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Abstract——Retinoid is a term for compounds that
bind to and activate retinoic acid receptors (RAR�,
RAR�, and RAR�), members of the nuclear hormone
receptor superfamily. The most important endoge-
nous retinoid is all-trans-retinoic acid. Retinoids reg-
ulate a wide variety of essential biological processes,

such as vertebrate embryonic morphogenesis and or-
ganogenesis, cell growth arrest, differentiation and
apoptosis, and homeostasis, as well as their disorders.
This review summarizes the considerable amount of
knowledge generated on these receptors.

Introduction

The retinoic acid receptors (RARs1) mediate both or-
ganismal and cellular effects of retinoids. “Retinoids” is
a generic term that covers compounds including both
naturally dietary vitamin A (retinol) metabolites and
active synthetic analogs (Sporn et al., 1976; Chambon,
2005). Both experimental and clinical studies have re-
vealed that retinoids regulate a wide variety of essential
biological processes, such as vertebrate embryonic mor-
phogenesis and organogenesis, cell growth arrest, differ-
entiation and apoptosis, and homeostasis, as well as
their disorders (Sporn et al., 1976; Blomhoff, 1994;
Sporn et al., 1994; Kastner et al., 1995; Chambon, 2005).
All-trans-retinoic acid (ATRA), the most potent biologi-
cally active metabolite of vitamin A, can both prevent
and rescue the main defects caused by vitamin A defi-

ciency (VAD) in adult animals (Kastner et al., 1995). As
early as 1925 preclinical studies demonstrated that VAD
correlated with the development of squamous metapla-
sia in rodents (Wolbach and Howe, 1925). This and sub-
sequent studies anticipated a strong rationale for the
use of retinoids in the treatment and prevention of can-
cer (Hong and Sporn, 1997). The most impressive exam-
ple of retinoid anticancer activity is the treatment of
patients with acute promyelocytic leukemia (APL), a
subtype of acute myelogenous leukemia, since upon ad-
dition of ATRA to the therapy approximately 72% of
patients with APL can be cured (de The et al., 1990a;
Degos and Wang, 2001; Lin et al., 1999).

RARs

Retinoids exert their pleiotropic effects through the
three RAR subtypes [RAR� (NR1B1), first identified in
1987 independently by Pierre Chambon’s and Ron
Evans’s groups, RAR� (NR1B2), and RAR� (NR1B3)]
that originate from three distinct genes (Giguere et al.,
1987; Petkovich et al., 1987; Chambon, 1996). For each
RAR subtype, several isoforms exist that differ from one
another in their N-terminal region A. These isoforms
arise from the differential usage of two promoters and
alternative splicing. The downstream promoters, re-
ferred to as P2, are induced by retinoids owing to the
presence of a retinoic acid response element (RARE, see
below). There are two major isoforms for RAR� (�1 and
�2) and for RAR� (�1 and �2) and four major isoforms for
RAR� (�1 and �3 initiated at the P1 promoter and �2
and �4 initiated at the P2 promoter). RARs function as
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heterodimers with the three retinoid X receptors [RXR�
(NR2B1), RXR� (NR2B2), and RXR� (NR2B3)] (Man-
gelsdorf and Evans, 1995; Kastner et al., 1997; Mark et
al., 1999). In vitro studies demonstrated that RXR-RAR
heterodimers act as ligand-dependent transcriptional
regulators by binding to the specific RARE DNA se-
quences found in the promoter region of retinoid target
genes. RAREs correspond to direct repeats of polymor-
phic arrangements of the canonical motif 5�-PuG(G/
T)TCA separated by five (generally referred to as DR5)
or one (DR1) or two (DR2) nucleotides (Leid et al., 1992;
Mangelsdorf and Evans, 1995). In DR5 and DR2 ele-
ments, RXRs occupy the 5� element, whereas RARs oc-
cupy the 3� element (5�-RXR-RAR-3�). In contrast, the
polarity of heterodimers is reversed in DR1 elements
(5�-RAR-RXR-3�) (Kurokawa et al., 1994; Rastinejad et
al., 2000; Rastinejad, 2001). Strikingly, and contrary to
DR2 or DR5 context (see below), specific RAR agonists
do not induce the dissociation of corepressors from the
RAR-RXR heterodimer bound to a DR1 leading to re-
pressive activity (Kurokawa et al., 1995). DR5 elements
were identified in the promoters of genes such as the
RAR�2 gene (de The et al., 1990b), several Hox genes
that are key players in the specification of the antero-
posterior axis during development (Boncinelli et al.,
1991; Tabin, 1995; Dupe et al., 1997), and the cyto-
chrome P450RAI (CYP26) gene whose product is impli-
cated in the catabolism of ATRA (Loudig et al., 2000).
DR2 elements were found in the promoters of the cellu-
lar retinol binding protein I (Smith et al., 1991) and
CRABPII (Durand et al., 1992) genes, CRABPs function-
ing in retinoid storage and intracellular transport (for
other retinoid target genes, see McCaffery and Drager,
2000; Laudet and Gronemeyer, 2002).

