Index

Pharmacological Reviews
Volume 36
1984

Acetylenes, mechanism-based inactivators of isomerases, oxidases, and
pyridoxal-phosphate-linked and flavin-linked enzymes, 120
6-Acetylmethylenepenicillanic acid, β-lactamase inhibition (fig.), 137
a-Adrenoceptor agonists, structure-activity relationships for efficacy
and affinity of (fig.), 209
a-Adrenoceptors, sympathetic efferents and agonists at, modulation of
lung surfactant secretion rate, 79
β-Adrenoceptors
agonists and antagonists at, modulation of lung surfactant secretion
rate, 77
enhancement of surfactant secretion by agonists at (table), 77
Aflatoxin B1
cholestatic induced by, 15
Age, effects on biliary excretion of xenobiotics, 35
Aging, nutritional factors, modulating effects on, 123S
Agonism, selective, 189
Agonist affinity, relative efficacy and, measurement of, 192
Agonists
different ratios of efficacy and affinity, effects of changing receptor
to number on (fig.), 191
dose-response curves, 183
EC50 and equilibrium dissociation constants, relationship between
and (table), 186
full and partial, effects of receptor coupling on responses to (fig.),
potency ratios, 188
quantification of responses to, 183
tissue sensitivity to, methods to increase (table), 201
Amidines, inhibitor of alternative pathway, 238
Amino acids
derivatives and, inhibitor of alternative pathway, 238
derivatives and, inhibitor of classical pathway, 234
multienzyme system to convert urea and ammonia to (fig.), 314
Anders, M. W., and Robert G. Carlson (guest editors), Toxicology:
Determinants of susceptibility and predictability, 1S-182S
Anders, M. W., Joe D. Burek, Robert G. Carlson, John L. Emerson,
George C. Fuller, J. E. LeBeau, Leland Loose, Laurrie W. Nelson,
Robert A. Nelson, Emil A. Pfitzer and David H. Swenson. Summary of the workshop of toxicology, 3S
Androgens, physiological and synthetic, metabolism of inappropriate
biological effects, 35S
Anhydride procedure, mixed, binding of drug molecules tomacromo-
nular carriers, 293
Animal models, whole, in safety evaluation, 177S
Anthralinates, inhibitor of classical pathway, 230
Antibody-drug conjugates, drug/enzyme carriers, 306
Antibiotics
effect on cholestasis, 16
effect on enterohepatic circulation, 44
Antiestrogen(s)
design (fig.), 266
estrogens with rapid dissociation rate from the estrogen receptor
general classification of, 248
general pharmacology, 248
metabolism, 250
in vitro, 252
laboratory animals in vivo, 252
nonsteroidal (fig.), 247, 265
nonsteroidal with a high binding affinity for the estrogen receptor
(pharmacokinetics, 250
potential mechanisms of action of (fig.), 262
radiolabeled, 257
binding characteristics, to estrogen receptor, 257
commercially available (fig.), 266
synthesis of, for study of metabolism in animals, 250
species differences, 249
structure-activity relationships, 262
in vitro, 265
in vivo, 263
tamoxifen and its metabolites, analytical techniques for detection of,
triphenylethylene derivatives, 248
Antiestrogen action
biochemical pharmacology of, 245
in vitro studies, 266
in vivo studies, 255
Antiestrogen binding sites, biological function, 260
Antiestrogenic activity, substituted 3,4 dihyronaphthalenes in immu-
rate (fig.), 263
Antiestrogenic mechanisms, 261
Arsenic, biliary excretion of, 32
Artery, femoral, effect of angle of cut, on responses to norepinephrine,
(fig.), 171
Arthus reaction
complement deposition at site of (fig.), 232
computerized area integrator for quantification of cellular infiltration
of (fig.), 227
damaged venule at site of leukocyte accumulation (fig.), 228
Asghar, Syed Shafi. Pharmacological manipulation of complement
system, 223
Atheroclerotic process, heparin and, 91
ATPase
(Na+ + K+) activated cardiac glycosides interaction with, 143
Na,K- conformation necessary for ouabain binding, 145
Na,K- digitalis glycosides and, 144
Na,K-, effect of nystatin on (fig) vanadate binding to microsomal
Na,K-ATPase from pig kidney, 156
Na,K-, models for ouabain interaction with, 148
Na,K-, modulation of, and the consequences for ouabain binding, 157
Na,K-ouabain as a tool in studies of, 144
Na,K-, ouabain-bound, reactive states of, 152
Na,K-, use of ouabain binding capacity for characterization of, 156
Autonomic nervous system, lung surfactant secretion rate, modulation
of, 77
Barbiturates, affect on bile flow, 12
Bardin, C. Wayne. See Jänne and Bardin, 35S
Barrett, J. Carl, Thomas W. Hasterberg and David G. Thomassen. Use
of cell transformation systems for carcinogenicity testing and
mechanistic studies of carcinogenesis, 53S
Basal lamina, barrier to drug delivery, 283

