Acetylcholine
- substance P and, 119
 effects on
 adrenal medulla neurons, 119
 central nervous system, 119
 intestinal wall, 119
 sympathetic ganglia, 119
 transmitter in spinal cord, 233

ACTH,
- mesocortical dopamine system response to, 61

Adenylate cyclase
- \(\beta\)-adrenergic receptor-linked, agonist-induced desensitization of, 5
 analysis of, during heterologous desensitization, 11
 catecholamine-responsive, structure of, 6
 dopamine-sensitive, 56
 glucagon receptor and, 195
 hormonal activation of, model for (fig.), 8
 in cell-free preparations, 13
 opioids and, 242

Addiction studies
- opioids, in man and animals, 305
 withdrawal abstinence syndrome (table), 305

Adrenal medulla neurons, substance P and acetylcholine effects on, 119

Adrenergic blocking agents, effect on heart response to glucagon, 195

\(\alpha\)-Adrenergic responses, differential effects of yohimbine on, in man
 (table), 165

\(\beta\)-Adrenergic receptor(s)
- analysis, by intact cell binding assays during agonist-induced desensitization, 19
- cellular processing of, during long-term exposure to catecholamines, 20
- change in membrane form of, during catecholamine-induced desensitization, 17
- hypothetical model for cellular processing of, during catecholamine-specific desensitization (fig.), 23
 in cell-free preparations, 13
 linked adenylate cyclase, agonist-induced desensitization of, 5

\(\alpha\)-Adrenoceptor
- subtypes
 yohimbine studies before recognition of, 145
 use of yohimbine in radioligand binding studies to define, 148
 vascular smooth muscle, 163
 yohimbine, a pharmacological probe for study of, 143

Afferent terminals, primary, opioids and, 239

Age, effect on response of heart to glucagon, 194

Agonist(s)
- antagonists
 cardiovascular effects, 294
 effects on pupils, in man, 295
 morphine-like drugs and, analgesic and subjective effects produced by (table), 303
 suppression and precipitation of abstinence in morphine-dependent monkeys and men and cyclazocine-dependent dogs (table), 307
 suppression substitution studies, 306
 \(\beta\)-induced desensitization
 analysis of \(\beta\)-adrenergic receptor by intact cell binding assays during, 19
 \(\beta\)-adrenergic receptor-linked adenylate cyclase, 5
 \(\beta\)-induced inhibition of neurotransmitter release blocked by yohimbine, in vitro systems (table), 152
 partial, suppression substitution studies, 306
 strong, suppression substitution studies of, 306

N-Allylnormetazocine
- effects on
 cardiovascular system, 294
 respiration, 293
 subjective effects, in man, 302

Amino acids, transmitters in spinal cord, 232

AMP, cyclic-
- agonist-induced changes in responsiveness of, 5
 glucagon production of, 195

Analgesia
- relative potency of narcotic analgesics, partial agonists, and agonist antagonist, in man and dogs (table), 296
- substance P effects, 123

Analgesics, narcotic. See Narcotic analgesics

Antagonists
- narcotic, 299
 cardiovascular effects, 294

Assays, intact cell binding; analysis of \(\beta\)-adrenergic receptor by, during agonist-induced desensitization, 19

Autonomic reflexes, yohimbine influence on, 154

Autonomic system, yohimbine effects (table), 156

Autoradiography
- opiate receptors, 70
 opioid receptor(s), 69
 future modification and use of, 78
 in the brain, shown by (table), 71
 labeled in vitro, (fig.) 72; 73; (table), 73
 emulsion-coated coverslip method, 73
 tritium-sensitive film, use of, 73
 multiple, localization by (fig.), 80
 subtypes, localization by (table), 80

Baclofen
- substance P antagonist, 121

Bannon, Michael J., and Robert H. Roth. Pharmacology of mesocortical dopamine neurons, 53

Basal ganglia
- intravenous opiates, 255
- microelectrophoretic opioids, 255

Benzo morphan(s)
- chemical structures of selected (fig.), 36
 physical dependence capacity in rhesus monkeys (table), 36
 self-administration results in limited access substitution procedures (table), 39

