












nist binding, stabilizing mutations, and T4 lysozyme
insertion in between H-V and H-VI. Although it is pro-
posed that the antibody in the case of the antibody
�2-adrenergic receptor structure and the Gt peptide in
the opsin* and opsin derived Meta II-like structures acts
as a G protein surrogate, the validity of this hypothesis
remains to be seen (Choe et al., 2011; Rasmussen et al.,
2011; Standfuss et al., 2011). Upon close examination,
there is a lack of concordance in the degree of structural
changes observed upon activation in the recently deter-
mined agonist-bound GPCR structures that probably
reflects the structural plasticity needed for the varying
levels of activity and regulation of the agonist induced
response. Additional insight into the functional mechan-
ics of these targets will likely be afforded by determining
structures of important signaling states involving not
only agonist-bound receptor but also G protein (Jastr-
zebska et al., 2010).

The problem becomes more difficult once the influence
upon ligand binding from such issues as allosterism,
ligand trafficking, and the conformational continuum
that accompanies ligand binding are considered. As the
diversity of available receptor-ligand structures in-
creases and new functionally important commonalities
(presumably) reveal themselves, it is hoped that the
predictive performance of homology modeling will im-
prove. More detailed knowledge of fold-space gained
through structural genomics projects and recent at-
tempts to computationally solidify more precise homol-
ogy models will further extend the utility of homology
modeling (Simons et al., 1999; Baker and Sali, 2001; Lee
et al., 2001; Misura et al., 2006), ultimately allowing
drug design in silico, circumventing the requirements
for a starting crystal structure.

D. Structure-Function Campaigns Identify Hotspots:
Common G Protein-Coupled Receptor Functional
Moieties, Trigger Mechanisms, and Long-Awaited
High-Resolution Three-Dimensional Structures

In addition to ground-state bovine rhodopsin, struc-
tures of heterologously and natively expressed GPCRs
have been determined. Examples include light-activated
rhodopsin (Salom et al., 2006), ligand-free bovine opsin
(Park et al., 2008; Scheerer et al., 2008), heterologously
expressed constitutively active mutant rhodopsin
(Standfuss et al., 2011), proteolyzed squid rhodopsin
(Murakami and Kouyama, 2008; Shimamura et al.,
2008), human �2-adrenergic receptor-T4-lysozyme fu-
sion protein with inverse agonist bound (Cherezov et al.,
2007; Hanson et al., 2008), human �2-adrenergic recep-
tor-T4-lysozyme fusion with camelid antibody and ago-
nist bound (Rasmussen et al., 2011), mutant turkey
�1-adrenergic receptor with full and partial agonists and
antagonist bound (Warne et al., 2008, 2011), mutant
human A2A-adenosine T4-lysozyme fusion protein with
agonist and antagonist bound (Jaakola et al., 2008; Xu et
al., 2011), C-X-C chemokine receptor type 4 T4-lysozyme

fusion with multiple antagonists bound (Wu et al.,
2010), and D3-dopamine-T4-lysozyme fusion with antag-
onist bound (Chien et al., 2010). Although overall se-
quence identity between these GPCRs is low (e.g., 15%
identity between bovine rhodopsin and �2-adrenergic
receptor), comparative alignments clearly reveal con-
served amino acid residues and motifs known to be es-
sential to GPCR function as well as an obvious conser-
vation of the topology and seven-transmembrane (TM)
architecture (Mirzadegan et al., 2003; Madabushi et al.,
2004). This conservation of secondary structure provides
the precise spatial positioning needed for the functional
arrangement of these few sequentially discontinuous
motifs. Thus, an examination of those receptors for
which structural solutions exist reveals a remarkably
conserved structural core expected to be applicable to
the entire superfamily, with even higher degrees of sim-
ilarity among subfamily A members (Mirzadegan et al.,
2003; Lodowski and Palczewski, 2009; Lodowski et al.,
2009; Mustafi and Palczewski, 2009) (Fig. 8).

