that changes may occur during puberty. GI
microbiota taxonomical shifts occur also duringpregnancy
with vast expansion of diversity from the first trimester to
the third trimester (Koren et al., 2012). Moreover, stress
during early pregnancy not only induces a shift in
maternal fecal bacteria community structure but also
differentially alters the GI microbiome of the offspring in
a male-specific manner (Ja�sarevi�c et al., 2017). Further-
more, castration of either adult male or femalemice shifts
their GI microbiome profiles (Harada et al., 2016). These
data suggest that sex hormones influence the community
ofGImicrobiota. The reverse is also documented. Transfer
of fecal microbiota from mature male mice to female mice
increases serum testosterone levels in the recipient
females (Markle et al., 2013), suggesting that microbiota
may function to regulate sex hormones, at least in rodents.
Thus, gut microbiota influence sex differences in both PK
and PD, and this needsmore specific research in humans.
7. Heart Electrophysiology. There are important

electrophysiological sex differences in the heart, in-
cluding faster resting heart rates and longer QT
intervals in women than in men (Regitz-Zagrosek and
Kararigas, 2017). These differences seem to be influ-
enced at least in part by sex hormones. For example,
endogenous testosterone upregulates both rapidly (IKr)
and slowly (IKs) activating delayed rectifier potassium
channels leading to a short action potential. In contrast,
endogenous estrogens downregulate IKr and IKs, length-
ening the action potential (Pham et al., 2001). Expres-
sion levels of Cav1.2a (primary subunit of the L-type
calcium-channel protein 1) and sodium-calcium ex-
change protein 1 are higher at the base than at the

apex of the epicardium only in women who are fertile
(Papp et al., 2017). Such differences in ion channel
expression may explain why male sex is a risk factor
for either Brugada syndrome or Brugada drug-
induced syndrome and sudden death (Konigstein
et al., 2016; Yuan et al., 2018), whereas being a female
is a risk factor for long QT-interval syndrome (LQTS)
(Regitz-Zagrosek et al., 2016). The Brugada syn-
drome is induced by sodium-channel blocking drugs
prescribed both for cardiac arrhythmias as well as
for non-cardiovascular drugs such as psychotropic and
analgesic–anesthetic medications (www.brugadadrugs.
org). LQTS is induced by QT-prolonging antiarrhythmic
drugs, antibiotics, and antihistaminic and psychotropic
drugs. For example,moxifloxacin and levofloxacin, which
are two antibiotics, exert sex-specific effects on the QT
subintervals probably related to the IKs and IKr inhibi-
tory properties of moxifloxacin versus inhibition of IKr

only of levofloxacin (Taubel et al., 2019). Together, the
above data indicate that the heart is a sex-specific
toxicological target. This is also confirmed by tramadol
adverse reaction, which induces tachycardia and S-wave
abnormalities, especially in men, whereas LQTS and
right bundle branch blocks prevail in women (Alizadeh
Ghamsari et al., 2016).

8. Role of Genetic Polymorphism and Epigenetics.
Sex differences in PD may be influenced by genetic
polymorphisms. For example, a variant of the ACE1 (I
and D alleles) modifies the ACEI activity, with these
drugs being more renoprotective in women with D/D
genotype versus men with D/D genotype (Ruggenenti
et al., 2008). This polymorphism also affects pharmaco-
logical response of hydrochlorothiazide, with mean de-
cline in blood pressure being greater in II than in DD
homozygotes among women. In contrast, in men, the
mean decline in blood pressure is greater in DD than in
II homozygotes (Schwartz et al., 2002).

Epigenetics modifications could play a role in the
sexually dimorphic PD of drugs. First, DNA methyla-
tion and histone acetylation differ between the two
sexes (Ghahramani et al., 2014; Shen et al., 2015), and
epigenetic changes can alter the regulation of drug-
metabolizing enzymes and drug transporters (Tracy
et al., 2016); for example, hydralazine, a vasodilator,
and procainamide, an antiarrhythmic sodium-channel
blocker, inhibit DNA methylation and can trigger
a lupus-like autoimmune disease (Cornacchia et al.,
1988). Taken together, the above data suggest that the
sexually dimorphic epigenome may participate in sex
differences in the PD and PK of drugs.

IV. Sex-Specific Pharmacology of Drugs Acting in
Different Physiologic Systems

Sex differences in the therapeutic and adverse effects
of drugs are described. Here we focus on acting on
cardiovascular and metabolic diseases as well as pain.
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A. Cardiovascular
Unfortunately, most cardiovascular studies do not

report effects and adverse effects specified according to
sex, which hampers meta-analysis that might lead to
new insights. In this section, we report on sex and
gender differences in the most prominent cardiovascu-
lar drugs (summarized in Table 1).
1. Digoxin. In 1997, the Digitalis InvestigationGroup

confirmed the efficiency of digoxin therapy for patients
with heart failure (Digitalis Investigation Group, 1997).
Thereafter, guidelines strongly endorsed the use of
digoxin in heart failure with reduced ejection fraction
(HFrEF) without considering sex. However, in a post
hoc subgroup analysis, digoxin was associated with
significantly higher mortality among women taking
digoxin compared with those taking placebo, an effect
that was not observed in men (Rathore et al., 2002).
Subsequently, unfavorable survival effects reported
in women were attributed to higher drug serum levels
in the upper normal range. In the absence of defini-
tive evidence, digoxin plasma concentration should
be below 0.8 ng/ml in women and men (Rathore et al.,
2003).
2. b Blockers. b Blockers are cornerstones in the

treatment of heart failure. Two major trials, the
MERIT-HF (metoprolol CR/XL) study (MERIT-HF,
1999) and the Carvedilol Prospective Randomized
Cumulative Survival (COPERNICUS) trial (Packer
et al., 1996), failed to find a beneficial effect on
mortality in the small subgroups of women. In the
CIBIS II study, women profited significantly from
treatment with bisoprolol (CIBIS-II, 1999; Simon et al.,
2001). Pooling of mortality results from MERIT-HF,
CIBIS II, and COPERNICUS showed survival benefits
in both women and men (Ghali et al., 2002). The lack of
evidence in some large b blocker studies is therefore
probably due to the underrepresentation of women in
these trials.
Metoprolol and propranolol are primarily metabo-

lized by liver cytochrome CYP2D6, which has a lower
activity in women than in men (Tanaka and Hisawa,
1999; Labbé et al., 2000). Propranolol reaches
plasma levels that are up to 80% higher in women
compared with men. The optimal effect of the b
blocker metoprolol may also be achieved with lower
doses in women than in men: A 50-mg metoprolol
dose in adult women provided an approximately
similar drug exposure to a 100-mg dose in adult men
(Eugene, 2016). Oral contraceptives can also interact
with metoprolol metabolism and further increase
its plasma levels in women (Kendall et al., 1982). A
recent post hoc analysis in the BIOSTAT-CHF (Biology
Study to Tailored Treatment in Chronic Heart Failure)
study performed in 11 European countries suggested
that women with HFrEF might require lower doses of
b blockers and ACEI than men for optimal effects
(Santema et al., 2019). The results from the European

study were confirmed in an Asian cohort (Santema
et al., 2019).

3. Angiotensin-Converting Enzyme Inhibitors. In
early multicenter studies [e.g., CONSENSUS I, Sur-
vival and Ventricular Enlargement (SAVE), and
Studies of Left Ventricular Dysfunction (SOLVD)],
ACEIs led to smaller mortality reductions in women
compared with men (Regitz-Zagrosek, 2006). Later
trials, including Acute Infarction Ramipril Efficacy
(AIRE) and Heart Outcomes Prevention Evaluation
(HOPE) as well as a number of smaller studies, showed
significant benefits of ACE inhibition in women (Regitz-
Zagrosek, 2006). However, the “Second Australian
National Blood Pressure Study” (ACE inhibitors vs.
diuretics) reported a significant reduction in cardiovas-
cular events in men but not in women despite similar
reductions in blood pressure in both sexes (Wing et al.,
2003). Most recently, the Biostat HF trial suggested
that women with HFrEF reach the same treatment
effects (i.e., mortality and reduction of cardiovascular
events) with lower doses than men and do not benefit
from uptitrating to guideline-recommended doses
(Santema et al., 2019). Thus, the underlying patho-
physiology of cardiovascular disease may interfere
with treatment results in a sex-specific manner.
Adverse effects of ACEI, especially a typical dry
cough, that occur early with treatment and seem to
be dose-independent are more frequent in women
than in men (Mackay et al., 1999).

4. Angiotensin II Receptor Blockers. Major ARB
studies in patients with hypertension after myocardial
infarction and heart failure found no sex-specific
differences and showed the same safety profile in
both sexes. This was true for Losartan Intervention
for Endpoint Reduction in Hypertension, Evaluation
of Losartan In The Elderly II, Optimal Trial in
Myocardial infarction with Angiotensin II Antago-
nist Losartan, Valsartan Antihypertensive Long-
term Use Evaluation, Valsartan Heart Failure Trial,
I-PRESERVE (Irbesartan in Heart Failure), and Can-
desartan in Heart Failure: Assessment of Reduction
in Mortality and Morbidity (Seeland and Regitz-
Zagrosek, 2012).

5. Sacubitril-Valsartan. Recently, completely un-
suspected sex differences were found in a large RCT
comparing the combined Neprilysin inhibitor/ARB
(sacubitril-valsartan) and valsartan in patients with
heart failure with preserved ejection fraction (HFpEF)
(McMurray et al., 2019a; Solomon et al., 2019). Nepri-
lysin inhibition augments endogenous biologically
active natriuretic peptides and other vasoactive com-
pounds with increased generation of cGMP, a signaling
molecule that is reduced in HFpEF and is beneficial in
HFrEF (McMurray et al., 2014a,b). Sacubitril-valsartan
did not result in a significantly lower rate of total
hospitalizations for heart failure and death from car-
diovascular causes in a mixed-sex cohort of patients
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with HFpEF/HFrEF (Solomon et al., 2019). However, it
led to a significant reduction in event rate versus
valsartan in women, which was not observed in men
(0.73 in women and 1.03 in men; P interaction = 0.017)
(McMurray et al., 2019a). Unfortunately, the study could
not provide a definite mechanistic basis for this finding.
6. Renin Inhibitors. Aliskiren, the first nonpeptide

active renin inhibitor, provided equally effective, dose-
dependent blood pressure lowering in women andmen
with mild-to-moderate hypertension and also in the
elderly, obese, or those withmetabolic syndrome (Gradman
et al., 2010).
7. Aldosterone Receptor Antagonists. The Random-

ized Aldactone Evaluation Study found no difference in
the effect of spironolactone on symptomatic heart
failure between men and women (Pitt et al., 1999).
However, women represented only 30% of the enrolled
patients, and the trial was not powered to detect sex
differences. The major clinical trial of eplerenone
in patients with acute MI and left ventricular dysfunc-
tion, Eplerenone Post-AMI Heart Failure Efficacy and
Survival Study (EPHESUS) showed a trend toward
greater benefit for women treated with eplerenone at 30
days, which was not confirmed at 16 months (Pitt et al.,
2003). Furthermore, in an exploratory, post hoc, non-
prespecified analysis of the TOPCAT (Aldosterone
Antagonist Therapy for Adults With Heart Failure
and Preserved Systolic Function) trial, evidence for
sex differences was found. In TOPCAT, subjects with
symptomatic HF and a left ventricular ejection fraction
$45% were randomized to spironolactone or placebo. In
a post hoc subgroup analysis in which only subjects
enrolled from the Americas were analyzed, spirono-
lactone therapy was associated with reduced all-
cause mortality in women (hazard ratio: 0.66; P =
0.01) but not in men (p interaction = 0.02) (Merrill
et al., 2019). Thus, even though the interaction
between spironolactone and sex in TOPCAT overall
and in the present analysis was not significant for the
primary cardiovascular outcome, there was a reduc-
tion in all-cause mortality associated with spirono-
lactone therapy in women, with a significant
interaction between sex and treatment arm. More
prospective studies are needed for confirmation and
mechanistic understanding.
8. Antiarrhythmic Drugs. A number of antiarrhyth-

mic drugs prolong cardiac repolarization. As discussed
in the PD section, women have longer rate-corrected QT
intervals than men and are more prone to adverse
effects with such drugs. Women consistently exhibited
a higher incidence of QT prolongation and torsades de
pointes than men for QT-prolonging drugs, including
amiodarone, bepridil, disopyramide, quinidine, eryth-
romycin, halofantrine, ibutilide, probucol, sotalol, and
terfenadine (Kurokawa et al., 2012).
9. Calcium-Channel Blockers. The major hyperten-

sion trials with calcium antagonists revealed no evidence

for sex differences in outcomes (Seeland and Regitz-
Zagrosek, 2012). Only the Amlodipine Cardiovascular
Community Trail trial therapy with amlodipine resulted
in more pronounced blood pressure reduction in women
than in men. Women also had a higher incidence of
edema. The sex differences were small, and further
evidence is needed to support clinical relevance. No sex
differences of verapamil treatment were confirmed.