Blood, substance P in, 113

Blood pressure, yohimbine effects on, 147

Brain
- opioid receptors
 in (monkey), 75
 shown by receptor autoradiography (table), 71
 distribution of nigrostriatal, mesolimbic, and mesocortical dopaminergic neuronal systems in, schematic diagram (fig.), 55

lesions, response of mesocortical dopamine system, 61
Brain stem
 lower, substance P concentration in, 93
 microinjection of morphine in, and responses of lamina V spinal
 neurones, 230
 opioid studies, 246
 raphe neurones, 249
 dorsal, of midbrain, 250
 morphine and firing of, 230
 reticular formation, site of action of opiates, 247
 substance P effects on, 96
Buprenorphine, partial agonist, 317
Butorphanol
 agonist-antagonist, 318
 effects on
 cardiovascular system, 294
 respiration, 293
 subjective effects, in man, 302
Calcium, glucagon effect on excretion of, 188
Calcium ions, glucagon, cardiac contractility, and, 205
Capsaicin, effects on, substance P, 99, 109
Carbohydrate metabolism, cardiac, glucagon effects on, 201
Cardiac arrhythmias, glucagon effect, 192
Cardiac contractility, glucagon, calcium ions, and, 206
Cardiac oxygen consumption. See Oxygen consumption, cardiac
Cardiovascular system
 effects of morphine-like drugs, 293
 yohimbine influence on, 154
Catecholamine(s)
 agonist-induced desensitization of β-adrenergic receptor-linked ade-
 nylate cyclase in tissue exposed to, 5
 cellular processing of β-adrenergic receptors during long-term exposure
 to, 20
 -induced desensitization
 change in membrane form of β-adrenergic receptors during, 17
 general properties, 8
 physiological significance of, 23
 -responsive adenylate cyclase, structure of, 6
 -specific desensitization
 hypothetical model for cellular processing of β-adrenergic receptors
 during (fig.), 23
 localization of the lesion in, 15
 overview, 22
 substance P and, 117
Caudate-putamen, opioid receptors in (rat) (fig.), 74
Central nervous system
 effects of
 opiates, 222
 substance P analogues, 122
 yohimbine, 165; (table), 166
 human, substance P concentration in, 94
 physiology of opioid peptides, 222
 substance P, distribution in, 90; (table), 92
Cerebellum, opioid action on, 261
Cerebral cortex. See Cortex, cerebral
Choleretic, substance P, 113
Circulation
 glucagon and, 181
 pulmonary, glucagon effects on, 184
 substance P
 distribution in, 107
 effects on, 88
 structure-activity relationship, 116
Cognitive function, involvement of mesocortical dopamine system in, 63
Consciousness, opiate effects on levels of, 298
Contributors, suggestions to, 1
Convulsions, opiate-induced, 298
Coronary blood flow, glucagon effect, 193

INDEX
Cortex
 cerebral
 dopaminergic projection to, 54
 intravenous opiates, 257
 microelectrophoretic opioids, 257
 dopamine levels, 55
 ^H-dopamine uptake in, 55
 frontal
 electrophysiological characteristics and pharmacological responsi-
 viness of mesocortical dopamine neurons and dopamine-
 sensitive cells in, 62
 mesocortical dopamine neurons and dopamine-sensitive cells in,
 electrophysiological and pharmacological responsiveness of, 62
 ^H-ligand binding to neuroleptic receptors in (rat), 56
 prefrontal
 anatomy of mesocortical dopamine projection and its relationship
 to, 54
 dopamine and, 53
 dopamine-sensitive cells in, 63
 substance P effect on, 95
 tyrosine hydroxylase activity, 55
Cyclazocine
 addiction studies in animals, 305
 agonist-antagonist, 317
 cardiovascular effects, 294
 discrimination by rats and monkeys, degree of generalization to other
 drugs (table), 304
 effect on respiration, 292
 subjective effects, in man, 300
Cyclic-AMP. See AMP, cyclic-
Desensitization
 agonist-induced
 analysis of β-adrenergic receptor by intact cell binding assays
 during, 19
 of the β-adrenergic receptor-linked adenylate cyclase, 5
 catecholamine-induced
 change in membrane form of β-adrenergic receptors during, 17
 physiological significance of, 23
 properties of, 8
 catecholamine-specific
 localization of the lesion in, 15
 overview, 22
 heterologous, adenylate cyclase analysis during, 11
 heterologous and homologous, distinction between in intact cell
 studies, 9
 heterologous, overview, 12
 hormone-specific, 13
Diabetes
 glucagon effect on kidney function in, 186
 yohimbine effects on, 148
Diencephalon, substance P concentration in, 91
Dihydroxyphenylacetic acid (DOPAC), dopamine metabolite, in rat
 brain, 56
Diprenorphine effects on respiration, 293
Dopamine
 agonists and antagonists, response to, 58
 autoreceptors
 response to dopaminergic drugs, relationship between, 59
 properties of (table), 58
 cells, mesocortical, in cortex, 62
 depletion rates, 57
 levels of, in cortex, 55
 metabolites
 agonists and antagonists effects on, 58
 in rat brain, 56
 mesocortical system
 biochemical characteristics, 55
Dopamine
Drug(s)
Dorsal
Enkephalin
projection
-sensitive
syndromes,
sites
-sensitive
miscellaneous,
effects
discrimination
response
stress,
ACTH124,
intracranial
lithium,
schematic
cortex
54
acid
concentration
differences
of,
effects
of,
INDEX