A molecular mechanism by which RXR-RAR het-
erodimers regulate transcription of target genes has
been proposed (Glass and Rosenfeld, 2000). In the ab-
sence of RAR agonist, the RXR-RAR heterodimer re-
cruits the corepressor proteins NCoR or SMRT and as-
sociated factors such as histone deacetylases (HDACs)
or DNA-methyl transferases that may lead to an inac-
tive condensed chromatin structure, preventing tran-
scription. Upon RAR agonist binding, corepressors are
released, and coactivator complexes such as histone
acetyltransferases or histone arginine methyltrans-
ferases are recruited to activate transcription (Nagy et
al., 1997; Hu and Lazar, 2000; Aranda and Pascual,
2001; Privalsky, 2001; McKenna and O’Malley, 2002;
Perissi and Rosenfeld, 2005). Recently, poly(ADP-ribose)
polymerase 1, which can interact directly with RAR�,
has been shown to be indispensable to RAR-mediated
transcription from the RAR�2 promoter (Pavri et al.,
2005).

Whereas RAR agonists can autonomously activate
transcription through such heterodimers, RXRs are un-
able to respond to RXR-selective agonists (rexinoids) in
the absence of RAR ligand. The molecular basis of this

phenomenon, referred to as RXR subordination or si-
lencing, has been dissected. Agonist binding to RXR is
unable to induce the dissociation of corepressor from the
RXR-RAR heterodimers, preventing coactivator recruit-
ment (Westin et al., 1998; Germain et al., 2002). A
synergistic transcriptional activation is observed when
RAR and RXR partners are simultaneously bound to
agonists, indicating that RXRs are not transcriptionally
silent partners in RXR-RAR heterodimers (Lotan et al.,
1995b).

The essential role of gene silencing by RARs has been
demonstrated for two developmental processes, namely
the skeletal development in the mouse and head forma-
tion in Xenopus (for a review, see Weston et al., 2003),
and is underscored by the pathogenesis of APL in which
an inappropriate repression by oncogenic RAR� fusion
proteins blocks myeloid differentiation leading to APL.
The repressive model of unliganded heterodimers is
based mainly on studies involving RAR�, which can
strongly interact with corepressors. However, recent
findings suggest differences in cofactor stoichiometry
and patterns of interactions among the distinct RAR
subtypes, as unliganded RAR� was shown to poorly as-
sociate corepressors and to be a significant transcrip-
tional activator, contrasting with the strong repressing
activity of unliganded RAR� (Germain et al., 2002; Far-
boud et al., 2003; Hauksdottir et al., 2003).

RARs also integrate a variety of signaling pathways,
notably through posttranslational modifications (Roch-
ette-Egly and Chambon, 2001; Laudet and Gronemeyer,
2002; Rochette-Egly, 2003). Among these modifications,
phosphorylation of RARs has been shown to play a crit-
ical role in the retinoid response. Both AF-1 domains
and LBDs of RARs are substrates for various kinases
activated by a variety of signals (Bastien and Rochette-
Egly, 2004). Another particularly interesting feature of
RARs has been revealed by the studies of several genes
such as osteocalcin or collagenase showing the inhibition
of the transcription factor complex activator protein-1
(AP-1)-driven transactivation by liganded RARs (Lafya-
tis et al., 1990; Nicholson et al., 1990; Schule et al., 1990;
Chen et al., 1995; Resche-Rigon and Gronemeyer, 1998).
However, the mechanism of this cross-talk remains elu-
sive.