The tertiary structure of the receptor is demarcated
by its ellipsoidal shell. Dimensions of the ellipsoid are
�75 to 80 Å orthogonal to the membrane and �50 � 35
Å wide in the plane of the membrane. The surface area

FIG. 8. Information flow during rhodopsin activation. Upon absorp-
tion of a photon of light, the 11-cis-retinylidene chromophore is isomer-
ized to its all-trans-state, driving all subsequent activation steps. Depro-
tonation of the Schiff base linkage follows photoisomerization, and
through small-scale changes within the transmembrane region, the acti-
vation signal is propagated to the D(E)RY (Glu134, Arg135, and Tyr136)
region, resulting in disruption of the “ionic lock” and uptake of a proton
from the cytoplasm (most likely onto Glu181, which protrudes toward the
chromophore from the one of the �-strands of the plug domain), leading to
fully activated meta II rhodopsin. Meta ll catalyzes nucleotide exchange
upon the G protein �-subunit of transducin heterotrimers, propagating
the activation signal inside the cell. Three regions important in activation
and other GPCR functions are highlighted within the transmembrane
region: the D(E)RY motif, the NPxxYx(5,6)F motif. and the chromophore-
binding site. The three insets detail the interactions present within these
conserved motifs. For ease of interpretation, helices are depicted in the
following colors: H-I, red; H-II, orange; H-III, yellow; H-IV, lime green;
H-V, dark green; H-VI, teal; H-VII, blue; and H-8, purple.
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of those portions projecting from the membrane is
�1200 Å2, the volume and surface area of the cytoplas-
mic projection typically exceeding the extracellular pro-
jection. For some GPCRs, the extracellular portion con-
sists of a separate large ligand-binding domain (e.g.,
glutamate and Ca2� receptors) and dominates the recep-
tor’s available hydrophilic surface area. The overall el-
lipsoidal cross-section of GPCRs results from the specific
arrangement of the seven-transmembrane �-helices,
each of which must be �20 residues long or more to
completely traverse the lipid bilayer (Nyholm et al.,
2007). Inspection of GPCR hydrophobicity plots and
newly available three-dimensional coordinates show
these helices to vary in length from 22 to 33 residues,
including kinks in the helix as it bisects the plasma
membrane.

These kinks and intrahelical packing cause the helices
to bend and tilt away from the membrane normal vector
(Fig. 8). The tilting and bending of helices, as well as
other energetically unfavorable helical disruptions, are
counteracted by internal hydrogen bonding between sur-
rounding residues. Further bends or kinks are induced
through Gly-Gly, Pro-Pro, or Gly-Pro segments, ensur-
ing that the helical structure is disrupted. In general,
the calculated tilt angle for each transmembrane helix
(H) is 22 � 12° (Nyholm et al., 2007). In rhodopsin, the
strongest helical distortion is imposed by Pro267 in H-VI,
one of the most highly conserved residues among all
GPCRs. The presence of Pro291 and Pro303 in the region
around the Lys296 retinal attachment site elongates H-
VII. Pro303 is part of the highly conserved NPxxYx(5,6)F
motif in subfamily A GPCRs.

The cytoplasmic face of the GPCR consists of three
loops encompassing residues Gln64–Pro71, Glu134–
His152 and Gln225–Arg252, the nontransmembrane H-8
and the C-terminal tail. Residues of the highly con-
served D(E)RY motif found in almost all subfamily A
GPCRs, is located in this region (Glu134-Arg135-Tyr136 in
rhodopsin) (Mirzadegan et al., 2003). A second highly
conserved motif is the NPxxYx(5,6)F motif, which is
found near H-8.

1. The D(E)RY Motif within G Protein-Coupled Recep-
tors. The highly conserved D(E)RY motif forms an
“ionic lock” at the cytoplasmic end of H-III thought to
retain the GPCR in the inactive state through the salt
bridge between the Arg residue in the motif and a con-
served Glu or Asp residue in H-VI, thereby holding H-III
and H-VI together (e.g., Arg135 forms a salt bridge with
Glu247 in bovine rhodopsin) (Fanelli and De Benedetti,
2005). Mutagenesis data combined with FTIR analysis
suggests that the ionic lock represents an energetic bar-
rier that must be broken to achieve the activated state
(Alewijnse et al., 2000; Fritze et al., 2003; Mahalingam
et al., 2008; Schneider et al., 2010). Most but not all
GPCRs contain this motif, suggesting that it plays an
important but not wholly indispensible role in the acti-
vation process (Flanagan, 2005).