Morphine
action on excitatory postsynaptic potentials (fig.), 235
analgesia, supraspinal and limited spinal lesions, effect of, 229
discrimination by rats and monkeys, degree of generalization to other
drugs (table), 304
effects
cardiovascular, 293
in invertebrate nervous system, 266
in substantia gelatinosa, 235; (fig.), 236
on dorsal root potentials, 240
on Renshaw cells, 224
subjective, in man, 300
firing of raphe neurones and, 230
intravenous
reduction of excitation of lamina V neurone and reduction of
descending inhibition (fig.), 232
reduction of excitation of a lamina V neurone by impulse in slowly
conducting primary afferents (fig.), 227
-like agonists, subjective effects, in man, 301
-like drugs, agonist-antagonists and, analgesic and subjective effects
produced by (table), 303
-like subjective effects in humans and morphine-like discriminative
stimulus effects in laboratory animals, relationship between
(tables), 45
mesocortical dopamine system response to, 62
microinjection in brain stem and responses of lamina V spinal
neurones, 230
sites of action, 294
Motoneurones, intravenous opiates effect on firing of, 226
Munson, Paul Lewis, tribute to, 3
Muscle
smooth
substance P
analgesics, effect on, 121
structure-activity relationship, 117
vascular
α2-adrenergic receptor, 163
glucagon action on, 184

Nalbuphine
addiction studies in animals, 306
effects on
cardiovascular system, 294
respiration, 293
partial agonist, 317
subjective effects, in man, 301
Nalorphine
effects on
cardiovascular system, 294
respiration, 292
partial agonist, 317
subjective effects, in man, 300
Naltrexone
action on excitatory postsynaptic potentials in spinal motoneurones
(fig.), 235
\(\rho_{A_2}\) of, in antagonizing the analgesic action of narcotic analgesics and
agonist-antagonists in the mouse (table), 291
dorsal horn neurones and, 244
ED50, in antagonizing the analgesic action of narcotic analgesics and
agonist-antagonists in rat and mouse (table), 291
effect on
pupils, in man, 296
respiration, 293
pure antagonist, 313
subjective effects, in man, 302
use of, in determination of functional role of enkephalins, 271

Naltrexone
effects on
pupils, in man, 296

Levorphanol action on excitatory postsynaptic potentials in spinal
motoneurones (fig.), 235
Ligand binding, \(^{3}H\)-
-neuroleptic receptors in rat frontal cortex, 56
response to dopamine agonists and antagonists, 60
Lipid metabolism, glucagon effects on, 201
Lithium, mesocortical dopamine system response to, 62
Locomotor activity, involvement of mesocortical dopamine system in,
63
Locus coeruleus
enkephalin interaction with naloxone-sensitive receptor on (fig.), 253
opioids
in vitro studies, 252
in vivo studies, 251
d-Lysergic acid diethylamide (LSD), mesocortical dopamine system
response to, 61
Man, yohimbine actions in, 147
Martin, William R. Pharmacology of opioids, 283
Meperidine, rat tail squeeze and tail flick test, 289
Mesencephalon, substance P concentration in, 91
Metabolism
carbohydrate, glucagon effects on, 201
lipid, glucagon effects on, 201
water, substance P, role in, 113
yohimbine influence, 161
Metabolite, dopamine. See Dopamine metabolites
Midbrain, dorsal raphe neurones of, 250
Monoamine(s), transmitters in spinal cord, 234