Expression and Function of Retinoid Acid
Receptors

In situ hybridization revealed the expression of all
three RARs during mouse embryonic development.
Whereas RAR� is present in most tissues, both RAR�
and RAR� expressions are more selective (Dolle et al.,
1990). These differences in tissue distribution suggest
that RARs have distinct physiological functions.

The specific role of each RAR has been studied in great
detail in the RA-responsive F9 murine embryonal carci-
noma cell line. Interestingly, F9 cells represent a simple
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cell-autonomous model system for analyzing RAR sig-
naling under in vitro conditions that mimics, at least to
some extent, physiological processes occurring during
early embryogenesis (for a review, see Rochette-Egly
and Chambon, 2001). Both synthetic RAR isotype-selec-
tive ligands and knockouts of the individual RARs
through homologous recombination followed by re-ex-
pression of wild-type or mutant RARs have been used.
Overall these experiments revealed important insights
regarding the complexity and the selectivity of retinoid
signaling. In F9 cells RXR-RAR heterodimers are the
functional units that selectively mediate the target gene
expression and the differentiation and the growth arrest
controlled by retinoids, and the AF-2 ligand-dependent
transcriptional activity of RXRs is subordinated to their
RAR heterodimeric partner. More specifically RXR�-
RAR� heterodimers are necessary for growth arrest,
visceral endodermal differentiation, and primitive
endodermal differentiation, whereas RXR�-RAR� is re-
quired for parietal endodermal differentiation in the
presence of cAMP. In addition the different roles of RAR
phosphorylations have been revealed in the context of
the differentiation induction in F9 cells. For instance,
phosphorylation within the RAR� AF-1 activation do-
main is required for primitive endodermal differentia-
tion and for induction of retinoid target genes, but in a
differential promoter-dependent manner, and for degra-
dation of RXR�-RAR� heterodimers by the ubiquitin-
proteasome system (Taneja et al., 1997) (for reviews, see
Rochette-Egly, 2003; Bastien and Rochette-Egly, 2004).
Furthermore, the RAR�2-null F9 cell line exhibits no
growth arrest in response to retinoids in contrast to
wild-type, RAR��/�, and RAR��/� F9 cell lines (Faria et
al., 1999). However, RAR knockouts may generate arti-
factual functional redundancies between individual
RARs that do not exist under wild-type conditions
(Taneja et al., 1996). Overall these investigations with
the F9 cells and previous gene transfection studies dem-
onstrated that the individual RAR subtypes can have
distinct activities even within the same cell line. In the
same line, in vitro studies have shown that, even though
other RAR subtypes are also expressed, RAR� agonists
induce the inhibition of proliferation of some breast can-
cer cell lines and the differentiation of leukemic cells
(Dawson et al., 1995; Chen et al., 1996).

The above studies on F9 were complemented by ge-
netic strategies in the mouse to determine the function
of RARs under physiological conditions. This was mainly
performed by Pierre Chambon’s laboratory by knockout
of the three RAR subtypes as well as the eight RAR
isoforms (see above) through homologous recombination
in embryonic stem cells. In combination with pharmaco-
logical approaches using RAR antagonists to block the
retinoid signaling pathway, the generation of such germ-
line mutations has provided many valuable insights on
the developmental functions of RARs (for comprehensive
reviews, see Mark et al., 2004, 2005). However, because

of the functional redundancies observed between RARs
artifactually generated by knockouts, the number of or-
gans that need retinoids for their development might be
underestimated, and these studies have failed to reveal
many of the physiological functions of RARs, notably in
adult animals. Despite this fact, they provided the ge-
netic evidence that RARs transduced retinoid signals in
vivo and revealed that the various RAR subtypes have
distinct functionalities during embryogenesis. Briefly,
all RAR single-null mutant mice are viable and alto-
gether display some aspects of the postnatal and fetal
VAD syndromes. Specifically, RAR�-null mutant males
are sterile as a result of a degeneration of the seminif-
erous epithelium that inhibits spermatogenesis (Li et
al., 1993; Lufkin et al., 1993). RAR�-null mice display
abnormalities in the vitreous body in eyes (Grondona et
al., 1996) and impaired abilities in locomotion and motor
coordination (Krezel et al., 1998). RAR� inactivation
causes both skeletal and epithelial defects (Lohnes et al.,
1993; Ghyselinck et al., 1997; Chapellier et al., 2002). In
contrast to RAR single-null knockout mice, mutants
lacking a pair of RAR subtypes (double-null mutants) or
two or more isoforms belonging to distinct subtypes ex-
hibit a number of defects leading to a dramatically re-
duced viability and all the known manifestations of the
VAD syndrome. Also such genetic studies have revealed
that retinoid signals are transduced by specific RXR�-
RAR(�, �, or �) heterodimers during development.

