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Abstract——In mammals, the endothelin (ET) family
comprises three endogenous isoforms, ET-1, ET-2, and
ET-3. ET-1 is the principal isoform in the human car-
diovascular system and remains the most potent and
long-lasting constrictor of human vessels discovered.
In humans, endothelins mediate their actions via only
two receptor types that have been cloned and classi-
fied as the ETA and ETB receptors in the first NC-
IUPHAR (International Union of Pharmacology Com-
mittee on Receptor Nomenclature and Drug
Classification) report on nomenclature in 1994. This
report was compiled before the discovery of the ma-
jority of endothelin receptor antagonists (particularly
nonpeptides) currently used in the characterization of
receptors and now updated in the present review. En-
dothelin receptors continue to be classified according
to their rank order of potency for the three endoge-
nous isoforms of endothelin. A selective ETA receptor
agonist has not been discovered, but highly selective

antagonists include peptides (BQ123, cyclo-[D-Asp-L-
Pro-D-Val-L-Leu-D-Trp-]; FR139317, N- [(hexahydro-1-
azepinyl)carbonyl]L-Leu(1-Me)D-Trp-3 (2-pyridyl)-D-
Ala) and the generally more potent nonpeptides, such
as PD156707, SB234551, L754142, A127722, and
TBC11251. Sarafotoxin S6c, BQ3020 ([Ala11,15]Ac-ET-
1(6–21)), and IRL1620 [Suc-(Glu9, Ala11,15)-ET-1(8–21)] are
widely used synthetic ETB receptor agonists. A limited
number of peptide (BQ788) and nonpeptide (A192621)
ETB antagonists have also been developed. They are
generally less potent than ETA antagonists and display
lower selectivity (usually only 1 to 2 orders of magni-
tude) for the ETB receptor. Radioligands highly selec-
tive for either ETA (125I-PD151242, 125I-PD164333, and
3H-BQ123) or ETB receptors (125I-BQ3020 and 125I-
IRL1620) have further consolidated classification into
only these two types, with no strong molecular or
pharmacological evidence to support the existence of
further receptors in mammals.
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I. Introduction

In mammals, the endothelin (ET1) family comprises
three endogenous isoforms, ET-1, ET-2, and ET-3
(Yanagisawa et al., 1988; Inoue et al., 1989). These pep-
tides mediate their actions via two receptor types, clas-
sified as the ETA and ETB receptors in the first NC-
IUPHAR (International Union of Pharmacology
Committee on Receptor Nomenclature and Drug Classi-
fication) receptors report on nomenclature by Masaki et
al. (1994). This report was compiled before the discovery
of the majority of ET receptor antagonists (particularly
nonpeptides) currently used in the characterization of
receptors and now updated in the present review. The
single proposed ETB receptor antagonist included by
Masaki et al. (1994) was subsequently shown to lack
efficacy and was withdrawn by the original discoverers
(Urade et al., 1994). This review reflects both peptide
and nonpeptide ETB antagonists that are the com-
pounds of choice. A second major change is the inclusion
of radioligands that are highly selective for either ETA
(125I-PD151242, 125I-PD164333, and 3H-BQ123 (cyclo-
[D-Asp-L-Pro-D-Val-L-Leu-D-Trp-]) or ETB receptors
[125I-BQ3020 ([Ala11,15]Ac-ET-1(6–21)) and 125I-IRL1620
(Suc-(Glu9, Ala11,15)-ET-1(8–21))] that have been crucial
to consolidating the present classification. Masaki et al.
(1994) referred to a gene encoding a third receptor
(P32940) cloned from the amphibian Xenopus laevis der-
mal melanophores, which was reported to be ET-3 spe-
cific (ET-3 � ET-1), the so-called ETC receptor. However,
to date, molecular and ligand binding techniques have
failed to identify a mammalian homolog. Since NC-
IUPHAR is predominantly interested in human recep-
tors, with an extension to mammalian receptors, this
review follows the recommendation to exclude consider-
ation of nonmammalian receptors in the classification.