337
INDEX

sodium pump and, 143
Carlson, Robert G. See Anders and Carlson, 1S-182S
Carlson, Robert G. See Anders et al., 3S
Cell injury
irreversible, 77S
mechanism of, with hepatotoxic chemicals, 71S
Cells
artificial, drug/enzyme carriers, 313
barrier to drug delivery, 284
encapsulated, drug/enzyme carriers, 313
Cell transformation systems, use of, for testing and mechanistic studies of carcinogenesis, 53S
Chang, Chia-Cheng. See Trosko and Chang, 137S
Chloroprophathiazine sulphonate, inhibition of interaction of B-determinant of C3 with anti-B-determinant by (fig.), 233
Chlorotoxican, biliary excretion of xenobiotics, effect on, 38
Cholelithiasis, See also Gallstone disease
cholesterol insolubility, association with, 16
Cholephils, biliary excretion of, 27
Cholesis, effect on bile flow, 11
Cholestasis
drug-induced "intrahepatic cholestasis," 12
extrahepatic, 12
manganese-bilirubin induced, 13
Cholesterol
insolubility of, associated with cholelithiasis, 16
relationship with bile acids and phospholipids (fig.), 17
Chytid, Frank. Retinoic acid: Biochemistry, pharmacology, toxicology, and therapeutic use, 93S
Circulation, enterohepatic, 41
Cis-aconitic anhydride, binding of drug molecules to macromolecular carriers, 293
Clavulanic acid, β-lactamase inactivation (fig.), 137
Complement
activation, inhibition of excessive, by heparin, 97
consuming abilities of polyanions (table), 225
deposition at the Aths reaction site by (fig.), 222
potentiators of natural C1 inhibitor, 237
synthetic polypeptides that inhibit or consume (table), 224
Complement system, pharmacological manipulation of, 223
Copper, biliary excretion of, 31
Cyanuric chloride, binding of drug molecules to macromolecular carriers, 294
Cyclic nucleotides, lung surfactant secretion rate, role in, 81
Cyclopropanes, mechanism-based inactivators of oxidases, 128
Cytochrome P450, induction of, by xenobiotics, 43S
Dent, John G. See Anders et al., 3S
Diamines, inhibitor of classical pathway, 234
Diazox, containing mechanism-based enzyme inactivators, 130
Diazoo linkages, binding of drug molecules to macromolecular carriers, 293
Digitalis, induced isotropy, 143
Digitalis glycosides, Na,K-ATPase and, 144
3,4-Dihydronaphthalenes, substituted, relative antiestrogenic activity of, in immature rats (fig.), 263
Diphenylamidines
inhibition of esterolytic activities of Clf and Cls by (table), 231
inhibition of interaction of B-determinant of C3 with anti-B-determinant by (fig.), 231
DNA, toxicity-induced aberrant methylation of, and its repair, 19S
Dose-response curves, drug receptor interaction, 153
Doull, John. The past, present, and future of toxicology, 15S
Drug-carrier conjugation, methods of, 289
Drug carriers, microspheres as, 31S
Drug delivery
basal lamina barrier, 283
brain specific, prodrug approach (fig.), 321