Natural Retinoids and Synthetic Analogs

Natural retinoids are produced in vivo from the
oxidation of vitamin A. Synthesis of retinoic acid from
retinol is a two-step process in which alcohol dehydro-
genases perform the oxidation of vitamin A to all-
trans-retinaldehyde, followed by oxidation of the lat-
ter to ATRA by retinaldehyde dehydrogenases (of
which four have been characterized, RALDH1– 4),
which is the rate-limiting step in its production. ATRA
is in turn metabolized by CYP26 to hydroxylated me-
tabolites that can also activate all three RARs (Fujii et
al., 1997; White et al., 1997). However, genetic ap-
proaches using the RALDH1a2 null mutation and the
CYP26 null mutation demonstrated that the main
function of CYP26 is to degrade endogenous ATRA
and to protect cells from excess ATRA rather than to
synthesize active hydroxylated retinoids (Niederrei-
ther et al., 2002). RARs bind with high affinity not
only ATRA but also 9-cis retinoic acid (9CRA), an
isomerization product of ATRA. Whereas ATRA can
bind only to RARs, 9CRA can bind to both RAR and
RXR. However, because 9CRA has not been consis-
tently detected in mammalian cells unless the me-
dium contained ATRA, the consideration of 9CRA as a
natural bioactive retinoid remains controversial (see
“LXIII. Retinoid X Receptors” on page 760 of this
issue).
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Given the importance of the retinoid signaling path-
way, a major research effort has been directed to the
identification of potent synthetic retinoids leading to the
generation of a panel of modulators with activities rang-
ing from agonists to inverse agonists (Klein et al., 1996;
Thacher et al., 2000; Kagechika and Shudo, 2005). Such
configurationally and/or conformationally restricted an-
alogs of ATRA are valuable tools for dissecting the role of
each RAR in several processes. Retinoids were also used
as therapeutic agents for the treatment and prevention
of cancer and hyperproliferative diseases (see below)
(Thacher et al., 2000; Altucci and Gronemeyer, 2001;
Clarke et al., 2004a; Dawson, 2004; Vivat-Hannah and
Zusi, 2005). The crystal structures of the LBDs of all
three RARs bound to various ligands have been solved,
providing molecular details of the determinants of both
subtype selectivity and the agonist/antagonist-induced
structural changes (Renaud et al., 1995; Bourguet et al.,
2000; Germain et al., 2004). These 3D structure deter-
minations together with comparison of RAR sequences
revealed only three divergent residues into the ligand-
binding pockets of all three RARs that are critical for the
recognition of subtype-specific ligands. This finding has
been confirmed by swapping of these residues (Gehin et
al., 1999). Accordingly, it has been possible to generate
entirely subtype-selective ligands but also molecules
that have complex activities such as ligands that are
RAR� and RAR� antagonists and RAR� agonists (Chen
et al., 1995; Germain et al., 2004). Interestingly, selec-
tive retinoids that dissociate the inhibition of AP-1 ac-
tivity from the classic RARE-dependent activation of
transcription have been identified (Fanjul et al., 1994;
Chen et al., 1995). Such compounds are promising ther-
apeutic agents and provide valuable tools to address the
mechanism of the RAR/AP-1 cross-talk, the importance
of which for growth control and cancer is now estab-
lished.