Hormone—continued
-specific desensitization, 13
5-Hydroxytryptamine (5-HT)
mesocortical dopamine system response to, 62
substance P and, 118
Hypertension, response to glucagon, 194
Hypotension, orthostatic; yohimbine effects on, 148
Hypothalamus
-neurohypophysis, substance P effects on, 96
opioid studies, 254
Immunotherapy, substance P, 90
Impotence, yohimbine effects on, 148
Inferior olivary nucleus, microinjection of opiates in, 249
Intestine
large, substance P concentration in, 103, 105
small
substance P
concentration in, 103; (fig.), 104
pharmacological effects of, 105
substance P
acetylcholine and, effects on, 119
pharmacological action in, 88
Invertebrate nervous system, opioid effects, 266

Ketazocine
effects on
cardiovascular system, 294
respiration, 293
Kidney
function
diabetes effects on, glucagon effect, 186
glucagon and, 185
glucagon effect on
in natriuresis of fasting, 187
on renin secretion, 188
substance P
concentration in, 98
effect on, 113

Leverkusen action on excitatory postsynaptic potentials in spinal
motoneurones (fig.), 235
Ligand binding, \(^{3}H\)-
-neuroleptic receptors in rat frontal cortex, 56
response to dopamine agonists and antagonists, 60
Lipid metabolism, glucagon effects on, 201
Lithium, mesocortical dopamine system response to, 62
Locomotor activity, involvement of mesocortical dopamine system in,
63
Locus coeruleus
enkephalin interaction with naloxone-sensitive receptor on (fig.), 253
opioids
in vitro studies, 252
in vivo studies, 251
d-Lysergic acid diethylamide (LSD), mesocortical dopamine system
response to, 61
Man, yohimbine actions in, 147
Martin, William R. Pharmacology of opioids, 283
Meperidine, rat tail squeeze and tail flick test, 289
Mesencephalon, substance P concentration in, 91
Metabolism
carbohydrate, glucagon effects on, 201
lipid, glucagon effects on, 201
water, substance P, role in, 113
yohimbine influence, 161
Metabolite, dopamine. See Dopamine metabolites
Midbrain, dorsal raphe neurones of, 250
Monoamine(s), transmitters in spinal cord, 234
Nucleotide
North, Normorphine
Norepinephrine, Nociception,
Neurotransmitters, Neurotransmitter Neuron(e)
Natriuresis enhanced in spinal single, opiate reticular, immature dopamine, adrenal peripheral.