Carcinogenesis, inhibitor of classical pathway, 229
Bile
acid-dependent flow, 6, 7
canicular, ductular modification, 9
chemicals excreted into, classification of, 26
comparison of, in different species (table), 6
historical aspects, 2
physicochemical characteristics of chemicals excreted into, 33
Bile acids
biliary excretion, 30
biliary excretion of xenobiotics, effect on, 39
effect on hepatic uptake, 20
enterohepatic circulation, 42
hepatic uptake, 23
relationship with cholesterol and phospholipids (fig.), 17
Bile composition, 5
Bile flow
bile flow, 12
somatostatin effect on, 16
Bile flow versus bile acid secretion, linear extrapolation of (fig.), 7
Bile formation, 5
alteration of, 11
ethanol effect on, 16
hepatic uptake, and biliary excretion, mechanisms of, 1
neurohumoral control of, 10
osmotic ultrafiltration, 6
Biliary excretion
bile acids, 30
bilirubin, 29
chemicals conjugated with glucuronic acid, 29
chemicals excreted into bile, classification, 26
chemicals not biotransformed, 29
cholephils, 27
compounds conjugated with glutathione, 28
indocyanine green, not biotransformed, 29
mechanisms of, 1
metal, glutathione, role, 33
metallic, 31
morphological perspectives, 3
organic anions, 28
organic cations, 30
organic chemicals, neutral, 31
rose bengal, not biotransformed, 29
xenobiotics
biological factors influencing, 33
pharmacological factors influencing, 37
Bilirubin
biliary excretion of, 29
hepatic uptake, effect on, 21
Blood, effects of heparin in, 96
Blood supply to liver, by hepatic artery and portal vein (fig.), 3, 4
Breskin, Edward, Robert Foldes and Ronald N. Hines. Induction of cytochrome P450 by xenobiotics, 43S
Burek, Joe D., See Anders et al., 3S
C8-tetramethylammonium, antagonism of responses of guinea pig ileal longitudinal smooth muscle to (fig.), 204
Cadmium
biliary excretion of, 32
toxic, biphasic mechanism, 23
Carbenanemias, β-lactamase inhibition (fig.), 137
Carbamides, binding of drug molecules to macromolecular carriers, 292
Carcinogenesis, cell transformation systems for testing and mechanistic studies of, 53S
Carcinogenicity testing, use of cell transformation systems for, 53S
Cardiac glycosides
interaction of, with (Na+ + K+)-activated ATPase, 143
cellular barriers, 284
controlled
 biological approaches, 277
oligonucleotides as drugs, 323
overview of (table), 286
pharmacologically active antireceptor antibodies, 322
prodrug delivery systems, 320
targeting to cellular carbohydrate binding proteins, 320
 technologies for, 287
endothelial barrier, 280
reticuloendothelial barrier, 283
selective, barriers to, 279
targeting problem, 286
Drug delivery systems
liposomal, 296
sustained, 296
Drug/ enzyme carriers
antibodies as, 305
artificial cells, 313
cellular, 311
encapsulated cells, 313
macromolecules as, 317
semipermeable aqueous microcapsules, 313
Drug nutrient interaction, therapeutic significance, in the elderly, 109S
Drug receptor(s)
methods of classification, 188
pharmacological characterization of, in isolated tissues (table), 174
Drug receptor theory, 184
Drugs
chemical degradation of, 174
drug receptors and, classification of, in isolated tissues, 165
incorporation of, in liposomes, 297
liposomal anti-infectious, 302
liposomal antineoplastic, 300
liposomal antitumor, effects of (table), 301
new, relevance of isolated tissue studies to, 206
oligonucleotides as, 323
release of endogenous substances, 174
removal of, by tissues, 176
stimulation of synthesis and/or lung maturation (table), 55
Embryo, whole, use of culture for evaluating toxicity and teratogenicity, 145S