Diseases, Treatments, and Chemoprevention

The RARs have been associated with several diseases
such as cancer or skin disorders on the basis of epide-
miological, clinical, and experimental investigations in
human and animals. Then retinoids are used in a vari-
ety of chemopreventive and chemotherapeutic settings.
The recognized potential of the retinoids in skin disor-
ders is demonstrated by the clinical use of ATRA, 9CRA,
and 13-cis-retinoic acid for dermatological indications
including acne, psoriasis, or photoaging (for reviews, see
Thacher et al., 2000; Zouboulis, 2001; Dawson, 2004). In
addition to these RA isomers, two synthetic retinoids are
available for the treatment of stable plaque psoriasis
[the RAR�/�-selective agonist tazarotene (AGN190168)]
(Marks, 1997; McClelland, 1998) and for acne [ada-
palene (CD271)] (Galvin et al., 1998; Zhu et al., 2001).

Aberrant retinoid signaling mechanisms have been
linked to cancer. The most direct implication of RAR in

human disease is given by APL, which is caused by a
reciprocal chromosomal translocation between RAR�
and promyelocyte leukemia protein (PML) human
genes, leading to the alteration of the signaling of both
RAR� and PML (de The et al., 1990a). The resulting
fusion protein PML-RAR� displays increased binding
efficiency to the transcriptional corepressors NCoR and
SMRT compared with RAR�, inducing the recruitment
of HDAC complexes and the silencing of RAR target
genes. This process, in turn, arrests myelopoiesis at the
promyelocyte stage and prevents the differentiation of
APL cells, which might normally occur in the presence of
endogenous ATRA. Importantly, the use of supraphysi-
ological doses of ATRA has led to remission in patients
with APL, revealing the potential of retinoids for che-
motherapeutic applications. This successful therapy is
supposed to overcome the negative effects of PML-RAR�
by inducing the dissociation of silencing complexes from
PML-RAR� and then the activation of differentiation
processes. In addition, high concentrations of ATRA can
induce postmaturation apoptosis through the induction
of the tumor-selective death ligand tumor necrosis fac-
tor-related apoptosis-inducing ligand (TRAIL, also
called Apo2L), a most promising molecule in cancer re-
search (Altucci and Gronemeyer, 2001). However, with
this therapy some patients with APL have a relapse and
become resistant to ATRA. Interestingly, the RAR�-se-
lective agonist Am80 can induce complete remission in
patients previously treated by ATRA who have had re-
lapses, highlighting interest on the generation of even
more selective retinoids (Kagechika et al., 1988; Tobita
et al., 1997; Takeuchi et al., 1998).

The RAR� gene can translocate with other genes, such
as the promyelocytic leukemia zinc finger (PLZF) gene
product, that are insensitive to ATRA. In the case of the
PLZF-RAR� fusion protein, the PLZF moiety is consti-
tutively associated to corepressor complexes indepen-
dently of ATRA, which is supposed to lead to the ATRA
insensitivity.

Strong evidence supports the idea that retinoids phar-
macologically prevent carcinogenesis in a variety of tis-
sues. Retinoids are used as chemopreventive agents for
the treatment of preneoplastic diseases such as oral
leukoplakia, cervical dysplasia, and xeroderma pigmen-
tosum (Lotan, 1996; Lippman and Lotan, 2000; Sun and
Lotan, 2002). However, the promises of preclinical stud-
ies demonstrating the efficacy of retinoids did not
consistently translate into clinical response for the
treatment of other solid tumors. Interestingly, both ex-
perimental investigations and analyses of the natural
course of solid human tumor development suggest that
RAR� may act as a potential tumor suppressor. Indeed,
its expression is selectively lost in many neoplastic tis-
sues, including non-small cell lung cancer, squamous
cell carcinomas of the head and neck, and breast cancer
(Castillo et al., 1997; Widschwendter et al., 1997; Xu et
al., 1997a,b; Picard et al., 1999). The restoration of
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RAR� expression with concomitant retinoic treatment
was associated with a clinical response of oral leukopla-
kia (Lotan et al., 1995a). Furthermore, a recently iden-
tified novel RAR� isoform, referred to as RAR�1�, which
apparently arises from an alternative splicing of RAR�1,
may function as a tumor suppressor gene in the lung
with biological functions distinct from those of previ-
ously known RAR� isoforms (Petty et al., 2005).