effects on
pupils
in man, 295
in dogs, 296
respiration, 292
relative potency of, in producing miosis and analgesia in man and dogs (table), 296
Natriuresis of fasting, glucagon effect on kidney function in, 187
Nervous system
central. See Central nervous system
invertebrate. See Invertebrate nervous system
peripheral. See Peripheral nervous system
substance P
concentration in, 87
pharmacological actions on, 88
structure-activity relationship, 116
Neuron(s)
adrenal medulla, substance P and acetylcholine effects on, 119
dopamine, mesocortical. See under Dopamine neuron
dorsal horn
anatomy of (fig.), 226
excitation by impulses in primary afferents, 226
in spinal animals and animals with intact CNS, comparison of opiate action on, 229
naloxone and, 244
spinal, intravenous opiates and supraspinal inhibition of, 229
spontaneous firing, 225
and synaptic excitation of, opiates and, 234
with microphoretically administered peptides, 237
immature
in culture, 267
opiate action, 267
opiate effect on synaptic response in culture of (fig.), 268
lamina V
excitation of, reduced by intravenous morphine (fig.), 232
spinal, response to microinjection of morphine in brain stem, 230
myenteric, intracellular recording of nornorphine and enkephalin effects, 263; (fig.), 263
opiate effect on transmission between, 264
primary afferent, opiate effects, 264
raphe. See under Brain stem
reticular, intravenous opiates and firing of, 247
single, opiates and opioid peptides, effects on, 270
spinal
actions of morphine, levorphanol, and naloxone on excitatory postsynaptic potentials in (fig.), 235
descending inhibition of, 231
firing of
and intravenous opiates, 225
and microelectrophoresis of opioids, 232
opoid actions on, in vitro, 239
opioids, summary of effects, 245
Neuropeptide(s), substance P interrelation with other, 124
Neuropathy, peripheral; yohimbine effects on, 148
Neurotransmitter release
enhanced by yohimbine, in vitro systems (table), 152
in central and peripheral tissues, yohimbine influence on, 149
Neurotransmitters, classical, interaction with substance P, 117
Nociception, substance P and, 123
Norepinephrine, yohimbine influence on turnover, in vivo (table), 154
Normorphine effect on myenteric neurones (fig.), 283
North, R. A. See Duggan and North, 219
Nucleotide synthesis, reduction in; modification of hormonal responsiveness by mechanisms unrelated to, 6

Nucleus accumbens, opioid effects, 256
Nucleus of Edinger-Westphal and pretectal area, microinjection of opiates in, 249
Nucleus of stria terminals, opioid effects, 256
N-unit, glucagon effect on, 197

Opiate(s)
action on immature neurones in culture, 267
administration
from micropipettes, 247
microinjection, 222
opioid and, iontophoretic, 221
microelectrophoretic, 221
perfusion of tissues in vitro, 222
pressure ejection from micropipettes, 222
systemic, 221
analgesia
convulsions induced by, 296
effects on electroencephalogram changes, 297
comparisons of actions of, on dorsal horn neurones in spinal animals with animals with intact central nervous system, 229
effect on
autonomic neuroeffector transmission, 265
juncional transmission, 264
levels of consciousness, 228
neuronal assemblies, 270
primary afferent neurones, 264
single neurones, 270
spinal reflexes, 222
synaptic response in culture of immature neurones (fig.), 268
increase potassium conductance in substantia gelatinosa neurone (fig.), 240
intravenous
effects on
basal ganglia, 255
cerebral cortex, 257
firing of motoneurones, 228
firing of reticular neurones and, 247
firing of spinal neurones and, 225
supraspinal inhibition of dorsal horn spinal neurones and, 229
tooth pulp stimulation and, 246
microelectrophoretically administered, 248
microinjection of, in periaqueductal grey (PAG) matter, 249
non-opiate opioids, differences, 285
peripheral nervous system actions on neuronal properties, 261
electrophysiological studies, 261
spontaneous firing and synaptic excitation of dorsal horn neurones, 234
Opiate receptors
labeled in vivo
autoradiography of, 70
conditions for (table), 70
microscopic localization of, 70