ET-1 is the principal isoform in the human cardiovas-
cular system and remains the most ubiquitous, potent,
and unusually long-lasting constrictor of human vessels
discovered. ET-1 is unusual among the mammalian bio-
active peptides in being released from a dual secretory
pathway (Russell et al., 1998). The peptide is continu-
ously released from vascular endothelial cells by the
constitutive pathway, producing intense constriction of
the underlying smooth muscle and contributing to the
maintenance of endogenous vascular tone (Haynes and
Webb, 1994). The peptide is also released from endothe-
lial cell-specific storage granules (Weibel-Palade bodies)
in response to external physiological, or perhaps patho-

physiological, stimuli producing further vasoconstric-
tion (Russell et al., 1998). Thus, ET-1 functions as a
locally released, rather than circulating, hormone, and
concentrations are comparatively low in plasma and
other tissues. ET-2 has been less extensively studied
than other ET peptides, but it is present in human
cardiovascular tissues and was as potent a vasoconstric-
tor as ET-1 in human arteries and veins (Maguire and
Davenport, 1995). Endothelial cells do not synthesize
ET-3, but the mature peptide is detectable in plasma
(Matsumoto et al., 1994) and other tissues, including
heart and brain. ET-3 is unique in that it is the only
endogenous isoform that distinguishes between the two
endothelin receptors. It has the same affinity at the ETB
receptor as ET-1 but, at physiological concentrations,
has little or no affinity for the ETA.

The only endogenous peptides with a high degree of
sequence similarity to the ETs are the sarafotoxins (S6a,
S6b, S6c, and S6d). This family of 21-amino acid (aa)
peptides was originally discovered in the venom of a
snake, Atractaspis engadensis (Takasaki et al., 1988).

II. Cloned Endothelin Receptors

Receptors can be identified by their amino acid struc-
ture and provide unambiguous evidence for expression
of a gene encoding a particular type in specific cells or
tissues. An increasing number of mammalian species
have been studied, but only two ET receptors have been
isolated and cloned (Table 1; Arai et al., 1990; Sakurai et
al., 1990; Adachi et al., 1991; Lin et al., 1991; Nakamuta
et al., 1991; Saito et al., 1991; Baynash et al., 1994). The
deduced amino acid sequences for the two human recep-
tors display only 59% similarity and are shown in Table
2. The amino acid sequences of ETA receptors also differ
between humans and other species, for example by 9%
between human and rat ETA receptors and by 12% for
the ETB. These may contribute to differences in efficacy
and potency of selective agonists and antagonists.

The structures of the mature receptors have been
deduced from the nucleotide sequences of the cDNAs.

1 Abbreviations: ET, endothelin; aa, amino acid(s); NC-IUPHAR,
International Union of Pharmacology Committee on Receptor No-
menclature and Drug Classification; 7TM, seven-transmembrane;
FR139317, N-[(hexahydro-1-azepinyl)carbonyl]L-Leu(1-Me)D-Trp-
3(2-pyridyl)-D-Ala; BQ123, cyclo-[D-Asp-L-Pro-D-Val-L-Leu-D-Trp-];
IRL1620, Suc-(Glu9, Ala11,15)-ET-1(8–21); BQ3020, [Ala11,15]Ac-ET-
1(6–21); PD142893, Ac-(�-Phynyl) D-Phe-L-Leu-L-Asp-L-lle-L-lle-L-Trp;
SB209670, (1RS,2SR,3RS)-3-(2-carboxymethoxy-4-methoxyphenyl)-
5-(prop-1-yloxy)indane-2-carboxylic acid.

TABLE 1
Cloned mammalian endothelin receptors

Potency:

Mammalian

ETA ETB

ET-1 � ET-2 � ET-3 ET-1 � ET-2 � ET-3

Human 427 442
94% 59% 89%

Bovine 91% 427 441 88%
Rat 426 442
Mouse 442
Porcine 427 443
Equine 443

Values are the number of amino acids in the predicted receptor protein. Percent-
ages indicate the degree of sequence similarity between receptor types. References:
Arai et al., 1990; Sakuri et al., 1990; Hosoda et al., 1991; Kozuka et al., 1991; Lin et
al., 1991; Nakamuta et al., 1991; Elshourbagy et al., 1992; Hosoda et al., 1994;
Nishimura et al., 1995; Yang et al., 1998.
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The encoded proteins contain seven stretches of 20 to 27
hydrophobic aa residues in both receptors, consistent
with both subtypes belonging to the seven-transmem-
brane (7TM) domain , G protein-coupled rhodopsin-type
receptor superfamily. Both receptors have an N-termi-
nal signal sequence, which is rare among heptahelical
receptors, with a relatively long extracellular N-termi-
nal portion preceding the first transmembrane domain.
There are two separate ligand interaction subdomains
on each endothelin receptor. The extracellular loops,
particularly between TM 4 to 6, determine selectivity.