Emmerson, John L. See Anders et al.; 38
Endogenous substances, release by agonists, in tissues (table), 175
Endothelial cells, transeptosis in (fig.), 282
Endothelium
 barrier to drug delivery, 280
 heparin effects on, 93
 injury prevention of, by heparin, 93
 lipoprotein uptake by, inhibition of, by heparin, 96
 restoration of normal electronegativity, by heparin, 93
Endotoxins, heptic uptake, 54
Engelberg, Hyman. Heparin and the atherosclerotic process, 91
Enslein, Kurt. Estimation of toxicological endpoints by structure-activity relationships, 131S
Enterohepatic circulation, 41; (fig.), 42
 bile acids, 42
 endogenous compounds, 43
 xenobiotics, 43
Enterohepatic cycling
 antibiotics, 44
 binding agents, 43
 factors influencing, 43
Enzyme(s)
diacyo-containing mechanism-based inactivators, 130
flavin-linked
 acetylenes, mechanism-based inactivators of, 120
 olefins, mechanism-based inactivators of, 114
 microsomal, effects on bile flow, 12
native or detergent-treated, characterisation, 156
ouabain complexes, information obtained with vanadate, 154
P-450
 mechanism-based inactivators of (table), 121
 olefins, mechanism-based inactivators of, 114
pyridoxal-phosphate-linked
 acetylenes, mechanism-based inactivators of, 120
 fluorocarbons, mechanism-based inactivators of, 126
 olefins, mechanism-based inactivators of, 114
Enzyme carriers, drug. See Drug/ enzyme carriers
Enzyme inactivators
 kinetics of inhibition, 112
 mechanism-based, 111
 acetylenes, 120
 as drugs, 135, 138
 catalytic turnover, 113
 chemical considerations, 114
 design of, 113
 inactivator design, formation of dead-end complexes in, 130
 in vivo studies, 136
 olefins, 114
 stoichiometry of inactivation, 113
Enzyme inducers, microsomal, effect on biliary excretion of xenobiotics, 37
Enzyme system, multi-, to convert urea and ammonia to simple amino acids (fig.), 314
Erythromycins, cholestatics induced by, 14
Esterases, mechanism-based inactivators of, 132
Estrogens
 effect of a polyclonal antibody to the estrogen receptor on the binding of (fig.), 259
 hypothetic models to describe the binding of, with the ligand binding site on the estrogen (fig.), 267
Estrogen(s)
 drug receptor theories, 268
 nonsteroidal (fig.), 265
 nonsteroidal, structure-activity relationships, 246
 rapid dissociation rate from the estrogen receptor, 248
 steroidal and nonsteroidal (fig.), 246
Estrogen action, anti-. See Antiestrogen action
Estrogen action
 functional model (fig.), 255
 models of, 253; (fig.), 254
Estrogen receptor
 binding characteristics of radiolabeled antiestrogens to, 257
 effect of a polyclonal antibody to, on the binding of estradiol and 4-hydroxystilboestrol to the ligand-binding site on (fig.), 259
 estrogens with rapid dissociation rate from, 248
 hypothetical models for estrogenic and antiestrogenic ligands binding to (fig.), 268
 interaction of agonists, antagonists, and partial agonists with, (fig.), 269
 nonsteroidal antiestrogens with a high binding affinity for (fig.), 248
Ethacrynic acid, biliary excretion of, after conjugation with glutathione, 28
Ethanol, bile formation, effect on, 16
Farber, John L., and Ronald J. Gerson. Mechanisms of cell injury with hepatotoxic chemicals, 71S
Fariss, Marc W. See Reed and Fariss, 25S
Fasting, effects on biliary excretion of xenobiotics, 36
Fernandes, Gabriel. Nutritional factors: Modulating effects on immune function and aging, 123S
Fetus, lung surfactant system maturation in, 82
Fibrinolysis, enhancement by heparin, 97
Fibroblasts, drug/ enzyme carriers, 312
INDEX