Opioid(s)
actions on spinal neurones in vitro, 239
adenylate cyclase and, 242
addiction studies, direct in animals, 305
in man, 305
agonists
agonist-antagonists, and antagonists
in suppression of flexor reflex and suppression and precipitation of abstinence in nondependent and morphine dependent chronic spinal dog (table), 316
relative potency of, in inhibition of binding of μ, δ, and θ ligands (table), 316
agonists and, suppression of nociceptive responses and reflexes
Opioid(s)—continued
in animals, 287
analgesics
agonist-antagonist, relative potency of, in producing analgesia with
nociceptive reflexes in animals (table), 288
classification
agonist-antagonists, 317
identification of prototypic agonists and, 317
partial agonists, 317
effect on temperature regulation, 299
suppression and substitution studies, 306
tolerance and cross-tolerance of, 308
antagonists
adequacy and specificity of, 242
precipitation studies, 308
spinal reflexes and, 243
suppression and precipitation of abstinence in morphine-dependent
monkeys and men and cyclazocine-dependent dogs (table), 307
binding sites, opioid receptors and, relationship, 316
dependence
mixed agonist-antagonists, behavioral and pharmacological as-
pects, 33
physical, testing, 35
psychic, testing, 36
discriminative stimuli, in animals, 302
discriminative stimulus properties, 42
effects on spinal neurones, 245
electrophysiology of, 219
hippocampus
in vitro experiments, 259
in vivo experiments, 258
in vitro preparations, 221
in vivo studies, 221
locus coeruleus
in vitro studies, 252
in vivo studies, 251
microelectrophoresis of, and firing of spinal neurones, 232
microelectrophoretically administered, 248
basal ganglia, 255
cerebral cortex, 257
peptide(s)
effects of [Met]enkephalinamide administered in substantia gel-
tinosa, 238; (fig.), 238
effects on single neurones, 270
function of
in spinal cord, 242
in trigeminal nuclei, 247
microelectrophoretically administered, 248
spinal reflexes and, 225
spontaneous firing and synaptic excitation of dorsal horn neurones,
237
substance P interaction with, 124
pharmacological duisian, 285; (fig.), 286
pharmacology of, 283
analgesia, 287
physical dependence, 304
primary afferent terminals and, 239
psychological effects, 300
putative transmitters in the spinal cord and, 232
receptor(s)
μ antagonists, 312
autoradiography, 69
future modification and use of, 78
in vitro labeling conditions for (table), 73
axonal transport of, 77
differentiation of “μ” and “δ” sites, 78
hypothetical, topographic model (fig.), 310
schematic oblique drawing of (fig.), 312

INDEX
schematic oblique view (fig.), 311
in brain, shown by receptor autoradiography (table), 71
in caudate-putamen and vagus nerve (rat) (fig.), 74
in monkey brain, 75
in monkey tissues (fig.), 76
in retina (rat) (fig.), 76
in spinal cord (mouse) (fig.), 74
in vitro labeling, 71
autoradiography (fig.), 72; 73
emulsion-coated coverslip method, 73
“fixed” ligand-receptor method, 75
tritium-sensitive film, 73
microscopic localization of, 75
in vivo labeling, 69
multiple
autoradiographic localization of (fig.), 80
role, in function, 315
steric theory of opioid agonists, competitive agonists, agonist-
antagonists, and partial agonists, 309
“opiatergic” pathways, 78
“opiatergic” projections in brain (rat) (fig.), 79
partial agonists, reaction, 313
μ receptor, 312
ν receptor, 312
relationship of, with binding sites, 316
subtypes (table), 309
localization by autoradiography (table), 80
reinforcing properties, 37
studies
hypothalamus, 254
thalamus, 263
subjective effects in man, 300
withdrawal abstinence syndrome (table), 305
Oxaliophan, effects on respiration, 293
Oxilophrin, subjective effects in man, 302
Oxygen consumption, cardiac, glucagon effect, 193
Pancreas, substance P secretion by, 112
Pausinystalia yohimbe, yohimbine, principal alkaloid in extracts from
bark of, 143
Pentazocine
agonist-antagonist, 317
cardiovascular effects, 294
effects on respiration, 292
rat tail squeeze and tail flick test, 289
subjective effects, in man, 301
Peptide(s)
in dorsal horn of spinal cord, schematic illustration (fig.), 126
in gastrointestinal tract, besides substance P, 104
opioid. See Opioid peptide(s)
role as transmitters or modulators in central and peripheral nervous
system, 86
Periaqueductal grey matter (PAG), microinjection of opiates in, 249
Peripheral nervous system
opiates
electrophysiological studies, 261
effects on neuronal properties, 261
substance P distribution in, 98
Peripheral vascular system, glucagon effects, 183
Pernow, Bengt. Substance P, 85
β-[-5-Phenyl-9-Methyl-2'-hydroxy-2-methyl-6,7-benzomorphine
(GPA 1657), addiction studies in animals, 306
Phosphodiesterase inhibitors, effect on heart response to glucagon, 195
Phosphorus, glucagon effect on excretion of, 188
Platelets, yohimbine influence on, 161
Fura-medulla, raphe nuclei of, 250
Potassium, glucagon effect on excretion of, 188
Primary afferent terminals
electrical stimulation of terminals of, 240
INDEX