At present, there is no justification for further types
beyond the current classification into ETA and ETB in
mammalian tissue. Functional studies have suggested
that PD142893 [Ac-(beta-phynyl) D-Phe-L-Leu-L-Asp-L-
lle-L-lle-L-Trp], a hexapeptide antagonist, can block the
vasodilator actions of ET-1 at endothelial ETB receptors
but not constrictor responses mediated by ETB smooth
muscle receptors (Warner et al., 1993; Douglas et al.,
1995). However, in the ETB receptor gene knockout
mouse, both the PD142893-sensitive vasodilator re-
sponse and the PD142893-resistant contractile response
to the ETB agonist sarafotoxin S6c were completely ab-
sent. These results indicate that the pharmacologically
heterogeneous responses to S6c are mediated by ETB
receptors derived from the same gene (Mizuguchi et al.,
1997). In agreement, a very detailed binding study (in-
cluding PD142893) was unable to distinguish between
ETB receptors expressed by human isolated endothelial
cells compared with smooth muscle cells in culture
(Flynn et al., 1998). Furthermore, in human tissue, both
ETA- and ETB-selective radiolabeled ligands bound with
a single affinity and Hill slopes close to unity (Molenaar
et al., 1992; Davenport et al., 1994, 1998; Davenport,

1997). Similarly, competition studies using unlabeled
ligands provided no evidence for further subtypes (Peter
and Davenport, 1996; Russell and Davenport, 1996).

III. Mammalian Splice Variants of EndothelinA
and EndothelinB Receptors

Alternative splice variants of ET receptors have been
reported but to date these variants either show little or
no change in binding characteristics and their physio-
logical or pathophysiological significance is unclear. The
following is intended to be a guide only because the field
has not developed sufficiently with unequivocal quanti-
tative evidence for significant expression and function in
native tissues rather than artificial cell lines, to make
any firm recommendation for classification.

The existence of alternative splice variants of the ETB
receptor in human and porcine tissue has been reported.
A variant human ETB receptor that results in a 10-aa
increase in the length of the second cytoplasmic domain
has been described (Shyamala et al., 1994). Messenger
RNA measured by reverse transcription-polymerase
chain reaction in a limited number of human tissues was
found only in low abundance in human brain (which
expresses one of the highest densities of ETB receptors)
as well as the heart, lung, and placenta but was not
detected in other species tested (bovine, porcine, and
rat). The increase in amino acids did not result in any
change in either ligand affinities or signal transduction
(cAMP and inositol phosphate turnover), and the phys-
iological importance of this variant receptor is unclear.

Elshourbagy et al. (1996) discovered a second splice
variant from a human placental library. Analysis indi-
cated that the deduced polypeptide was identical to the

TABLE 2
Amino acid sequences of the human ETA and ETB receptors

ETA M-------------------------------------------------ETLCLRASF
ETB MQPPPSLCGRALVALVLACGLSRIWGEERGFPPDRA----TP- LLQTAEIMTPPTKTL
ETA WLALVGCVISDNPERYSTNLSNHVDDFTTFRGTELSFLVTTHQPTNLVLPSNGSMHNYC
ETB W-----------PKGSNASLARSLAPAEVPKGDR----TAGSPPRTISPPP-------C

I
ETA PQQTKITSAFKYINTVISCTIFIVGMVGNATLLRIIYQNKCMRNGPNALIASLALGDLI
ETB QGPIEIKETFKYINTVVSCLVFVLGIIGNSTLLRIIYKNKCMRNGPNILIASLALGDLL

II III
ETA YVVIDLPINVFKLLAGRWPFDHNDFGVFLCKLFPFLQKSSVGITVLNLCALSVDRYRAV
ETB HIVIDIPINVYKLLAEDWPFGAE-----MCKLVPFIQKASVGITVLSLCALSIDRYRAV