Ongoing Research

Despite their promising therapeutic value for various
indications, the administration of retinoids is strongly
limited by severe associated toxic side effects due to the
pleiotropic functions of these agents. These effects in-
clude teratogenicity, increases in serum triglycerides,
mucocutaneous cytotoxicity, headache, and bone toxic-
ity. Therefore, research in progress on retinoid therapy
is focused on overcoming both the unwanted side effects
of currently used retinoids in the clinic and intrinsic or
acquired ATRA resistance in patients and their conse-
quences (Freemantle et al., 2003). First, more work is
required to understand better the molecular pathways
induced by RARs, notably those underlying the antipro-
liferative and anticancer activities of retinoids, even
though multiple mechanisms that modulate the complex
retinoid signaling pathways and their cross-reactions
are gradually being elucidated. For instance, the in-
creased understanding of the regulation of RAR activi-
ties through phosphorylation should provide new in-
sights in the developmental processes and in cancer
(Bastien and Rochette-Egly, 2004).

Second, combinations with other chemopreventive
agents that may also enhance the clinical efficacy of
retinoids are increasingly sought. Indeed, increased un-
derstanding of epigenetic dysregulations that occur dur-
ing the development of carcinogenesis suggest that
ATRA resistance might be combatted by the use of epi-
genetic modifying agents such as HCAC inhibitors or
DNA methyl transferase inhibitors in combination with
retinoids, some of which are in clinical trials (Bachman
et al., 2003; Egger et al., 2004; Feinberg and Tycko,
2004; Altucci et al., 2005). Several studies revealed other
candidates for combinations treatment such as tumor
necrosis factor or TRAIL (Altucci and Gronemeyer,
2001; Zusi et al., 2002). Interestingly the recent demon-
stration of retinoid-induced tumor suppression activities
through a network involving the tumor suppressor in-
terferon-regulator factor 1 and TRAIL provides new av-
enues for the therapeutic combination of retinoids and
interferons that is already being tested clinically (Lipp-
man et al., 1997; Clarke et al., 2004b, 2005).

Lastly, the improved use of retinoids in therapy will
require the generation of novel synthetic RAR ligands
harboring increased selective properties both to de-
crease the adverse effects associated with retinoid treat-
ments and to overcome resistance to retinoids. Among

the novel compounds, atypical retinoids, such as N-(4-
hydroxyphenyl) retinamide or CD437, have emerged as
potential anticancer agents because of their antiprolif-
erative and apoptotic actions with little toxicity com-
pared with classic retinoids (Ortiz et al., 2002; Dawson,
2004). Despite these compounds being classified as reti-
noids because of their binding to RARs, their antitu-
moral effects, at least in part, seem to be independent of
the RXR-RAR heterodimer function (Holmes et al.,
2000). Furthermore, the development of RAR�-selective
ligands will be of prime importance because of the tu-
mor-suppression potential of RAR�.

Tables 1 through 3 summarize the major molecular,
physiological, and pharmacological properties of RAR
subtypes.
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TABLE 1
RAR�

Receptor Nomenclature NR1B1
Receptor code 4.10.1:RA:1:B1
Molecular information Hs: 462aa, P10276, chr. 17q21.11,2

Rn: 459aa, chr. 101,3

Mm: 462aa, P11416, 11 D1,4–6

DNA binding
Structure Heterodimer, RXR partner
HRE core sequence PuG(G/T)TCA (DR1, DR2, DR5)

Partners Cyclin H/cdk7/TFIIH (physical, functional): TFIIH phosphorylates RAR�1 in its A/B region
(Ser77) by cdk7 subunit7–9; AP-1 (physical, functional): RAR inhibits AP-1-driven
transactivation, and AP-1 represses RAR-mediated transcription10–14; CRABPII (physical,
functional): can enhance the transactivation by RAR�-RXR on DR5 element15; PARP-1
(physical, functional): indispensable to RAR�-mediated transcription from the RAR �216

Agonists 9-cis-Retinoic acid (0.3 nM),* all-trans-retinoic acid (0.4 nM),* AGN195183 (3 nM) �Kd�17–22;
Am580 (36 nM), TTNPB (36–72 nM), Am80 (124 nM) �IC50�19–23; BMS75324

Antagonists BMS614 (2 nM), BMS493 (4.2 nM), AGN193109 (2–16 nM), Ro-41-5253 (60 nM)
�IC50�19,22,24–28