opioids and, 239
Profadon
addiction studies in animals, 306
partial agonist, 317
Propiram, partial agonist, 317
Protein carboxymethylation, dopamine autoreceptor and, 60
Protein phosphorylation, glucagon and, 203
Pulmonary circulation. See under Circulation
Pupils
effects of	narcotic analgesics, 295
narcotic analgesics, \(\sigma\) agonist, agonist-antagonists, \(\sigma\) agonist and
agonists, in comparison to morphine (table), 297
Radioimmunoassay, substance \(P\), 89
Radioligand binding studies, \(\alpha_2\)-adrenoreceptor definition, use of yo-
himine in, 148
Raphe neurone(s). See under Brain stem
Rat, opioid actions on spinal neurones in vitro, 239
Receptor agonist and antagonist, nomenclature, 286
Receptor coupling, glucagon effect on, 196
Receptor(s)
dopamine. See Dopamine receptors
opiate. See Opiate receptors
opioid. See Opioid receptors
Renal ion excretion, glucagon effect on, 188
Renin secretion, glucagon effect on kidney function, 188
Renshaw cells, morphine effects on, 228
Respiration
effects of
N-allylnormetazocine, 293
butorphanol, 293
cy clozocine, 292
diprenorphine, 293
ethylketazocine, 293
ketazocine, 293
nalbuphine, 293
nalorphine, 292
nalo xone, 293
naltrexone, 293
narcotic analgesics, 292
oxalorphan, 293
pentazocine, 292
Respiratory tract
airway hyperreactivity and substance \(P\), 111
pharmacological effects of substance \(P\), 111
substance \(P\) distribution in, 110
Retina, opioid receptors in (rat) (fig.), 76
Robertson, David. See Goldberg and Robertson, 143
Roth, Robert H. See Bannon and Roth, 53
Salivary gland(s), substance \(P\) secretion by, 111
Salivary secretion
substance \(P\)
alogues, effect on, 129
structure-activity relationship, 117
Schuster, Charles R. See Woolverton and Schuster, 33
Secretion, substance \(P\), 111
Self-stimulation, intracranial, involvement of mesocortical dopamine
system in, 63
Serotonin-related action of yohimbine, 167
Spinal cord
opiate actions, 222
opioid peptides function in, 242
opioid receptors in (mouse) (fig.), 74
putative transmitters in, opioids and, 232
substance \(P\)
concentration in, 93
pharmacological actions on, 97
release from, 96
role, 127
transmitters in
acetylcholine, 233
amino acids, 232
monoamines, 234
substance \(P\), 234
Spinal neurones. See Neuron(s), spinal
Spinal reflexes
opiate effects
cat, 223
dog, 224
frog, 223
man, 224
rat, 223
opioid antagonists and, 243
opioid peptides, 225
Stomach
substance \(P\)
concentration in, 103
pharmacological effects, 104
Stress
footshock, dopamine response to, 60
involvement of mesocortical dopamine system in, 63
Striato-nigral area, substance \(P\) effects on, 95
Substance \(P\), 85
acetylcholine and, 119
airway hyperreacitivity and, 111
amino acid composition, 89
analgesic effects of, 123
alogues, 121
agonist, 127
agonists, 121
antidromic vasodilatation and, 109
bioassay of, 87
biosynthesis, 99, 126
brain stem, release from, 96
capsaicin effects on, 99
catecholamines and, 117
central administration of, effects of, 108
central nervous system, distribution in, 90; (table), 92
chemistry, 86
cholesterin, 113
classical neurotransmitters and functional aspects of coexistence of,
119
comparison with other peptides in gastrointestinal tract, 104
degradation, 115
distribution
circulation, 107
gastrointestinal tract, 88, 102; (table), 103
peripheral nervous system, 98
respiratory tract, 110
tissue, 87
various organs, 86
visual system, 99
 effect on
brain stem, 96
circulation, 88
pharmacological effects, 107
cortex, 95
hypothalamus-neurohypophysis, 95
striato-nigral area, 95
vascular system, 107
e xtraction of, 86
ganglia and peripheral nerves, concentration in, 98
5-hydroxytryptamine and, 118
identification as undecapeptide, 89
immunohistochemistry, 90
inactivation, 126