Flavins-linked enzymes 120
olefins, mechanism-based inactivators of, 114
Fluorocarbons, mechanism-based inactivators of pyridoxal-phosphate-linked enzymes and oxidases, 126
Foldes, Robert. See Bresnick, et al., 43S
Fuller, George C. See Anders et al., 38

Gallstone disease. See also Cholelithiasis
Gallstones, medical treatment, 17
Gerson, Ronald J. See Farber and Gerson, 71S
Gilfillan, Alasdair M. See Hollingsworth and Gilfillan, 69
Glomerular injury, progressive, roles of dietary protein and compensatory hypertrophy, 101S
Glucose, production by β-adrenoceptor or glucagon stimulation, reactions involved in production of (fig.), 187
Glucuronic acid, chemicals conjugated with, before biliary excretion, 29
Glutathione, binding of drug molecules to macromolecular carriers, 291

Heparin

Hepatitis, effects of plasma endogenous heparin activity, correction by, 101
replacement of lipoprotein lipase activity, 96
effects of, in blood, 96
on high-density lipoproteins, 96
on reticuloendothelial system, 96
endothelial effects of, 93
fibrinolysis enhancement by, 97
hypercoagulability correction by, 96
inhibition of excessive complement activation by, 97
inhibition of lipoprotein uptake by endothelium, 96
inhibition of smooth muscle cell proliferation, 95
mitigation of harmful effects of thrombin, 94
platelet effects, 95
prostacyclin and, 95
serum triglycerides lowered by, 99

Hepatic. See also Liver

Hepatic clearance, xenobiotic elimination, efficiency of, 18

Hepatic uptake
bile acids, 23
bile acids, effect, 20
bilirubin, effect on, 21
desialylated glycoproteins, 24
endotoxins, 24
exogenous organic anions, effect on, 21
exogenous organic cations, effect on, 22
immune complexes, 24
immunoglobulins, 24
insulin, 24
in vivo multiple indicator dilution technique (fig.), 20
ligandin, 24
lipoproteins, 24
macromolecules in, 23
mechanisms of, 1
membrane receptors, 23
metallothionein, 25
metals, effect on, 23
methods of examination of, 19
neutral organic compounds, effect on, 22
proteins, intracellular, 24

Hepatobiliary transport, influencing factors, 33
Hepatotoxins, biliary excretion of xenobiotics, effect on, 39
Hepatotoxins, chemicals, mechanisms of cell injury with, 71S
Hesterberg, Thomas W. See Barrett et al., 53S
Hines, Ronald N. See Bresnick et al., 43S
Hollingsworth, Michael, and Alasdair M. Gilfillan. The pharmacology of lung surfactant secretion, 69

Hormone(s)

Hypoglycemic drugs, hepatic reactions, 16
Hypothermia, experimental, effect on bile flow and biliary excretion, 15

Imidooesters, binding of drug molecules to macromolecular carriers, 294
Immune complex, hepatic uptake, 24
Immune function, modulating effects of nutritional factors on, 123S
Immune system, molecular mimicry by (fig.), 323

Indoxyl, drug/enzyme carriers, 308
Indoxyls, substituted, relative antifertility activity of, in the rat (fig.), 263

Indocyanine green, not biotransformed before biliary excretion, 29

Inhibitor(s)
of alternative pathway
amidines, 238
amino acids and their derivatives, 238
guanidines, 238
polyions, 238
polypeptides, 238
of classical pathway, 223
amino acids and their derivatives, 234
anthralinates, 230
benzaamidines, 229
diamines, 234
guanidines, 229
inorganics, 237
levarubicin derivatives, 232
phenylindandiones, 233
polyanions, 224
polynucleotides, 227
polypeptides, 224
potentiators of natural C1 inhibitor, 237
pyridinium sulphonylfluorides, 229