10. Sex-Specific Reporting of Effects and Adverse
Effects. Knowledge on sex differences in effects and
adverse effects in RCTs is crucial to understand the
mechanisms of drug action in women and men and to
optimize therapy. However, most RCTs do not present
their results in a sex-disaggregated manner. A recent
RCT reporting positive effects of colchicine for MI
included only 20% women and did not segregate the
results by sex (Tardif et al., 2019). In a recent systematic
search of PubMed and EMBASE to collect all available
information on ADRs to ACE inhibitors, b-blockers,
angiotensin II receptor blockers, mineralocorticoid re-
ceptor antagonists, ivabradine, and digoxin in both
women and men with HF identifying 155 eligible
records, only 11 (7%) reported ADR data for women
and men separately (Bots et al., 2019). Three of the 11
studies reported a higher risk of ACE inhibitor–related
ADRs in women, and one study showed higher digoxin-
related mortality risk for women. These results un-
derline the scarcity of ADR data stratified by sex. The
study investigators called for a more comprehensive
reporting of ADR data for women and men separately
(Bots et al., 2019).

B. Pain and Analgesia

Chronic pain, defined as pain lasting over 3months in
duration, is one of the most commonly reported health
problems in the United States (Elzahaf et al., 2012;
Kennedy et al., 2014). The Centers for Disease Control
and Prevention estimates that over 20% of US adults
experienced chronic pain in 2016, with 8% experiencing
high-impact chronic pain (Nahin, 2015). These statistics
are much worse for the elderly population, in which an
estimated 45%–80% of persons aged 65 or older suffer
from chronic pain on a daily basis. Despite being
introduced over 5 millennia ago, opioids remain the
most common therapeutic treatment of the manage-
ment of chronic pain (Brookoff, 2000a,b), and it is
estimated that as many as 3%–5% of adults in the
United States are prescribed long-term opioid therapy
(Boudreau et al., 2009). Among pain sufferers, women
are more likely than men to be prescribed opioids at
higher doses and for longer periods of time (Campbell
et al., 2010; Frenk et al., 2015; Manubay et al., 2015).
This may have potentially important implications for
the development of tolerance and addiction to opioids.
Indeed, although men are more likely to die from drug
overdose than women, between 1999 and 2010, over-
dose deaths due to opioid pain relievers increased by
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415% in women compared with 265% in men [Centers
for Disease Control and Prevention (CDC), 2013].
It is becoming increasingly clear that opioids may not

offer the same degree of pain relief in women than in
men, with research over the last 3 decades implicating
sex as a biologic variable influencing opioid modulation
of pain. The majority of this research comes from
preclinical studies on rodents. Indeed, despite the
significantly higher prevalence of pain reports and
disorders in women, very few clinical studies include
sex as an independent variable. Among studies that
include sex as a factor, the majority demonstrate
decreased analgesic efficacy of opioids in women
(Berkley, 1997; Cepeda and Carr, 2003; Miller and
Ernst, 2004; Aubrun et al., 2005; Fillingim et al.,
2009; Mogil and Bailey, 2010). Notably, one clinical
study reported that females required 30% more mor-
phine to reach the same level of analgesia as males
(Cepeda and Carr, 2003). In contrast, other studies
report that the analgesic efficacy of opioids was compa-
rable between the sexes (Bijur et al., 2008; Fillingim
et al., 2005; Glasson et al., 2002; Sarton et al., 2000). Sex
differences in morphine consumption (i.e., patient-
controlled analgesia) have also been reported. However,
as women consistently experience a greater preponder-
ance of the negative side effects associated with acute
opioid consumption, including nausea, dysphoria, head-
ache, and vomiting (Myles et al., 1997; Cepeda et al.,
2003; Fillingim et al., 2005; Comer et al., 2010), opioid
consumption is not a reliable indicator of morphine
analgesia (Myles et al., 1997; Cepeda et al., 2003;
Fillingim et al., 2005; Comer et al., 2010). A recent
meta-analysis with moderate quality of evidence
reported that in acute pain, the analgesic response to
opioid does not diverge between men and women.
However, when women self-administer the drug, they
take a lower daily amount of opioids. When chronic pain
is investigated, the quality of studies decreases, and in
noncancer pain, women receive lower daily doses of
opioid, whereas the daily dose of opioids for cancer pain
does not diverge among women and men. The above
results were strongly influenced by age, comorbid
mental disorders, type of administration, type of
opioids, type of patients, and body weight. However,
these factors are not considered in the prescription of
opioids, and this may explain the variability in clinical
trial results (Pisanu et al., 2019).
Studies in rodents examining the impact of sex on

opioid modulation of acute or persistent pain have
consistently reported that morphine is more efficacious
in males than in females (Kepler et al., 1989; Boyer
et al., 1998; Craft et al., 1999; Cicero et al., 2002;
Krzanowska et al., 2002; Holtman et al., 2003; Ji
et al., 2006; Loyd and Murphy, 2006; Wang et al.,
2006; Loyd et al., 2008; Posillico et al., 2015). Sex
differences in morphine action are not trivial; in
both persistent inflammatory pain (Krzanowska and

Bodnar, 1999; Craft, 2003; Stoffel et al., 2003; Craft
et al., 2004; Ji et al., 2006; Wang et al., 2006; Bernal
et al., 2007; Loyd et al., 2008; Doyle et al., 2017; Doyle
and Murphy, 2018) and visceral pain (Ji et al., 2006,
2007, 2008; Murphy et al., 2009; Larauche et al., 2012),
the ED50 is approximately 2-fold higher for females
than for males. Sex differences in opioid analgesia are
not limited to morphine. Greater pain relief is also
observed in male rats for almost every opioid tested
(Barrett et al., 2002; Terner et al., 2003; Stoffel et al.,
2005; Peckham and Traynor, 2006; Bai et al., 2015).
Several factors have been shown to contribute to the sex
differences in the ability of morphine to attenuate
persistent and/or severe pain, including sex differences
in the neuroanatomical, neurophysiological, and neuro-
immunological aspects of central nervous system cir-
cuits subserving pain and analgesia. Sex differences in
m-opioid receptor expression and signaling (Bernal
et al., 2007; Loyd et al., 2008) as well as spinal
m-opioid receptor and k-opioid receptor dimerization
(Chakrabarti et al., 2010) have all been shown to
contribute to the sexually dimorphic effects of mor-
phine. In addition to neural mechanisms, sex-specific
differences in glial signaling have also been implicated
(Sorge et al., 2011; Doyle et al., 2017; Doyle and
Murphy, 2017, 2018; Averitt et al., 2019). The fact that
somany seemingly competitive theories exist to account
for the dimorphic response to morphine implies a paral-
lel and/or upstream mediator of these effects.

The necessity of sex-specific research on pain and
pain management is clear. Unfortunately, despite
growing literature reporting sex differences in pain
and morphine analgesia, the overwhelming majority
of preclinical studies of pain (approximately 79%) are
still conducted exclusively in males (Mogil, 2012). At
this point, it is clear that sex differences in opioid
modulation of pain exist and warrant additional, com-
prehensive investigation into the underlying mecha-
nisms. Building on what is currently known regarding
sex differences in pain and analgesia will likely identify
additional targets for the development of novel pain
therapeutics; only then will we be able to advance
effective pain management in both women and men.

C. Body Weight and Blood Glucose

From a global view, there are more men living with
diabetes but more women who are obese with expected
further increase of the combination of obesity and
diabetes (diabesity) in the near future (International
Diabetes Federation, 2019; https://www.who.int/news-
room/fact-sheets/detail/obesity-and-overweight). Over-
all women who are diabetic bear a greater excess risk
of cardiovascular disease and of excess mortality com-
pared with men (Labib, 2003; Kautzky-Willer et al.,
2016; Ostan et al., 2016; Kautzky-Willer and Harreiter,
2017). On the other hand, women more often show
“metabolically healthy obesity,” which may in part be
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ascribed to more favorable fat distribution and sex
hormones (Mauvais-Jarvis et al., 2013; Kautzky-
Willer et al., 2016). The cause of increased vascular
risk in women with diabesity is not entirely known, but
both sex and gender differences in treatment modali-
ties, clinical inertia, adherence to drug therapy, and
metabolism of drugs (sex-specific cytochrome expres-
sion) as well as cultural and lifestyle factors must be
considered (Rossi et al., 2013; Ostan et al., 2016). There
is evidence that women reach therapeutic goals for
cardiometabolic health less often than men (Krämer
et al., 2012; Franzini et al., 2013). Women who are
diabetic show worse risk control and are less likely to be
on target for HbA1c despite comparable antihypergly-
cemic treatment (Penno et al., 2013). Therefore, poten-
tial sex differences in intensity of pharmacological
management or quality of care may be ascribed to
different pharmacokinetic or pharmacodynamic factors,
drug efficacy, or side effects as well as differences in
communication and patient or physician attitudes.
1. Antiobesity Drugs. Most studies show greater

weight loss in men compared with women in response
to diet, exercise, or combined lifestyle interventions as
well as after bariatric surgery (Harreiter and Kautzky-
Willer, 2018; Cataldi et al., 2019). However, conflicting
results exist in regard to pharmacological therapy, with
many more women taking antiobesity drugs because of
greater obesity-related psychosocial problems and stig-
matization. Most antiobesity drugs act via central
mechanisms by suppressing food intake or increasing
energy expenditure. The serotonergic drugs fenflur-
amine and dexfenfluramine were withdrawn from the
market because of palpitations, insomnia, heart valve
disease, and incident pulmonal hypertension, which
were mainly reported in women (Kautzky-Willer and
Lemmens-Gruber, 2012). In parallel, the antiobesity
drugs sibutramine (serotonergic and adrenergic drug)
and rimonabant (selective cannabinoid-1 receptor
blocker), which also targeted the central control of
appetite and body weight, were withdrawn from the
market based on serious adverse cardiovascular events
or psychiatric side effects and safety concerns, including
cases of death and suicide, especially in women
(Kautzky-Willer and Lemmens-Gruber, 2012).
Data on sex differences in regard to orlistat, a pan-

