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Abstract 

Precision cancer medicine is widely established, and numerous molecularly targeted drugs 

for various tumor entities are approved or in development. Personalized pharmacotherapy in 

oncology has so far been based primarily on tumor characteristics, e.g., somatic mutations. 

However, the response to drug treatment also depends on pharmacological processes 

summarized under the term ADME (absorption, distribution, metabolism, and excretion). 

Variations in ADME genes have been the subject of intensive research for more than five 

decades, considering individual patients’ genetic makeup, referred to as pharmacogenomics 

(PGx). The combined impact of a patient’s tumor and germline genome is only partially 

understood and often not adequately considered in cancer therapy. This may be attributed, in 

part, to the lack of methods for combined analysis of both data layers. Optimized 

personalized cancer therapies should, therefore, aim to integrate molecular information 

which derives from both the tumor and the germline genome, and taking into account existing 

PGx guidelines for drug therapy. Moreover, such strategies should provide the opportunity to 

consider genetic variants of previously unknown functional significance. Bioinformatic 

analysis methods and corresponding algorithms for data interpretation need to be developed 

to integrate PGx data in cancer therapy with a special meaning for interdisciplinary molecular 

tumor boards, where cancer patients are discussed to provide evidence-based 

recommendations for clinical management based on individual tumor profiles. 

 

Significance Statement 

The era of personalized oncology has seen the emergence of drugs tailored to genetic 

variants associated with cancer biology. However, the full potential of targeted therapy 

remains untapped due to the predominant focus on acquired tumor-specific alterations. 

Optimized cancer care must integrate tumor and patient genomes, guided by 

pharmacogenomic principles. An essential prerequisite for realizing truly personalized drug 

treatment of cancer patients is the development of bioinformatic tools for comprehensive 

analysis of all data layers generated in modern precision oncology programs. 
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I. Introduction  

A. Precision medicine and pharmacotherapy 

The concept of "one drug fits all" has been outdated in recent years by the approach of 

personalized medicine. Significant progress has been made in the therapy of tumor 

diseases, with various targets identified through innovative drug development (Mateo et al., 

2022). An impressive example is the cancer therapy of non-small cell lung carcinoma 

(NSCLC) with > 20 different molecular subtypes for which targets have been identified 

(Harada et al., 2023). In consequence drugs have been developed to compensate for gain-

of-function mutations for instance in the epidermal growth factor receptor (EGFR) resulting in 

innovative approved drugs such as afatinib, and erlotinib (https://www.thelancet.com/pb-

assets/Lancet/infographics/nsclc/image-1709218498257.pdf). This approach is supported by 

a recent article that highlights the benefits of pan-genomic markers. Specifically, it 

emphasizes the linkage between the discovery of cancer driver genes, mutational signatures, 

and the use of real-world clinical data to improve the stratification of treatment outcomes and 

prognosis (Sosinsky et al., 2024). Moreover, precision pharmacotherapy in oncology requires 

consideration of a broader portfolio of factors compared to non-oncological therapies. Recent 

efforts are spent to consider technologies, such as RNA sequencing, DNA methylation, gene 

expression profiling, and proteomics to close the gap of so far unexplained interindividual 

variability of response to cancer therapy by the use of tumor or metastasis biomaterial and/or 

liquid biopsies to promote precision cancer therapy (Alix-Panabières and Pantel, 2021; 

Akhoundova and Rubin, 2022) . However, precision medicine in cancer needs to take into 

consideration not only the tumor and related molecular targets but also genetic variability in 

the germline (Schwab and Schaeffeler, 2012). For instance adverse drug reactions (ADR) 

that affect organ systems of the human body, such as the liver or blood cells, are influenced 

by the germline and not the tumor genome (Hertz and Rae, 2015; Osanlou et al., 2018). 

Given that cancer therapy often necessitates the use of combination therapies, including 

innovative immunotherapies, the demand for complex analyses and prediction tools is 

required. Those tools that comprehensively cover a remarkable array of pharmacologically 
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relevant data will enable treatment strategies that address also cancer heterogeneity and 

allow for more effective and personalized approaches in oncological care.  

Another important area in precision cancer therapy is the concept of targeted protein 

degradation (TPD) to modulate proteins which are unable to be targeted with small 

molecules (Békés et al., 2022). In this context, proteolysis-targeting chimera (PROTAC) 

protein degraders, which are heterobifunctional molecules, chemically induce selective, 

proteasome-dependent degradation of target proteins that are crucial in cancer e.g. 

lymphocyte-specific protein tyrosine kinase (LCK) (Hu et al., 2022). These degraders are 

highly promising for novel therapeutic options, as recently reviewed (Zhu et al., 2023). 

The goal of this review is to summarize up-to-date information on the clinical relevance of 

germline and somatic alterations to emphasize how important both aspects are in cancer 

therapy including supportive care and to develop approaches for implementing this 

knowledge into clinical practice. 

 

B. Prediction of drug response and adverse drug reactions  

Prediction of drug therapy response depends on multiple factors, including age, gender, 

weight, ethnic background, and interactions between prescribed medications, all of which 

play significant roles (Sadee et al., 2023). This is particularly relevant in patients undergoing 

cancer therapy, where supportive care is often necessary alongside causal oncological 

treatments. The consideration of genetic variability in drug therapy is covered by the term 

pharmacogenomics (PGx). This indicates the elucidation of individual genetic variation in 

genes related to pharmacokinetics of drugs represented by absorption, distribution, 

metabolism, and excretion (ADME) processes which may affect drug efficacy and safety. 

Moreover, the use of multiomics approaches will further enable optimization of drug therapy 

and contribute to the discovery of novel targeted therapies (Pirmohamed, 2023).  

PGx is a relatively young scientific discipline, in light of the fact that the decoding of the 

human genome in 2000 significantly promoted research activities. However, notable 

examples were already discovered in the 60s and 70s (Figure 1A) including the glucose-6-
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phosphate dehydrogenase deficiency (Alving et al., 1956), the N-acetyltransferase 

polymorphism (Evans et al., 1960), and the sparteine/debrisoquine cytochrome P450 

(CYP2D6) polymorphism (Mahgoub et al., 1977; Eichelbaum et al., 1979). The number of 

scientific articles on PGx has steadily increased over the past 15 years, with over 2000 

publications in 2023 (Figure 1B). The growing importance of PGx in the context of cancer 

therapy is the subject of scientific investigations, but is still significantly underrepresented 

compared to non-cancer research as demonstrated by our literature review as well as the 

limited number of cancer drugs taken into account in PGx guideline articles in comparison to 

non-cancer drugs (https://www.pharmgkb.org/guidelineAnnotations). The significant 

achievement of PGx in recent years is that data from randomized controlled trials (RCT) 

provide evidence for preemptive PGx testing for selected drugs and underpin the functional 

relevance of variation in ADME genes by experimental studies (Roden et al., 2019). However 

outside the frame of dedicated trials the use of population-scale and hospital-based biobanks 

linked to electronic health records (EHR) provide evidence to validate PGx associations 

particularly regarding rare variants as demonstrated by the US eMERGE (Electronic Medical 

Records and Genetics) network (McCarty et al., 2011) and the Biobank at Vanderbilt 

University (BioVU) concept (Danciu et al., 2014). 

In addition to genetic alterations in drug targets, factors such as impaired organ function -

particularly relevant for drugs primarily excreted through the kidneys (e.g. platinum-based 

drugs)- should also be considered for dose adjustments. Moreover, drug-drug interactions 

(DDI) are widely accepted in drug therapy as well as drug-gene-interactions (DGI) (see 

below) whereas potentially synergistically or antagonistically acting drug-drug-gene 

interactions (DDGI), i.e. the cumulative effect of DDIs and DGIs (Bruckmueller and Cascorbi, 

2021) are so far underestimated. These interactions are particularly relevant in cancer 

therapy since multiple PGx drugs, including supportive care, are concomitantly administered 

to cancer patients (see II.F). 
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C. Relevance of ADME processes  

Pharmacological processes related to efficacy or occurrence of ADR are associated with the 

absorption, distribution, metabolism, and excretion of the active substance and/or related 

metabolites. In addition to age-related changes genetic variations in drug-metabolizing 

enzymes (DME) (Lauschke et al., 2024) and membrane transporters (Nies et al., 2022) 

substantially influence these ADME processes. Generally, DMEs are categorized into phase 

I and phase II enzymes, with major consequence for the elimination, but in the case of phase 

I enzymes, also for the bioactivation of so-called prodrugs (Zanger and Schwab, 2013; 

Fukami et al., 2022). More specific information related to DME and PGx is given in section II. 

Drug transporters are membrane-bound proteins that facilitate the movement of drugs into or 

out of the cell. They are for instance expressed in the apical membrane of enterocytes, the 

biliary canalicular membrane of hepatocytes, the luminal membrane of the kidney’s proximal 

tubules, and the epithelial cells of the blood-brain barrier, but much more locations are well 

described (Galetin et al., 2024). The ATP-binding cassette (ABC) efflux transporter family 

comprises 48 proteins (seven subfamilies, labeled ABC-A to ABC-G) that play a critical role 

in actively transporting various molecules, including ions, lipids, and a wide array of 

xenobiotic compounds, including chemotherapeutic agents (Moore et al., 2023). The solute 

carrier (SLC) uptake transporter superfamily represents the largest group of membrane 

transporters in the human genome, encompassing over 400 proteins grouped into 65 

subfamilies (Schlessinger et al., 2023). There is a significant diversity in substrate specificity 

among the subfamilies, reflecting the complexity of these transporters in cellular and 

physiological processes. While subfamilies like SLC2 and SLC27 are specialized for a 

narrow range of substrates with similar physicochemical properties like carbohydrates or 

long-chain fatty acids, the SLC22 subfamily for instance exhibits a broader specificity, 

facilitating the transport of a diverse portfolio of ions like organic cations, anions, and 

zwitterions (Yee and Giacomini, 2021). Specific drug transport profiles make transporters 

(ABC and SLC) crucial in modulating drug failure or drug resistance, especially in cancer 

therapy (see III.C) (Alam et al., 2023). Nuclear receptors (NR) are a family of 48 ligand-
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activated transcription factors, that directly regulate the expression of genes in many 

physiological and pathophysiological processes, including organogenesis, cell differentiation, 

and metabolism (Frigo et al., 2021). While most NRs are activated by binding endogenous 

substances such as thyroid hormones, steroids, and vitamins, some, such as PXR and CAR, 

are activated by xenobiotics, including drugs. These xenosensing NRs regulate drug 

metabolism and transport and thus have particular importance for cancer drug therapy (Zhao 

et al., 2019). 

Because drugs must be actively taken up by tumor cells, and their effectiveness is 

significantly influenced by intracellular metabolism, tumor-specific data on ADME-relevant 

processes are crucial, but currently limited. The assumption that liver-specific data on DME 

and transporters related for cancer drugs also apply to tumor cells is misleading, since 

cancer cells, depending on the tumor entity, exhibit in most cases a different ADME 

expression profile (see III.C) (Hu et al., 2020; Liu et al., 2023). Thus, it becomes apparent 

that an integrative understanding of ADME processes across the whole human body and 

tumor tissue requires methods that allow an estimation of drug concentrations in specific cell 

fractions including cancer cells (Hertz and McLeod, 2013). Mathematical modeling, covering 

various pharmacological processes, is the basis for of a variety of physiologically-based 

pharmacokinetic models (PBPK) (Wojtyniak et al., 2020; Wang et al., 2024). Cancer drugs, 

such as tyrosine kinase inhibitors, have benefited from these models (Adiwidjaja et al., 2022; 

Hwang et al., 2024; Kovar et al., 2024). So far, PBPK models considered only germline 

information, but neglected somatic variants and their significance for tumor-associated 

ADME processes. Thus, there is a strong need to incorporate relevant cancer specific 

information as well as laboratory data (e.g., intracellular plasma concentration in tumor cells), 

together with information about the body's own organ systems (e.g., liver). 

D. The Human Genome and Pharmacogenomics  

Even before the structure of DNA was fully understood, researchers observed distinct 

inheritance patterns in drug response (Figure 1A) and were able to identify hereditary causes 

for variation in enzyme activities among patients and their family members including 
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cholinesterase deficiency (Kalow and Genest, 1957), debrisoquine/sparteine CYP2D6 

polymorphism (Mahgoub et al., 1977; Eichelbaum et al., 1979), and thiopurine S-

methyltransferase polymorphism (TPMT) (Weinshilboum and Sladek, 1980). Since the 70s, 

novel molecular technologies allowed correlation analysis of phenotypes and variation in 

DNA sequences, e.g. using restriction fragment length polymorphism (RFLP) analysis. 

Consequently, these techniques enabled population studies that firstly revealed the 

prevalence of frequent but also rare genetic variation in the context of PGx (e.g. TPMT 

polymorphism, see II. A), and offered the possibility to consider inter-ethnic differences of 

frequency distributions. Generating the first sequence of the human genome, declared 

completed in April 2003 (https://www.genome.gov/human-genome-project), with a 

comprehensive map of about 25,000 genes (International Human Genome Sequencing 

Consortium, 2004) marked a turning point in PGx research. High-throughput screening 

methods facilitated a comprehensive view of the genome. Short-read next-generation 

sequencing (NGS) like whole exome sequencing (WES) or whole genome sequencing 

(WGS) enabled the systematic detection of novel and rare variants including single 

nucleotide variants (SNVs), structural variants, and copy number variations (CNV) in 

population-scale cohorts (e.g. 1000Genome Project, ExAC, and gnomAD) (Porubsky and 

Eichler, 2024). In general, loss and gain of function mechanisms have been described, 

including effects on mRNA translation, splicing, protein expression, and substrate specificity 

(Figure 2A). The NIH-funded Pharmacogenomics Knowledgebase (PharmGKB; 

pharmgkb.org) has collected clinical data on in vitro or in vivo functional consequences on 

drug metabolism and transport for over 1000 pharmacogenes, encompassing more than 160 

genes listed in the FDA’s table of PGx-biomarkers (www.fda.gov/medical-devices/precision-

medicine/table-pharmacogenetic-associations); Figure 2C). Moreover, very recently the 

Pharmacogene Variation (PharmVar) Consortium has been established as a central 

repository for pharmacogene variation (pharmvar.org). PharmVar aims to focus on the 

haplotype structure and allelic variation of ADME genes to facilitate research activities and 

particularly the interpretation of PGx results. 
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While the analysis of more than 60,000 exomes suggested that approximately 80% of 

individuals carry at least one genetic variant in a pharmacogene (Schärfe et al., 2017; 

Pirmohamed, 2023), a similar study showed that each individual carries around 40 functional 

SNVs in 208 pharmacogenes, and 10% of those were rare (Ingelman-Sundberg et al., 2018). 

Furthermore, in a recent study which comprehensively assessed the structural variability 

across pharmacogenes (344 ADME genes and 564 drug targets) in 10,847 WGS samples, 

each individual carried on average 11.8 structural variants with potential functional impact on 

the coding regions of pharmacogenes (Tremmel, et al., 2023). Another study demonstrated, 

that across individuals 97% of 201 analyzed pharmacogenes are affected by rare deletions 

and/or duplications (Santos et al., 2018). When comparing longitudinal and nearly 

comprehensive electronic health records with PGx data, 80% of patients are prescribed at 

least three medications in their lifetime that could be affected by actionable genetic variants 

(Ye et al., 2023). 

