# Index

**Pharmacological Reviews**

Volume 31

1979

| Acetylcholine, effect on hypothalamic CRF release and content in vitro (fig.), 261 |
| Acrosin, inhibitors of, 8 |
| Adrenergic innervation of kidney, 169 |
| Adrenergic nervous system, effect on sodium reabsorption and excretion, 170 |
| Afferent systems, digitalis effects on, 21 |
| Age, influence on drug metabolism, 243 |
| Alpha-adrenergic stimulation and blockade, 171 |
| Amine metabolites, ionization of, and their renal excretion, 201 |
| Atrial muscle refractory period, role of nervous system on digitalis effect on, 61 |
| Atrioventricular conduction, role of nervous system in digitalis effect on, 62 |
| Beta-adrenergic stimulation and blockade, 173 |
| Bethanechol, effect on hypothalamic CRF release and content in vitro (fig.), 261 |
| Blood coagulation, plasma kallikrein, and kinogen, 5 |
| Bönisch, H., See Trendelenburg, et al., 179 |
| Carcinogen metabolism, regiospecificity of cytochrome P-450 in, 290 |
| Carcinogens, effects in cultured hepatic cells, 205, 218 |
| Cardiac arrhythmia, role of nervous system in digitalis effect on, 64 |
| Cardiac output, role of nervous system in digitalis effect on, 54 |
| Cardiovascular effects of digitalis, role of nervous system in, 52 |
| Cardiovascular surgery, heparin in, 128, 128 |
| Catecholamines effect on renal tissue cyclic nucleotides, 175 |
| effect on sodium transport in epithelial tissues, 174 |
| effect on sodium reabsorption and excretion, 170 |
| metabolites eliminated from central nervous system, 194 |
| metabolites, lipophilicity of, 188 |
| rate constants for efflux of metabolites, 179, 185 |
| sodium transport and, in the kidney, 169 |
| Cells intact, factors that influence rates of drug hydroxylation and conjugation in (table), 246 |
| intact, hepatic drug metabolism in, 229 |
| whole, mixed-function oxidase study in, 231 |
| Central nervous system catecholamine metabolites eliminated from, 194 |
| digitalis effects on, 25 |
| Chlorpromazine effect on corticotrophin releasing factor, 266 |
| Coagulating gland kallikreins in, 9 |
| kinogenase, 8 |
| Corticotrophin releasing activity detection of, 256 |
| quantification of, 256 |
| Corticotrophin releasing factor, 253 |
| chemical nature of, 254 |
| control of secretion of, 259 |
| effects of acetylcholine, nicotine, and betahanechol on hypothalamic release of and content in vitro (fig.), 261 |
| evidence of, 253 |
| hypothalamic content after stress (fig.), 260 |
| mechanism of action, 264 |
| pharmacology of, 265 |
| pituitary ACTH content, after stress (fig.), 260 |
| plasma ACTH concentration, after stress (fig.), 260 |
| plasma corticosterone concentration, after stress (fig.), 260 |
| Cyclic nucleotides in renal tissue, effect of catecholamines on, 175 |
| Cytochrome P-450 column chromatography of, 289 |
| estimation by chemical probes, 287 |
| forms of, from rabbit liver microsomes (table), 283 |
| from rabbit liver microsomes (table), 283 |
| from rabbit lung microsomes (table), 283 |
| genetic studies, 279 |
| identification and quantification of, in microsomal preparations, 287 |
| immunological analysis of, 289 |
| in human liver microsomes, 286; (table), 287 |
| in mouse liver microsomes, 286 |
| in rat liver microsomes, 284; (table), 285 |
| mammalian microsomal, multiplicity of, 277 |
| multiple forms, 279 |
| in rabbit microsomes, 282 |
| multiplicity of developmental studies, 279 |
| induction studies, 278 |
| inhibition studies, 278 |
| kinetic studies, 278 |
| microsomal studies, 278 |
| number of forms of, 289 |
| oxidation:reduction state of, in perfused liver, 236 |
| partial separation of, within the microsomal membrane, 287 |
| peptide mapping of, 288 |
| pig kidney and liver microsomes, 286; (table), 286 |
| purification studies, 279 |
| regiospecificity of multiple forms of, in drug, mutagen, and carcinogen metabolism, 290 |
| SDS-gel electrophoresis of, 288 |
| substrate specificity, control, 279 |
| Diet, influence on drug metabolism, 243 |
| Digitalis effects on afferent systems, 21 |
| central nervous system, 25 |
| efferent systems, 30 |
| electrogenic sodium pump, 51 |
| neurotransmitters, 41 |
| postsynaptic membranes, 52 |
| specific receptor mechanisms, 51 |
| neurocardiovascular effects of, in therapy of congestive heart failure and cardiac arrhythmias (table), 79 |
| role of nervous system in cardiovascular effects of, 19, 52 |
| therapeutic cardiovascular actions of, 79 |
| toxic cardiovascular actions of, 80 |
| Dopamine, rate constants for efflux of metabolites of, from striatal slices (table), 194 |
| Dopaminergic stimulation, 174 |
| Drug conjugation, factors that influence rates of, in intact cells (table), 246 |
Drug hydroxylation, factors that influence rates of, in intact cells (table), 246