Coactivators NCOA1, NCOA2, NCOA3, PPARBP, CREBBP, p30012,29–39

Corepressors NCOR1, NCOR240–44

Biologically important isoforms RAR�1 {Hm, Mm}: transcribed from the promoter P1 and differs from RAR�2 in the A
domain—RAR�1 is phosphorylated by cdk7/TFIIH (Ser77)5,45,46; RAR�2 {Hs, Mm}: in
contrast with the RAR�1 isoform, RAR�2 is transcribed from downstream promoter P2,
which contains a DR5 and is inducible by retinoid5,47

Tissue distribution Majority of tissues {Hs, Mm, Rn} �Northern blot, in situ hybridization, Western blot�6,48–54

Functional assays Inhibition of cellular proliferation of the MCF-7 breast cancer cell line expressing the
estrogen receptor {Hs}55; induction of maturation of acute myeloid leukemia cell lines
(NB4, PBL985, U937, HL60) using the histological nitro blue tetrazolium reaction and
analysis of CD11c integrin expression by direct immunofluorescence {Hs}21,32,56,57;
parietal endodermal differentiation in the presence of cAMP of F9 murine embryonal
carcinoma cell line {Mm}58

Main target genes Activated: CYP26 {Hs, Mm, Rn},59 RAR�2 {Hs, Mm, Rn}26,57,60,61, Hoxa-1 {Mm}51,60,62,
CRBP1 {Mm}60,63, CRABPII {Mm}60,64

Mutant phenotype Abnormalities observed: growth retardation, male sterility, impaired alveolar formation;
congenital defects observed: webbed digits, homeotic transformations and malformations
of cervical vertebrae, pterygoquadrate cartilage, malformations of the squamosal bone;
note that both the specific RAR�1-null and RAR�2-null mutants are apparently normal
{Mm} �knockout�34,65–67

Human disease APL, a subtype of acute myelogenous leukemia: caused by several translocations that
implicate the human RAR� gene; the reciprocal chromosomal translocation between
RAR� and PML human genes produces a fusion protein PML-RAR�; the use of
supraphysiological doses of ATRA lead to remission in patients with APL; in contrast, the
fusion protein resulting from the translocation between RAR� and the PLZF is
insensitive to ATRA treatment68–70

aa, amino acids; chr., chromosome; HRE, hormone response element; PARP-1, poly(ADP-ribose) polymerase 1; TTNPB, 4-�(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-
2-naphthalenyl)-1-propenyl�benzoic acid; PPARBP, peroxisome proliferator-activated receptor binding protein; CREBBP, cAMP response element-binding protein-binding
protein.

* Radioligand.
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TABLE 2
RAR�

Receptor Nomenclature NR1B2
Receptor code 4.10.1:RA:1:B2
Other names Hap
Molecular information Hs: 455aa, P10826, chr. 3p241,26

Rn: chr. 1526

Mm: 482aa, P22605, chr. 14 A26,28,45,46

DNA binding
Structure Heterodimer, RXR partner
HRE core sequence PuG(G/T)TCA (DR5)

Partners AP-1 (functional): RAR� inhibits AP-1-driven transactivation4,30

Agonists 9-cis-Retinoic acid (0.2 nM),* all-trans-retinoic acid (0.4 nM)* �Kd�14,15,29,37; BMS641 (2.5 nM),
TTNPB (5–22 nM) �IC50�10,14,15,29,37

Antagonists BMS493 (2.9 nM), AGN193109 (2–7 nM) �IC50�9,16,17,37

Coactivators NCOA1, NCOA2, NCOA3, PPARBP3,8,9,20–23,27,31,33,38,44

Biologically important isoforms RAR� 1 {Hs, Mm}: differs from RAR� 2 in the A domain46; RAR� 2 {Hs, Mm}: in contrast to the
RAR� 1 isoform, RAR� 2 is transcribed from promoter (the downstream one, P2) that
contains a DR5 and is inducible by retinoid46; RAR� 3 {Mm}: the RAR� 3 isoform is
generated from the promoter P1 and differs from RAR� 1 by its N-terminal part—not
detected in human46; RAR� 4 {Hs, Mm}: RAR� 4 is generated from the promoter P2 and
differs from RAR� 2 by its N terminus that initiates a non-AUG codon, CUG28

Tissue distribution Brain, liver, kidney, heart, pituitary, colon, uterus, ovary, testis, prostate, adrenal, eye {Hs,
Mm, Rn} �Northern blot, in situ hybridization, Western blot�5–7,13,19,35,36