 

II. Germline Genome and cancer therapy  

A. Genetic Variation in ADME genes  

As outlined before, ADME comprises various pharmacologically relevant processes including 

DME, drug transporters, and nuclear receptors. The elucidation of heritable genetic variation 

in DME spans almost six decades and comprehensive overviews regarding the occurrence, 

the frequency and the functionality of SNVs in CYP450 enzymes (Zanger and Schwab, 

2013), UGTs (Miners et al., 2023), SULTs (Isvoran et al., 2022) and other DME like TPMT 

and NUDT15 (Pratt et al., 2022) are publicly available. 

Genetic variation is related to various molecular mechanisms resulting in different functional 

consequences and subsequently in diverse phenotypes. Loss-of-function (LOF) variants in 

CYP450 genes often influence RNA splicing and thereby alter gene expression, as well as 

have an impact on transcription or structural configuration of proteins. Alternative splicing is 

observed for several DMEs, particularly for CYP450 enzymes due to intronic variants (e.g. 

CYP2B6*4/*6/*9, CYP2C19*2, CYP2D6*4/*41, CYP3A4*22, CYP3A5*3) but also for the 
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dihydropyrimidine dehydrogenase (DPD) enzyme (DPYD hapB3 c.1129-5923C>G). Gain-of-

function variants include promoter variants (e.g. CYP2B6*22, CYP2C19*17), coding variants 

that result in decreased substrate turnover (e.g. CYP2D6*10), and CNV characterized by an 

increased number of functional gene copies (e.g., CYP2D6, CYP2A6, SULT1A1) (Table 1; 

pharmvar.org/gene/‘gene_name‘). In contrast, deletions of the whole gene or a partial gene 

region (e.g. CYP2D6*5) result in missing protein expression and activity. GSTT1, along with 

GSTM1 or UGT2B17, are notable for highly frequent null genotypes due to homozygous 

deletions, which have been studied extensively related to drug metabolism, but also disease 

susceptibility, including cancer (Tremmel et al., 2020; Isvoran et al., 2022; Grussy et al., 

2023).  

Variation in transporter genes is also frequent and various molecular mechanisms have been 

reported with functional consequences on pharmacokinetic properties of transporter 

substrates (Fisel et al., 2017; Tremmel et al., 2022; Galetin et al., 2024). Prominent 

examples of genetic variation in drug transporters are ABCB1 (encoding P-glycoprotein or 

Multidrug Resistance 1), ABCC1 (encoding MRP1), and ABCG2 (encoding BCRP) although 

their clinical relevance for drug therapy remains limited. For instance, while the 

pharmacokinetics and the response of selected drugs has been extensively investigated in 

association with the frequent ABCB1 haplotype, consisting of three variants (rs1128503, 

p.G412G; rs2032582, p.A893S/T; rs1045642, p.I1145I), even across different ethnic 

populations, the findings have been largely inconsistent (Schwab et al., 2003; Wolking et al., 

2015). In contrast, drug dosing guidelines for allopurinol (van der Pol et al., 2024) and 

rosuvastatin (Cooper-DeHoff et al., 2022) consider genotyping of ABCG2 at onset of therapy 

to be potentially beneficial for drug effectiveness. 

Genetic variation in SLC transporters has also been extensively studied. For instance, statin 

(e.g. simvastatin) related myopathy is linked to SLCO1B1 (encoding OATP1) variants 

(Duarte and Cavallari, 2021; Cooper-DeHoff et al., 2022), and SLC22A1 (encoding OCT1) 

genetic variation is associated with metformin response (Emami Riedmaier et al., 2013; Kölz 

et al., 2021).  
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Genetic variation in NRs and the aryl hydrocarbon receptor (AhR) have been described, but 

the clinical significance is currently very limited. One reason is that in the case of functional 

impairment of a certain NR, other NRs mostly compensate for the defect (Chai et al., 2013). 

In addition, the frequency of genetic variation in ADME genes (DME, transporter, NR) in 

different ethnic populations varies and has been the subject of extensive research in recent 

decades. Generally, large ethnic population groups are distinct, such as Europeans, 

Americans, Asians, and Africans. Genetic drift, i.e. random fluctuation in the frequency of an 

allele in a population due to evolutionary reasons, admixture, i.e. the consequence of 

interbreeding between previously isolated populations, and other factors contribute to 

differences in allele frequencies and/or haplotypes. A prime example for inter-ethnic 

variability of genetic variation is the CYP2D6 gene (Figure 2B), for which gene amplifications 

(e.g. CYP2D6*2xN) occur in up to 3% in Europeans (Griese et al., 1998) and Africans, e.g. 

Sub-Saharan African populations (Twesigomwe et al., 2023), while in the Middle East the 

gene amplification occurs with a frequency of up to 30% (Zhou and Lauschke, 2022). 

Moreover, using again the example of CYP2D6, aborigines in Australia only exhibit a 

frequency of about <1% for CYP2D6 LOF gene variants resulting in missing enzyme 

expression and function (Griese et al., 2001), in line with data from other Asian populations 

(e.g. Chinese, Malay, and Indian descent) (Maulana et al., 2024), whereas in Europe about 

10% of the population carry CYP2D6 LOF variants. Ethnicity and its impact on genetic 

variation in different populations have implications for drug therapy and the implementation of 

genetic diagnostics into clinical practice (Frederiksen et al., 2023). Again, taking the example 

of CYP2D6 and the use of antidepressants, a significantly higher drug failure rate occurs in 

the Middle Eastern population compared to the Europeans due to higher frequency of the 

CYP2D6 gene amplification (Palumbo et al., 2024). Another example is the prevalence of 

nudix hydrolase 15 (NUDT15) variants (see II.B). In particular, individuals of East Asian 

descent, including Chinese, Japanese, and Korean populations, exhibit a higher prevalence 

of NUDT15 variants compared to other ethnicities (Yang et al., 2014). Research indicates 

that up to 10% of East Asians, 7% of South Asians and in contrast less than 1% of 
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Europeans (Schaeffeler et al., 2019) carry at least one copy of a NUDT15 variant associated 

with increased sensitivity to thiopurine drugs (Relling et al., 2019). Thus, in the context of 

PGx diagnostics in clinical routine, broad coverage of genetic variation must be ensured, e.g. 

using molecular techniques such as NGS, to avoid misinterpretation of the patients’ correct 

phenotype. 

B. Genotype-Phenotype correlation in selected ADME genes 

Genetic variability in ADME genes results in phenotypic consequences. There are numerous 

examples of DMEs (e.g. CYP450 enzymes) and drug transporters (e.g. OCT1) for which a 

well-established genotype-phenotype correlation has been reported based on extensive in 

vitro, animal (knockout) and in vivo studies. In the following, we will describe in more detail 

some clinically relevant examples.  

Cytochrome P450 2D6 

The gene CYP2D6, located on chromosome 22q13.2, consists of nine exons and is 

recognized as the most polymorphic gene among the CYP450 DME. It harbors over 402 

SNVs, which cover approximately 26-30% of all coding base pair positions, along with 

structural variations which affect the gene copy number and include whole gene deletions, 

duplications as well as hybrid alleles formed with its neighboring homologue pseudogene 

CYP2D7. These variants result in more than 160 core alleles (Table 1, 

pharmvar.org/gene/CYP2D6). The most common functional variants which are 

recommended to be clinically tested are null function alleles (*3: 2550delA, frameshift; *4: 

1847G>A, splicing; *5: gene deletion; *6: 1708delT, frameshift), decreased function alleles 

(*9: 2616delAAG, deletion; *10: 100C>T, P34S; *14: 1758G>A, G169R; *17: 1022C>T, 

T107I; *41: 2989G>A, splicing) and increased function alleles (*xN: duplication allele). Up to 

50% of subjects carry one CYP2D6 variant that potentially alter the metabolism of 

approximately 25% of clinically used medications including several drugs with PGx guideline 

as illustrated in Figure 2C , such as opioids (e.g. codeine, tramadol), antiemetics (e.g. 

ondansetron, tropisetron), antidepressants (e.g. amitriptyline, fluoxetine) and antiarrhythmics 

(e.g. propafenone). The patient’s genotype or the related star allele diplotype can be 
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translated either into four phenotypic groups, i.e. poor metabolizers (PM), intermediate 

metabolizers (IM), normal metabolizers (NM), and ultrarapid metabolizers (UM) or, as 

recently suggested, in a continuous activity score (AS) (Gaedigk et al., 2008). The AS 

indicates the hepatic metabolic capacity of the CYP2D6 enzyme, commonly described as 

metabolic ratio (MR), i.e. the calculated ratio of the parent drug and the metabolite 

concentration. Specific probe drugs (e.g. sparteine (Griese et al., 1998) or labeled 

medications (e.g. metoprolol (Thomas et al., 2020) or risperidone (Mannheimer et al., 2016) 

are used to determine the MR through measurement of concentrations in the blood or the 

urine. Very recently, solanidine, a steroidal alkaloid found in potatoes (Magliocco et al., 2021) 

has been proven as dietary-derived activity marker for CYP2D6 activity (Müller et al., 2023). 

A consensus method translating the AS to one of the four CYP2D6 phenotypes has recently 

been recommended, indicating that the AS 0 corresponds to the PM phenotype, the AS 0 < x 

< 1.25 to the IM phenotype, the AS 1.25 ≤ x ≤ 2.25 to the NM phenotype and AS >2.25 to the 

UM phenotype (Caudle et al., 2020). 

Several genotype-phenotype correlation studies have contributed to the robust validation of 

the CYP2D6 phenotypic classification which includes human liver samples (Zanger et al., 

2021), studies on healthy volunteers and patient cohorts (Zanger and Schwab, 2013) (Figure 

5A). Notably, the PM phenotype or the AS 0 can be predicted in almost 100% by LOF 

CYP2D6 variants in a homozygous or compound heterozygous manner (Zanger et al., 2001, 

2021), while CYP2D6 gene amplifications explain the UM phenotype only in approximately 

30% (Griese et al., 1998). Moreover, for selected CYP2D6 alleles (CYP2D6*2,*10 and *17) 

the AS may depend on the substrate specificity since discrepancies have recently been 

reported for some CYP2D6 substrates (e.g. dextromethorphan, venlafaxine) demonstrating 

the complexity of a correct genotype -phenotype assignment (Van Der Lee, Guchelaar, et al., 

2021). Finally, multiple putative regulatory noncoding variants in the extended CYP2D6 

region, located either in up or downstream enhancer elements, have bene described (Yang 

et al., 2010; Khor et al., 2023; Sanchez‐ Spitman et al., 2024), that may interact with the 

CYP2D6 promoter (Wang et al., 2015; Smith et al., 2024), or may affect the binding motifs of 
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transcription factors e.g. HNF4α (Pan et al., 2017) or NFIB (Lenk et al., 2022). However, 

additional studies are needed to explore the potential functional consequences. 

The role of CYP2D6 in cancer therapy is significant due to its role in the metabolism of 

tamoxifen, the mainstay in endocrine therapy of breast cancer. The bioactivation of tamoxifen 

to its hundred-fold more potent metabolite, endoxifen, significantly relies on CYP2D6 (Brauch 

et al., 2013). Numerous studies have demonstrated that plasma concentrations of endoxifen 

are significantly reduced in pre- and postmenopausal breast cancer women who were 

treated with tamoxifen standard dosage (20 mg) and classified as CYP2D6 PMs (Mürdter et 

al., 2011; Saladores et al., 2015; Puszkiel et al., 2019) (Figure 5A). Lower endoxifen plasma 

levels were associated with poor response and increased relapse of breast cancer (Goetz et 

al., 2018). The application of model-based pharmacokinetic analyses including 

physiologically-based pharmacokinetic modeling (PBPK) provided further insight in the 

tamoxifen metabolism confirming the primary role of CYP2D6, but indicate substantial impact 

of age, anthropometric characteristics (e.g. obesity), menopausal status (Mueller‐ Schoell et 

al., 2020), and co-medication with CYP2D6 inhibitors on Z-endoxifen pharmacokinetics 

(Maeda et al., 2011; Puszkiel et al., 2021; Dilli Batcha et al., 2022). For implementation of 

PGx in clinical practice tamoxifen is an excellent example emphasizing the complexity of 

PGx testing since tumor DNA is limited for accurate CYP2D6 genotyping due to loss of 

heterozygosity (LOH) at chromosome 22q13.2 in breast cancer DNA (Brauch et al., 2013) 

corroborating the use of germline DNA. Finally, to overcome worse outcome in tamoxifen-

treated CYP2D6 PM breast cancer patients, independently from the switch of those patients 

to an aromatase inhibitor therapy, concepts are under review to use endoxifen monotherapy 

(Jayaraman et al., 2021), or supplementation of tamoxifen standard therapy with low-dose 

endoxifen (https://tamendox.de).  

Cytochrome P450 3A4/5 

The enzymes CYP3A4 and CYP3A5 are the most important isoforms of the CYP3A 

subfamily, which also includes CYP3A7 and CYP3A43. The gene cluster spans 

approximately 200 kb on chromosome 7q21-22.1. CYP3A4 and CYP3A5 consist of 13 exons 
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and show high structural similarity (>70%). Known variants are summarized in 45 core alleles 

for CYP3A4 and 6 core alleles for CYP3A5 (Table 1, pharmvar.org/gene/CYP3A4, 

pharmvar.org/gene/CYP3A5). CYP3A4 is crucial in drug metabolism since more than 30% of 

clinically used drugs across various therapeutic indications are CYP3A4 substrates which 

may be explained by its large and flexible active site capable of accommodating and 

metabolizing numerous lipophilic compounds (Zanger and Schwab, 2013) The high 

sequence similarity between CYP3A4 and CYP3A5 (>85%) results in comparable substrate 

selectivity (Williams et al., 2002), making it challenging to discriminate their activities. Some 

specific probe drugs have been identified targeting more selectively CYP3A4 (e.g. 

erythromycin, everolimus, quetiapine) or CYP3A5 (e.g. tacrolimus, vincristine), whereas 

midazolam metabolism depends on both CYP3A4 and CYP3A5 (Tseng et al., 2014). Several 

studies assessed the impact of CYP3A on cancer drugs, however, with conflicting results 

hampering the clinical relevance (Wang et al., 2023). A substantial contribution of CYP3A4 

and CYP3A5 to the metabolism of the anti-cancer agents everolimus, sirolimus, etoposide, 

exemestane, imatinib, sorafenib, sunitinib, and paclitaxel has been claimed, with potential 

consequences on drug response (Table 3). 