Inotropy, digesitalis-induced, 143
Insulin, hepatic uptake, 24

Interleukin-1, role in, 23
Isolated tissues. See under Tissues
<table>
<thead>
<tr>
<th>P-450 enzymes</th>
<th>Mechanism-based inactivators of (table), 121</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olefins, mechanism-based inactivators of (table), 114</td>
<td></td>
</tr>
<tr>
<td>Penicillanic acid sulfone, β-lactamase inactivation (fig.), 137</td>
<td></td>
</tr>
<tr>
<td>Phenothiazines, cholestasis induced by, 13</td>
<td></td>
</tr>
<tr>
<td>Phenothiazine sulphonate, inhibition of interaction of B-determinant of C3 with anti-B-determinant by (fig.), 233</td>
<td></td>
</tr>
<tr>
<td>Phenylindandiones, inhibitor of classical pathway, 233</td>
<td></td>
</tr>
<tr>
<td>Phosphatidylcholine, synthesis of, cytidine diphosphate choline pathway responsible for (fig.), 72</td>
<td></td>
</tr>
<tr>
<td>Phospholipids</td>
<td></td>
</tr>
<tr>
<td>relationship with bile acids and cholesterol (fig.), 17</td>
<td></td>
</tr>
<tr>
<td>structures of (fig.), 71</td>
<td></td>
</tr>
<tr>
<td>Platelet, reaction to heparin, 95</td>
<td></td>
</tr>
<tr>
<td>N-acetylcysteine (fig.), 73</td>
<td></td>
</tr>
<tr>
<td>N-acetylcysteine (fig.), 73</td>
<td></td>
</tr>
<tr>
<td>Polymers</td>
<td></td>
</tr>
<tr>
<td>complement-consuming abilities of (table), 225</td>
<td></td>
</tr>
<tr>
<td>inhibitor of alternative pathway, 238</td>
<td></td>
</tr>
<tr>
<td>inhibitor of classical pathway, 224</td>
<td></td>
</tr>
<tr>
<td>Potassium-ouabain antagonist, 147</td>
<td></td>
</tr>
<tr>
<td>Poxanapy, Mark J., and Rudolph L. Juliano. Biological approaches to the controlled delivery of drugs: A critical review, 277</td>
<td></td>
</tr>
<tr>
<td>Pregnancy, effects on biliary excretion of xenobiota, 36</td>
<td></td>
</tr>
<tr>
<td>Prodrug</td>
<td></td>
</tr>
<tr>
<td>brain specific drug delivery, approach (fig.), 321</td>
<td></td>
</tr>
<tr>
<td>delivery systems, 320</td>
<td></td>
</tr>
<tr>
<td>Progestins, physiological and synthetic, mediation of inappropriate biological effects, 35S</td>
<td></td>
</tr>
<tr>
<td>Propranolol, effects of, on responses of rat left atria to tyramine (fig.), 175</td>
<td></td>
</tr>
<tr>
<td>Prostaglandins, hormones, effect on, 80</td>
<td></td>
</tr>
<tr>
<td>Proteases, mechanism-based inactivators of, 132</td>
<td></td>
</tr>
<tr>
<td>Protein</td>
<td></td>
</tr>
<tr>
<td>dietary, role in, progressive glomerular injury, 1015</td>
<td></td>
</tr>
<tr>
<td>intracellular, hepatic uptake, 24</td>
<td></td>
</tr>
<tr>
<td>Pyridoxal-phosphate-linked enzymes</td>
<td></td>
</tr>
<tr>
<td>acetylcholine, mechanism-based inactivators of, 120</td>
<td></td>
</tr>
<tr>
<td>fluoroacarbons, mechanism-linked inactivators of, 126</td>
<td></td>
</tr>
<tr>
<td>Olefins, mechanism-based inactivators of, 114</td>
<td></td>
</tr>
<tr>
<td>Pyridoxal-phosphate-linked enzymes</td>
<td></td>
</tr>
<tr>
<td>Pyridinium sulphonilfluorides, inhibitor of classical pathway, 229</td>
<td></td>
</tr>
<tr>
<td>Rando, Robert R. Mechanism-based enzyme inactivators, 111</td>
<td></td>
</tr>
<tr>