Mutant phenotype Abnormalities observed: growth retardation, behavioral defects, altered alveolar formation;
congenital defects observed: homeotic transformations and malformations of cervical
vertebrae, persistence and hyperplasia of the primary vitreous body; note that specific RAR�
1/� 3-null mutants are apparently normal, and specific RAR� 2/� 4-null mutants exhibited
persistence and hyperplasia of the primary vitreous body {Mm} �knockout�11,12,18,24,25

Human disease Human nonsmall cell lung cancer: associated with loss of RAR� expression2,32,43; human
esophageal cancer: associated with loss of RAR� expression34; human breast cancer:
associated with loss of RAR� expression39–42

aa, amino acids; chr., chromosome; HRE, hormone response element; TTNPB, 4-�(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl�benzoic acid;
PPARBP, peroxisome proliferator-activated receptor binding protein.
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TABLE 3
RAR�

Receptor Nomenclature NR1B3
Receptor code 4.10.1:RA:1:B3
Molecular information Hs: 454aa, P13631, chr. 12q131–3

Rn: chr. 73–5

Mm: 458aa, P18911, chr. 15 F3,6

DNA binding
Structure Heterodimer, RXR partner
HRE core sequence PuG(G/T)TCA (DR2, DR5)

Partners AP-1 (functional): RAR� inhibits AP-1-driven transactivation7–11; cdk7/TFIIH (physical,
functional): TFIIH phosphorylates RAR� 2 in its A/B region (Ser68) by cdk7 subunit12,13; p38
MAPK (functional): required for RA-induced RAR� degradation and transactivation13–15;
SUG1 (physical, functional): required for RA-induced RAR� degradation and
transactivation13–15; vinexin � (physical, functional): interacts with AF-1 domain of RAR� and
represses RAR-mediated transcription16

Agonists All-trans-retinoic acid (0.2 nM),* 9-cis-retinoic acid (0.8 nM)* �Kd�17–21; TTNPB (15–26 nM),
CD666 (68 nM), BMS270394 (528 nM), BMS961 (500 nM) �IC50�18–23

Antagonists AGN193109 (3–7 nM), BMS493 (98 nM), CD2665 (81 nM) �IC50�21,24–27

Coactivators NCOA1, NCOA2, NCOA34,28–34

Corepressors NCOR1, NCOR229,31,35–38

Biologically important isoforms RAR� 1 {Hs, Mm}: differs from RAR� 2 in its N-terminal domain6,39; RAR� 2 {Hs, Mm}: the
expression of RAR� 2 is regulated through a specific RARE element; RAR� 2 is
phosphorylated by p38 MAPK (Ser66) and by cdk7/TFIIH (Ser68) {Hs, Mm}6,12,14,15,40–43

Tissue distribution Highly expressed in the epidermis {Hs, Mm} �Northern blot, in situ hybridization, Western
blot�2,6,41,44–47

Functional assays Primitive endodermal differentiation and morphological differentiation of the F9 murine
embryonal carcinoma cell line {Mm}48–50

Main target genes Activated: laminin B1 {Mm}50, RAR� 2 {Hs, Mm, Rn}48,51,52, Hoxa-1 {Mm}4,48,53, CRBP1
{Mm}48,54, CRABPII {Mm}48,55; repressed:

Mutant phenotype Abnormalities observed: growth deficiency, male sterility, squamous epithelia of various
epithelia, impaired alveolar formation; congenital defects observed: webbed digits, homeotic
transformations and malformations of cervical vertebrae, malformed laryngeal cartilages and
tracheal rings, agenesis of the Harderian glands, agenesis of the metopic pillar of the skull,
abnormal differentiation of granular keratinocytes; note that specific RAR� 2-null mutants are
apparently normal, and specific RAR� 1-null mutants exhibited a growth deficiency,
malformations of cervical vertebrae, and abnormal differentiation of granular keratinocytes
{Mm} �knockout�56–60

Human disease Photoaging: level of RAR� is reduced after UV treatment of human skin61–63

aa, amino acids; chr., chromosome; HRE, hormone response element; TFIIH, transcription factor IIH; TTNPB, 4-�(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-
naphthalenyl)-1-propenyl�benzoic acid.
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