IV
ETA ASWSRVQGIGIPLVTAIEIVSIWILSFILAIPEAIGFVMVPFEYRGEQHKTCMLNATSK
ETB ASWSRIKGIGVPKWTAVEIVLIWVVSVVLAVPEAIGFDIITMDYKGSYLRICLLHPVQK
ETA --FMEFYQDVKDWWLFGFYFCMPLVCTAIFYTLMTCEMLNRRNGSLRIALSEHLKQRRE
ETB TAFMQFYKTAKDWWLFSFYFCLPLAITAFFYTLMTCEML-RKKSGMQIALNDHLKQRRE

VI VII
ETA VAKTVFCLVVIFALCWFPLHLSRILKKTVYNEMDKNRCELLSFLLLMDYIGINLATMNS
ETB VAKTVFCLVLVFALCWLPLHLSRILKLTLYNQNDPNRCELLSFLLVLDYIGINMASLNS
ETA CINPIALYFVSKKFKNCFQSCLCCCCYQSKSLMTSVPMNGTSIQWKNHDQNNHNTDRSS
ETB CINPIALYLVSKRFKNCFKSCLCCWCQSFEEKQSLEEKQSCLKFKANDHGYDNFRSSNK
ETA HKDSMN
ETB YSSS

Membrane-spanning domains (I–VII) are shown underlined.
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native ETB sequence except that the 42 aa of the intra-
cellular carboxy terminus of the former was replaced
with an alternative 36-aa sequence, bearing no signifi-
cant homology with other known proteins. Northern blot
analysis indicated an mRNA species of 2.7 kilobases,
which was expressed in all of a limited number of human
tissues tested (lung, placenta, kidney, and skeletal mus-
cle) in addition to mRNA encoding the native ETB re-
ceptor. However, mRNA encoding the variant was not
particularly abundant. The relative ratio of each indi-
vidual variant mRNA was less than 10% of the total ETB
mRNA, with the intriguing exception of skeletal muscle
where it represented more than 40%. Two cell types
were also examined, endothelial and smooth muscle
cells, but only mRNA encoding the native receptor was
detected. The cloned variant receptors expressed in COS
cells displayed similar binding properties for ET pep-
tides compared with expressed native receptors in the
same cells, indicating unsurprisingly that the splice
variant had little or no effect on ligand binding. How-
ever, functional studies showed that ET-stimulated ino-
sitol phosphate accumulation in expressed native recep-
tors was abolished in cells transfected with the splice
variant. These data suggest the difference in the amino
acid sequences between the two receptors may alter
functional coupling in the variant receptor.

Nambi et al. (2000) detected a novel cDNA from an-
other species, porcine cerebellum, that was predicted to
encode an ETB receptor also with alternate splicing of
the carboxy terminus, resulting in a deduced polypep-
tide of 429 aa, 14 residues shorter than the wild-type
receptor. The relative abundance of mRNA encoding the
splice variant compared with the wild-type receptor was
not reported, but mRNA was detected in ETB-rich tis-
sues including porcine lung, kidney, and cerebellum.
However, the splice variant did not alter the binding of
radiolabeled ET-1 or functional coupling when ex-
pressed in COS cells. The lack of effect on inositol phos-
phate accumulation is in marked contrast to the human
variant (see above) previously described by this group.
Combined with the lack of sequence similarity between
the human (38 aa) and porcine (29 aa) carboxy terminal
splice variants, it is not clear whether the porcine vari-
ant is a homolog of the human or whether these are
distinct splice variants.

Cheng et al. (1993) identified cDNA from rat brain,
which they described as producing a receptor protein
with four amino acid substitutions that displayed equal
affinity for the three ET isoforms. However, Cheng et al.
(1993) probably described the correct rat ETB sequence,
correcting a sequencing error in the previously deduced
sequence of Sakurai et al. (1990), for the following rea-
sons. The Cheng et al. (1993) sequence has 3 extra bases
in a 9-base span, which corrects a pair of adjacent frame-
shifts in the Sakurai et al. sequence, making the DNA
sequence identical to the mouse sequence (Hosoda et al.,
1994) in the same region and matching 3 of 4 amino

acids in the human sequence as opposed to 0 of 4 with
the Sakurai et al. sequence. Cheng et al. (1993) also
report a different sequence in the 5�-untranslated re-
gion, which could be an alternative first exon, reflecting
transcription initiating from an alternative promoter. It
is also possible, although less likely, that one of the
5�-untranslated region sequences is an artifact, such as
a chimeric cDNA or sequencing assembly error.