CYP3A4 is highly expressed in human liver, while the protein expression of CYP3A5, and of 

other CYP3A gene family members (CYP3A7, CYP3A43) is much lower. Hepatic CYP3A 

expression is highly interindividually variable (>100-fold) and several underlying mechanisms 

have been proposed, such as the promiscuity in substrate and inhibitor binding (Klyushova et 

al., 2022), sex-dependent differences (Wolbold et al., 2003), as well as its inducibility by NRs 

such as the pregnane X-receptor (PXR), the constitutive androstane receptor (CAR), the 

vitamin D receptor, as well as the peroxisome proliferator-activated receptor-alpha (PPARA) 

(Tirona et al., 2003) Interestingly, the hepatic CYP3A4 and CYP3A5 protein expression in 

histologically normal livers derived from cancer patients was significantly lower compared to 

liver tissue from healthy subjects, and even much lower and more variable in tumor tissue of 

various cancer types (Vasilogianni et al., 2022). 
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Significant contribution of genetic variation on interindividual variability of CYP3A expression 

was only found for CYP3A5, and data from several studies including genome-wide 

association studies (GWAS) (Rahmioglu et al., 2013) as well as the large-scale gnomAD 

cohort failed to show a major impact of genetics on CYP3A4 variability (Klein and Zanger, 

2013). Notably, CYP3A5 expression varies globally, and only up to 20% of Europeans are 

expressors of this isozyme. Thus, approximately 80% are so called CYP3A5 non-expressors 

carrying the CYP3A5*3 allele, an intronic variant (intron 3, c.219-237A>G) that leads to a 

cryptic splice acceptor site which, in turn, leads to a truncated nonfunctional protein (Hustert 

et al., 2001). Of note, Africans are carrying the CYP3A5*3 allele only in 30%. Since CYP3A5 

significantly influences the tacrolimus metabolism with consequences on drug efficacy, dose 

adjustment is required in transplant patients, who are CYP3A5 expressors (CYP3A5*1) 

(Birdwell et al., 2015). 

Regarding CYP3A4 almost all variants are rare to super rare (<0.01-0.01) (frameshift 

variants *6, *20 and missense variants *8, *11, *13, *16). Only the splicing variant in intron 6 

(c.522-191C>T; CYP3A4*22) for instance with a frequency of 5% in Europeans is suggested 

to be clinically relevant since it is associated with reduced CYP3A4 enzyme activity (Abdel-

Kahaar et al., 2019). Whether dose adjustment for selected drugs such as tacrolimus (Mulder 

et al., 2021), or the antipsychotic agent quetiapine (Van Der Weide and Van Der Weide, 

2014) should be performed particularly in homozygous carriers of the CYP3A4*22 allele is 

still a matter of discussion. In contrast to the data on CYP3A genetic variation, twin studies 

suggest an important genetic contribution (>60%) on the interindividual variability of CYP3A 

metabolic capacity that could be explained only in part by known variants in CYP3A4 and 

CYP3A5 (Matthaei et al., 2020). Thus, further investigations are needed to fully understand 

the genetic variability of CYP3A, particularly in the context of CYP3A5 expressors. 

 

Thiopurine S-methyltransferase and nudix hydrolase 15  

The chemotherapeutic agent 6-mercaptopurine (6-MP) is the mainstay in treatment of 

childhood acute lymphoblastic leukemia (ALL) and the cytosolic thiopurine S-
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methyltransferase (TPMT) catalyzes the inactivation by methylation of 6-MP (Relling et al., 

2019). Very recently the endogenous substrate of TPMT has been identified indicating a link 

between molybdenum cofactor catabolism and drug metabolism (Pristup et al., 2022). First 

described in 1980 (Weinshilboum and Sladek, 1980), the TPMT polymorphism has been 

studied intensively. 

The TPMT gene, located on chromosome 6p22.3, consists of 11 exons and several 

pseudogenes on chromosomes 3, 18 and X are described. Currently 45 core alleles 

(TPMT*2-TPMT*46) of the TPMT gene, have been identified (liu.se/en/research/tpmt-

nomenclature-committee, Table 1). Based on in vitro, TPMT knock-out mouse and extensive 

in vivo studies TPMT variation correctly predicts the IM and PM TPMT phenotype (i.e. 

enzyme activity determined in red blood cells or hepatic cytosol) with concordance rates > 

95% (Figure 5B) (Schaeffeler et al., 2004; Tamm et al., 2016).  

In addition, the nudix hydrolase 15 (NUDT15) has been identified as additional polymorphic 

pharmacogene, located at chromosome 13q14.2 (Yang et al., 2014), and consisting of five 

exons. Currently 20 NUDT15 core alleles are known, in part associated with significant 

alteration of NUDT15 enzyme activity based on in vitro and in vivo data, as well as NUDT15 

knock-out mouse (Table 1, pharmvar.org/gene/NUDT15). The enzyme dephosphorylates the 

6-MP active metabolite 6-thio-GTP to 6-thio-GDP, thereby limiting the incorporation into DNA 

(Moriyama et al., 2016). Several retro- but also prospective studies provide evidence that 

severe hematotoxicity (e.g. leukopenia, pancytopenia) in patients treated with standard 

dosage of 6-MP is the consequence of genetically-driven reduced or absent TPMT and/or 

NUDT15 enzyme activity (Figure 3), leading to increased blood levels of active metabolites 

(Figure 5B) (Relling et al., 2019; Jena et al., 2023). Thus, prospective genetic testing of 

TPMT and NUDT15 offers personalized dose adjustment of 6-MP. Consequently CPIC PGx 

guidelines (see II.E) have been developed, first in 2011 for TPMT, updated in 2013, (Relling 

et al., 2013) and in 2018 extended by NUDT15 as second relevant PGx marker for thiopurine 

therapy (Relling et al., 2019). Interestingly, very recently first data indicates that the 

TPMT/NUDT15 IM/IM phenotype shows additive effects on 6-MP-related hematotoxicity in 
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children with ALL and stronger dose reduction of 6-MP is required compared to patients with 

a TPMT IM or NUDT15 IM phenotype alone (Maillard et al., 2024). Of note, TPMT and 

NUDT15 variation allows only risk prediction for the development of hematotoxicity whereas 

thiopurine-related liver toxicity or the flu-like syndrome are not associated (Toksvang et al., 

2022). 

Dihydropyrimidine dehydrogenase  

Fluoropyrimidines such as 5-fluorouracil (5-FU) and capecitabine are metabolized by 

dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD gene, and with over 80% of 

the administered dose catalyzed through this pathway. The gene DPYD, located on 

chromosome 1p21.3, consists of 26 exons, and currently more than 400 genetic variants 

have been identified (Table 1, pharmvar.org/gene/DPYD), for which in vitro and in vivo 

evidence confirms a most deleterious or moderately reduced impact on DPD 

expression/function (Figure 5C). Of note, DPYD genetic variations are classified using star 

(*) allele nomenclature, but dbSNP rs-identifiers, nucleotide or amino acid changes according 

HGVS nomenclature (hgvs-nomenclature.org) are also used. As an example, the DPYD*2A 

allele is characterized by an intronic variant (c.1905+1G>A) of the DPYD gene, which 

functionally leads to the skipping of an entire exon and a non-functional-protein. 5 FU-related 

grade 3/4 toxicities are observed in about 20% up to 40% in patients treated with adjuvant 5-

FU with or without oxaliplatin as well as in the metastatic setting (Kuebler et al., 2007; 

Venook et al., 2017) and are commonly characterized by gastrointestinal ADR (e.g. diarrhea, 

nausea/vomiting, mucositis) and neutropenia or myelosuppression associated with 

infections, while cases of neurotoxicity or cardiotoxicity are rare. In cases of genetically 

determined deleterious DPYD variants, the risk of severe, sometimes life-threatening side 

effects under standard dosages of 5-FU is increased (Schwab et al., 2008; Rosmarin et al., 

2014), and most of these ADR have an early onset, i.e. after two to three cycles of respective 

treatment regimens. Furthermore, RCTs and meta-analyses showed the need for action 

concerning the DPYD variants *2A (rs3918290, c.1905+1G>A), *13 (rs55886062, 

c.1679T>G, p.I560S), c.2846A>T (rs67376798, p.D949V) and HapB3 (rs75017182, c.1129-
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5923C>G) to prevent severe 5-FU-associated neutropenia or mucositis, how to handle 

specific DPYD genotypes (see II.E) and to adjust the dosage accordingly (Amstutz et al., 

2018; Henricks et al., 2018). The four DPYD variants (*2A, *13, c.2846A>T, and HapB3) 

considered in the 5-FU CPIC guideline show a global frequency distribution of 0.02% to 

0.96% (based on data from the 1,000 Genomes Project) and an estimation under the Hardy-

Weinberg equilibrium law indicates that at least 2% of 1,000 patients treated with FU may be 

carriers of at least 1 of these 4 variants (Innocenti et al., 2020). Data on the sensitivity and 

specificity and negative and positive predictive values of DPYD genetic testing for three 

variants (*2A, *13, c.2846A>T) in predicting grade 3+ toxicities showed 5.3%, 99.4%, 68.0% 

and 81.8%, respectively (Lee et al., 2014). The high specificity and positive predictive value 

illustrate that patients carrying DPYD variants are at high risk to develop severe toxicity, 

justifying preemptive DPYD diagnostics. Nevertheless, there are independent factors which 

so far insufficiently identified to explain 5-FU toxicity demonstrated by the low sensitivity. 

Prospective data from 500 patients treated with fluoropyrimdine-based chemotherapy 

corroborates this finding that the DPYD variants *2A, *13, c.2846A>T and HapB3 could 

explain 20 to 30% of early-onset 5-FU toxicities (Froehlich et al., 2015). With regard to the 

HapB3 haplotype, very recently a new study indicated that the so far assumed complete 

linkage disequilibrium between the functionally relevant intronic splice site variant c.1129-

5923C>G and the synonymous variant c.1236G>A (rs56038477, p.Glu412=) does not exist 

in all cases (Turner et al., 2024). Moreover DPYD illustrates the complexity of PGx 

diagnostics related to cancer drugs, i.e. avoiding ADR through dosage adjustments in the 

presence of genetic variation, but potentially resulting in poorer treatment response. A 

retrospective analysis indicates that the recommended dose reduction by 25% of standard 

dose in the presence of the HapB3 genotype may be associated with a worse treatment 

outcome which requires further systematic investigations (Knikman et al., 2023). 

Furthermore, it can be hypothesized that different penetrance of the genotype-phenotype 

relationship between tumor and the rest of the body may be at least partially due to the 

modulating effect of somatic mutations (see IV). Notably, in 2020 the European Medicines 
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Agency (EMA) issued a recommendation that genetic testing for DPYD is mandatory before 

onset of 5-FU therapy which led to the implementation of DPYD testing at national levels in 

Europe (e.g. Federal Institute for Drugs and Medicinal Products, BfArM, Germany; 

ema.europa.eu/en/news/ema-recommendations-dpd-testing-prior-treatment-fluorouracil-

capecitabine-tegafur-and-flucytosine). In Germany subsequently reimbursement of costs for 

DPYD diagnostics by health insurance companies has been introduced, specified by an 

official guidance of the Federal Joint Committee (GBA) in Germany that health insurance 

companies must cover the costs. 

Uridine-diphosphate-glucuronosyltransferase 1A1 

UDP-glucuronosyltransferase 1A1 (UGT1A1), a phase II DME, mainly catabolizes the active 

metabolite SN38 of the topoisomerase I inhibitor irinotecan to its glucuronide, thus playing a 

crucial role in irinotecan elimination in patients with solid tumors, such as colorectal and 

pancreatic cancer. The UGT1A gene locus, located at chromosome 2q37.1, is transcribed 

into nine individual enzymes, namely UGT1A1 and UGT1A3 to UGT1A10, each consisting of 

five exons. Through exon sharing, one of nine unique exon 1 sequences at the 5′ end is 

combined with four common exons at the 3′ end (Jarrar and Lee, 2021). More than 113 

distinct functional UGT1A1 variants have been documented (Table 1, 

pharmacogenomics.pha.ulaval.ca/wp-content/uploads/2015/04/UGT1A1-allele-

nomenclature.html), among them the clinically significant and prevalent variants *6 and *28. 

The UGT1A1*28 allele corresponds to a TA-Indel (rs3064744) located in the TAA-box within 

the promoter region and contains seven TA repeats, resulting in decreased hepatic UGT1A1 

transcription (Figure 5D). Other repeat numbers are associated with normal expression 

(UGT1A1*1, 6 repeats), increased expression (UGT1A1*36, 5 repeats), or decreased 

expression (UGT1A1*37, 8 repeats). Interestingly, there is another promoter variant 

(UGT1A1*80, -364C>T) which is in very high linkage disequilibrium with *28 and *37, but its 

own effect on enzyme expression and activity has not been fully elucidated (Nelson et al., 

2021). 
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Overall, UGT1A enzymes show considerable overlap of substrate specificity whereas only 

UGT1A1 is accountable for bilirubin glucuronidation, a factor implicated in hyperbilirubinemia 

upon inherited enzyme deficiency. Consequently, two syndromes of hyperbilirubinemia are 

recognized and correlated to the degree of enzyme deficiency: Crigler–Najjar type I 

(complete enzyme deficiency), type II (residual enzyme activity) and Gilbert’s (Meulengracht) 

syndrome (enzyme activity decreased by app. 70% (Bosma et al., 1995)).  

Severe neutropenia and diarrhea are the predominant irinotecan-related ADRs. Additional 

risk factors are age, sex, performance status, impaired liver function and concurrent use of 

CYP3A4 and/or UGT1A1 inhibitors. Carriers of UGT1A1*28 accumulate toxic levels of SN-38 

(Karas and Innocenti, 2022). Retrospective and prospective clinical trials provide evidence 

that dose adjustment of irinotecan in patients carrying UGT1A1*28 or *6 reduces significantly 

the risk of neutropenia (Figure 3) which holds also true for other cancer drugs such as 

etoposide (Hulshof et al., 2020). In consequence drug regulatory authorities, such as the 

FDA and the EMA as well as recently in 2021 also the German Regulatory Agency for Drugs 

and Medicinal Products (BfArM; 

bfarm.de/SharedDocs/Risikoinformationen/Pharmakovigilanz/EN/RHB/2021/rhb-

irinotecan.html?nn=966164) have issued instructions for dose adjustment in carriers of 

UGT1A1*28, initiating irinotecan treatment with 70% of the standard dose followed by 

neutrophil count-guided uptitration of the dose when irinotecan is well tolerated. Very 

recently, an association between the frequently occurring chemotherapy-related high 

hyperbilirubinemia during all intensive treatment phases of pediatric ALL (e.g. AIEOP-BFM 

ALL 2000 protocol) linked to the anticancer agents asparaginase, mercaptopurine, and 

methotrexate and variation in the UGT1A gene cluster was proposed as an independent 

prognostic factor of treatment outcome (Yang et al., 2022; Junk et al., 2023). Therefore, 

prediction for hepatotoxicity and risk-adapted treatment strategies for childhood ALL may be 

complemented by both the assessment of hyperbilirubinemia and UGT1A genotyping.  
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C. In silico prediction of functional consequences of genetic variation 

As NGS technologies lead to the discovery of hundreds of new variants with unknown 

function, strategies are needed for reliable prediction of their functional consequences since 

classical in vitro assessment of functional consequences is not feasible due to the volume of 

variants, the time and resource-intensive nature of in vitro experiments, and the complexity of 

biological systems. Generally, genetic variants can occur in coding or non-coding regions of 

the genome. Although coding regions cover only 1.2% of the human genome (The ENCODE 

Project Consortium et al., 2020), they are typically used for functional interpretations as they 

can directly affect protein expression or function for instance due to frameshift, nonsense, 

missense, or insertion variants. Nevertheless, also non-coding variants can be functional by 

influencing regulatory sequences and untranslated regions with consequences on mRNA 

translation and expression. The initial variant prioritization is, hence, conducted through (i) 

variant classification into non-coding regions, exons/introns, 3’UTR, CpG sites (i.e. DNA 

sequences comprising cytosine followed by guanine from 5′ to 3′ direction), or histone marks, 

taking into consideration publicly available catalogs of genomic and epigenomic features, (ii) 

population frequency distributions, and (iii) clinical evidence using for instance ClinVar, a 

freely accessible archive of information on the relationship of human variations and 

phenotypes (clinicalgenome.org/data-sharing/clinvar). 