Drug metabolism. See under Metabolism

Drugs
polyelectrolyte. See Polyelectrolytes
transport of, biotransformation reactions and, 235

Effector systems, digitalis effects on, 30

Enzymes
anionic polyelectrolyte reaction with, 110
effects of commercial heparin and heparinoids on (table), 111

Ethanol, effect on drug metabolism, 240

Gillia, Richard A., and John A. Quest. The role of the nervous system in the cardiovascular effects of digitalis, 19

Glucocorticoids, effect on corticotrophin releasing factor, 268

Gluconeogenesis, inhibition of, 234

Glucuronidation, regulation of, 241

Glutathione, rate-controlling factors in conjugation of, in intact cells, 242

Glycolysis, stimulation of, 235

Glycosaminoglycans, relation to anionic polyelectrolytes, 106

Graefe, K.-H. See Trendelenburg et al., 179

Heart rate, role of nervous system in digitalis effect on, 60

Hemorrhage, spontaneous, with heparin, 122

Henseling, M. See Trendelenburg et al., 179

Heparinoids, chemistry of, 104

Hepatic. See also under Liver

Hepatic cells
cultured, drug metabolism in, 205
effects of carcinogens in, 206

Heparin
anionic polyelectrolyte drugs, 99
anticoagulant action of, 112
blocking agents for, 121
chemistry of, 103
clinical effectiveness
in cardiovascular surgery, 126
in thromboembolism, 126
clinical uses of, 133
clotting time response, 115
commercial, pharmacology of, 110
complexing properties of, 106
heparin unit and, salts of, 108
heparinoids and actions on cells and tissues, 113
biological effects of (table), 114
commercial, effects on enzymes (table), 111
complex-forming substances (table), 106
in cardiovascular surgery and diagnosis, 128
in therapeutics, 125
in thromboembolism, 129
in tissues, 137
monitoring of use of, in therapy, 136
pharmacokinetics and metabolism, 119
problem of standardisation of, as a drug, 109
related anionic polyelectrolytes and, in biology, 136
routes and modes of administration, 117
spontaneous hemorrhage with, 122
thrombosis related to clinical effects of, 125
toxicity of, 124

Hepatocytes
in cell culture, drug metabolism in, 233
intact
effect of oxygen on drug metabolism in, 236

INDEX

factors regulating drug metabolism in, 229
isolated, drug metabolism in, 233
Hypertension and renal kallikrein, 7

Jaques, L. B. Heparins—anionic polyelectrolyte drugs, 99

Kallikreins
bioregulatory serine proteases, 11
cell proliferation and, 10
functions of, 11
growth, differentiation, and development, 10
growth factors and, 10
homology of, 11
inhibitors of, 4
serine proteases with bioregulatory actions, 1
neoplasia and, 10
other kininogenses and, 2
plasma, kininogen, blood coagulation, and, 5
renal
hypertension, prostaglandins, and, 7
renin and, 7
urinary and, 7
reproductive system and, 8
subcellular localization of, 9
—trypsin inhibitor (Kunitz) polyvalent, in bovine organs, 4

Kidney
adrenergic innervation of, 169
catecholamines and sodium transport in, 169
kallikreins in, 9
Kidney microsomes, pig, cytochrome P-450 in, 286; (table), 286
Kim, Jin K., Stuart L. Linas, and Robert W. Schrier. Catecholamines and sodium transport in the kidney, 169

Kininogen, 4
plasma kallikrein, blood coagulation, and, 5

Kininogenses. See Kallikreins

Leucocytes
basophilic, mast cells and functions of, 145
properties of, 141
Linas, Stuart L. See Kim et al., 169

Lipogenesis, inhibition of, 235

Liver
mammalian, use of cultured cells for investigation of xenobiotic metabolism, 206
vertebrate, use of cultured cells for investigation of xenobiotic metabolism, 206

Liver cells
carcinogen-induced DNA repair of, in short-term suspension or primary culture (table), 219
cultured
effects of carcinogens, mutagens, and toxins on, 218
microsomal cytochromes of, 213
monoxygenases of, 212
properties of transformed, 221; (table), 221
regulation of xenobiotic metabolism in, 214
induction of microsomal cytochromes and monoxygenase activity in primary culture by xenobiotics, chemicals, cofactors, and hormones (table), 215
Liver cells. See also Hepatic cells and Hepatocytes

Liver microsomes
human, cytochrome P-450 in, 286; (table), 287
mouse, cytochrome P-450 in, 286; (table), 286
pig, cytochrome P-450 in, 286; (table), 286
rabbit, cytochrome P-450 from (table), 283
rat, cytochrome P-450 in, 284; (table), 285