creatic and gastric lipase inhibitor that is commonly
used in Europe and United States as a prescribed or
over-the-counter medication, are scarce and in part
controversial (Kautzky-Willer and Lemmens-Gruber,
2012; Cataldi et al., 2019) (Table 2). Otherwise, this
drug is well studied and appears to have low rates of
long-term side effects. It can cause oily stools and
gastrointestinal problems by reduction of fat absorp-
tion, thereby reducing energy intake, and may further
lead to deficiency in fat-soluble vitamins (Bessesen and
Van Gaal, 2018). The probability of losing more than
5% body weight is modest compared with the other

weight-loss drugs (Bessesen and Van Gaal, 2018).
Studies in patients who were orlistat-treated showed
greater weight loss in men but better improvement of
metabolic parameters in women (Tchoukhine et al.,
2011) as well as a decrease in androgen levels and
improved ovulation rates in women with polycystic
ovary syndrome independent of changes in body mass
index (Diamanti-Kandarakis et al., 2007; Kautzky-
Willer and Lemmens-Gruber, 2012). In addition, orli-
stat was shown to bemore beneficial for women forweight
maintenance (Robertson et al., 2016). Orlistat was the
most commonly prescribed weight-management drug in
the MOVE! Study, with female sex being related both to
higher use of antiobesity drugs in general and higher use
of orlistat in particular (Thomas et al., 2019). Postmarket-
ing analysis revealed that use of weight-loss drugs and
orlistat is higher in women and patients who are diabetic,
but sex did not affect long-term adherence, which was in
general poor and much lower than in clinical trials
(Hemo et al., 2011). A large number of (in most cases
serious) adverse events reported for antiobesity drugs,
including orlistat, were assessed in the Eudra Vigilance
Database from 2007 to 2014, which reported 159 deaths
and a majority of adverse events occurring in women
(Aagaard et al., 2016).

The GLP-1 receptor (GLP-1R) agonist liraglutide was
originally approved for the therapy of type 2 diabetes.
The effects of GLP-1 analogs (GLP-1As) are com-
plex, acting at different central and peripheral levels
affecting glucose and energy homeostasis and glucose-
dependent insulin secretion. Because liraglutide in-
duced a marked weight loss in patients who were obese
and diabetics, it was subsequently investigated in RCTs
in patients who were nondiabetic with obesity and
finally approved as an antiobesity drug at a higher dose
(3 mg vs. 1.8 mg/day). Preregistration trials indicated
that women show greater weight loss in response to
liraglutide independent of the dosage up to 3 mg
(Wilding et al., 2016). Exposure-response analysis from
RCTs further revealed that weight loss increased in
parallel with drug exposure; in women, effects of
liraglutide appeared to level off at the highest dose of
3 mg, but men did not reach a plateau at this dose
(Wilding et al., 2016). Sex differences in pharmacoki-
netics leading to greater disposition of liraglutide in
females could be responsible for about 50% of the
greater weight loss in women comparedwithmen under
the dose of 3 mg liraglutide (Wilding et al., 2016).
Weight-adjusted exposure was increased by about
30% in women in comparison with men in the pre-
registration trials, and the effect of sexwas independent
of the effect of body weight (Overgaard et al., 2016). The
exact underlying causes for the decreased clearance of
liraglutide in women compared with weight-matched
men (other than different body composition) are not
clear. However, sex steroids appear to impact liraglu-
tide pharmacodynamics. The progesterone receptor
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membrane component 1 and the GLP-1R belong to
a multimolecular complex (Zhang et al., 2014), and
progesterone has been shown to stimulate GLP-1
secretion in animal studies (Flock et al., 2013). In
human islets, the androgen receptor agonist dihydro-
testosterone exerts insulinotropic effects on b cells via
activation of GLP-1R, thereby amplifying the incretin
effect of GLP-1 (Navarro et al., 2016). GLP-1 regulates
feeding behavior at the level of the central nervous
system by stimulating anorexigenic proopiomelanocor-
tin neurons and attenuating orexigenic neuropeptide
Y and Agouti-related peptide neurons (Secher et al.,
2014). Estrogens modulate GLP-1 effects on feeding
behavior and the reward system and its anorexigenic
activity in key nodes of the central reward circuitry
(Cataldi et al., 2019). In addition, GLP-1 analogs can
stimulate gastric vagal afferents and consequently slow
gastric emptying and promote satiety in brain regions.
Women exhibit slower gastric emptying in general, but
possible clinically relevant sex differences in gastric
emptying by use of GLP-1A are unclear at present.
Despite all of the sex differences described above,
differential dosing based on sex or body weight has
not been instituted, and the highest tested dose of 3 mg
is currently recommended for women and men based on
the exposure-response analysis.
Lorcaserin, a 5HT2c receptor agonist, stimulates

serotonin anorectic effects at multiple levels. There
are conflicting data in regard to sex differences in
response to lorcaserin (Cataldi et al., 2019). Estradiol
is known to modulate serotoninergic neurotransmis-
sion, thereby enhancing the anorectic effects of sero-
toninergic drugs. It was also postulated that estradiol
could enhance the expression of 5HT2c receptors in
the caudal hindbrain or that estradiol and serotonin
could interact at postreceptor levels. A converging
signaling pathway in regulation of energy homeosta-
sis between serotonin 5HT2c receptors and estrogens
appears plausible.
Naltrexone/bupropion combination was shown to pro-

mote greater weight loss in women in preregistration
trials (US Food and Drug Administration; Center for
Drug Evaluation and Research, 2014). This combina-
tion exerts central anorectic effects by blocking trans-
porters for dopamine and noradrenaline as well as
m-opiod receptors and the b-endorphin autofeedback
on POMC neurons (Cataldi et al., 2019). Thus, reuptake
of dopamine and noradrenalin is inhibited. Naltrexone
counteracts the opioid-dependent feedback mechanism
potentiating the anorectic effects of bupropion. Sex
steroids can enhance the antidepressive effects of this
combination (Dhir and Kulkarni, 2008). There is evi-
dence for sexually dimorphic effects of naltrexone on the
activation of the hypothalamic-pituitary-adrenal axis,
with higher increase of cortisol levels in women and
estrogen interactions. Therefore, the hypothalamic-
pituitary-adrenal axis of women appears to be more

sensitive to opioid antagonism (Roche et al., 2010). In
addition, it was shown that hormonal and subjective
effects to naltrexone differed across the menstrual cycle
(Roche and King, 2015). Greater increase of cortisol and
prolactin as well as more pronounced adverse effects
were described after acute naltrexone administration
in women during the luteal phase compared with the
early follicular phase and in women compared with
men. These findings could have clinical implications
for naltrexone treatment in women. In a mouse model,
the antiobesity combination of naltrexone and buprop-
rion profoundly reduced alcohol drinking via hypotha-
lamic POMC/melanocortin 4 receptor–dependent
mechanisms in males but was ineffective in females
(Zhou et al., 2019).

With phentermin/topiramate, these weight-loss
drugs were combined to achieve a prolonged clinical
effect. Larger effects on relative weight reduction were
reported for women compared with men (Cataldi et al.,
2019). The effects of topiramate, which is approved for
epilepsy and migraine prophylaxis, are complex, multi-
level, and not fully understood (Cataldi et al., 2019).
Main mechanisms appear to be related to potentiation
of insulin and leptin actions mainly in the hypothala-
mus as well as an increase in anorectic neuropeptides
including POMC and thyrotropin-releasing hormone
(Caricilli et al., 2012). Because estrogens further con-
trol thea-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor expression,which is inhibited by topiramate,
sex hormones could be responsible for possible sex differ-
ences in topiramate efficacy (Cataldi et al., 2019).
Phentermine, a substituted amphetamine, enhances
adrenergic and dopaminergic neurotransmission, which
also appears to be estrogen-dependent. Overall, sex-
specific effects of weight-loss drugs are described. Sex
and gender differences regarding PK and PD of these
drugs are described in more detail in a recent review
(Cataldi et al., 2019).

2. Antihyperglycemic Drugs. Gender-dimorphic effects
of antidiabetic therapies have been described. In
a German multicenter observational study, women
experienced greater weight loss after treatment with
lifestyle, metformin, or sulfonylurea, whereas men
showed higher HbA1c reductions after therapy with
lifestyle and metformin only (Schütt et al., 2015).
Diabetic males also achieved better glycemic control
under drug therapy than females in a systematic
review (Mannucci et al., 2014). In addition, a retrospec-
tive cohort study showed that female sex predicted
earlier secondary failure aftermetforminmonotherapy
(Mamza et al., 2016). Some studies reported associa-
tions between antihyperglycemic drug treatment and
various cancers (Table 2). Overall, insulin-sparing drugs
appear to relate to lower cancer risk than insulin-
providing drugs, with some sexually dimorphic effects
(Kautzky-Willer et al., 2017), although data are still
conflicting. A 9-fold increased risk for colon, liver, and
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lung cancer together with a decreased risk for prostate
cancer was found in men under insulin or sulfonylurea
therapy (Kautzky-Willer et al., 2017). Inwomen, glitazones
treatment was associated with lower risk of skin and colon
cancer, and metformin treatment was associated with
lower risk of non-Hodgkin lymphoma in an Austrian
diabetic population. In both men and women, insulin and
sulfonylureas were associated with higher risk of pancreas
and brain cancers.
In the analysis of 15 years of postrandomization

follow-up of the diabetes prevention trial, the incidence
of diabetes under initial metformin therapy was re-
duced by 36%, with a trend of greater risk reduction in
males than females in subgroup analysis; however,
among women, metformin’s effect was significantly
greater for women with a history of prior gestational
diabetes mellitus compared with women who were
parous prediabetic without gestational diabetes melli-
tus (Diabetes Prevention Program Research Group,
2019). The diabetes prevention trial also reported no
coronary artery calcium differences between lifestyle
and placebo intervention groups in either sex, but it
showed lower coronary artery calcium severity and
presence among men in the metformin versus the
placebo group, even after adjustment for age, statin
use, and other confounders (Goldberg et al., 2017). On
the contrary, no metformin effect was seen in women.
For incretin-based therapies, a gender-imbalanced

prescription practice was reported with more frequent
prescription of dipeptidyl peptidase 4 (DPP-4) inhibi-
tors to males, particularly patients who were older with
comorbidities, but more frequent prescription of GLP-1
analogs to young obese females (Zhang et al., 2010;
Hirsch et al., 2011). This gender-specific channeling
may be ascribed to weight-loss effects of GLP-1As in
light of greater stigmatization of obesity in women and
low risk of clinical side effects of DPP-4 inhibitors.
Studying the effectiveness and tolerability of the GLP-
1A exenatide in subgroups showed that women experi-
enced greater reduction of weight and fasting glucose
and blood pressure levels but more severe gastrointes-
tinal side effects (Pencek et al., 2012). However, in
a real-world study, after 1 year of exenatide therapy,
glycemic response prevailed in men, whereas weight
loss was higher in women without significant gender
differences observed in gastrointestinal side effects
(Anichini et al., 2013). Based on recent cardiovascular
outcome trials (CVOTs) of new antihyperglycemic
drugs, beneficial cardiorenal effects were shown for
the class of sodium/glucose cotransporter 2 (SGLT2)
inhibitors as well as for GLP-1A (Figs. 1 and 2; Table 2).
In all trials, there was a preponderance of males, with
participation by women ranging from 23% to 38% in the
SGLT2 CVOTs and from 30% to 46% in the GLP-1A
CVOTs (Pfeffer et al., 2015; Zinman et al., 2015; Marso
et al., 2016a,b; Holman et al., 2017; Neal et al., 2017;
Hernandez et al., 2018; Gerstein et al., 2019; McMurray

et al., 2019b; Wiviott et al., 2019). Subgroup analysis
showed a significant reduction of cardiovascular risk
and thus a greater benefit in men than in women,
although a trend for lower risk was also shown for
women, and no sex interaction was reported in some
studies. This may be attributed to lower cardiovascular
event rates in females in general, as evidenced in both
the placebo and active compound groups of women
compared with male counterparts. Therefore, longer
study duration in female subgroups to allow reaching
significant primary outcome events is warranted. To
confirm beneficial effects in women, we performed
a meta-analysis of MACE as a primary endpoint of
CVOTs for both drug classes, and this could show
significant risk reduction in both sexes (Figs. 1 and 2).