Synonymous variants are commonly considered benign, although there is compelling 

evidence that they can affect protein expression by influencing RNA structure, stability, and 

miRNA binding and in silico prediction methods are increasingly available (Lin et al., 2023). 

In contrast, a plethora of prediction tools exists for non-synonymous SNVs and have been 

used in PGx studies (Table 2). All tools employ diverse approaches, including comparisons 

on interspecies homology and protein structure data (e.g., AlphaFold), application of machine 

learning techniques trained on extensive variant annotations (e.g., from high-throughput in 

vitro or in vivo experiments or large-scale study cohorts), and utilization of ensemble models, 

that combine multiple individual models to improve accuracy and robustness (Katsonis et al., 

2022). Each tool is trained and optimized for specific gene categories e.g., disease causing 
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variants. This has also been recognized for pharmacogenes as recently demonstrated for 

TPMT and PTEN based on the initiative Critical Assessment of Genome Interpretation 

(CAGI; genomeinterpretation.org). Here, different predictions were compared against 

experimentally characterized phenotypes and major differences in accuracy have been 

observed (Pejaver et al., 2019).  

Several pharmacogenes exhibit co-evolution signatures with different lifestyles and diets, and 

signs of evolutionary positive selection, particularly enzymes with primarily exogenous 

substrate profile (Fuselli, 2019). As a consequence, these genes can harbor common 

functional variants with population allele frequencies surpassing 10-20% in contrast to much 

rarer disease-causing gene variants under high evolutionary pressure. Prediction tools 

optimized for the latter often fall short in accurately predicting SNV functions in 

pharmacogenes (Tremmel, et al., 2023). Therefore, several pharmacogene-optimized 

algorithms have been developed. One of the first ensemble classifiers, is an ADME-

optimized Prediction Framework (APF), that combines 18 algorithms, and achieved 93% 

sensitivity and specificity in predicting LOF and functionally neutral pharmacogenomic 

variants for 44 pharmacogenes (Zhou et al., 2019). An extreme gradient boost machine 

learning model (XGB-PGX) on evolutionary statistics for missense variants and functional 

annotations from UniProt that aimed to cover the population bias in PGx studies by including 

comprehensive global allele frequencies from the 1000 Genome Project (i.e. a 

comprehensive resource on genetic variant with frequencies of at least 1% in a large number 

of people who declared themselves to be healthy, 

https://www.internationalgenome.org/1000-genomes-summary/) outperformed classical 

predictors, such as SIFT, PolyPhen, and CADD (Scheinfeldt et al., 2021). Furthermore, there 

are two machine learning approaches available incorporating several in silico prediction tools 

along with additional features, including conservation scores to create an ensemble variant 

classifications (Pandi et al., 2021). 

Two studies adopted a different approach for CYP2D6 serving as an optimal starting point for 

machine learning proof-of-concepts. The first study, predicted the functional status of 
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CYP2D6 star alleles using a convolutional neural network. The algorithm was trained on 31 

star allele sequences with known function and was able to predict haplotype phenotypes with 

88% accuracy (McInnes et al., 2020). Another study showed, that a neural network can 

predict  

the interindividual variability of CYP2D6 activity from phased NGS-derived variant data with 

higher accuracy (79%) compared with the conventional categorized star allele approach 

(54%), and additionally allowed functional prediction of uncharacterized combinations of 

variants (Van Der Lee, et al., 2021). Moreover, the most exact prediction on protein structure 

from DeepMind’s transformer neural network Alphafold2 can be used to interrogate the 

functional effect of coding variants, although the accuracy of Alphafold2 raw data is still 

under discussion (Pak et al., 2023). State-of-the-art prediction of the protein structure may 

help to identify important structural motifs and critical positions in the amino acid sequence 

as shown for human G6PC2, encoding a glucose-6-phosphatase (G6Pase) catalytic subunit 

(Hawes et al., 2024), as well as for the pharmacogene SLC22A6, encoding the organic anion 

transporter 1 (OAT1) (Janaszkiewicz et al., 2022). A promising preprint study incorporated 

tissue-specific RNAsq data to categorize missense variants in commonly expressed human 

proteins (Hoffman et al., 2024). Another approach used the combination of the previously 

developed in silico prediction method SPEACH_AF with other types of software (i.e. Rosetta 

Energy Analysis) (Stein and Mchaourab, 2023). These novel models yield successful 

predictions also for protein-protein and protein-drug interactions (Xu et al., 2023). 

D. Validation of in silico functional predictions 

After the identification of putative functional variants through in silico prediction, in vitro or in 

vivo experiments are essential to validate their function before potential clinical application. 

So far in vitro laboratory experiments, including cell culture, gene expression, and 

biochemical assays are used to determine enzyme activity or drug transporter function. 

Animal and human in vivo studies (e.g. phase I trials) allow the elucidation of 

pharmacological consequences of genetic variation in a biological context using also 

innovative approaches like liquid biopsies (Tremmel et al., 2024). An alternative approach 
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involves multiplex assays of variant effect (MAVE) which mostly are deep mutational scans 

to measure molecular phenotypes (Chiasson et al., 2019). Such experiments combine NGS 

and high-throughput readouts in suitable cell systems to assess functional consequences of 

amino acid changes at every protein position on mRNA or protein abundance as well as on 

enzyme activity using covalent substrates. Those results can be used also as a training 

resource for machine learning methods. Major limitations of the application of MAVE are high 

workload and costs which could be decreased by reducing the number of variants e.g., only 

taking into account missense variants or variants, which were already identified in 

population-genome studies (e.g., GnomAD). Proof of concept for the successful application 

of MAVE has recently reported for the drug transporter SLCO1B1 (Zhang et al., 2021) and 

the DMEs CYP2C9 and CYP2C19 (Zhang et al., 2020). Further optimization may consider 

high-throughput readouts with multiple substrates or substrate-inhibitor/activator 

combinations to more precisely assess enzyme specificity and phenoconversion. Moreover, 

the elucidation of pharmacogene pathways including drug targets, DME, and transporters at 

the same time in one analysis seems to be promising. The latter approach was already used 

to guide the development of novel antimicrobial drugs through a CRISPR-mutagenesis 

analysis of three essential E. coli proteins in their original genomic context. New insights into 

protein function, antimicrobial resistance, and drug target were found (Dewachter et al., 

2023). With respect to PGx, comprehensive deep mutational scanning including variant 

mapping and phenotyping trough sequencing (Vamp-Seq) have been performed for selected 

ADME genes (CYP2C9, CYP2C19, NUDT15, SLCO1B1, TPMT, VKORC1) and 

pharmacodynamic targets (ADRB2, LDLR) (Geck et al., 2022). 

E. Implementation of pharmacogenomics 

International and national consortia (Clinical Pharmacogenetics Implementation Consortium, 

CPIC, cpicpgx.org; Dutch Pharmacogenetics Working Group, DPWG, 

knmp.nl/dossiers/farmacogenetica/pharmacogenetics; Canadian Pharmacogenomics 

Network for Drug Safety, CPNDS, cpnds.ubc.ca; the French National Network of 

Pharmacogenetics, RNPGx, pharmgkb.org/page/rnpgx) have been established to compile 
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evidence-based PGx knowledge on clinically relevant genetic alterations in the germline 

genome in order to adapt drug therapy. These guidelines contain recommendations for 

adjusting the individual dose of the drug, which can result in both dose reduction or dose 

escalation (Caudle et al., 2014). In extreme cases, for instance in the presence of 

homozygous variant genotypes with complete enzyme deficiency, an alternative therapy is 

recommended, assuming that the drug is mainly metabolized through this particular enzyme. 

CPIC and DPWG are the consortia that have developed the most comprehensive guidelines 

for the implementation of PGx so far and make them available on publicly accessible 

websites (pharmgkb.org/guidelineAnnotations). Defined procedures are available as a basis 

for these consortia, outlining how a corresponding guideline with recommendations should 

be developed, verified, and made publicly available. For CPIC, this means, for example, that 

for each guideline, a panel of experts is selected, whose central task is to review and 

evaluate all available literature, as well as to determine which study results can be used for 

guideline development for methodological reasons. In this context, it should be noted that 

studies with high levels of evidence, such as RCTs, hold significant importance, and case 

series or non-controlled study designs have less or no relevance in this evaluation procedure 

(Caudle et al., 2014). In the case of CPIC, currently 191 guidelines are published and 

recommendations are available for 82 drug-gene combinations. The DPWG PGx guidelines 

can refer to 63 recommendations. To support worldwide implementation of the PGx 

guidelines, a very systematic analysis has been conducted, comparing the guidelines to 

specific target genes in order to identify any potential discrepancies. This analysis revealed 

that over 99% of the CPIC and Dutch Guidelines are identical, and there is also an extremely 

high overlap when compared to Canadian and French Guidelines (Abdullah-Koolmees et al., 

2020). Although the methodological approaches of the consortia are partially different, the 

validity of the findings and resulting recommendations is evident and demonstrates the 

congruence of existing consortia. The necessity of such guidelines not only for patient care 

but also for research activities is demonstrated by the recently successfully completed 

PREPARE study. This randomized trial comprising approximately 7000 patients across 
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Europe was conducted in a real-world setting as part of a PGx implementation strategy 

indicates that when following the DPWG PGx guidelines based on PGx testing ADRs can be 

reduced in up to 30% (Swen et al., 2023). The available guidelines presuppose that in 

different healthcare systems, digital structures will be in place, empowering treating 

physicians, especially in outpatient settings, to access relevant information without having to 

rely on complicated scientific print materials. 

F. Pharmacogenomics-guided supportive care  

PGx-guided supportive therapy in the context of tumor diseases is of clinical relevance and 

includes both preemptive and side effect-related strategies (Patel et al., 2021). Supportive 

drugs are used to manage cancer-related symptoms and to improve the quality of life. 

Antiemesis and pain management, and the use of 5HT3 antagonists (e.g. ondansetron (Bell 

et al., 2017)), opioids/opioid analogues (Crews et al., 2021) and nonsteroidal anti-

inflammatory drugs (NSAID) (Theken et al., 2020), respectively, are selected examples. In 

the case of opioid therapy, substances such as codeine, tramadol, oxycodone, and 

hydrocodone, which are included in the WHO stepwise approach for cancer pain 

management, undergo bioactivation via CYP2D6 to form active metabolites (e.g. O-

desmethyltramadol, hydromorphone) which exhibit the analgesic effects through opioid 

receptors (Wong et al., 2022). CPIC-guided recommendations for CYP2D6 genotype-related 

prescribing are so far provided for codeine and tramadol (Crews et al., 2021). A decreased 

analgetic effect of codeine and tramadol at standard dosage can be expected for CYP2D6 

PM (see II.B). Conversely, in the case of CYP2D6 gene amplification (UM phenotype) 

elevated plasma levels of the active metabolite morphine may occur with an increased risk 

for serious toxicities (Figure 3) (Crews et al., 2021). So far, the evidence for CYP2D6 

genotype-related prescribing in case of hydrocodone and oxycodone is limited since 

CYP2D6 contributes only to a smaller extent to the bioactivation of both agents. 

The example of opioid use nicely shows the complexity of PGx-guided supportive care 

because other candidate genes such as the opioid receptor MU1 encoded by OPRM1, the 

catechol-O-methyltransferase (COMT) and the organic cation transporter 1 (OCT1) (Wong et 
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al., 2022) that allows the uptake of opioids into cells (Meyer et al., 2019) contribute to opioid 

pharmacology. The MU1 opioid receptor is part of the G-protein-coupled receptor (GPCR) 

family and binds opioids, primarily affecting nociception. OPRM1 is highly polymorphic and 

genetic variants have been linked to reduced expression in vitro and in vivo with 

consequences for opioid response. Moreover, opioid response depends on pain perception 

and COMT is a key regulator of catecholamine levels in the pain perception pathway via 

methyl conjugation of catecholamines. Selected genetic variants in COMT have been 

associated with lower activity for methylation compared to the wild-type allele. The clinical 

relevance of OPRM1 and COMT PGx for opioid agents including morphin or fentanyl is still a 

matter of debate, and data are limited to justify upfront genetic testing in clinical care (Crews 

et al., 2021; Wong et al., 2022). 

Regarding OCT1, genetic variation of SLC22A1 (encoding for OCT1) is known to significantly 

reduce the uptake function resulting in decreased intracellular drug concentrations (Kölz et 

al., 2021). SLC22A1 genetics was associated with several other cancer agents such as 

tyrosine kinase inhibitors (TKIs), and oxaliplatin (Table 3) (Nies et al., 2011; Neul et al., 

2016), but inconsistent data is available regarding the clinical relevance of SLC22A1 PGx 

(Nies et al., 2014; Chen et al., 2020).  

 

Another important example with relevance for PGx is anti-infective supportive therapy for 

cancer patients. It is well accepted that cancer patients that are receiving chemotherapy, 

partly in combination with radiation, or immuno- or cell therapies have a significantly 

increased risk for severe systemic infections compared with non-cancer patients which not 

only includes outpatient-acquired but also healthcare-related infections (Belloni et al., 2022; 

MacPhail et al., 2024). PGx-guided use of antiinfective agents is well established for selected 

drugs and guideline recommendations (e.g. CPIC, DPWG) are available for the antibiotics 

flucloxacillin 

(https://api.pharmgkb.org/v1/download/file/attachment/DPWG_HLA_flucloxacillin_4652.pdf), 

nitrofurantoin (Gammal et al., 2023) and aminoglycosides (McDermott et al., 2022) as well as 
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the antifungal agent voriconazole (Moriyama et al., 2017) to improve efficacy or to avoid ADR 

(see Figure 3).  

In addition to ADME PGx-guided supportive care there is substantial evidence that genetic 

variation in distinct human leukocyte antigen (HLA) genes is associated with severe in part 

life-threatening hypersensitivity reactions of several drugs (see Figure 3) (Manson et al., 

2020). For example, allopurinol which inhibits the xanthine oxidase is used during cancer 

chemotherapy to prevent acute uric acid nephropathy (tumor lysis syndrome) and a major 

cause of severe cutaneous adverse reactions (SCAR, e.g. Stevens-Johnson Syndrome) with 

up to 25% mortality. A high sensitivity (up to 100%) and specificity (up to 94%) for HLA-

B*58:01 testing in Asians have been shown regarding allopurinol induced SCAR (Manson et 

al., 2020). Therefore, PGx recommendation guidelines strongly recommend not taking 

allopurinol in hetero- and homozygous carriers of HLA-B*58:01 (Saito et al., 2016). 