Lung microsomes, rabbit, cytochrome P-450 from (table), 283
Index

Oxygen, effect on drug metabolism in intact hepatocytes, 236
Pancreas, kallikreins in, 9
Pentobarbitone/chlorpromazine, effect on corticotrophin releasing factor, 267
Pentobarbitone/morphine, effect on corticotrophin releasing factor, 268
Phenethylamines rate constants for efflux of metabolites of, 179, 185
Plasma, kallikrein inhibitors in, 5
Plasma proteins, anionic polyelectrolyte reactions with, 110
Polyelectrolytes, anionic
chemistry of, 101
complexing properties of, 106
determination of, 108
heparin and, 99
in biology, 136
non-mast cell, including heparin, 149
reactions with plasma proteins and enzymes, 110
Post-synaptic membranes, digitalis effect on, 52
Prostaglandins and renal kallikrein, 7
Quest, John A. See Gillis and Quest, 19
Rate constants
for efflux of metabolites
consequences of differences between, 196
catecholamines and phenethylamines, 179, 185
3H-dopamine from striatal slices (table), 194
procedures used to measure, 180
tables, 186, 190
Receptor mechanisms, digitalis effect on, 51
Renal excretion of amine metabolites, 201
Renal nerve, stimulation and denervation studies, 170
Renin and renal kallikrein, 7
Reproductive physiology, kallikreins, role in, 8, 9
Reserpine, effect on corticotrophin releasing factor, 265
Salivary glands, kallikreins in, 9
Schachter, M. Kallikreins (kinogenases)—a group of serine proteases with bioregulatory actions, 1
Schrier, Robert W. See Kim et al., 169
Serine proteases with bioregulatory actions (kallikreins), 1
Strica, Alphonse E., and Henry C. Pitot. Drug metabolism and effects of carcinogens in cultured hepatic cells, 205
Sodium pump, electrogenic, digitalis effect on, 50
Sodium reabsorption and excretion, effect of adrenergic nervous system and catecholamines on, 170
Sodium transport
catecholamines and, in the kidney, 169
in epithelial tissues, effect of catecholamines on, 174
Sperm, kallikreins in, 9
Stress
effect on corticotrophin releasing factor (fig.), 260
hypothalamic-pituitary adrenocorticotrophic activity in rats before and after (fig.), 263
Sulfation, regulation of, 242
Thrombosis, etiology of, related to clinical effects of heparin, 125
Thromboembolism, clinical effectiveness of heparin in, 126, 129
Toxicity of heparin, 124
Toxin effects, on cultured liver cells, 218
Trendelenburg, U., H. Bönsch, K.-H. Graefe, and M. Henseling. The rate constants for the efflux of metabolites of catecholamines and phenethylamines, 179
Vascular tone, role of nervous system in digitalis effect on, 54

Metastases
basophilic leucocytes and
functions of, 145
properties of, 141

Metabolism
Drug
chronic influence of diet, inducing agents, and age, 243
effects of carcinogens in cultured hepatic cells, 205
intermediary and, in intact cells, interaction (fig.), 230
in intact hepatocytes, regulating factors, 229
effect of ethanol on, 240
in hepatocytes in cell culture, 233
inhibition by direct binding and inactivation, 236
in isolated hepatocytes, 233
in perfused organs, 231
regiospecificity of cytochrome P-450 in, 290
energy, and mixed-function oxidation, relationship, 239
heparin, 119
intermediary
alteration secondary to acute changes in nutrition, relationship with mixed-function oxidation, 235
effect of substrates for mixed function oxidation on, 234
xenobiotic
cultured cells for the investigation of, 206
in cell cultures from liver, enzymology of, 209
in hepatocyte suspensions from rats (table), 210
regulation of, in cultured liver cells, 214
studies with mammalian and vertebrate liver cells, 206
Metabolites
carrier-mediated efflux, 194
catecholamine, lipophilicity of, 188
consequences of differences between the rate constants for, 195
distribution of, into multiple compartments, 189
efflux of, rate constants for (table), 190
of catecholamines and phenethylamines, rate constants for efflux of, 185
procedures used to measure rate constants for efflux of, 180
rate constants for efflux of,
from striatal slices (table), 194
of catecholamines and phenethylamines, 179
table, 186
Mixed-function oxidase study, in whole cells, 231
Mixed-function oxidation
effect of substrates for, on intermediary metabolism, 234
regulation of, in intact cells, 236
relationship with alteration in intermediary metabolism secondary to acute changes in nutrition, 235
Mutagen metabolism, regiospecificity of cytochrome P-450 in, 290
Mutagens, effects of, on cultured liver cells, 218

Nervous system
adrenergic, effect on sodium reabsorption and excretion, 170
role of,
in cardiovascular effects of digitalis, 19, 52
in therapeutic cardiovascular actions of digitalis (table), 79
in toxic cardiovascular actions of digitalis, 80
Neurotransmitters, digitalis effects on, 41
Nicotine, effect on hypothalamic CRF release and content in vitro (fig.), 261
Nutrition, alteration in intermediary metabolism secondary to acute changes in, relationship to mixed-function oxidation, 235
Opioids, effect on corticotrophin releasing factor, 267
Oxidase, mixed-function. See Mixed-function oxidase