Analysis of fracture rates under antihyperglycemic
medication is necessary because diabetes, per se, is
related to alterations of bone quality and increased
fracture risk in both sexes, with particular high risk in
women who are postmenopausal. Regarding specific
classes, data are controversial, but overall, metformin
and GLP-1A related to lower fracture risk, whereas
insulin and sulfonylurea therapy was associated with
higher risk in some studies (Gilbert et al., 2016; Napoli
et al., 2017; Smieszek et al., 2018). There is evidence
that glitazones are associated with higher rates of
fractures in women who are postmenopausal and that
only canagliflozin among the SGLT2 inhibitors relates
to decreased bone mineral density and increased frac-
ture risk in some analysis (Habib et al., 2010; Mannucci
and Monami, 2017).

For SGLT2 inhibitors, higher rates of urinary tract
infections, vulvovaginitis, and balanitis with higher
incidence of urogenital infections among women were
documented (Johnsson et al., 2013). In addition, higher
numbers of severe adverse events, such as ketoacidosis,
were reported for women than for men (Fadini et al.,
2017). Moreover, case series of Fournier gangrene were
documented in patients receiving SGLT2 inhibitors
with clear predominance of men (Bersoff-Matcha
et al., 2019). The event rate was much higher than that
documented for other antihyperglycemic classes in the
past (55 events in 6 years vs. 19 events in a 35-year
timeframe).

Women more often experience severe hypoglycemia
when using insulin compared with men. Therapy
initiation or titration with higher insulin doses in
relation to body weight of women could be one reason
for this finding. Nevertheless, women reach glycemic
targets less often thanmen (Kautzky-Willer et al., 2012;
McGill et al., 2013). Furthermore, higher levels of
stress, anxiety or uncertainty, and greater impact of
psychologic distress could contribute to the higher risk
of hypoglycemia in women, which consequently also
relates to increased risk of falls and fractures and
possibly cardiovascular problems (Trento et al., 2015;
Kautzky-Willer and Harreiter, 2017).
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During pregnancy and in the preconception period of
women with chronic hyperglycemia, insulin is still the
gold-standard therapy, as both metformin and glybur-
ide pass the placenta and are associated with worse
outcome in the offspring. However, given the steady
increase in the use of oral antidiabetic medications in
women of reproductive age, better knowledge of their
effects on neonatal and long-term outcomes of the
offspring as well as addressing barriers and needs of
women who are pregnant and diabetic for inclusion in
clinical trials are needed for improvement of clinical
management in the future (Kautzky-Willer and Har-
reiter, 2018; Rubin, 2018).

D. Lipids

Coronary artery disease (CAD) is the leading cause of
death in both women and men in most developed
countries and accounts for a larger proportion of deaths
in women (51%) than in men (42%) in European
populations (Maas and Appelman, 2010). There are
sex differences in risk factors and pathology of CAD, and
women typically develop disease 10 years later than
men, which has been attributed to the protective effects
of ovarian hormones that dissipate after menopause
(Garcia et al., 2016). In both sexes, elevated circulating
lipid levels, particularly cholesterol carried in low-
density lipoproteins (LDLs)-C, is a well established risk

factor for CAD (Stone and Grundy, 2019). Several
factors interact with sex to contribute to the develop-
ment of dyslipidemia, including lipid-rich diet, seden-
tary lifestyle, and genetic variation in genes that
influence lipid metabolism (Link and Reue, 2017).

There is wide availability of drugs that effectively
lower LDL-C levels and decrease the risk of coronary
events, including statins, proprotein convertase sub-
tilisin/kexin type 9 (PCSK9) inhibitors, and ezetimibe
(Last et al., 2017). These drugs act on distinct targets to
influence LDL-C. Statins, which are among the most
widely prescribed drugs of all types in the Western
world, inhibit the rate-limiting enzyme for cholesterol
biosynthesis, 3-hydroxy-3-methylglutaryl CoA reduc-
tase. This both reduces endogenous cholesterol synthe-
sis and increases LDL uptake from the circulation
through feedback regulation of LDL receptor produc-
tion. PCSK9 inhibitors are injectable monoclonal anti-
bodies that block the degradation of LDL receptors by
the PCSK9 proprotein convertase, thereby increasing
LDL uptake from the circulation. Ezetimibe partially
blocks dietary cholesterol absorption by targeting an
intestinal receptor for cholesterol uptake: Niemann-
Pick C1-like protein 1. All of these drugs are generally
most effective at lowering LDL-C levels in combination
with lifestylemodifications, such as reducing dietary fat
and increasing physical activity. Cotherapies of statins

Fig. 1. Subgroup analyses (Borenstein et al., 2010) for the primary cardiovascular outcome* of GLP-1 receptor agonists (RAs). (A) Men. (B) Women.
*Primary cardiovascular outcome: REWIND (Gerstein et al., 2019): first occurrence of any component of the composite outcome, which comprised
nonfatal myocardial infarction, nonfatal stroke, and death from cardiovascular causes or unknown causes; HARMONY (Hernandez et al., 2018): first
occurrence of any component of the composite outcome, which comprised death from cardiovascular causes, myocardial infarction, and stroke; ELIXA
(Pfeffer et al., 2015): death from cardiovascular causes, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina;
LEADER (Marso et al., 2016b): first occurrence of death from cardiovascular causes, nonfatal (including silent) myocardial infarction, or nonfatal
stroke; SUSTAIN-6 (Marso et al., 2016a): first occurrence of death from cardiovascular causes, nonfatal myocardial infarction (including silent), or
nonfatal stroke; and EXSCEL (Holman et al., 2017): first occurrence of any component of the composite outcome of death from cardiovascular causes,
nonfatal myocardial infarction, or nonfatal stroke (three-component MACE outcome). CI, confidence interval; seTE, standard error of treatment
estimate; TE, treatment estimate.
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with PSCK9 inhibitors or ezetimibe are sometimes used
to maximize cholesterol-lowering effects.
Although cholesterol-lowering drugs are beneficial to

both women and men, there are sexual inequities in the
prevalence of use and adverse effects of these drugs.
Numerous, large-scale studies indicate that statins and
PCSK9 inhibitors also effectively prevent secondary
coronary events in both sexes (Baigent et al., 2010;
Kostis et al., 2012; Stein and Raal, 2014; Fulcher et al.,
2015; Collins et al., 2016). However, the proportion of
individuals that receive and persistently use these
drugs to reduce disease risk is lower in women than in
men (Chen et al., 2014; Victor et al., 2014). There appear
to be several reasons for this. First, women are un-
derrepresented in clinical trials for cholesterol-lowering
drugs, which is due in part to later age of onset for
dyslipidemia (Manteuffel et al., 2014). In addition,
women are less likely to be evaluated by a cardiologist
and more likely to experience adverse effects of statins,
as discussed further below (Zhang et al., 2016).
Female sex is now recognized as a risk factor for the

two most common statin adverse effects: myopathy and
new-onset diabetes (Regitz-Zagrosek, 2006; Stroes et al.,
2015; Thompson et al., 2016; Rosenson et al., 2017).
Myopathy (muscle pain, weakness, and stiffness) occurs
in an estimated 10%–15% of statin users (Thompson
et al., 2003; Mohassel and Mammen, 2013), and female
sex increases the odds of myopathy by 2-fold (Nguyen
et al., 2018). An additional statin adverse effect is the
development of new-onset diabetes. An increased occur-
rence of new-onset diabetes (9%) during 4 years after

statin use has been reported in a meta-analysis of
13 placebo-controlled statin trials, but this varied by
study (Sattar et al., 2010). A subsequent analysis of
several of these same studies plus additional studies
revealed a positive correlation between the proportion
of women in the trial groups and the risk of statin-
related incident diabetes. This assessment of 14 statin
trials demonstrated a positive correlation between
female sex and statin-related incident diabetes (r =
0.6, P = 0.036) (Goodarzi et al., 2013). In this meta-
analysis, a study consisting exclusively of men [West of
Scotland Coronary Prevention Study (WYSCOPS)] had
the lowest incidence of new-onset diabetes, whereas
a study consisting exclusively of women (Women’s
Health Initiative) had the highest incidence; studies
that included both sexes had intermediate levels of
incident diabetes that correlated with the proportion of
women. Additionally, stratification of subjects within
individual trials revealed important sex effects. For
example, in the Justification for the Use of Statins in
Prevention: An Intervention Trial Evaluating Rosuvas-
tatin study, the incidence of new-onset diabetes was
25%.However, stratification by sex showed that the risk
of incident diabetes was increased by 49% in women,
whereas it was increased by only 14% in men (Mora
et al., 2010; Goodarzi et al., 2013). Furthermore, data
from 150,000 participants in the Women’s Health
Initiative indicated that women who are postmeno-
pausal might be particularly vulnerable to developing
diabetes after statin use, with a reported 48% increase
in risk of new-onset diabetes (Culver et al., 2012).

Fig. 2. Subgroup analyses (Borenstein et al., 2010) for the primary cardiovascular outcome* of SGLT2 inhibitors. (A) Men. (B) Women. *Primary
cardiovascular outcome: EMPA-REG OUTCOME (Zinman et al., 2015): composite of death from cardiovascular causes, nonfatal myocardial infarction
(excluding silent myocardial infarction), or nonfatal stroke; CANVAS (Neal et al., 2017): composite of death from cardiovascular causes, nonfatal
myocardial infarction, or nonfatal stroke; DECLARE-TIMI 58 (Wiviott et al., 2019): MACE defined as cardiovascular death, myocardial infarction, or
ischemic stroke; DAPA-HF (McMurray et al., 2019b): composite of worsening heart failure or death from cardiovascular causes. CI, confidence interval;
HR, hazard ratio; seTE, TE.
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The mechanisms underlying the increased suscepti-
bility of females to statin adverse effects have not been
delineated but likely include sex differences in physiol-
ogy and PK. Statin adverse effects are thought to be
associated with elevated blood concentrations of the
drug, allowing increased exposure of tissues, such as
muscle to drug, leading to potential alterations in
mitochondrial function and calcium signaling pathways
(Ward et al., 2019). Since statin drugs are prescribed at
unisex doses, the blood and tissue levels of statins in
smaller individuals may be higher than in larger
individuals such that on average women may experi-
ence higher concentrations. Sex differences in drug-
metabolizing enzymes and transporters likely also
influence statin PK. Statins are catabolized by hepatic
cytochrome P450 enzymes, particularly CYP3A4 (sim-
vastatin, lovastatin) and CYP2C9 (rosuvastatin, fluvas-
tatin) (Schachter, 2005). CYP3A4 mRNA and protein
levels are typically higher in women compared with
men and could lead to differential amounts of bioactive
statin in the two sexes (Waxman and Holloway, 2009).
The concomitant use of other drugs that are metabo-
lized by CYP3A4 (approximately half of widely used
drugs) can alter statin catabolism and lead to elevated
plasma levels. Sex differences in the levels of additional
enzymes that participate in the conversion of statin
prodrugs to their active forms, their uptake into hepa-
tocytes and other cell types, and their degradation and
elimination may differ between males and females and
should be carefully examined to better define sex
differences in statin adverse effects (Thompson et al.,
2003; Regitz-Zagrosek, 2006; Sirtori, 2014). Finally,
statins are modulators of microRNAs (Allen and
Mamotte, 2017), and their beneficial effects have re-
cently been linked with epigenetic changes of the long
noncoding RNA MANTIS (Leisegang et al., 2019).
Therefore, epigenetic mechanisms, including altera-
tions in microRNAs, could participate to the mecha-
nisms responsible for statin-induced diabetes (Paseban
et al., 2019).
Statin drug use for the prevention of CAD will likely