Other supportive drug classes in cancer care are also influenced by PGx, and guidelines are 

available (Figure 2C) including antidepressants to support pain management, psychiatric 

symptoms and sleeping disorders (pharmgkb.org/guidelineAnnotations). 

G. Polygenic risk scores and prediction of drug response  

Several polygenic risk scores (PRS) have been established in the context of susceptibility to 

certain diseases and have been advanced through extensive genomic analyses, such as 

GWAS. One of the first approaches was already published in 2007 (Wray et al., 2007), 

indicating the feasibility of a genetic risk prediction. PRS typically encompass a varying 

number of genetic variants, which usually have limited significance individually and/or occur 

rarely. However, within a complex network, combining various genetic factors significantly 

enhances their predictive value, allowing for a more valid prediction of a certain disease risk, 

disease progression or chronic clinical conditions. Numerous PRS have been described for 

cardiovascular (e.g. coronary artery disease) or neuropsychiatric (e.g. schizophrenia, 

depression) diseases as well as various cancers (e.g., breast cancer), but with limited 

relevance for clinical practice (Xiang et al., 2024). PRS in the context of drug therapy have 

been largely overlooked so far, concerning both treatment response and ADRs. Initial 

article has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 15 October 2024 as DOI 10.1124/pharmrev.124.001049 This

at A
SPE

T
 Journals on D

ecem
ber 20, 2024

pharm
rev.aspetjournals.org 

D
ow

nloaded from
 

https://en.wikipedia.org/wiki/Gene
http://pharmrev.aspetjournals.org


 

33 
 

approaches in this direction involve combinations of candidate genes related to PGx data, as 

considered in some CPIC/DPWG guidelines (pharmgkb.org/guidelineAnnotations). One 

notable example of a PRS that also incorporates important clinical parameters (e.g. ethnicity) 

is the anticoagulant warfarin. The International Warfarin Pharmacogenetics Consortium 

(IWPC) proposed, as early as 2009, the inclusion of not only the CYP2C9 enzyme relevant 

for warfarin metabolism but also the Vitamin K epOxide Reductase Complex (VKORC) 

subunit 1, responsible for reducing vitamin K epoxide to its active form, for better instructing 

PGx-based warfarin dosing. Recently CYP4F2 (Johnson et al., 2017) and gamma-glutamyl 

carboxylase (GGCX) involved in the activation of vitamin K dependent clotting factors were 

further added (Li et al., 2022). Other PGx examples related to cancer with combination of 

candidate genes are thiopurines (TPMT, NUDT15), antidepressants (CYP2C19, CYP2D6), 

potent volatile anesthetic agents/succinylcholine (RYR1, CACNA1S), and opioids (CYP2D6, 

COMT, OPRM1), where information has been incorporated into the CPIC guidelines in 

recent years (pharmgkb.org/guidelineAnnotations) (Johnson et al., 2022). Thus, the 

perception has shifted, recognizing the importance and relevance of PRS due to the 

increasing number of independently identified genomic factors explaining drug response 

(Simona et al., 2023; Singh et al., 2024). The challenges regarding PRS comprise, among 

others, the varying frequencies of relevant genetic variants in different ethnic populations 

(see II.A), consideration of other clinical parameters as well as missing implementation 

strategies and bioinformatic support. Other aspects, like the fact that the application of PRS 

entails additional costs and requires specific medical expertise for the interpretation of results 

are significant barriers to implementation.  

 

III. Somatic variation and cancer therapy 

A. Somatic mutations in cancer 

In a multicellular organism, every cell acquires mutations over its lifetime (Stratton et al., 

2009) which are called somatic mutations. Most of them are innocuous, and many are 
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cleared by DNA repair mechanisms quickly. Every cell thus acquires its own set of somatic 

mutations, and they differ between cells of the same individual. Upon malignant 

transformation, one cell clonally expands, and all daughter cells inherit all mutations, both 

germline and somatic, from the initially transformed cell (Hanahan and Weinberg, 2000, 

2011). This renders somatic mutations in a tumor clonal. Over the past years, the field of 

cancer genomics has characterized the mutational landscapes of various tumor entities by 

WES and/or WGS (The International Cancer Genome Consortium, 2010; Cancer Genome 

Atlas Research Network et al., 2013; The ICGC/TCGA Pan-Cancer Analysis of Whole 

Genomes Consortium et al., 2020). The overall amount of somatic mutations varies over a 

wide range between cancer samples, roughly between 0.001 per megabase (Mb) and 400 

per Mb, and between tumor entities, on average ranging from less than 0.05 per Mb in 

pilocytic astrocytoma or 0.5 in pediatric acute leukemia to more than 10 per Mb in melanoma 

(Alexandrov et al., 2013). Figure 6 exemplifies the density of somatic mutations across 

cohorts of rare adult cancers aggregated from the German Cancer Research Center (DKFZ), 

National Center for Tumor Diseases (NCT) and German Cancer Consortium (DKTK) in the 

MASTER (Molecularly Aided Stratification for Tumor Eradication Research) program, a 

multicenter precision oncology program using broad multi-omics characterization including 

WGS/WES of tumor and matched normal control samples as well as RNA sequencing and 

DNA methylation profiling of tumor samples under accredited conditions, and clinical 

decision-making (Horak et al., 2021; Mock et al., 2023). Of note, as some of the investigated 

entities are extremely rare, a strict classification based on morphology and anatomic 

localization would lead to a plethora of subgroups, which partially would include very few 

samples. For the ease of display, cancer entities in MASTER were therefore grouped into so-

called entity baskets following a pragmatic meta-classification system (Figure 6). Sample 

numbers across the entity baskets are displayed in Figure 6B, showing strong contributions 

from rare cancers and some contributions from rare subtypes of common entities. Similar 

cancer genomics landscapes have been published for more common cancers ((Cancer 

Genome Atlas Network, 2012), data available at portal.gdc.cancer.gov), at pan-cancer level 
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((The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium et al., 2020), data 

available at dcc.icgc.org/projects), or for particular medically relevant questions, like 

metastatic cancer (Zehir et al., 2017). 

Genetic alterations in certain genes contribute particularly to malignant transformation, i.e., 

LOF mutations in tumor suppressor genes and gain-of-function mutations in oncogenes. 

These mutations confer a selective advantage and are therefore recurrent. The most 

recurrently mutated gene across all cancer entities is TP53 (Chang et al., 2016), encoding a 

sequence-specific transcription factor with various tumor-suppressive functions. Figure 6C 

displays cumulative numbers of the different mutation types per gene across the MASTER 

cohort. Colors code for mutation type, and well established patterns can be retrieved, like 

frequent occurrence of amplifications in oncogenes, e.g., MYC, and deletions in tumor 

suppressor genes, e.g., CDKN2A. As opposed to MYC and CDKN2A, which are mainly 

affected by somatic copy number aberrations (sCNAs), other genes (e.g., TP53) are mainly 

affected by small variants (SNVs and insertion-deletion (indels)). It is furthermore worth 

noting that the genes analysed here are also affected by a varying fraction of germline 

variants, which often are small variants present in a heterozygous configuration, and the 

tumor loses the healthy allele by other mutational mechanisms (e.g., a deletion), thereby 

acquiring a hemizygous or homozygous configuration for the variant. However, the number 

of somatic mutations observed in a gene across large cancer genomics cohorts also 

depends on the size of the gene; and genes which neither harbor increased mutation 

density, nor are established tumor suppressors but are particularly large include TTN (Titin, 

encoding a large protein expressed in striated muscle, gene length: 304,814 bases) or RYR2 

(Ryanodine receptor 2, one of the components of a calcium channel found in cardiac muscle 

sarcoplasmic reticulum, gene length: 791,805 bases; Figure 6). 

B. Targetability of somatic alterations 

Somatic mutations are critical for the development and progression of cancer. In addition, 

some mutations in a tumor also are targetable, i.e., there are treatments specifically 

designed to target cellular processes or signaling pathways that are directly or indirectly 

article has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 15 October 2024 as DOI 10.1124/pharmrev.124.001049 This

at A
SPE

T
 Journals on D

ecem
ber 20, 2024

pharm
rev.aspetjournals.org 

D
ow

nloaded from
 

http://pharmrev.aspetjournals.org


 

36 
 

activated or deactivated by particular mutations. For example, a BRAF V600E mutation, 

which leads to constitutive activation of the RAF-MEK-ERK pathway, can be effectively 

targeted by an inhibitor such as vemurafenib. Tailoring therapy to a tumor’s unique molecular 

profile, in particular, to somatic mutations, can significantly improve treatment outcomes. This 

is exemplified by the use of small-molecule inhibitors for entities characterized by abnormal 

kinase signaling due to activating mutations or gene arrangements. Examples include 

gastrointestinal stromal tumors, subsets of NSCLC, melanoma, various hematopoietic 

malignancies, and others (Scholl et al., 2008; Rosti et al., 2017; Recondo et al., 2018; Klug et 

al., 2022). However, challenges arise when dealing with molecular profiles where the clinical 

implications are less apparent. For instance, the question often arises about the 

"druggability" of a genetic variant in different tissue contexts. This complexity is exemplified 

by the use of mutation-specific BRAF V600 inhibitors, which yield objective responses in 

approximately half of the studied entities (Subbiah et al., 2020; Hanrahan et al., 2024), but in 

colorectal cancer (CRC) effective suppression of oncogenic RAF-MEK-ERK signaling 

requires consideration of the tissue of origin's physiological expression profile (Prahallad et 

al., 2012; Kopetz et al., 2019). PGx in CRC involves the study of genetic variation influencing 

individual responses to chemotherapy, targeted therapies, and other treatment modalities. 

Key oncogenes like EGFR, MET, BRAF, and others play a pivotal role in determining the 

efficacy and safety of treatments. Mutations in these genes are crucial for selecting targeted 

therapies, as they can predict the response to drugs such as gefitinib, erlotinib und 

osimertinib (EGFR inhibitors), or vemurafenib (BRAF inhibitor), as outlined, e.g., in a recent 

ESMO guideline on diagnosis, treatment and follow-up of metastatic colorectal cancer 

(Cervantes et al., 2023): “Testing for mismatch repair (MMR) status and KRAS, NRAS exon 

2, 3 and 4 as well as BRAF mutations is recommended in all patients at the time of mCRC 

diagnosis, due to its relevance in selecting first-line therapy. This can be carried out on either 

the primary tumor or any metastatic site, with a suggested turnaround of ≤10 days. As these 

mutations are negative predictive factors for the use of anti-epidermal growth factor receptor 
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(EGFR) monoclonal antibodies (mAbs), RAS testing is mandatory before this treatment is 

initiated.” 

Targetability is not limited to single-gene alterations but can also apply to more complex 

biomarkers. A field in which biomarker design and identification have been intensively 

studied is DNA repair. Different DNA repair defects leave specific imprints on the genome of 

a cancer cell and, at the same time, result in synthetic lethal relationships that can be 

exploited therapeutically. Homologous recombination repair (HRR) plays a crucial role in 

repairing various mutations, including DNA double-strand breaks (DSBs) (Lord and 

Ashworth, 2016). LOF mutations in genes associated with HRR lead to homologous 

recombination deficiency (HRD), causing an accumulation of DSBs and increased reliance 

on alternative DNA repair pathways such as non-homologous end joining (NHEJ) (Lord and 

Ashworth, 2012). Cancers with HRD have more large structural variants and sCNA, referred 

to as “genomic scarring” (Abkevich et al., 2012). Various techniques have been devised to 

measure the degree of genomic instability in such tumors, including the LOH-HRD score 

(Telli et al., 2016) and the number of large-scale state transitions (LST) (Popova et al., 2012). 

Mutational signatures are imprints that distinct mutational processes have left on the 

genomes of cancer cells (Alexandrov et al., 2013, 2020). For their analysis, all mutations of a 

given type, e.g., SNVs, are categorized into more subtle features. This may be achieved by 

taking into consideration the motif context of the respective mutation. In an initial 

unsupervised pan-cancer analysis of 507 WGS and 6535 WES samples, 30 mutational 

signatures were identified (cancer.sanger.ac.uk/signatures), half of which were found to be 

associated with specific mutational mechanisms. Cancers with impaired HRR are 

characterized by mutational signatures 3 and 8 (Alexandrov et al., 2015). Initially observed in 

tumors harboring mutations in the tumor suppressor genes BRCA1 and BRCA2, similar 

genomic patterns were later identified in tumors with wildtype BRCA1/2 but LOF mutations in 

other HRR genes (Couch et al., 2014; King, 2014). This led to the concept of “BRCAness” 

(Turner et al., 2004), which has since been broadened to include genes such as PALB2 and 

others (Lord and Ashworth, 2016; Mateo et al., 2022). Identifying HRD in tumor samples is 
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crucial for predicting their response to poly ADP-ribose polymerase (PARP) inhibition 

(PARPi) (Gröschel et al., 2019). Complementing mutation-based predictions with the 

identification of HRD-specific genomic patterns can enhance prediction accuracy (Kovac et 

al., 2015; Telli et al., 2016). Prospective clinical trials in ovarian cancer have emphasized this 

approach, demonstrating that the presence of HRD beyond BRCA1/2 mutations significantly 

correlates with response to PARPi (Coleman et al., 2019; González-Martín et al., 2019; Ray-

Coquard et al., 2019). As of early 2024, PARP inhibitors are also approved for HER2-

negative breast cancer (Tutt et al., 2021), metastatic castration-resistant prostate cancer 

(mCRPC)(De Bono et al., 2020; Agarwal et al., 2023; Saad et al., 2023), and metastatic 

pancreatic ductal adenocarcinoma (PDAC) (Golan et al., 2019). In contrast to ovarian 

cancer, the indication for PARPi still mostly relies on germline and/or somatic mutations in 

BRCA1/2, but more complex biomarkers based on extended gene lists are finding their way 

into approval for mCRPC (De Bono et al., 2020; Agarwal et al., 2023). 

C. Somatic alterations in pharmacogenes 

Tailored cancer pharmacotherapy should consider not only tumor suppressor genes, and 

oncogenes, but also the expression and activity of ADME genes in tumor tissue, given their 

role in the metabolism or activation of many anticancer drugs (Table 3). Several transporters 

and CYPs are not only expressed in organs classically associated with pharmacokinetics like 

the liver, but also in tumor tissues (van Eijk et al., 2019). Recent studies, including data from 

TCGA, reported non-hepatic expression levels of 157 of 300 ADME genes across cancer 

types, including breast, gastrointestinal, lung, and ovarian cancers. (Hu et al., 2020; Sneha et 

al., 2021). Furthermore, ADME expression may serve as prognostic biomarker for overall 

survival (Hu et al., 2020). For most DMEs, an equal or reduced expression compared to the 

corresponding healthy tissue has been reported (Vasilogianni et al., 2022), and only very few 

seem to be overexpressed depending on cancer entity (Zhu et al., 2015, p. 20; Cui et al., 

2020). In contrast to the germline profile, somatic expression of ABCB1 has been linked to 

drug resistance in acute myeloid leukemia (AML) (Robey et al., 2018). The mechanism of 

overexpression is not completely understood, but somatic SNVs, CNVs, and aberrant DNA 
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methylation could be responsible. And indeed, analysis of TCGA mutation profiles identified 

ABC transporters and CYPs highly mutated in colorectal, lung and bronchus, breast, and 

prostate cancers (Hlaváč et al., 2020; Van De Geer et al., 2023). Following principles such 

as evolutionary dynamics under selection pressure, an almost ubiquitous mechanism of drug 

resistance in cancer is the increased expression of drug transporters mediating the efflux of 

xenobiotics. 