The human ETA receptor gene has been proposed to
give rise to at least three alternatively spliced ETA re-
ceptor transcripts corresponding to deletion of exon 3
(producing a protein with two membrane-spanning do-
mains), exon 4 (producing a protein with three mem-
brane-spanning domains), and exon 3 plus exon 4 (pro-
ducing a protein lacking the third and fourth domain)
(Miyamoto et al., 1996; Bourgeois et al., 1997). Although
alternative transcripts were identified in human tissues
including lung, aorta, and atrium, the truncated recep-
tors when expressed in COS cell lines did not bind ET-1
(Miyamoto et al., 1996), and a physiological role remains
unclear. Intriguingly, mRNA encoding the putative
truncated receptor with the deletion of exon 3 plus 4 was
more abundant than the wild type in human melanoma
cell lines and melanoma tissue (Zhang et al., 1998).

IV. Physiological Role of Receptors

Endothelin receptors are widely expressed in all tis-
sues, which is consistent with the physiological role of
endothelins as ubiquitous endothelium-derived vasoac-
tive peptides, contributing to the maintenance of vascu-
lar tone. In humans, ETA receptors predominate on the
smooth muscle of blood vessels, and the low density of
ETB receptors (�15%) also present on the smooth mus-
cle contributes little to vasoconstriction in either normal
or diseased tissue (Maguire and Davenport, 1995). ETB
receptors are the principal type in the kidney, localizing
to nonvascular tissues. Evidence is emerging that the
ETB receptor functions as a “clearing receptor” to re-
move ET from the circulation. ETB receptors localized to
the single layer of endothelial cells that line all blood
vessels, may play a role in the release of endothelium-
derived relaxing factors, such as nitric oxide and prosta-
noids (Warner et al., 1989), where all three isoforms
have a similar potency (de Nucci et al., 1988). Although
ETA receptors present on smooth muscle cells are
mainly responsible for contraction throughout the hu-
man vasculature, the situation in animals is more com-
plex since the relative contribution from activating con-
strictor ETB receptors can vary, depending on the
species and vascular bed. In some blood vessels, such as
the rabbit saphenous vein, rabbit jugular vein, rat renal
vascular bed, and porcine pulmonary vein, ETB recep-
tors mediate vasoconstriction. In other vessels, ET-1 is
thought to mediate vasoconstriction by activating both
receptors.
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Receptors are also localized to nonvascular structures,
such as epithelial cells, as well as occurring in the cen-
tral nervous system on glia and neurones. Endothelin
stimulates proliferation in a number of different cell
types, including smooth muscle cells (mainly via the ETA
subtype) or astrocytes (ETB). In most of these cells, ET is
thought to be comitogenic, potentiating the actions of
other growth factors such as platelet-derived growth
factor.

V. Endogenous and Synthetic Agonists

ET receptors continue to be classified (Table 3; Dav-
enport, 2000) according to their rank order of potency for
the endogenous ET isoforms. A selective ETA receptor
agonist has not been discovered.

Sarafotoxin S6c is one of the most widely used ETB-
selective agonists, displaying over 200,000-fold selectiv-
ity in the rat (William et al., 1991), although the peptide
is much less selective in human tissues, perhaps reflect-
ing species differences in the receptors (Russell and Dav-
enport, 1996). [Ala1,3,11,15]ET-1 (Saeki et al., 1991), the
linear analog of ET-1 in which the disulfide bridges have
been removed by substitution of Ala for Cys residues, is
ETB-selective. The truncated linear synthetic analogs
BQ3020 and IRL1620 are the most widely used selective
synthetic agonists to characterize ETB receptors. The
compounds cause endothelium-dependent vasodilata-
tion in preparations such as porcine pulmonary artery,
which is consistent with ETB receptor-mediated release
of relaxing factors from the endothelium.