increase under recent recommendations from The
American College of Cardiology/American Heart Asso-
ciation (Stone et al., 2014). Statins may also be prom-
ising treatments for conditions such as osteoporosis,
fragile X syndrome, Angelman syndrome, and Rett
syndrome (Buchovecky et al., 2013; Çaku et al., 2014;
An et al., 2017; Chung et al., 2018). However, whether
statin therapy impacts the risk of osteoporosis is
still debated, and more studies are required to
clarify potential effects of statins on bone health. A
dose-dependent relationship between statins and
the diagnosis of osteoporosis was found in the general
Austrian population; although low-dose statin treat-
ment was related to an underrepresentation of di-
agnosed osteoporosis when compared with patients
who were nonstatin-treated, an overrepresentation

of diagnosed osteoporosis was found in those on
higher statin dosages. Overall, the impact was
greater in women, particularly in younger women
(Leutner et al., 2019). Notably, cholesterol is a pre-
cursor of steroid hormones, and thus, statins could
also lower gonadal hormone levels.

In summary, it is critical to optimize statin treatment
of members of both sexes through greater inclusion of
females in clinical trials and in basic research of the
mechanisms that underlie adverse drug effects.

E. Kidney

1. Kidney Function and Gender Bias of Glomerular
Filtration Rate Equations. Men, in general, have larger
and wider kidneys compared with women (Mileti�c et al.,
1998), and women have higher renovascular resistance,
lower renal plasma flow, and lower absolute GFR com-
pared with men (Munger and Baylis, 1988). Thus, GFRs
are in the range of 15%–25% slower inwomen (Neugarten
et al., 2002; Schwartz, 2007). Because measuring GFR is
laborious and expensive, in the clinic we often estimate
GFR through equations that use sex, serum creatinine
levels, and sometimes body weight. These equations have
been shown to underestimate kidney function in women
to a larger extent than in men (Inker et al., 2017). In
humans, body surface area is the main predictor of
kidney size. Therefore, given that men tend to have
larger kidneys than women, the standardization of
estimated GFR by a constant body surface area of
1.73 m2, as we do currently with estimated GFR
equations in clinical practice, may introduce gender
bias (Carrero et al., 2018). Underestimation of kidney
function in women possibly leads to infratherapeutic
dosages and low efficacy for drugs that require strict
dose adjustment, such as the direct oral anticoagu-
lants (that is, dabigatran, rivaroxaban, apixaban,
and edoxaban) (Andrade et al., 2018).

2. Drug-Induced Nephrotoxicity. Medications are
a relatively common cause of acute kidney injury,
a sudden decline in kidney function. Up to 25% of
hospitalizations for acute kidney injury are attrib-
uted to drug-induced nephrotoxicity (Uchino et al.,
2005). Drug-induced nephrotoxicity is more common
in patients who were hospitalized, particularly patients
in the intensive care unit (Hoste et al., 2015). There is
evidence to suggest that drug-induced nephrotoxicity
may be in some cases sex-related, but this is an area
that is largely unexplored. For instance, women have
been reported to be more susceptible to nephrotoxicity
from gentamicin (Moore et al., 1984) or renin-angiotensin
system inhibitors ACEi/ARB (Mansfield et al., 2016),
but men may be more prone to develop cisplatin
(Nematbakhsh et al., 2013) or tobramycin (Goodrich
and Hottendorf, 1995) nephrotoxicity compared with
women.

Finally, ACEi/ARB are common drugs for the
treatment of hypertension, heart failure, myocardial

748 Mauvais-Jarvis et al.

at A
SPE

T
 Journals on A

pril 9, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


infarction, and kidney disease. Because of antago-
nism of angiotensin II–mediated efferent arteriolar
constriction (Lesogor et al., 2013), some patients may
experience a sudden decline in kidney function after
starting on these medications. Such sudden decline
in kidney function has been associated with worse
clinical outcomes and appears to be more common
among women (Schmidt et al., 2017b; Sinnott et al.,
2017; Fu et al., 2019). Why women are more prone to
this is not well known but may be attributed to drug
overdosing; although ACEi/ARB recommended dos-
ages are sex-neutral, experimental studies show an
interaction between estrogens and the renal expression
and activity of components of the renin-angiotensin
system (Sandberg and Ji, 2003; Liu et al., 2010).
Recent studies indicate that women may need lower
dosages than men to achieve the same therapeutic
effect (Santema et al., 2019). Unfortunately, many of
these complications probably remain undetected,
given that less than 20% of new users of ACEi/ARB
in routine care undergo the guideline-recommended
monitoring for serum creatinine during the initial
weeks of therapy (Schmidt et al., 2017a; Nilsson
et al., 2018).

F. Immunity and Vaccines

Biologic sex has its most profound impact on the
development of innate and adaptive immune responses
after vaccination. Most inactivated viral vaccines in-
duce predominantly humoral immunity, but viral vac-
cines that use adjuvants or live attenuated viruses can
also induce innate and cellular immunity as well.
Among adults (18+ years), females often develop anti-
body responses that are about two times greater than
the those of males after receiving vaccines that protect
against influenza, hepatitis B, herpes, yellow fever, and
smallpox viruses (Flanagan et al., 2017). The live
attenuated yellow fever (YF17D) vaccine also induces
greater expression of toll-like receptor signaling and
interferon-associated genes (i.e., innate immune signal-
ing) in vaccinated females compared with males (Klein
et al., 2010). Because of mutations in seasonal, circu-
lating influenza viruses, vaccination is recommended
annually; thus, there is considerably more data about
sex differences in vaccine-induced immunity for vac-
cines against influenza than other pathogens. In young
adult (18–49 years) females, immunization with half-
dose of seasonal trivalent inactivated influenza vaccine
(TIV) induced antibody responses against H1N1, H3N2,
and influenza B antigens that are equivalent to the
antibody responses in males who received full-dose TIV
(Engler et al., 2008). Across diverse ages, females
develop higher antibody responses against either in-
fluenza monovalent vaccines or TIV (Cook et al., 2006;
Talaat et al., 2010; Fink and Klein, 2015). In contrast,
pneumococcal vaccines, which are administered to
adults 65 years and older, result in greater antibody

responses in agedmales than in females (Brandão et al.,
2004; Goldblatt et al., 2009). The sex differences in
vaccine-induced immunity also influence vaccine effi-
cacy and effectiveness. For example, in Guinea-Bissau,
the efficacy of the measles vaccine in children tested by
measles-associated hospitalizations was better in girls
than it was in boys (Aaby et al., 2010). Likewise,
influenza vaccine studies have consistently shown that
the risk of influenza-associated hospitalization and
death is lower in vaccinated females than in vaccinated
males (Dhakal and Klein, 2019). An analysis in Canada
across seven influenza seasons reported that the overall
vaccine effectiveness was greater in females than
males, with the female bias being greatest against
A/H3N2 and influenza B viruses (Chambers et al.,
2018). The mechanisms mediating sex differences in
vaccine-induced immunity are only starting to be
explored in humans, which have provided data on
possible immunomodulatory effects of sex-steroid hor-
mones (Furman et al., 2014; Potluri et al., 2019). Animal
models are currently providing the most detailed mech-
anistic insights into how females develop greater im-
munity after vaccination. Immunization with sublethal
doses of either H1N1 or H3N2 influenza A viruses in
C57BL/6 mice results in greater neutralizing antibody
titers in both serum and bronchoalveolar lavage fluid;
cellular immune responses, including memory CD8+
T cells responses in the lungs (i.e., the site of infection);
and crossprotection against heterologous virus chal-
lenge (Lorenzo et al., 2011; Fink et al., 2018). Vaccina-
tion of mice with an inactivated H1N1 vaccine, TIV, or
the quadrivalent inactivated vaccine consistently
results in significantly greater quality and quantity of
antibody as well as protection against live virus chal-
lenge in female mice as compared with male mice
(�Zivkovi�c et al., 2015, 2018; Fink et al., 2018). Greater
immunity in females can be passively transferred to
males through transfer of vaccine-induced antibodies
(Fink et al., 2018). The greater antibody responses in
influenza-vaccinated females compared with males in-
volve sex chromosome complement. Both estradiol
concentrations as well as greater expression of the
X-linked gene toll-like receptor 7 underlie induction of
greater antibody responses and protection in adult
females compared with males (Fink et al., 2018;
Potluri et al., 2019). With aging, influenza vaccine–
induced immunity is reduced but to a greater extent in
females than in males among both humans and mice
and is associated with declining concentrations of
circulating estradiol with age in females (Potluri et al.,
2019). Sex-steroid hormones impart sex differential
effects on immunity and protection induced by vaccines,
including influenza vaccines. A more detailed explora-
tion of the direct contribution of X-linked genes as well
as sex-steroid hormones and their interactions in
mediating sex differences to other vaccines is lacking
and needs further investigation. Understanding the
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mechanisms of sex differences in immunity to vaccines
will help with precision in the development of more
efficacious and safe vaccines, including for coronavirus
disease 2019.
Males and females also differ in the uptake and

acceptance of vaccines and reporting of vaccine-
associated adverse events, which ultimately also
impacts the protection provided (Flanagan et al.,
2017). Because behavior and beliefs about vaccines
as well as biologic responses to vaccines play roles in
male-female differences, it can be difficult to tease
apart the role of sex and gender effects in the context
of vaccines in humans. Acceptance of vaccines, in general,
is greater in males than in females (Flanagan et al.,
2017). For example, the receipt of TIVs is apparently
lower among females (Bean-Mayberry et al., 2009;
Endrich et al., 2009). After receipt of inactivated
vaccines (e.g., TIV), which are administered intramus-
cularly, local reactions (e.g., redness, itching, pain,
swelling) and systemic adverse events (e.g., fever,
nausea, myalgia, rash) are more commonly reported
in females than males (Flanagan et al., 2017). Greater
adverse events in females are reported after immuni-
zation with many different vaccines, including influ-
enza, hepatitis B, pneumococcal, herpes zoster, tetanus,
pertussis, and yellow fever vaccines (Flanagan et al.,
2017). Even a recent randomized, double-blind, placebo-
controlled, phase 2 clinical trial of an adenovirus type-
5–vectored coronavirus disease 2019 vaccine in China
reported that females are more likely than males to
experience fever postvaccination (Zhu et al., 2020).
Whether reporting of adverse events reflects social
norms associated with reporting biases between males
and females or biologic sex differences in responses to
the vaccine associated with inflammation remains to be
determined (Flanagan et al., 2017). The role of patient
gender in response to drugs will be discussed in detail in
section V. Role of Physician and Patient Gender in Drug
Response.