<td>Receptor classification, operational concepts, 207</td>
<td></td>
</tr>
<tr>
<td>Receptor number</td>
<td></td>
</tr>
<tr>
<td>experimental manipulation of, 196</td>
<td></td>
</tr>
<tr>
<td>methods to decrease (table), 199</td>
<td></td>
</tr>
<tr>
<td>methods to increase (table), 200</td>
<td></td>
</tr>
<tr>
<td>Reed, Donald J., and Marc W. Faris. Glutathione depletion and susceptibility, 255</td>
<td></td>
</tr>
<tr>
<td>Response, stimulus and, relationship between 185</td>
<td></td>
</tr>
<tr>
<td>Reticuloendothelial system, heparin effect on, 98</td>
<td></td>
</tr>
<tr>
<td>Reticuloendothelium, barrier to drug delivery, 283</td>
<td></td>
</tr>
<tr>
<td>Retinoic acid, biochemistry, pharmacology, toxicology, and therapeutic use of, 933</td>
<td></td>
</tr>
<tr>
<td>Roe, Daphne A. Therapeutic significance of drug-nutrient interactions in the elderly, 1095</td>
<td></td>
</tr>
<tr>
<td>Rose, Neil, not biotransformed before biliary excretion, 29</td>
<td></td>
</tr>
<tr>
<td>Sadler, T. W., and C. W. Warner. Use of whole embryo culture for evaluating toxicity and teratogenicity, 145S</td>
<td></td>
</tr>
<tr>
<td>Safety evaluation, whole animals models in, 177</td>
<td></td>
</tr>
<tr>
<td>Schild regressions</td>
<td></td>
</tr>
<tr>
<td>in tissues with mixed receptor populations (fig.), 205</td>
<td></td>
</tr>
<tr>
<td>theoretical, for heterogeneous receptor populations (fig.), 206</td>
<td></td>
</tr>
<tr>
<td>variable fractional stimulus from a heterogeneous population, effects on (fig.), 206</td>
<td></td>
</tr>
<tr>
<td>Secretory process, exocytotic, lung surfactant system as example of, 70</td>
<td></td>
</tr>
<tr>
<td>Sex, effects on biliary excretion of xenobiota, 34</td>
<td></td>
</tr>
<tr>
<td>Shank, Ronald C. Toxicity-induced aberrant methylation of DNA and its repair, 198</td>
<td></td>
</tr>
<tr>
<td>Smith, Gary J. See Graham and Smith, 15IS</td>
<td></td>
</tr>
<tr>
<td>Smooth muscle cell proliferation, inhibition of, by heparin, 95</td>
<td></td>
</tr>
<tr>
<td>Smuckler, Edward A. and Jacqueline L. James. Irreversible cell injury, 775</td>
<td></td>
</tr>
<tr>
<td>Sodium pump, cardiac glycosides and, 143</td>
<td></td>
</tr>
<tr>
<td>Somatostatin, effect on bile flow, 16</td>
<td></td>
</tr>
<tr>
<td>Steroid receptors, hormone action and, 35S</td>
<td></td>
</tr>
<tr>
<td>Steroids, cholestasis induced by, 13</td>
<td></td>
</tr>
<tr>
<td>Stimulus</td>
<td></td>
</tr>
<tr>
<td>response and, relationship between, 185</td>
<td></td>
</tr>
<tr>
<td>tissue response as a function of, 185</td>
<td></td>
</tr>
<tr>
<td>Stimulus-response coupling, experimental manipulation of receptor number and efficiency of, 196</td>
<td></td>
</tr>
<tr>
<td>Structure-activity relationships, toxicological endpoints, estimation by, 131S</td>
<td></td>
</tr>
<tr>
<td>N-Succinimidyld-3-(2-pyridyldithio)propionate (SPDP) binding of drug molecules to macromolecular carriers, 294</td>
<td></td>
</tr>
</tbody>
</table>
Sulfobromophthalein (BSP), conjugated with glutathione before biliary excretion, 28
Swenson, David H. See Anders et al., 38