VI. Radiolabeled Agonists

Most studies characterizing and localizing ET recep-
tors use 125I-ET-1, directly labeled via the Tyr13 (Table
3). This ligand binds with the same affinity to both ETA
and ETB receptors and is stable under nonphysiological
binding conditions with little or no degradation of la-
beled ET-1 being detected. 125I-ET-2, 125I-vasoactive in-
testinal contractor (the murine isoform of ET-2), and
125I-sarafotoxin 6b have been labeled and used in satu-
ration assays where they also bind to both receptors
(Davenport and Morton, 1991; Maguire et al., 1996).

ET-3 can be labeled at Tyr6, Tyr13, and Tyr14. Tyr6 is
generally used, as it is more difficult to separate 125I-
ET-3 labeled at the latter two Tyr residues, although all
three ET-3 ligands have similar affinities. The selectiv-
ity of ET-3 for ETB versus ETA receptors is often only
about two orders and it is difficult to precisely delineate
the two receptors using this labeled peptide in satura-
tion assays. ETB receptors are usually characterized
using 125I-BQ3020 (Ihara et al., 1992b; Molenaar et al.,
1992), which binds with subnanomolar affinity to the
ETB receptor, with at least 1500-fold selectivity for this
receptor over the ETA. Alternatively, the truncated an-
alog 125I-IRL1620 can also be used, particularly in ani-
mal tissues (Watakabe et al., 1992).

VII. Antagonists

Antagonists are currently classified as either ETA--
selective, ETB-selective, or mixed antagonists that dis-
play similar affinity for both receptors. The most highly
selective peptide antagonists (4 to 5 orders of selectivity)
for the ETA receptors are the cyclic pentapeptide BQ123
(Ihara et al., 1992a) and the modified linear peptide
FR139317 (N-[(hexahydro-1-azepinyl)carbonyl]L-Leu(1-
Me)D-Trp-3(2-pyridyl)-D-Ala; Aramori et al., 1993). Un-
like peptide antagonists, many nonpeptide ETA recep-
tor-selective antagonists have oral bioavailability and
some may cross the blood-brain barrier. The majority
are more potent, with pA2 values of up to 10 compared
with 7 or 8 for BQ123 or FR139317, but are less selec-
tive, and plasma binding may also be significant in vivo.

VIII. Radiolabeled EndothelinA Selective
Antagonists

125I-PD151242 is widely used to characterize and lo-
calize ETA receptors. This linear tetrapeptide analog of
FR139317, binds with subnanomolar affinity to the ETA
receptor and has about 10,000-fold selectivity for this
receptor in human and animal tissues. A nonpeptide
ETA-selective ligand has also been developed, 125I-
PD164333 (Davenport et al., 1998) with comparable af-
finity as well as a tritiated ligand, 3H-BQ123 (Ihara et
al., 1995). The above ligands are available commercially
either as catalog items or custom syntheses.

IX. EndothelinB Selective Antagonists

A more limited number of peptide (e.g., BQ788) and
nonpeptide (e.g., A192621) ETB antagonists have been
developed, reflecting the lack of clinical need for this
type of compound. They are less potent than ETA antag-
onists and display lower selectivity (usually only 1 to 2
orders of magnitude) for the ETB receptor (Table 3).

X. EndothelinA/EndothelinB Antagonists

The distinction between antagonists that are ETA-
selective and those that block both ETA and ETB recep-
tors is not precise but generally the former display
greater than 100-fold selectivity for the ETA subtype,
and the latter less than 100-fold. These compounds are
seldom reported as having equal affinity for both recep-
tors, and this should be taken into consideration in
experimental designs. Nonpeptide compounds included
bosentan (RO470203, Tracleer; Actelion, San Francisco,
CA) (Clozel et al., 1994), SB209670 (Elliott et al., 1994),
SB217242 (enrasentan; Ohlstein et al., 1996), and
RO610612 (tezosentan; Clozel et al., 1999). Plasma bind-
ing may also be significant in vivo.
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TABLE 3
Classification of endothelin receptors

Receptor ETA

Receptor Code 2.1:ET:1:ETA:
Previous names None
Structural information 7TM

h 427 aa, P25101, chr, 4; (Adachi et al., 1991)
r 426 aa, P26684; (Lin et al., 1991)

Functional assays Vasoconstriction in rat aorta
Agonists Selective: none
Agonist potencies ET-1 � ET-2 � S6b �� ET-3 (human coronary artery)
Antagonist potencies BQ123 (pA2 6.9–7.4; Ihara et al., 1992a)