G. Oncology

Overall, females with cancer have a survival ad-
vantage compared with patients who are male with
cancer (Dong et al., 2020). Although the reasons for
this disparity are incompletely understood and likely
to be complex, a readily obtainable research goal with
great clinical significance would be a thorough eval-
uation of sex differences in cancer chemotherapy PK
and PD.
Based on the sex differences in drug absorption,

distribution, metabolism, and elimination described
above, it is expected that the most commonly prescribed
chemotherapeutics including anthracyclines, platinum
agents, 5-fluorouracil (5FU), methotrexate, taxanes,
decitabine, vincristine, and cyclophosphamide/ifosfa-
mide will exhibit sex differences in PK because they
depend upon biotransformation for activation or

detoxification as well as renal and biliary excretion
for elimination. Variation in chemotherapy clearance
would affect both tumor and normal tissue exposure
and, thus, would be predicted to affect concordantly
survival and toxicity in chemotherapy-responsive
cancers. 5FU-containing regimens for colon and esoph-
ageal cancers provide a case in point. Across multiple
clinical trials involving thousands of patients, females
treated with 5FU experience greater numbers of adverse
events compared with males (Watanabe et al., 2018;
Abdel-Rahman, 2019; Lim et al., 2019; Yamada et al.,
2019; Athauda et al., 2020; Wagner et al., 2020), with
one study documenting that females completed fewer
planned chemotherapy cycles than males (Athauda
et al., 2020). Multiple studies have examined whether
there are differences in survival between male and
female patients. Although the literature contains
reports with inconsistent findings, in colon cancer
the largest study involving 26,908 patients treated
at Mayo Clinic sites between 1972 and 2017 indi-
cates that women exhibited a longer median sur-
vival time compared with men (89.1 vs. 76.4 months)
(Wang et al., 2019). A similar survival advantage
has been reported for esophageal cancer (Athauda
et al., 2020).

Females exhibit slower clearance of 5FU than males
(Milano et al., 1992), and even though 5FU is among the
most commonly prescribed chemotherapeutics, this
knowledge has never been integrated into study design
for sex-specific dosing. 5FU is primarily metabolized by
dihydropyrimidine dehydrogenase (DPD). Genetic var-
iants in DPD have been associated with increased 5FU
toxicity and in prospective clinical trial have been used
to guide dose modifications, which had the expected
effects on toxicity (Henricks et al., 2018). In addition to
patient genotype, DPD expression levels measured in
plasma and saliva were predictive of 5FU area under
the curve values and severity of adverse events (Neto
et al., 2018). Accordingly, lower levels of DPD expres-
sion were associated with better outcome in patients
who were pancreatic and treated with 5FU (Elander
et al., 2018). Notably, intratumoral DPD expression
levels are lower in female colon cancer specimens
compared with male specimens (Yamashita et al.,
2002). Interestingly, in a meta-analysis of three clinical
trials comparing conventional with chronomodulated
chemotherapy administration for colon cancer, survival
was affected by the timing of administration, resulting
in improvements in male patients but decreased sur-
vival in female patients (Giacchetti et al., 2012). In a rat
model, DPD expression was shown to be modulated in
a circadian manner with peak expression during mid-
sleep phase corresponding to the decreased toxicity
observed with nighttime dosing in human clinical trials
(Abolmaali et al., 2009). Together, these findings indicate
how critically important it could be to evaluate PK as
the basis for sex differences in chemotherapy-induced
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toxicity and therapeutic responses to treatment. The
fact that DPD genotype has been evaluated for 5FU
dose modifications in clinical trial raises the question of
why sex differences in 5FU metabolism have not been
similarly evaluated.
In addition to sex differences in PK affecting out-

come and toxicity, sex differences in systems level and
cellular biology have the potential to impact PD and
therapeutic responses. Cancer responses to immune
checkpoint inhibition (ICI) represent the clearest ex-
ample. Immunotherapy has produced robust responses
in subsets of patients with melanoma (Hodi et al., 2010;
Robert et al., 2015), nonsmall cell lung cancer (Brahmer
et al., 2015; Reck et al., 2016), and other cancers (Motzer
et al., 2015; Ferris et al., 2016). Subsequent meta-
analyses of data from randomized clinical trials have
found that male patients benefit more from ICI alone
than do female patients (Conforti et al., 2018; Conforti
et al., 2019).
Although the mechanistic basis for these differences

remains to be completely elucidated, two known mech-
anisms may be contributing. The first is the differences
in female versus male immune function and response
to vaccines described above in section F. Immunity
and Vaccines. Overall, females exhibit more robust
immunity, including antigen-driven immune responses.
Thus, the therapeutic index (i.e., potential for pharma-
codynamic effect) for increasing neo-antigen immune
response in cancer may be lower in females than that in
males, resulting in the greater therapeutic response
in males.
Sex differences in immunity and immune surveil-

lance for neo-antigens could also have more indirect
effects on immunotherapy response. As an example, sex
and age effects on immunity have been correlated with
driver mutation profiles (Castro et al., 2020) suggesting
that less antigenic neo-epitopes are present in male
versus female cancers. Thus, itmay be easier to enhance
male immune response if male cancers contain more
strong antigens than female cancers. Sex differences in
response to ICI may also reflect the greater mutational
burden in male cancers. A consequence of sex differ-
ences in antigen-driven immune surveillance would be
a higher prevalence of strong antigens in male cancers.
In addition, tumor mutational burden, which is
reported to be a biomarker of ICI response, is greater
in males versus females (Gupta et al., 2015; Xiao et al.,
2016), also predicting that ICI response would be
greater in males compared with females.
Optimal outcomes in cancer like longer survival and

decreased toxicity will require greater personalization
according to factors that drive variations in PK and
PD. Sex is clearly among the important factors to be
considered. As more information becomes available
regarding the biology of sex differences in cancer, it will
be essential to consider how they may alter PK and PD
considerations.

V. Role of Physician and Patient Gender in
Drug Response

A. Epidemiologic Evidence for Differences in Physician
Gender and Response to Treatment

The last section of this review examines the role that
gender of the treating physician and/or of the patient
may play in the pharmacological response to drug
treatment and indirectly in the quality of care provided.
This potential association has been controversially
discussed over the years. Some studies have suggested
that female physicians provide more comprehensive
care than male physicians do for both male and female
patients, whereas other studies found no such differ-
ence (Gouni-Berthold and Berthold, 2011). A detailed
analysis of the role that physician gender plays in drug
therapy has been recently reviewed (Gouni-Berthold
and Berthold, 2012).

1. Quality of Care. The first major study on this
topic examined the association between the gender of
primary care physicians (1213 female and 473 male)
and the quality of diabetes care they provided to their
patients in a US population participating in the Trans-
lating Research Into Action for Diabetes study (Kim
et al., 2005). This study reported that patients treated
by female physicians (n = 4585) were more likely to
receive lipid and HbA1c measurements and to have
LDL-C levels under 130 mg/dl than patients treated by
male physicians (n = 1783). Berthold et al. (2008) also
showed that physician gender influences the quality of
care in patients with type 2 diabetes and that female
physicians provided an overall better quality of care,
especially in major risk-factor management. They per-
formed a cross-sectional study using data from the
DUTY (Diabetesmellitus needs unrestricted evaluation
of patient data to yield treatment progress) registry
in 51,053 outpatients (48.6% male) with type 2 diabetes
in Germany treated by 3096 office-based physicians
(66.3%male; 74.0% general practitioners, 21.8% intern-
ists, and 4.2% diabetologists) to examine processes
of care, intermediate outcomes, and medical manage-
ment. They found that patients treated by female
physicians were more often women, more obese, and
older, and they more often had atherosclerotic disease
(34% in the total cohort). Using hierarchical regres-
sion models, they showed that patients treated by
female physicians reached glycemic, lipid, and blood
pressure target values significantly more often (14%,
16%, and 11%, respectively). Interestingly, although
patients treated by female physicians did not receive
more statins than patients treated by male physi-
cians, they were more likely to achieve LDL-C goals,
suggesting better compliance/adherence to treatment
in patients treated by female physicians. They were
also 35% more likely to receive antihypertensive drug
therapy in general and 17% more likely to receive
ACE inhibitors in particular. This study led to the
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interesting and humorous suggestion that being
treated by male physicians should become a new risk
factor for suboptimal diabetes care (Pedersen, 2009).
A subsequent cross-sectional survey of 6537 consecutive
patients from Sweden with hypertension (52% women)
(Journath et al., 2008) examined the association of
physician gender with blood pressure, lipid control,
and cardiovascular risk factors in men who are hyper-
tensive and women treated by 187 male and 77 female
primary care physicians. They found that women with
hypertension more often reached target systolic/diastolic
blood pressure levels (,140/90 mmHg) when treated by
female physicians than when treated bymale physicians
(32% vs. 24%). Furthermore, male and female patients
achieved significantly better control of total and LDL-C
levels when treated by female physicians than when
treated bymale physicians. Those results were achieved
with a similar number of drugs prescribed by both
groups, suggesting again a potential better adherence/
compliance by the patients treated by female physi-
cians. Baumhäkel et al. (2009) performed an observa-
tional cross-sectional trial in 1857 consecutive patients
from Eastern Germany with chronic heart failure and
treated by 829 physicians (66% general practitioners,
27% internists, and 7% cardiologists) with the purpose
of determining the interactions of gender with medical
treatment of this disease. They found that guideline-
recommended drug use and achieved target doses tended
to be higher in patients treated by female physicians.
There was no difference in the treatment between male
and female patients when treated by female physicians,
but male physicians used significantly fewer medications
in female patients. In a multivariable analysis, an in-
dependent predictor of use of the guideline-recommended
b blockers was female physician gender. Notably, a large
sample ofMassachusetts physicians (n = 10,408) treating
13 million adult patients was studied to examine the
relationship between physician characteristics and per-
formance scores on 124 quality measures from RAND’s
Quality Assessment Tools (Reid et al., 2010). The authors
found three physician characteristics to be independently
associated with significantly higher overall performance:
female gender (1.6% points higher thanmale, P, 0.001),
board certification (3.3% points higher than noncerti-
fied, P , 0.001), and graduation from a US medical
school (1.0% points higher than international,P, 0.001).
A Swiss retrospective cohort study of 1001 randomly
selected patients (44% women) based on four univer-
sity primary care settings and followed by 189 physi-
cians (48% men) reported that female physicians
provided significantly more preventive care than male
physicians to both male (73.4% vs. 70.7%) and female
patients (66.7% vs. 63.6%) (Krähenmann-Müller et al.,
2014). Even after multivariate adjustment, the differ-
ences according to physician gender remained signif-
icant. Recently, a study investigated whether patient
outcomes differ between male and female physicians

(Tsugawa et al., 2017). Over a 3-year period, they
examined whether 30-day mortality and readmission
rates between patients 65 years or older hospitalized
with a medical condition and treated by general
internists differed depending on the gender of the
treating physician. The authors reported that patients
treated by female physicians had significantly lower
30-day mortality and lower 30-day readmissions than
patients cared for by male physicians, even after
accounting for potential confounders. However, the
differences were numerically small (around a half %)
and the study was criticized for flaws, including the
fact that the male and female physician populations
were not comparable (Ladouceur, 2017). Another recent
study from the United States examined patient gender
disparities in survival rates after acute myocardial
infarctions based on the gender of the treating physician
(Greenwood et al., 2018). They found higher mortality
among female patients treated by male physicians.
When treated by female physicians, however, both male
and female patients experienced similar outcomes.
They also observed that male physicians were more
effective at treating female patients with an acute
myocardial infarction when they worked with female
colleagues and had treated female patients in the past.
Whether these differences were partially related to
different drug treatment chosen by female and male
physicians was not examined.

Taken together, these studies suggest that the differ-
ences in practice patterns between male and female
physicians may have important clinical implications for
patient outcomes.