331
 Substance P—continued
in blood, 113
interaction with classical neurotransmitters, 117
intestine, pharmacological action in, 88
isolation of, 89
kidney function and water homeostasis, 113
location, 126
mimicry, 127
mode of action, 105
molecule, and effect of structural modifications (table), 116
neuron system, ontogeny of, 94
neurotransmitter or modulator? 126
nervous system concentration in, 87
pharmacological actions on, 88
nociception and, 123
organs and tissues, peripheral, concentration in, 98
pancreatic secretion of, 112
pharmacological action; 88
pharmacological effects, 95
in gastrointestinal tract, 104
on sympathetic ganglia, 101
respiratory tract, 111
physalaemin, kassinin, eldosin, and, relative potency of (table), 120
physiological significance of, 95
presence in inferior mesenteric ganglion (fig.), 102
projecting neurons of, schematic representation (fig.), 93
publications on, from 1951–1981 (fig.), 87
purification, 86, 89
radioimmunoassay, 89
release of, 95
from nerve endings, 99
from sympathetic ganglia, 101
in gastrointestinal tract, 104
in visual system, 100
potassium-evoked, 127
role
in spinal cord, 127
in submucosa and mucosa, 107
in substantia nigra, 128
in sympathetic ganglia, 127
physiological, 89
secretion, 111
storage and binding, 114
structure-activity relationship, 116
antidiuretic activity, 117
circulation, 116
nervous system, 116
salivary secretion, 117
smooth muscle, 117
studies before 1970, 86
tachykinins and, 119
transmitter criteria, 126
transmitter in spinal cord, 234
transport, 99
Substantia gelatinosa
[Met]enkephalinamide administration in, effects of, 238; (fig.), 238
morphine administration, effects of, 235; (fig.), 236
opiates and increase of potassium conductance in (fig.), 240
Substantia nigra, substance P, role, 128
substance P
acetylcholine and, effects on, 119
distribution in, 100
role, 127
Tachykinins
chemical structure of (table), 120
substance P and, 119
Telencephalon, substance P distribution in, 91

INDEX
Temperature
regulation, opioid analgesic effects on, 299
yohimbine effects on, 147
Thalamus, opioid studies, 253
Tissue(s)
central and peripheral, yohimbine influence on neurotransmitter release and turnover in, 149
substance P concentration in, 98
Tooth pulp stimulation, intravenous opiates, 246
Trigeminal nuclei
opioid peptides function in, 247
opioid studies, 246
Tyrosine hydroxylase, in cortex, 55
Urine flow, substance P, structure-activity relationship, 117
Vagus nerve, opioid receptors in (rat) (fig.), 74
Visual system
substance P distribution in, 99
pharmacological effects, 100
Wamsley, James K. Opioid receptors: Autoradiography, 69
Water metabolism, substance P role in, 113
Yohimbine
actions of, in man, 147
α-agonist-induced inhibition of release blocked by, in vitro systems (table), 152
aphrodiasia, 148
autonomic effects (table), 156
central nervous system effects of, 165; (table), 166
differential effects of, on reflex and pharmacological α-adrenergic responses in man (table), 165
dopamine-related actions of, 168
electroencephalographic response to, 147
influence on cardiovascular system and autonomic reflexes, 154
dereige endocrine system, 162
gastrointestinal tract, 160
genitourinary tract, 158
measures of central and peripheral norepinephrine turnover, in vivo (table), 153
metabolism, 161
neurotransmitter release and turnover in central and peripheral tissues, 149
noncardiovascular sites, 158; (table), 159
platelets, 161
neurotransmitter release is enhanced by in vitro systems (table), 152
non-α2-receptor actions of (table), 167
pharmacological probe for study of α2-adrenoceptor, 143
principal alkaloid in extracts from bark of Pausinystalia yohimbe, 143
psychic changes caused by, 147
serotonin-related actions, 167
stereoisomers of, pharmacology of, 169
structures of (fig.), 154
studies
after 1950 but before recognition of α2-adrenoceptor subtypes, 145
before 1950, 144
use of, in radioligand binding studies (table), 149
to define α2-adrenoceptor, 148

Zinc, glucagon effect on excretion of, 189