PD155080 (8–8.5; Maguire et al., 1995)
FR139317 (7.3–7.9; Aramori et al., 1993)
PD156707 (8–8.7; � CI1020; Doherty et al., 1995)
SB234551 (9; Ohlstein et al., 1998)
L754142 (7.7–8.7; Williams et al., 1995)
BMS182874 (6.2; Stein et al., 1994)
A127722 (9–10.5; ABT627; Opgenorth et al., 1996)
TBC11251 (8.0; Wu et al., 1997)
LU127043 (7.3; Raschack et al., 1995)
LU135252; (Münter et al., 1996)

Radioligand assays human, rat and porcine heart; A10 smooth muscle cells
Radioligands 125I-ET-1 (Kd � 0.01–5 nM) Davenport, 1997

125I-PD151242 (0.5 nM) Davenport et al., 1994
125I-PD164333 (0.2 nM) Davenport et al., 1998
3H-BQ123 (3.2 nM) Ihara et al., 1995

Transduction
mechanisms

G protein-coupled: increase in phosphatidyl inositol turnover with elevation of [Ca2�]i; activation of
Ca2� influx

Receptor distribution Mainly vascular smooth muscle and therefore in all tissues receiving a blood supply, including heart,
lung, and brain

Tissue functions Vasoconstriction; positive inotrope, cell proliferation (e.g., smooth muscle, mesangial cells)
Phenotypes Craniofacial and cardiovascular malformations in ETA knockout mice (Clouthier et al., 1998)

Receptor ETB

Receptor Code 2.1:ET:2:ETB:
Previous names None
Structural information 7TM

h 442 aa, P24530, chr. 13; (Nakamuta et al., 1991)
r 441 aa, P21451; (Sakurai et al., 1990)
m 442 aa, P48302; (Baynash et al., 1994)

Functional assays Initial depressor response in vivo, NO release, PI generation; vasoconstriction in some vascular beds
depending on species (e.g., rabbit pulmonary artery)

Agonists selective:
[Ala1,3,11,15]ET-1; (Saeki et al., 1991)
BQ3020; (Ihara et al., 1992b)
IRL 1620; (Takai et al., 1992)
S6c; (William et al., 1991)

Agonist potencies ET-1 � ET-2 � ET-3 � S6b (rat glomeruli)
Antagonist potencies IRL2500 (pA2 7.8; Balwierczak et al., 1995)

RES7011 (6.0; Tanaka et al., 1994)
BQ788 (6.9; Ishikawa et al., 1994)
Ro468443 (pA2 8.1; Clozel and Breu, 1996)
A192621 (8.1; von Geldern et al., 1999)

Radioligand assays Brain, lung, placenta, and kidney
Radioligands 125I-ET-1 (Kd � 0.01–5 nM) Davenport, 1997

125I-BQ3020 (0.1 nM) Ihara et al., 1992b
125I-[Ala1,3,11,15]ET-1 (0.2 nM) Molenaar et al., 1992
125I-IRL 1620 (0.02 nM) Watakabe et al., 1992

Transduction
mechanisms

G protein-coupled: increase in phosphotidyl inositol turnover with elevation of [Ca2�]i; activation of
Ca2� influx

Receptor distribution Vascular, endothelial cells; high densities present in the brain, lung, heart, and intestine
Tissue functions Vasodilatation, bronchoconstriction, vasoconstriction, cell proliferation (e.g., astrocytes)
Phenotypes Polymorphism (N104I; Tanaka et al., 1998) and mutations (S390R and C109R, Tanaka et al., 1998;

W276C, Puffenburger et al., 1994) in human ETB receptor gene in Hirschsprung’s disease. ETB

knockout mice have aganglionosic megacolon (Hosoda et al., 1994; resembling Hirschsprung’s
disease), associated with coat color spotting, and are deficient in sensing inflammatory pain
(Griswold et al., 1999)

chr., chromosome; NO, nitric oxide; h, human; m, mouse; r, rat.
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XI. Conclusions

In humans, ET peptides mediate their actions via only
two receptor types, classified as ETA and ETB. There is
no strong evidence to support the existence of further
receptors in mammals. Further research is required to
establish whether any of the potential splice variants in
the ETB receptor have a physiological or pathophysio-
logical role.
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