2. Physician Adherence to Guidelines. A cross-
sectional study from Canada (Dahrouge et al., 2016)
investigated the relationship between the gender of
family physicians (n = 4,195, 31% female) and the
quality of primary care they provided. They found that
patients treated by female physicians were significantly
more likely to have received recommended diabetes
management drugs, such as ACE/ARB and lipid-
lowering agents. Similarly, a French study of 41,453
patients with diabetes (53% male) and treated by 2545
general practitioners (76% men) showed that female
physicians were more likely to order three or four
HbA1c tests during the year, as required by a local
performance indicator regarding the quality of care
provided for patients with diabetes (Chauvel et al.,
2013).

3. Patient Adherence to Treatment. Gender differ-
ences also exist in patient adherence to treatment. As
discussed above (Journath et al., 2008), studies have
suggested a potential better adherence and compliance
by patients treated by female physicians compared with
patients treated by male physicians (Berthold et al.,
2008). Another study from Israel addressed this issue,
focusing on7041 patientswith atherosclerosis (61%men)
and treated by 127 primary care physicians (42.5% men)
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for dyslipidemia. They reported that being treated by
a male physician was associated with 13% lower adher-
ence to the respective pharmacotherapy (Vashitz et al.,
2011).

B. Potential Explanations for Differences in Physician
Gender and Response to Treatment

Female physicians may be more careful and conser-
vative in their approaches to prescribing drugs, as
indicated by the more frequent use of the lower-than-
recommended dose of cholinesterase inhibitors in
patients with dementia (Rochon et al., 2018).
Altogether, and as previously discussed (Gouni-

Berthold and Berthold, 2012), the available evidence
for a role of physician gender in the efficiency of drug
therapy remains relatively small. It seems that female
physicians may provide better overall drug therapy and
specialized drug therapy in some medical areas. The
reasons for these findings are largely unclear but may
include different communication styles and the higher
empathy of female doctors (Roter et al., 2002; Phillips
andAustin, 2009; Hegazi andWilson, 2013). Physician’s
empathy has been associated with a higher likelihood of
achieving target values of risk factors (Hojat et al.,
2011). However, the available literature is limited by
inconsistent inclusion of common covariates and a lack
of multivariable analyses. Physician/patient communi-
cation is also crucial to the quality of drug therapy, for
example, for adherence and persistence. Differences in
the communication patterns within the four possible
physician/patient dyads (female or male physician,
female or male patient) seem to play a major role
(Brink-Muinen et al., 2002). Communication patterns
of the dyad female/female were found to differ from the
ones in the other three dyads, such as that biomedical
patterns are observed more often than psychosocial
ones. An association between gender concordant dyads
and cardiovascular risk-factor control and diabetes
treatment was found in a large study (n = 157,458
patients, treated by 972 male and 778 female primary
care physicians) of health insurance data (Schmittdiel
et al., 2009). It was shown that female patients of female
physicians had the highest adjusted rates of HbA1c
control (HbA1c , 8%) of the four patient-physician
gender dyads (70% vs. 66%–68%) and that male
patients of male physicians were the most likely to be
at or below LDL-C target in the four dyads. However,
the influence of gender dyads on the quality of drug
therapy has been investigated only in a limited num-
bers of studies with inconsistent results, and thus its
effect on treatment remains to be established. Further-
more, it is methodologically difficult to separate the
influence of the quality of drug therapy from non–drug-
related influences in the overall quality of care, espe-
cially in the treatment of complex chronic diseases, such
as diabetes, coronary heart disease, or chronic heart
failure (Gouni-Berthold and Berthold, 2012).

In conclusion, physician gender as an independent
parameter influencing drug therapy is difficult to
establish. As of today, there is no evidence in any area
of medicine to suggest that a patient will consistently
receive better quality of drug therapy by switching to
a physician of a specific gender.

VI. Conclusions and Future Directions

Biologic sex is a genetic modifier of the pharmacolog-
ical response to drugs. The combination of all sex-
specific genetic, epigenetic, and hormonal influences
on cellular systems discussed in the first part of this
review produces different in vivo male and female
biologic systems, which results in sex differences in
the PK and PD of multiple drugs, as discussed in the
second and third parts. These biologic sex differences
are further exacerbated by polymorphisms modifying
drug response and the interference of menstrual cycle,
pregnancy, menopause, age, sexually dimorphic micro-
biome, underlying pathophysiology, comorbidities, and
comedications. Additionally, physician gender as an in-
dependent parameter may influence drug therapy. The
sum of all of these sex and gender influences on the
pharmacological response to drugs is summarized inFig. 3.
Since preclinical research has been historically predomi-
nantlyperformed inmale experimentalmodels andwomen
are still underrepresented in clinical trials, women are at
greater risk thanmen of experiencing adverse reactions to
most drugs. Several steps can be taken at all levels of the
biomedical enterprise as described below.

Consideration of sex and gender to evaluate dispar-
ities in drug safety and efficacy is largely absent from
clinical trials, and this should be revisited and be
incorporated in an international guideline. Sex and
gender should be considered at each step of the research
process, from the design of clinical trials to the in-
terpretation of the results, with segregation of results
by sex and/or gender. When justified on the basis of
initial findings of sex/gender differences, clinical trials
should be designed and powered to address sex-specific
pharmacology. This approach would help develop per-
sonalized sex- and gender-specific guidelines for drug
efficacy. The pharmaceutical industry should also con-
sider sex early in the discovery phase of research, as the
acquisition of sex-specific data will inform the design
and interpretation of downstream clinical trials that
will advance the development of therapeutics optimized
by sex. Efforts to bring sex and gender into the
mainstream of modern medical education should be
undertaken. Medical schools use curricula are based on
the physiology of an average man and need to in-
corporate sex-based physiology and pharmacology into
the early stages of instruction. All clinicians should be
aware of sex differences in body surface area, pharma-
cokinetics, and pharmacodynamics to avoid overdosing
women. Potential interaction of drugs with endogenous
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hormones or therapeutically supplied hormones should
be considered as well as differences in the adequate
dose of drugs between women who are premenopausal
and postmenopausal, depending on hormonal status,
intestinal uptake, hepatic metabolism, and kidney
function.
Consideration of sex is one of the pillars of precision

medicine. The inherent differences between male and
female biology should inform drug prescription to pro-
mote gender equity in health.
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Supplemental Table 1. Sex differences in PK in adult men and women, and effect of pregnancy, menstrual cycle, OC and HRT 

Parameters  Sex differences Pregnancy  Menstrual cycle Oral 
contraceptives 
(OC) 

Menopausal hormone 
therapy (MHT) 

Body weight (BW) M > F 
(Anderson, 
2005; Fadiran 
and Zhang, 
2015; Franconi 
and Campesi, 
2014) 

> (Dallmann et al., 2019) Slight > during the second cycle half 
(Kirchengast and Gartner, 2002)  

Effect depends on 
OC: EE and 
drospirenone 
favor   change in 
BW vs EE and 
chlormadinone 
acetate 
(Wongwananuruk 
et al., 2020) 
Injectable 
contraceptives 
increase BW 
(Zerihun et al., 
2019) 

<-> (Tavani and La Vecchia, 
1999). 
6 months of MHT increases  
weight, BMI, and waist/hip 
ratio (Bingol et al., 2010) 

Gastric secretion 
(pH)           

M > F  
(Soldin and 
Mattison, 2009) 

>, impairing absorption of 
oral drugs (Costantine, 
2014; Dallmann et al., 
2019)  

> in luteal phase (Brennan et al., 
2009) 

<-> (Van Thiel et 
al., 1976) 

MHT free women have a 
lower risk of reflux symptoms 
vs MHT users (Jacobson et 
al., 2008) 

Gastric emptying 
rate 

M > F  
(Soldin and 
Mattison, 2009) 

>, impairing absorption of 
oral drugs (Costantine, 
2014)  

< in luteal phase  (Brennan et al., 
2009) 

< (Hutson et al., 
1989) 

< and becomes similar to that 
in men (Freire et al., 2011) 

Gastro-intestinal 
mobility    

M > F (Soldin 
and Mattison, 
2009) 

<, impairing absorption of 
oral drugs (Costantine, 
2014) 

> during luteal phase  (Freire et al., 
2011) 

Unknown Unknown 

Fat mass F>M 
(Soldin and 
Mattison, 2009) 

>, varying the distribution 
of lipid soluble drugs 
(Costantine, 2014)                   

Unknown Unknown < subcutaneous fat (Yuksel 
et al., 2006; Yuksel et al., 
2007) 

Muscle mass M > F  
(Soldin and 
Mattison, 2009) 

Unknown Unknown  Unknown Unknown 

Keratinocytes size M > F (Singh 
and Morris, 
2011) 

Unknown  Unknown Unknown Unknown 

Skin pores size M > F (Singh Unknown  Unknown Unknown Unknown 



and Morris, 
2011) 

Skin thickness  M>F (Rahrovan 
et al., 2018) 

Index of skin barrier 
function are slightly 
increased (Eisenbeiss et 
al., 1998) 

> in second part of cycle (Eisenbeiss 
et al., 1998) 

<->  (Eisenbeiss 
et al., 1998) 

Unknown 

Total water 
(intracellular and 
extracellular) 

M > F 
(Anderson, 
2005; Soldin 
and Mattison, 
2009) 

>, varying the distribution 
of water-soluble drugs 
(Costantine, 2014) 

> (Soldin and Mattison, 2009) Unknown Unknown 

Albumin protein 
binding  

<-> (Soldin and 
Mattison, 2009) 

< thus reducing 
the plasma protein 
binding of certain drugs 
(Feghali et al., 2015) 

<-> (Adias et al., 2019) <  (McPherson et 
al., 1978; Weaving 
et al., 2016) 

Unknown 

RBC M > F  
(Anderson, 
2005; Franconi 
and Campesi, 
2014; Soldin 
and Mattison, 
2009) 

< RBC per mm
3
 of blood 

because the plasma 
increases by 30 %, while 
RBC increase by only 
about 20 % (Costantine, 
2014) 

< during menstruation vs follicular 
phase (Omorogiuwa and Igeleke, 
2014) 

<-> (Ruoppolo et 
al., 2014) 

      Unknown 

Blood volume M > F 
(Franconi and 
Campesi, 2014; 
Regitz-Zagrosek 
and Kararigas, 
2017) 

> of about 50% 
(Costantine, 2014; 
Feghali et al., 2015; 
Feghali and Mattison, 
2011) 

Unknown <-> (Stachenfeld et al., 
1999) 

> (Sites et al., 1999) 

Plasma volume  F > M 
(Franconi and 
Campesi, 2014; 
Regitz-Zagrosek 
and Kararigas, 
2017) 

> of about 50% 
(Costantine, 2014; 
Feghali et al., 2015; 
Feghali and Mattison, 
2011) 

> in early follicular phase vs late 
follicular and  luteal phase (Aguree 
et al., 2020; Soldin and Mattison, 
2009) 

Unknown > (Sites et al., 1999) 

Cardiac output M > F 
(Franconi and 
Campesi, 2014; 
Regitz-Zagrosek 
and Kararigas, 
2017) 

> from first trimester 
(Feghali et al., 2015; 
Feghali and Mattison, 
2011) 

Unknown Increases during 
exercise (Lehtovirta et 
al., 1977) 

> (Dunbar and Kenney, 
2000) 