Specific examples of somatic ABC expression concern ABCA1 and ABCB5, mediating 

temozolomide resistance in glioblastoma, or ABCC1, also known as MRP1, in various cancer 

types such as AML, ALL, glioma, and NSCLC (Lee et al., 2020; Wang et al., 2021). Notably, 

elevated ABCC1 levels have been associated with a diminished response to chemotherapy 

in neuroblastoma (Yu et al., 2015). Another extensively studied family is the ABCG family, 

particularly ABCG2 (BCRP), initially discovered in multidrug-resistant breast cancer (Muriithi 

et al., 2020). The relevance of ABC expression has been described in particular for specific 

slow-cycling subpopulations of tumor cells in certain entities, termed cancer stem cells 

(Begicevic and Falasca, 2017). Of note, for healthy hematopoietic stem cells, ABC 

transporters have even been proposed as phenotypic markers (Koeck et al., 2007; Begicevic 

and Falasca, 2017), and also other types of healthy stem cells show characteristic 

expression patterns of ABC transporters, e.g., ABCA2, ABCA3, ABCB1, and ABCG2 in 

neural stem cells (Lin et al., 2006).  

The above examples illustrate that in addition to the identification of germline and somatic 

DNA mutations, obtaining other omics layers from cancer tissues adds substantial 

information. The above examples focus on gene expression, but informative layers also 

include DNA methylation, (phospho)proteomic, or metabolomic profiles. To fully understand 

the complexity of cancer, an integrative analysis of all these omics layers is warranted (see 

IVB). In a supervised setting, this may be achieved at a low level by, e.g., annotating RNA 

allele frequencies to variants identified by DNA sequencing (Horak et al., 2021), whereas in 

an unsupervised discovery setting, tools like Multi-Omics Factor Analysis (MOFA) may be 

particularly useful (Argelaguet et al., 2018). 
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Many studies have used a range of methods to quantify DME activity in tumors and cell lines; 

however, they lack comparability and common conclusions (Michael and Doherty, 2005). 

Therefore, comprehensive studies on protein and activity data to investigate the contribution 

on drug resistance via intratumoral deactivation of drugs are warranted. With a few 

exceptions, most of the research on such resistance mechanisms to date has been 

theoretical or at best providing indirect correlative evidence and is not yet supported by 

appropriate experiments, and exact underlying mechanisms have rarely been investigated. 

Systematic somatic proteomics data, e.g. such as provided by the National Cancer Institute's 

Clinical Proteomic Tumor Analysis Consortium (CPTAC, pdc.cancer.gov/pdc/) may reveal 

new insights in non-hepatic ADME expression and drug metabolism by tumors. 

Nevertheless, there are examples of intratumoral drug metabolism or its association to 

therapeutic response. A recent study on lung adenocarcinoma patients found that higher 

somatic copy numbers of CYP2C8 and CYP3A4, which are involved in paclitaxel 

metabolism, were linked to non-responder patients with progressive disease during paclitaxel 

treatment (Incze et al., 2023). In contrast, in the HepG2 cell line, CYP3A4 and CYP2C8 had 

no effect on paclitaxel efficacy, and only CYP3A4 activity was found to contribute to 

docetaxel resistance (Hofman et al., 2021). Another study assessed the activity of CYP3A5 

in patient-derived models of PDAC and showed an influence on resistance to TKIs (Noll et 

al., 2016). The exocrine PDAC subtype showed intrinsic resistance to erlotinib and dasatinib. 

It was also shown that this effect can be effectively inhibited and induced. In other PDAC 

subtypes, acquired TKI and paclitaxel resistance was also observed and correlated with 

CYP3A5 expression. However, these results are debated since expression is not a good 

measure of CYP3A5 activity, as the common splicing variant (*3; see II.B) lead to an inactive 

protein (Ingelman-Sundberg and Lauschke, 2020). Various tumors exhibit increased levels of 

CYP1B1, leading to modifications in the biotransformation of taxanes such as paclitaxel and 

docetaxel (Murray et al., 1997; Zhu et al., 2015). Another gene whose complex role in cancer 

has already been more thoroughly described is GSTP1. GSTP1 is overexpressed in many 

cancer types, and it is assumed that this leads to increased detoxification of 
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chemotherapeutic agents, especially platinum-based therapies (Sawers et al., 2014; Cui et 

al., 2020). As a potential regulation mechanism causing the altered activity of DMEs in 

tumors, drug-inducible NRs such as PXR are discussed (Chen, 2010; Chen et al., 2012). In 

general, DMEs can only be seen as just one element in the complex interplay of tumor-

specific mechanisms and pathways leading to the survival of tumor cells despite treatment. 

D. Risk prediction and drug treatment of cancer 

Combining different pieces of information has proven to be performant and beneficial also in 

risk prediction. In breast cancer, disease risk prediction started with BRCA1 and BRCA2 and 

was rapidly improved by polygenic scores. A comprehensive work on 313 germline variants 

showed that women in the top 1% of PRS were 3.6 times more likely to develop ER-positive 

breast cancer, and women in the lowest 1% of PRS were 6 times less likely to develop ER-

positive breast cancer than women in the middle quintile (Mavaddat et al., 2019). 

The treatment options consist of surgical intervention, radiation, systemic therapy including 

anthracyclines such as doxorubicin or epirubicin, taxanes, e.g., docetaxel, and HER2-

targeting drugs including trastuzumab, and finally commonly used hormonal therapy with 

estrogen receptor (ER) modulators (e.g. tamoxifen, raloxifene) or aromatase inhibitors (e.g. 

exemestane, letrozole) (Agostinetto et al., 2022). More than one-third of women with early 

breast cancer receive adjuvant chemotherapy although the clinical benefit is not shown for 

more than half of the women. They would have survived without the additional treatment. 

The potential of risk stratification with respect to individualized treatment decisions is obvious 

i.e., which patient will most or least likely benefit from systemic chemotherapy. Given the 

complexity of tumor genomes and biology, multigenomic assays have been identified as 

suitable tools for predictive tests (Van ’T Veer et al., 2002; Heo et al., 2021). Therefore, 

exemplarily we review polygenic tests that are currently available for clinical use in the 

management of breast cancer. 

In the latest clinical practice guidelines of the American Society of Clinical Oncology (ASCO) 

as well as the European Society of Medical Oncology (ESMO) (Henry et al., 2022; Loibl et 

al., 2024) there are four multigene tests considered to guide adjuvant treatment decisions in 
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breast cancer. All four tests provide information about an individual’s recurrence risk and the 

benefit of chemotherapy in general, not about specific drugs. Across all tests, chemotherapy 

is indicated in patients with high-risk or high-score results. The clinical utility of the tests has 

been or is actually evaluated in large RCTs. 

The EndoPredict Test (originally Sividon Diagnostics, Köln, Germany now Myriad 

International GmbH, Cologne, Germany) started as an 8-gene test and was expanded to a 

12-gene quantitative PCR (qPCR) test on formalin-fixed paraffin-embedded (FFPE) tumor 

samples (Filipits et al., 2011). The score summarizes the test result with tumor size and 

nodal status and is able to predict distant recurrence-free survival for up to 15 years post-

diagnosis in ER-positive and HER2-negative tumor patients. The clinical utility of the test is 

evaluated in two large prospective RCTS: RESCUE (NCT03503799) and EndoPredict 

Extended Endocrine Trial (EXET; NCT04016935) (Brufsky et al., 2022). Oncotype DX 

(Genomic Health, Redwood, CA) was developed 2004 and is a 21-gene qPCR test on FFPE 

samples. The score calculated upon the expression levels divides patients into the three 

groups of low, intermediate and high risk of recurrence in 10 years. Multiple studies showed 

that low score results predicted little to no benefit from chemotherapy, whereas patients with 

high scores showed significant benefit from additional chemotherapy on top of endocrine 

therapy (Paik et al., 2004; Syed, 2020). Two separate reports for nodal status are available 

and clinical utility was demonstrated in prospective studies (West German Study 

Group(WSG) PLAN B trial, TAILORx and RxPONDER (SWOG 1007)). Prosigna, formerly 

known as PAM50, is a 50-gene signature test applied on Nanostring NCounter technology. 

The test has been analytically validated in patients under endocrine treatment (Wallden et 

al., 2015). In addition to the prognostic value of recurrent disease, the Prosigna gene 

signature can assign tumor samples to the intrinsic subtypes Luminal A, Luminal B, HER2+, 

and basal-like tumors. In contrast to the other tests, Mamma Print uses a 70-gene microarray 

developed by Agendia (Irvine, CA) and can be used independently of ER status which was 

shown as clinically appropriate in the prospective MINDACT study (Cardoso et al., 2016). 

Several studies have examined additional features of the tests available. For example, 
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MammaPrint and Oncotype DX are most cost-effective (Hall et al., 2017) and can identify 

subgroups of breast cancer patients with an ultra-low risk of death over two decades (Petkov 

et al., 2016; Esserman et al., 2017). However, the challenge is now to choose the optimal 

test for the patient. 

 

IV. Integration of germline and somatic variation for drug therapy 

A. Precision oncology 

Precision oncology is rapidly advancing based on increasingly comprehensive and high-

fidelity molecular diagnostics, resulting in a deeper understanding of individual tumors’ 

functional underpinnings. The primary aim of this personalized approach to cancer care is to 

predict which patients will likely respond to specific therapies (Mateo et al., 2022). 

Sequencing of tumor DNA and RNA is an essential method for achieving molecular 

stratification of patients, as it can detect an increasing spectrum of genomic and 

transcriptomic alterations with direct clinical implications (Horak and Fröhling, 2024). In 

contrast to traditional cohort studies that rely on recurrence, precision oncology focuses on 

individual cancer patients and aims to enable more accurate and customized treatment 

approaches (Berger and Mardis, 2018). In oncology, an adequate and comprehensive view 

of a case, i.e., a patient and the tumor, is only possible when taking both somatic and 

germline genetics into account. For example, targetable lesions can be found in both the 

somatic and germline variant calls. Frequently, the combination of, e.g., a heterozygous 

germline variant and a somatic event, such as LOH leads to inactivation of a tumor 

suppressor gene and can drive malignant transformation. To distinguish between germline 

and somatic mutations, DNA from both the tumor sample and a matched normal tissue, often 

blood, needs to be sequenced, and the variant calling itself represents data integration. 

Ensuring reliable and interpretable results is crucial when clinical decisions rely on genomic 

analyses, and effective communication of these results holds paramount importance (Horak 

et al., 2016). It has been recognized that organizing precision oncology efforts through 

interdisciplinary panels, including experts from various medical disciplines (e.g., (molecular) 
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oncologists & pathologists, medical geneticists), bioinformatics, and cancer biology, is an 

efficient approach. Initially termed “multidisciplinary sequencing tumor boards” 

(Roychowdhury et al., 2011) and later known as molecular tumor boards (MTB) 

(Schwaederle et al., 2014), these forums serve as platforms where multidisciplinary teams 

convene to discuss individual patient data including clinical, laboratory and other diagnostic 

information, analyze genomic data, and molecular profiling, quality, and devise personalized 

treatment strategies to assign evidence-based treatment recommendations (Mock et al., 

2023).  

As precision oncology aims at the ideal drug-patient match for every individual case, it 

frequently performs drug repurposing. Many treatment recommendations of a MTB may be 

off-label, as a drug is often approved in a given set of entities, but targetable lesions and 

biomarkers may be found in other entities. Beyond evidence-based treatment 

recommendations based on targetable lesions (e.g. EGFR mutations, Figure 4A), other 

actionable observations may include refinement of diagnosis based on pathognomonic 

molecular alterations or the necessity of genetic counseling for the index patient and/or 

family members in the case of germline findings (Horak et al., 2021; Darmofal et al., 2024). 

With the dramatically increasing knowledge on the implications of PGx for cancer care, there 

is an urgent need to involve molecular pharmacologists in the MTB and to train the other 

specialists in PGx (Shriver et al., 2024). 

Finally, beyond classical RCT innovative trial designs are crucial for precision oncology and 

adaptive trial designs, such as basket or umbrella trials or even platform trials have been 

sofar increasingly used to tailor drug therapy based on various risk factors (Park et al., 2020). 

Rare cancers with an incidence of less than six per 100,000 persons per year in particular 

require innovative adaptive trial designs (Van Der Velden et al., 2019). The molecular 

pathogenesis of many rare cancers is understudied, leading to a lack of prognostic and 

predictive factors, as well as a scarcity of rationally developed, molecular mechanism-aware 

therapies (Van Der Graaf et al., 2022).  
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Moreover, trials on rare cancers often require the involvement of high-volume cancer centers 

and/or collaboration among multiple institutions (Flaherty et al., 2020). Another obstacle to 

implementing precision oncology approaches in rare cancers is that negative evidence of 

drug efficacy in unstratified clinical trials likely underestimated the potential of therapies (Ray-

Coquard et al., 2017). The multicenter, prospective observational MASTER study (see III.A) 

was initiated to enhance the understanding of advanced rare cancers and early-onset 

common cancers, and to address the unmet clinical needs associated with these diseases. 

The aim is to inform the clinical management of patients and identify opportunities for the 

development of molecularly stratified clinical trials (Figure 6). Sofar the molecular profiles and 

clinical outcomes of the first 1310 patients highlight the practical diagnostic and therapeutic 

implications for a patient population with unfavorable prognosis (Horak et al., 2021). 

B. Additional data layers and multi-omics integration  

Advancements in biomedical technologies continuously expand the availability of high-

dimensional data layers, prompting the integration of multi-omics approaches in precision 

oncology to interrogate complex biomarkers aimed at identifying predictive, prognostic, or 

diagnostic information (Figure 4B). An important data integration strategy is to annotate read 

counts from gene expression data to the mutations identified by DNA sequencing, thereby 

providing information on whether a mutation is expressed or not (Beaubier et al., 2019; Lee 

et al., 2021). DNA methylation or proteomics can also be used to provide added value (Wong 

et al., 2020). Whenever more than one layer is present, methods for data integration or multi-

omics integration are necessary. Data integration methods can be grouped into type early (or 

full), for which the datasets of the different omics layers are combined into a single dataset 

on which the data model is built, which often requires transformations of the datasets into a 

common representation, and type late (or decision), for which models are built for each 

dataset separately. The models are then combined into a unified model, and by building 

isolate models from each dataset, the mutual relations of the different data layers are ignored 

(Gligorijević and Pržulj, 2015). In the research field of cancer drug treatments in which 
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various processes and influences are connected and modulate each other, PGx appears to 

be a promising hidden factor or hidden source of variation. 

C. Tumor heterogeneity and combination therapies 

After malignant transformation, tumors clonally expand. Often, additional somatic mutations 

and/or epigenetic or functional alterations are acquired, and subclones arise (Hanahan and 

Weinberg, 2011). The resulting diversification, usually referred to as tumor heterogeneity, 

has been known for decades based on histopathologic and radiologic examinations. When 

using bulk sequencing or other omics technologies for characterizing a tumor sample, an 

additional complication arises: tumor tissues are rarely pure; often, adjacent healthy tissue is 

admixed. However, based on algorithmic considerations in the detection and calling of 

sCNAs, an estimate for an optimal purity/ploidy combination can be given (Zack et al., 2013). 