Tamoxifen
antiestrogen effect, in immature rat uterus (fig.), 248
effect of different side chains on the antiestrogenic activity of (fig.), 264
4-hydroxy-
effect of a polyclonal antibody to the estrogen receptor on the binding of (fig.), 259
hypoesthetic models to describe the binding of, with the ligand binding site on the estrogen (fig.), 267
hydroxylated derivatives of, and antitumor activity of acetoxyl derivatives of triphenylbut-1-ene (fig.), 265
metabolism, by laboratory animals in vivo, 252
metabolites and
assay methods to measure concentration of, in biological fluids (table), 251
comparison of concentration of, in patient blood during therapy for breast cancer (table), 251
metabolites of (fig.), 250
analytical techniques for detection of, 250
pharmacokinetics of, 251
Teratogenicity, whole embryo culture, use of for evaluating, 145S
Thioester linkage, binding of drug molecules to macromolecular carriers, 295
Thomassen, David G. See Barrett et al., 53S
Thrombin, mitigation of harmful effects of, by heparin, 94

Tissue(s)
agonists that release endogenous substances in (table), 175
isolated
animal, 167
animal, commonly used (table), 168
binding studies and, 166
classification of drugs and drug receptors in, 165
comparisons, 173
equilibrium conditions in, 173
human (table), 170
preservation of tissue viability, 167
relevance to new drugs, 208
mixed receptor populations, Schild regressions in (fig.), 205
removal of drugs by, 176
responses to full and partial agonists, relationships between (fig.), 197
sensitization, relationship of, to uptake inhibition (fig.), 181
variations, sources, 172

Tissue preparation, methods, 166
Tissue responses, measurement, 172
Tissue sensitivity
to agonists, methods to decrease (table), 200
to agonists, methods to increase (table), 201
Toxicity, whole embryo culture, use for evaluating, 145S

Toxicological endpoints, estimation of, by structure-activity relationships, 131S
Toxicological methods, in vitro, development of, 173S
Toxicology
past, present, and future of, 15S
workshop
determinants of susceptibility and predictability, 15S–182S
summary, 3S
Toxic responses, mammalian cell culture systems, predictive and mechanistic evaluation of, 151S
Triglycerides, serum, lowered by heparin, 99
Trioxifene, antiestrogen effect, in immature rat uterus (fig.), 248
Triphenylethylene(s)
conversion of, to fluorescent phenanthrenes by ultraviolet activation (fig.), 251
geometric isomers of (fig.), 247
structure of fixed ring derivatives of, with different side chains (fig.), 264
Triphenylethylene derivatives, antiestrogens, 248
Truoko, James E., and Chia-Cheng Chang. Adaptive and nonadaptive consequences of chemical inhibition of intercellular communication, 137S
Tumors, uptake of liposomes by, 300
Vanadate, information on enzyme-ouabain complexes obtained with, 154
Vascular pressure, influence on bile flow, 10
von Wittenau, M. Schach. Whole animal models in safety evaluation, 177S
Warner, C. W. See Sadler and Warner, 145S
Watkins, John B., III. See Klaassen and Watkins, 1

Xenobiotics
biliary excretion of
age, effects, 35
bile acids, effect, 39
biological factors influencing, 33
chlorotoxics, effects on, 38
effect of liver injury, 40
enzyme inducers, effects, 37
fasting effects, 36
hepatotoxins effects on, 39
pharmaceuticals influencing, 37
pregnancy effects, 36
sex differences, 34
species variation, 33
cytochrome P450 induction by, 43S
enterohepatic circulation, 43
hepatic elimination of, 17
production of cholera, 11
Zinc, hepatic uptake, biphasic mechanism, 23
Statement of Ownership, Management, and Circulation

Publication: *Pharmacological Reviews*

Volume: 40

Period: 3 issues per year

Annual Subscription Price: $195.00

Partial Table of Contents

<table>
<thead>
<tr>
<th>Part</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Total number of copies of each issue issued during preceding 12 months:</td>
</tr>
<tr>
<td>B.</td>
<td>Paid and/or requested circulation:</td>
</tr>
<tr>
<td>C.</td>
<td>Total paid and/or requested circulation:</td>
</tr>
<tr>
<td>D.</td>
<td>Free distribution by mail, or other means, sample, complimentary, and other free copies:</td>
</tr>
<tr>
<td>E.</td>
<td>Total distribution:</td>
</tr>
<tr>
<td>F.</td>
<td>Copies not distributed:</td>
</tr>
<tr>
<td>G.</td>
<td>Total (sum of B, C, and D minus sum of E and F):</td>
</tr>
</tbody>
</table>

Signature and Title

Publisher

Signature:

Position:

Date:

Note: The document contains specific data and legal statements related to the publication's ownership, management, and circulation.