Heart rate  F > M 
(Franconi and 

> (Feghali et al., 2015; 
Feghali and Mattison, 

<->  (Teixeira et al., 2015) 
> during the cycle (Tenan et al., 

<-> (Teixeira et al., 
2015; von Holzen et al., 

< in menopause but HRT 
revokes this (von Holzen 



Campesi, 2014; 
Regitz-Zagrosek 
and Kararigas, 
2017) 

2011) 2014) 
The vagal dominance decrease from 
follicular to luteal phase (von Holzen 
et al., 2016)  

2016) et al., 2016; Yang et al., 
2013) 

Regional blood 
flows 

M > F (Franconi 
and Campesi, 
2014; Regitz-
Zagrosek and 
Kararigas, 2017) 

> in cerebral, renal and 
liver blood flow from 1 to 3 
trimester (Feghali et al., 
2015; Feghali and 
Mattison, 2011; Jones-
Muhammad and 
Warrington, 2019; Nevo et 
al., 2010) 

Skin blood flow is < in the luteal vs 
pre-ovulatory phase; forearm muscle 
blood flow is < during menstruation 
(Bartelink et al., 1990) 
Systolic/diastolic  ratio, pulsatility  
index are > in luteal than in follicular 
phase in the right middle cerebral 
artery (Brackley et al., 1999) 

Unknown Skin, splanchnic and 
renal blood are not  
affected by HRT (Dunbar 
and Kenney, 2000) 

Uterine perfusion 
and feto-placental  
compartment 

--------------------- Specific for gestation: 
thirty- to  forty-fold 
increases in uterine  blood  
flow (Terragno et al., 
1974) 

----------------------------------  ----------------- ----------------------------- 

Glomerular 
filtration rate 

M > F 
(Anderson, 
2005; Fadiran 
and Zhang, 
2015; Franconi 
and Campesi, 
2014) 

> of about 50% from II 
trimester  until 3 months 
postpartum. This and the 
increase in renal blood 
flow elevates elimination 
of hydrophilic 
drugs.(Feghali et al., 
2015; Feghali and 
Mattison, 2011)  

> in the midluteal phase (Arlene et 
al., 1997) 

<-> (Ruoppolo et al., 
2014) 

Unknown 

Creatinine  M > F 
(Anderson, 
2005; Soldin 
and Mattison, 
2009) 

< (Feghali et al., 2015; 
Feghali and Mattison, 
2011) 

<-> (Phipps et al., 1998) 
Peaks in the follicular phase with the 
lowest value around ovulation (Gault 
et al., 1994) 

> (Brandle et al., 1992) 
 
<-> (Campesi et al., 
2012; Holzel, 1989) 

Unknown 

CYP1A2 activity M > F, 
(Franconi and 
Campesi, 2014; 
Tanaka, 1999) 

< (Feghali et al., 2015; 
Feghali and Mattison, 
2011; Isoherranen and 
Thummel, 2013; Tracy et 
al., 2005)  
Expresses in placentas 
(Hakkola et al., 1996) 

< late follicular phase (Asprodini et 
al., 2019) 
<-> (Finnström, 2001; Kashuba et 
al., 1998; Zaigler et al., 2000) 
 

Inducibility is increased (20%) by 
St.Johns wort in women only 
(Franconi and Campesi, 2014) 

Inhibited  (Pollock et al., 
1999; Zaigler et al., 
2000)  

Inhibited (Slayter et al., 
1996) 

CYP2A6 gene, 
protein and activity 

<-> (Anderson, 
2005; Soldin 
and Mattison, 
2009) 

Activity increases 
(Dempsey et al., 2002) 
 

> during late follicular phase 
(Asprodini et al., 2019) 
CYP2A6 activity is not affected by 
menstrual cycle phase (Hukkanen et 

> with  estrogen 
(Benowitz et al., 2006) 
 

Unknown 



al., 2005) 

CYP2B6 (mRNA, 
protein and 
activity)  

F > M  (Lamba 
et al., 2003) 

Activity varies among 
different ethnic groups 
(Lamba et al., 2003) 

Unknown < (Hagg et al., 2001) <(Hagg et al., 2001) 

CYP2C9 activity <-> (Soldin and 
Mattison, 2009; 
Tanaka, 1999)   

Activity increases during 
2nd and 3rd trimester 
(Isoherranen and 
Thummel, 2013) 

Unknown Unknown Unknown 

CYP2C16 activity  M > F (Yang et 
al., 2012) 

Expresses in placentas 
especially in  early 

pregnancy  (Hakkola et al., 
1996) 

Unknown Unknown Unknown 

CYP2C19 activity <-> (Soldin and 
Mattison, 2009; 
Tanaka, 1999) 

<  (Feghali et al., 2015; 
Feghali and Mattison, 
2011) 

<->  (Kim et al., 2002) < (Anderson, 2005; 
Hagg et al., 2001; Laine 
et al., 2000) 
 

<-> (O'Connell et al., 
2006) 

CYP2D6 activity M > F 
(Soldin and 
Mattison, 2009; 
Tanaka, 1999) 

changes in pregnancy 
depending on trimester 
(Feghali et al., 2015; 
Feghali and Mattison, 
2011; Tracy et al., 2005); 
> (Isoherranen and 
Thummel, 2013) 
Expresses in placentas 
(Hakkola et al., 1996) 

> in the middle of cycle (Pleym et al., 
2003) 

< (Pleym et al., 2003) > (O'Connell et al., 2006) 

CYP2E1 activity M > F 
(Soldin and 
Mattison, 2009; 
Tanaka, 1999) 

CYP2E is not found in 
human placentas 
(Hakkola et al., 1996) 
Protein expresses in 
placentas (Rasheed et al., 
1997) 

The gene expression at the time of 
menstruation and ovulation does not 
vary in human leukocytes  
(Finnstrom et al., 2002) 

> (Pleym et al., 2003) Unknown 

CYP3A4 gene, 
protein, and 
activity  

F > M (Soldin 
and Mattison, 
2009; Tanaka, 
1999) 

>(Feghali et al., 2015; 
Feghali and Mattison, 
2011; Isoherranen and 
Thummel, 2013) 
Expresses in placentas 
(Hakkola et al., 1996; 
Maezawa et al., 2010) 

The gene expression at the time of 
menstruation and ovulation does not 
vary in human leukocytes and in the 
liver  (Finnström, 2001; Finnstrom et 
al., 2002) 

Inhibited (Laine et al., 
2000; Stoehr et al., 
1984) 
It is also inhibited by 
gestogen (Guengerich, 
1990) 

No effect of HRT  
(Gorski et al., 2000) 
 

Liver CYP3A5 
gene  

M > F (Yang et 
al., 2012) 

Expressed in placentas 
and fetal membranes 
(Hakkola et al., 1996; 
Maezawa et al., 2010)                                                                                                                                                                                                                                                                                                                               

Unknown Unknown Unknown 



Liver CYP3A7gene  F > M (Yang et 
al., 2012) 

Placental and endometrial 
CYP3A7 mRNA and 
protein increase 
substantially from the 1

st
 

to the 2
nd

 trimester 
(Maezawa et al., 2010; 
Schuetz et al., 1993) 

> during the secretory phase of the 
menstrual cycle than in the 
proliferative phase (Schuetz et al., 
1993) 

Unknown Unknown 

Liver CYP7A1 
gene and mRNA 

F > M (Yang et 
al., 2012) 

It is present in fetus 
tissues (Miller et al., 1996) 

Unknown Unknown Unknown 

Liver GSTA1/A2 
gene 

F > M (Yang et 
al., 2012) 

Express in placentas 
(Raijmakers et al., 2002) 

Unknown Unknown Unknown 

UDP-glucuronosyl-
transferase 2 
expression and 
activity  (human 
liver)  
UGT2B17 gene 
and protein 
expression and 
activity 
UGT2B15 activity   
UGT1A4 

M > F (Tanaka, 
1999), 
 

> (Feghali et al., 2015; 
Feghali and Mattison, 
2011) 
 
 
>  in 2

nd
 and 3

rd 
trimesters 

(Feghali et al., 2015; 
Feghali and Mattison, 
2011) 

Unknown >in OC users 
(Gallagher et al., 2010) 
 

Unknown 

SULT1A1 F > M (Dubaisi 
et al., 2019) 

Expressed in placenta 
and fetal liver being lower 
in fetal then adult liver 
(Dubaisi et al., 2019; 
Pacifici, 2005; Stanley et 
al., 2001) 

Unknown 19-norethindrone 
acetate, ethynodiol 
diacetate and 
mifepristone inhibit it 
(Yasuda et al., 2005) 

Unknown 

SULT1E1 liver  F > M (Dubaisi 
et al., 2019) 
 

More expressed in fetal 
liver (Dubaisi et al., 2019)  

Unknown Unknown Unknown 

N-
acetyltransferases  
activity  

F > M (Soldin 
and Mattison, 
2009; Tanaka, 
1999) 

NAT2 < in early 
pregnancy  (Tracy et al., 
2005; Tsutsumi et al., 
2001) 

> follicolar phase in slow acetylators 
whereas in fast acetylators does not 
vary (Asprodini et al., 2019) 

<-> in NAT2 activity 
(Shelepova et al., 2005) 

=  NAT2 activity 
(O'Connell et al., 2006; 
Shelepova et al., 2005) 

Catechol-O-
methyl-transferase 
activity  

M > F (Soldin 
and Mattison, 
2009) 

>  in RBC of pregnant 
women (Bates et al., 
1978) 

Unknown <-> in RBC of OC users  
(Bates et al., 1979) 

In E2 treated 
postmenopausal women, 
E2 levels are 
significantly associated 
with the COMT genotype 
(Worda et al., 2003) 

Liver P- M > F > in preterm placenta than Unknown Unknown Unknown 



glycoprotein 
expression and 
activity  

(Smirnova, 
2012) 

in term one declining with 
gestational age. Renal 
activity increases during 
late pregnancy and the P-
gp–mediated renal 
secretion of digoxin 
increased in  late 
gestation (Hebert et al., 
2008; Isoherranen and 
Thummel, 2013; Mathias 
et al., 2005) 

Liver breast cancer 
resistant 
protein   

M > F 
(Smirnova, 
2012) 

High expressed in 
placentas being protein 
and mRNA expression at 
preterm greater than at 
tem pregnancy (Mao, 
2008) 

Unknown Unknown Unknown 

Liver SLC3A1 
gene (encodes 
neutral and basic 
amino acid 
transport protein 
rBAT) 

F > M (Yang et 
al., 2012) 

Expressed in placentas 
(Cleal et al., 2018) 

Unknown Unknown Unknown 

Liver SLC13A1 
gene (encodes 
sodium/sulfate 
cotransporter) 

M > F (Yang et 
al., 2012) 

Expressed in placentas 
(Cleal et al., 2018; 
Simmons et al., 2013) 

Unknown Unknown Unknown 

Liver SLC10A1 
gene (encodes 
sodium/bile acid 
uptake system) 

F > M (Yang et 
al., 2012) 

Its protein is expressed in 
fetal liver at low  levels 
(Sargiacomo et al., 2018) 

Unknown Unknown Unknown 

MRP  F > M 
(Smirnova, 
2012) 

Expressed in placentas 
and mRNA and protein 
expression of MRP2 
increases with advancing 
gestation (Feghali and 
Mattison, 2011) 

Unknown  Unknown Unknown 

< =  decreased; > = increased; <-> = unchanged; F = female; M = male; BW= body weight; RBC= red blood cells; UGT= UDP-glucuronosyl-transferase; 

E2 = 17beta-estradiol; EE= ethynilestradiol; SULT = sulfotransferase; SLC = Solute carrier family; MRP= multidrug resistance protein; Oatp= organic-

anion-transporting polypeptide.  
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