When combining sCNA information with allele frequency distributions of SNVs, 

subpopulations, subclones, and even the individual evolutionary history of a given tumor 

sample can be reconstructed using parsimony considerations (Giessler et al., 2017), 

computational frameworks (Grigoriadis et al., 2024) and by automated algorithms (Frankell et 

al., 2023). When taking into consideration even more patterns identified in a tumor sample, 

like mutational signatures using e.g. single cell read outs (RNA, epigenetics, proteome) and 

spatial transcriptomics, detailed molecular clocks can be inferred, and even more time 

course information of the sample can be gained (Gerstung et al., 2020). 

Tumor heterogeneity is among the reasons why many cancer patients need combination 

treatment. This concept, first explored in childhood leukemia (Pui et al., 2015), is the 

backbone of classical multi-agent chemotherapy for most hematologic and solid-organ 

malignancies such as FOLFIRI (5-FU, folinic acid, and irinotecan) and FOLFOX (5-FU, folinic 

acid, and oxaliplatin) (Colucci et al., 2005), multimodality therapy of adult Ewing sarcoma 

(Pretz et al., 2017), and prevails in newer molecular mechanism-aware treatment regimens 

such as venetoclax and azacitidine in AML (DiNardo et al., 2020). The evaluation of 

pharmacodynamic DDI with respect to synergistic effects but also safety is warranted (Niu et 
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al., 2019). And indeed novel effective combinatorial drug treatments can be identified in 

distinct molecular cancer subpopulations (Jaaks et al., 2022). 

In contrast, combination therapies inevitably lead to DDI, whose number and potential 

detrimental effects increase with the number of co-prescriptions. This principle applies to 

cancer patients who frequently undergo concurrent treatments (Van Leeuwen et al., 2015). In 

the precision oncology era, combination therapies are guided by co-occurring molecular 

biomarkers and associated evidence-based recommendations, whose proportion has 

increased steadily over time, e.g., in the MASTER program from 5% of cases in 2014 to 

53.9% in 2018 (Horak et al., 2021). Combination therapies are often prioritized if more than 

one recommendation was issued or evidence exists for the lack of efficacy of single agents in 

specific histologic contexts as in the case of BRAF inhibition in BRAFV600-mutated 

colorectal cancer (Hyman et al., 2015). Another driving force are molecularly stratified clinical 

trials of combination treatments, such as the TOP-ART trial of the MASTER network 

(ClinicalTrials.gov Identifier NCT03127215), which tests olaparib, a PARP inhibitor, in 

conjunction with the chemotherapeutic agent trabectedin. 

D. Implementation of PGx in Precision Oncology 

As demonstrated, NGS technologies have been integral to PGx research. The increasing 

evolution of bioinformatics tools which provide functional prediction and specific algorithms to 

easily extract PGx information from NGS data, coupled with technological advancements, 

enables the implementation of PGx across diverse clinical environments (Tafazoli et al., 

2021; Reizine and O’Donnell, 2022). Cancer patients are particularly suited, as NGS of 

germline and somatic tissue is commonly employed, to inform targeted cancer drug 

treatments. Indeed, several studies have confirmed the potential clinical advantage for 

multidisciplinary PGx in cancer patients by repurposing germline NGS data (Hutchcraft et al., 

2021; Shugg et al., 2022), but also in other clinical settings such as pediatric medicine 

(Barker et al., 2022). However, WES data showed limitations, including missing coverage of 

intronic variants or limited CNV detection of key variants in several pharmacogenes (e.g. 

CYP3A5*3, CYP2C19*17, VKORC1-rs9923231, CYP2D6*5) (van der Lee et al., 2020; 
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Lanillos et al., 2022). In contrast, WGS data and long-range NGS have proven useful in this 

regard, providing comprehensive results for pharmacogenes (e.g., PGx guideline) 

(Twesigomwe et al., 2021; van der Lee et al., 2022) with sufficient accuracy, although 

standards of analytical validation (e.g. accuracy, precision, limit of detection, specificity, etc.) 

need to be addressed more intensively (Ly et al., 2022; Huebner et al., 2023). High-

throughput WGS sequencing approaches identify an average of 4 to 5 million variants in a 

genome and the read (Fastq, BAM) and variant (vcf) files need up to hundreds of gigabytes 

disk space (Bagger et al., 2024). Thus, extracting PGx-profiles, including known functional 

(and mainly common), but also rare PGx variants (see II.B) from that large amount of data, 

requires innovative and comprehensive bioinformatics tools. Several tools have been 

developed, which provide the key genotypes of SNVs and CNVs for a tool-dependent set of 

genes (e.g., Aldy, Pypgx, Stargazer, PharmCAT; up-to-date information is given in (Tremmel, 

et al., 2023)). Consequently, the variants are combined into haplotypes/star alleles, and the 

final results are translated into the corresponding metabolizer phenotypes or activity scores. 

Based on these data the available PGx guidelines can be queried for all available or a 

selected set of gene-drug pairs. End-to-end solutions have been developed covering all 

aspects of genotyping to reporting in an automated pipeline (Klanderman et al., 2022).  

But, there are still major limitations. Those tools mainly assess common variants and the 

large fraction of rare and/or undescribed variants is not captured, thus potentially resulting in 

inaccurate or even incorrect metabolizer or functional phenotypes. Even if rare variants are 

interrogated, a valid clinical functional classification and prediction is an yet unresolved issue 

(Siamoglou et al., 2022). Furthermore, the resolution of short-read NGS is limited in repetitive 

and/or homologous genomic regions such as the CYP2D6, HLA, SULT1A1, or the UGT1A 

loci. Hence, the correct assignment of genotypes might be impossible (Caspar et al., 2020), 

but long-read sequencing is able to overcome this limitation (Zhou and Lauschke, 2024). 

Therefore, some studies suggested to use a combination of two or more tools for the 

interrogation of a confident consensus genotype (Tafazoli et al., 2021). However, the 

handling of different input files (vcf, bam), and accepted alignment of input NGS reads 
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(against GRCh37 or GRCh38), along with solutions how to resolve discrepancies between 

individual results complicate data evaluation, genotype accuracy and finally the clinical 

implementation process. 

Reimbursement of PGx testing varies substantially between continents and countries, 

although PGx was favored in most studies assessing cost-effectiveness (Morris et al., 2022). 

While, for instance, in Germany single gene-drug combinations (e.g. DPYD-5FU, UGT1A1-

irinotecan, CYP2C9-siponimod, see II.B) are reimbursed by insurance companies, data from 

US shows that PGx panels have been more often reimbursed than single gene tests (Lemke 

et al., 2023). Given the substantial costs required for the storage of NGS data, the use of 

newly generated NGS data in case of cancer patients offers an attractive alternative for PGx 

analysis. In light of the trend of decreasing NGS costs, competitors have promised significant 

price reductions (Liu et al., 2021; Simmons et al., 2023), probably reshaping the landscape of 

genomic testing services. For instance high storage costs may be circumvented by rather re-

sequencing of samples than storing large amounts of NGS data long-term. Thus, NGS data 

analysis require a setup of efficient computational pipelines to extract and interpret known 

variants with respect to drug and dosage guidelines. The advantage of NGS is a 

comprehensive or full PGx profile including (rare) variants of unknown function in addition to 

known variants. Of note, expert-knowledge, in silico tools and datasets of large-scale 

functional annotation (e.g. VAMP-Seq) are required for the evaluation of variants with 

unknown or questionable function and subsequent clinical translation, taking into account the 

well-established PGx profiles. To the end, as illustrated in Figure 4, molecular profiling of 

both somatic and germline genomes enables prediction of individual drug response to 

specific cancer therapies (Hertz and McLeod, 2016). While the identification of specific 

somatic driver mutations offers the selection of targeted therapies designed to suppress the 

activated pathway, PGx enables the optimization of the drug dosage to reduce the risk for 

ADR. Moreover recommendations for accompanying therapeutic drug and/or ADR 

monitoring can be given. 
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When dealing with genomic data including PGx information, it is important to comply with 

ethical and legal requirements (Winkler and Knoppers, 2022). One source providing 

guidance is the “Ethical and Legal Aspects of Whole Human Genome Sequencing” project 

developed within the “Ethical and Legal Aspects of Translational Medicine” (EURAT) 

framework at Heidelberg University (uni-

heidelberg.de/md/totalsequenzierung/informationen/mk_eurat_position_paper.pdf). It aims to 

analyze the ethical, legal, and economic implications of genome sequencing in clinical 

settings including the issue of incidental findings (Schickhardt et al., 2020) and to develop 

practice-based recommendations. Concrete deliverables are the definition of milestones, a 

code of conduct, and patient consent models. Of relevance to precision oncology, EURAT 

states: “physicians who would like to make greater use of this diagnostic tool will have to 

navigate the attendant ethical, legal, and economic prospects and challenges; and patients 

who seek treatment in Heidelberg will have to consider these new genome-based diagnostic 

options and their associated opportunities and risks more extensively as part of the 

information and consent processes.” (uni-

heidelberg.de/md/totalsequenzierung/informationen/mk_eurat_position_paper.pdf). The 

German Cancer Research Center (DKFZ) has adopted the code of conduct for non-physician 

scientists. 

V. Concluding remarks  

Technological advances in recent years have made it possible to describe the molecular 

landscapes of most cancers. Notably, a rapidly expanding spectrum of genomic alterations 

have prognostic and/or predictive value and/or represent targets for therapeutic intervention. 

The increasing availability and throughput and decreasing cost of screening technologies, 

particularly NGS, have led to the introduction of systematic molecular profiling into modern 

cancer medicine. However, the paradigm of individualized precision oncology is mainly 

limited to the consideration and clinical use of somatically acquired genetic alterations. In 

contrast, information on the germline genome is only gradually being acquired more 

systematically, primarily to detect hereditary cancer predisposition. The highly dynamic field 
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of PGx, although also based on genetic analyses, has developed mainly in parallel to 

molecularly guided precision oncology. The increasing clinical application of truly 

comprehensive molecular profiling, including WGS of tumor and matched normal control 

(germline) tissue, offers a unique opportunity to merge somatic and germline genetics in 

oncology and improve patient outcomes by taking a holistic view of a tumor and its host 

organism. Here particularly safety aspects and the avoidance of ADR of innovative cancer 

agents as well supportive medication need to be considered. Moreover, PGx information 

should be part of the interpretation of somatic tumor genomes to capture as many 

determinants of response and resistance to cancer therapies as possible and to tailor clinical 

management. 
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XII. Tables 

Table 1. Selected pharmacogenes and their known variant portfolio and corresponding 
phenotype consequences 
 
Gene Number of 

core 
(star)alleles# 

Structural 
variants 

Clinical important 
phenotypes## 

Link 

CYP2B6 46 Deletions, 
Hybrids with 
CYP2B7 

PM, IM, NM, RM, 
UM 

pharmvar.org/gene/CYP2B6 

CYP2C19 34 Rare partial 
deletions & 
deletions 

PM, IM, NM, RM pharmvar.org/gene/CYP2C19 

CYP2C9 85 No PM, IM low, IM 
high, NM 

pharmvar.org/gene/CYP2C9 

CYP2D6 163 Deletions, 
Duplications, 
Hybrids with 
CYP2D7 

PM, IM, NM, UM pharmvar.org/gene/CYP2D6 

CYP3A4 45 No PM, IM, NM pharmvar.org/gene/CYP3A4 
CYP3A5 6 No PM, IM, NM pharmvar.org/gene/CYP3A5 
DPYD 433 No PM, IM, NM pharmvar.org/gene/DPYD 
NUDT15 20 No PM, IM, NM pharmvar.org/gene/NUDT15 
UGT1A1 113 No PM, IM, NM pharmacogenomics.pha.ulaval.ca/wp-

content/uploads/2015/04/UGT1A1-allele-
nomenclature.html 

SLCO1B1 42 Rare partial 
deletions & 
deletions 

PF, DF, NF, IF pharmvar.org/gene/SLCO1B1 

TPMT 45 No PM, IM, NM liu.se/en/research/tpmt-nomenclature-committee 
#
according reference GRCh37 (NC_000022.10) and including reference (*1) allele 

##
according to CPIC/PharmGKB. PM: poor metabolizer; IM: intermediate metabolizer; NM: normal 

metabolizer; RM: rapid metabolizer; UM: ultra metabolizer; PF: poor function; DF: decreased function; 
NF: normal function; IF: increased function  
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Table 2. Functional prediction tools for exonic variants 
 

In silico tools and 
criteria for prediction 
scores 

Year of 
publicat
ion 

Estimated 
proportional use in 
PGx studies over the 
last five years# 

Reference 

SIFT 2001 10% (Ng and Henikoff, 2001) 

Polyphen/ 
Polyphen2 

2002/ 
2010 

33.2% (Adzhubei et al., 2010) 

PhastCons 2005 <1% (Siepel et al., 2005) 

Likelihood ratio tests 2009 1.8% (Chun and Fay, 2009) 

SiPhy 2009 <1%% (Garber et al., 2009) 

GERP++ 2010 2.5% (Davydov et al., 2010) 

PhyloP 2010 2.2% (Pollard et al., 2010) 

MutationAssessor  2011 4.9% (Reva et al., 2011) 

PROVEAN 2012 7.8% (Choi et al., 2012) 

FATHMM  2013 2.4% (Shihab et al., 2013) 

VEST3 2013 2.0% (Carter et al., 2013) 

CADD 2014 13.9% (Kircher et al., 2014) 

DANN 2014 1.5% (Quang et al., 2015) 

FATHMM-MKL 2013 1.8% (Shihab et al., 2015) 

MetaSVM,MetaLR 2015 2.5% (Dong et al., 2015) 

SNAP2 2015 2.2% (Hecht et al., 2015) 

REVEL 2016 6.4% (Ioannidis et al., 2016) 

DEOGEN2 2017 <1% (Raimondi et al., 2017) 

SNPMuSiC 2018 <1% (Ancien et al., 2018) 

Missense3D 2019 1.3% (Ittisoponpisan et al., 2019) 

LoGoFunc 2023 <1% (Stein et al., 2023) 

AlphaMissense 2023 <1% (Cheng et al., 2023) 

    
#
The proportional use of functional variant prediction tools in pharmacogenomics studies from 2019 to 

2024 was evaluated through PubMed queries. Searches were conducted using terms 

'Pharmacogenetics', 'Pharmacogenomics', 'ADME Gene', 'drug transporter', or 'drug metabolizing 

enzyme'. Then, 184,974 citations of extracted pubmed entries were screened for the prediction tools, 

using unique parts of their publication titles e.g., for the tool CADD following part of the manuscript title 

was used: 'general framework for estimating the relative pathogenicity of human'. There are several 

limitations of this analysis. We have not distinguished between original research papers and reviews, 

and we neglected annotation workflows such as ANNOVAR, SnpSift, or Ensembl VEP. These 

workflows encompass multiple tools as annotation layers and are often cited as the only resource. 
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Table 3. Clinical association between variants of pharmacogenes & drug targets and selected anti-cancer drugs extracted from PharmGKB 
database (last accessed March 2024) 

Drug# Class Somatic target Clinically associated  
germline or somatic variants## 

Associated 
phenotype 
category 

Cancer entitiy in which the 
association was reported 

   Gene family Gene   

Alemtuzumab Antibody CD52 Drug target CXCL12 Efficacy B-Cell, Chronic, Leukemia 

Axitinib TKI VEGFR1-3, 
PDGFRA/B, KIT 

Drug target HIF1A Efficacy NA 

Bevacizumab Antibody VEGF Drug target ARMS2, CFH, CXCL8, CXCR4, 
EDN1, GGH, HSP90AB1, 
HTRA1, MGAT4A, MTHFR, 
PRKCA, RGS5, SHMT1, VEGFA 

Dosage, Efficacy, 
Toxicity 

Breast Neoplasms, Colorectal 
Neoplasms, Non-Small-Cell Lung 

Cetuximab Antibody EGFR Drug target AREG, CCND1, EGF, EGFR, 
FCGR2A, FCGR3A, KRAS, 
MGAT4A, RASSF1 

Efficacy, Toxicity Colorectal Neoplasms, Head And 
Neck Neoplasms 

Dasatinib TKI ABL1, KIT, SRC Transporter ABCG2 Other NA 

Erlotinib TKI EGFR Drug target EGFR (Resistance mutation 
T790M, rs121434569), MAP3K1 

Efficacy, Toxicity Adenocarcinoma, Drug 
Resistance, Lung Neoplasms 

     Phase I CYP1A2 Metabolism/PK   

Everolimus STKI* mTOR Drug target FGFR4, MTOR, PIK3R1, RPTOR Efficacy, Toxicity Breast Neoplasms, Kidney 
Neoplasms, Leukopenia, 
Neuroendocrine Tumors 

    Phase I CYP3A4, CYP3A5 Metabolism/PK  

      Transporter ABCB1 Toxicity   

Gefitinib TKI EGFR Drug target EGFR (Somatic testing), 
IKBKB, IKBKE, MAP3K1, 
NFKBIA, NFKBIB, NR1H2, 
RELA, SIRT2, TAB2 

Efficacy, Toxicity Adenocarcinoma, Lung 
Neoplasms 

    Phase I CYP2D6 Toxicity  

      Transporter ABCB1, ABCG2 Toxicity   

Gemtuzumab 
Ozogamicin 

Antibody-
drug 
conjugate 

CD33 Drug target CD33 Efficacy Acute Myeloid Leukemia 
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    Phase I CYP2E1 Toxicity  

    Phase II SULT2B1 Toxicity  

      Transporter SLC22A12, SLCO1B1 Toxicity   

Imatinib TKI ABL1, PDGFRA/B Drug target BCL2L11, CHST1, EGFR, 
NQO1, RUNDC3B, ULK3 

Dosage, Toxicity, 
Efficacy 

Gastrointestinal Stromal Tumors, 
Leukemia 

    Phase I CYP1A2, CYP2B6, CYP2F1, 
CYP3A4, CYP3A5 

Dosage, Efficacy,  
Metabolism/PK, Toxicity 

    Phase II GSTT1, UGT2A1 Efficacy, Toxicity  

      Transporter ABCB1, ABCB4, ABCC2, 
ABCC4, ABCG2, SLC19A1, 
SLC22A1, SLC22A4, SLC22A5, 
SLCO1A2 

Dosage, Efficacy,  
Metabolism/PK, Toxicity 

Lapatinib TKI EGFR, ERBB2-4 Immune 
system 

HLA-DQA1, HLA-DRB1 Toxicity NA 

Nilotinib TKI ABL1 Phase II UGT1A1 Toxicity NA 

      Transporter ABCG2 Other   

Panitumumab Antibody EGFR Drug target AREG, EGFR, KRAS Efficacy Colorectal Neoplasms 

Pazopanib TKI FGFR1-4, KDR, KIT Drug target KDR Efficacy, 
Metabolism/PK 

Carcinoma, Kidney Neoplasms 

      Phase II UGT1A1 Toxicity   

Regorafenib TKI VEGFR, TIE2, KIT, 
RET, RAF1, BRAF, 
PDGFR, FGFR 

Drug target KDR Toxicity NA 

Rituximab Antibody CD20 Drug target CXCL12, FCGR2A, FCGR3A 
(Reduced response, rs396991), 
IL2, TGFB1 

Efficacy Diffuse Large B-Cell Leukemia, 
Non-Hodgkin Lymphoma 

    Phase II GSTA1 Efficacy  

      Transporter ABCB1 Toxicity   

Sirolimus STKI mTOR Drug target IL10, TCF7L2 Toxicity Urinary Bladder Neoplasms 

    Other NR1I2, POR Metabolism/PK, 
Toxicity 

 

    Phase I CYP3A4, CYP3A5 Dosage, 
Metabolism/PK 
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    Phase II UGT1A8 Toxicity  

      Transporter ABCB1 Metabolism/PK, 
Toxicity 

  

Sorafenib TKI, STKI FLT3, KIT, RAF Drug target ADAMTS18, CDH13, EGFR, 
EPAS1 (risk of toxicity, 
rs7557402), GALNT14, HIF1A, 
KDR, MAP2K6, NOS3, PIK3R5, 
PRKCE, TNF, VEGFA, VEGFB, 
WWOX 

Efficacy, Toxicity Carcinoma, Liver Neoplasms, 
Kidney Neoplasms 

    Phase II UGT1A1, UGT1A9 Toxicity  

    Transporter ABCB1, ABCC2, SLC15A2, 
SLCO1B1 

Efficacy, Toxicity  

Sunitinib TKI FGFR1-3, KIT Drug target CXCL8, FLT3, FLT4, IL13, 
VEGFA 

Efficacy, Toxicity Carcinoma, Gastrointestinal 
Stromal Tumors, Kidney 
Neoplasms 

  TKI FGFR1-3, KIT Other NR1I2, POR Efficacy, Toxicity Carcinoma, Gastrointestinal 
Stromal Tumors, Kidney 
Neoplasms 

    Phase I CYP3A5 Dosage,Toxicity  

      Transporter ABCB1, ABCG2, SLCO1B3 Efficacy, Toxicity   

Temsirolimus STKI mTOR Other NR1I2 Metabolism/PK, 
Toxicity 

Urinary Bladder Neoplasms 

      Transporter ABCB1 Metabolism/PK   

Tocilizumab Antibody IL6R Drug target CD69, FCGR3A, GALNT18, IL6R Efficacy NA 

Trastuzumab Antibody ERBB2 Drug target BARD1, ERBB2, ERBB3, 
FCGR2A, FCGR3A, PPCDC, 
RNF8 

Efficacy, Toxicity Breast Neoplasms 

Valproic 
Acid** 

HDAC 
inhibitor 

HDAC Drug target ANKK1, COL1A1, GABRA1, 
GRIN2B, LEPR, POLG, 
RABEP1, SCN1A, SCN2A, 
SH2B1, SOD2 

Dosage, Efficacy, 
Toxicity, Other 

NA 

    Phase I CYP1A1, CYP2C19, CYP2C9 Dosage, Efficacy,  
Metabolism/PK, Toxicity 
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    Phase II UGT1A10, UGT1A3, UGT1A4, 
UGT1A5, UGT1A6, UGT1A7, 
UGT1A8, UGT1A9, UGT2B7 

Dosage, 
Metabolism/PK 

 

      Transporter ABCB1 Efficacy   
#
73 drugs were retrieved from (Worst et al., 2016). For 48 drugs no clinical association could be extracted from PharmGKB 

##
Clinical association with PharmGKB level of evidence 1 or 2 are highlighted in bold type and the effective variant is reported. 

*Serine/threonine kinase inhibitor 
**Only targets relevant for oncology are listed here 
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XIII. Figure legends 

Figure 1. Selected pivotal findings in the field of pharmacogenomics (PGx) and temporal 

trend of scientific publications related to PGx without (blue) and with (yellow) consideration of 

cancer therapy. The following key words has been used for the search of PGx related 

publications: (Pharmacogenetics OR Pharmacogenomics) NOT cancer, (Pharmacogenetics 

OR Pharmacogenomics) AND cancer. 

 

Figure 2.A. Schematic representation of the most common functional effects of variants in 

pharmacogenes. Variants may influence translation and transcription, splicing, protein 

structure and stability with conseqeunces on substrate specificity and transporter affinity. 

Created with BioRender.com. 

B. Proportion of individuals of the main geographical subgroups expected to carry a high-risk 

diplotype for pharmacogenes with PGx guideline recmmendations (Clinical 

Pharmacogenetics Implementation Consortia, CPIC and The Dutch Pharmacogenetics 

Working Group, DPWG). Data was retrieved from PharmGKB.org. The frequencies of 

following functional alleles were summarized: CYP2B6 (*4, *6, *18), CYP2C19 (*2, *3, *17), 

CYP2C9 (*2,*3), CYP2D6 *3, *4, *5, *6, *7, *8, *9, *10, *14, *41, *1x2, *2x2), CYP3A5 (*3), 

DPYD (*2A, *13, c.2846A>T, HabB3), HLA-A*31:01, HLA-B (*15:02, *57:01, *58:01), 

SLCO1B1 (*5, *15), TPMT (*2, *3A/B/C), UGT1A1 (*28) for the populations of Central/South 

Asia, East Asia, Europe, Middle East & North Africa, North America, Oceania, South 

America, and Sub-Saharan Africa. C. Overview of various therapeutic indications and PGx 

drugs in relationship to pharmacogenes.  

Figure 3. Clinical relevant organ toxicities and damages as result of PGx-related adverse 

drug reactions of anticancer and other drugs. Created with BioRender.com. 

 

Figure 4. Integrative clinical workflow in precision oncology including PGx. A. NGS analysis 

of somatic and germline tissue. Selective tumor markers, often active that can be targeted 

therapeutically are identified within the tumor. In the germline, genomic variants are 
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identified, allowing predictions regarding treatment response and risk of toxicities. B. The 

progression from molecular testing via multidisciplinary tumor boards involving experts from 

various fields, resulting in a drug treatment recommendation. Abbreviations: SNV: single 

nucleotide variant, CNV: copy number variation, LOF: loss of function variant, GOF: gain of 

function variant. Created with BioRender.com. 

 

Figure 5. Genotype-phenotype correlation for selected pharmacogenes and their association 

with gene expression and/or function, pharmacokinetic and outcome data of selected cancer 

drugs. A. CYP2D6 and tamoxifen. Left, hepatic CYP2D6 protein expression (n=150) vs. 

CYP2D6 activity score (AS 0 to 3.0) (Zanger et al., 2021); middle, steady-state metabolic 

ratio (MR) of desmethyltamoxifen/(Z)-endoxifen plasma levels (n=236, 20 mg tamoxifen) vs 

CYP2D6 genotypes (homozygous for PM alleles, homo-/heterozygous for IM or one PM 

alleles, NM or UMs). The data presented as median, 25%/75% percentiles, and range 

(Mürdter et al., 2011); right, event-free survival indicating NM (patients with NM alleles), 

heterozygous NM/IM (patients with IM or one PM allele), and PM (patients with two PM 

alleles). Follow-up of 15 years after diagnosis (median 6.3 years) was considered (Schroth, 

2009). B. TPMT and 6-mercaptopurine (6-MP). Left, TPMT activity in red blood cells (RBC) 

among 1214 individuals in relation to TPMT genotypes. The grey area depicts the range of 

intermediate TPMT activity (Schaeffeler et al., 2004); middle, relationship between TPMT 

activity and thioguanine nucleotide (TGN, active 6-MP metabolites) levels in RBC in children 

with ALL (standard 6-MP therapy) (Krynetski et al., 1996); right, cumulative incidence of the 

end of 6-MP therapy for PM and 1 year for IM and NM requiring a decrease in 6-MP dose to 

prevent hematotoxicity in ALL children (P<.001) (Relling et al., 1999). C. DPYD and 5-

fluorouracil. Left, hepatic dihydropyrimidine dehydrogenase (DPD) protein content (n=82) 

and DPYD*2A (Schwab et al., 2008); middle, proportion of patients carrying combined DPYD 

risk variants (c.1129–5923C>G/hapB3, c.1679T>G, c.1905+1G>A, c.2846A>T) in 

association with fluoropyrimidine-related severity of toxicity in a cohort of 500 patients 

(Froehlich et al., 2015); right, the cumulative incidence of grade 3+ fluoropyrimidine-related 

article has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 15 October 2024 as DOI 10.1124/pharmrev.124.001049 This

at A
SPE

T
 Journals on D

ecem
ber 20, 2024

pharm
rev.aspetjournals.org 

D
ow

nloaded from
 

http://pharmrev.aspetjournals.org


 

92 
 

toxicities was analyzed in 442 patients genotyped for the DPYD variants (*2A, *13, 

c.2846A>T (p.D949V), c.1236G>A (rs56038477, proxy for HapB3 (c.1129-5923C>G)). The 

incidence was estimated as 1-Kaplan-Meier survival estimate, and log-rank test was used to 

compare groups. Grade 3+ toxicities occurred earlier and more frequent in reactive DPYD 

carriers in comparison to pretreatment carriers and wild-type patients (P < .001) (Nguyen et 

al., 2024). D. UGT1A1 and irinotecan. Left, hepatic UDP-glucuronosyl-transferase 1A1 

protein content (n=145) and UGT1A1*28 polymorphism (Riedmaier et al., 2010); middle, 

haplotypes harboring either *6 or *28 (*6/*1, *6/*60, *28/*1, *28/*60) alleles were associated 

with lower SN-38G/SN-38 area under the curve (AUC) ratios compared to patients without *6 

or *28 (*1/*1, *60/*1, *60/*60) alleles. The two haplotypes *6 or *28 (*6/*6, *28/*28, *28/*6) 

had the lowest AUC ratio (P < 0.0001). An irinotecan dose of 100 mg/m2 weekly or 150 

mg/m2 biweekly was used in 177 cancer patients (Minami et al., 2007); right, UGT1A1*28 

genotype and association with high dose irinotecan (IRN)-related severe neutropenia in 

patients with colorectal cancer and various regimes (IFL: IRN 25 mg/m2 + FU, FOLFOX: 

oxaliplatin + FU, IROX: oxaliplatin + IRN 200 mg/m2) (McLeod et al., 2010). All figures are 

reproduced with publisher permission. 

 

Figure 6. Cancer genomics. A. Number of mutations per megabase (Mb) per entity basket. 

The latter are groups of entities following a pragmatic metaclassification system. B. Sample 

numbers across entity baskets, showing strong contributions from rare cancers and some 

contributions from rare subtypes of common entities. C. Cumulative counts of different 

mutation types per gene across the DKFZ/NCT/DKTK MASTER cohort. Abbreviations: GIST, 

gastrointestinal stromal tumor; PNET, primitive neuroectodermal tumor; STS, soft-tissue 

sarcoma; NSCLC, non-small cell lung cancer; CUP, cancer of unknown primary. The entity 

basket “STS: other” contains various uncommon STS subtypes. SNV, single-nucleotide 

variant; indel, short (< 50 bp) insertion and deletion; amp, amplification; hdel: homozygous 

deletion. 
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