In rhodopsin, the carboxylate of Glu134 interacts with
Arg135, thus positioning Arg135 to form a salt bridge with
Glu247 and interact with Thr251 in H-VI. Recent work
demonstrates the critical roles of Glu134 and Arg135 of
the conserved D(E)RY motif in rhodopsin activation
(Lüdeke et al., 2009) (Fig. 8). Disruption of the salt
bridge between Arg135 and Glu247 is considered a hall-
mark of progression from the meta I to the meta II active
signaling state. Protonation of the acidic Glu134 residue
within this motif is thought to accompany activation
(Scheer et al., 1997; Vogel et al., 2008; Lüdeke et al.,
2009; Ye et al., 2009), because the protonation state of
Glu134 is sensitive to its environment, so its protonation
may accompany or even take part in the activation process
(Mahalingam et al., 2008). Although changes in protona-
tion states of these conserved acidic residues have been
linked to the activation process, the mechanism linking the
protonation state of the ionic lock to the deprotonation of
the Schiff base linkage that accompanies attainment of the
Meta II state is largely uncharacterized.

The bond between the Asp (or Glu) residue and the
Arg within the D(E)RY region is absent in many of the
recently determined structures of nonrhodopsin GPCRs.
Each structure contains a bound agonist, an inverse
agonist, or an antagonist and is stabilized by mutational
modification of the receptor backbone. This observation
led to the speculation that the actual lock might be
unique to rhodopsin, so although the motif was present
in most GPCRs, it cannot actually act as a functional
“lock” (Cherezov et al., 2007; Rasmussen et al., 2007).
This supposition prompted a series of molecular dynam-
ics experiments for each of these receptors, all of which
revealed that the ionic lock, even if absent (disrupted) in
the crystal structure, quickly reforms once restraints
imposed by the T4-lysozyme fusion and crystal lattice
are removed (Dror et al., 2009; Lyman et al., 2009; Vanni
et al., 2009; Jojart et al., 2010; Romo et al., 2010; Fanelli
and Felline, 2011). This does not mean that the observed
disruption of the ionic lock is an entirely artificially
induced state; partial occupancy of a disrupted ionic lock
state might explain the agonist-independent activation
observed for these receptors (Fig. 8). Recent CXCR4
structures (Wu et al., 2010) add to the confusion as the
Glu/Asp residue of the lock is a Lys residue in CXCR4. In
the highest resolution structure (PDB ID 3ODU), Arg134

is bound to H-VI through two crystallographically ob-
served waters, which could perform a role similar to that
of the Glu residue in rhodopsin. Confounding matters
further, the ionic lock is intact in the dopamine D3
receptor structure when bound to an antagonist, sug-
gesting that the disruption of this motif may be an
artifact in the other GPCR structures solved to date
(Chien et al., 2010). In recent adrenergic receptor-ago-
nist structures this motif was found to be disrupted, but
because this motif was disrupted in the original antag-
onist-bound structures, it is difficult to gauge whether
this disruption is a manifestation of the construct/crys-
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tallization conditions, a consequence of agonist binding
or inherent agonist-independent activation, or some
combination of these factors. Overall, the preponderance
of biochemical evidence is that the ionic lock is a com-
mon feature of class A GPCRs and is likely important in
transmitting conformational changes.

2. The NPxxYx(5,6)F Motif within G Protein-Coupled
Receptors. Another well conserved region among GPCRs
is the NPxxYx(5,6)F sequence (NPVIY in rhodopsin) near
the cytoplasmic end of H-VII, which is likely to be in-
volved in G protein coupling. Side chains of the two polar
residues in this region, Asn302 and Tyr306 in bovine
rhodopsin, project toward the transmembrane core of
the protein and Phe313 in H-8, respectively. The hy-
droxyl group of Tyr306 is close to Asn73 and is engaged in
the interhelical hydrogen-bonding constraints between
H-VII and H-II, which most likely emanate from water
molecules. This hydrogen bonding interaction has been
postulated to affect G protein coupling directly (Mietti-
nen et al., 1997; Mills et al., 2000). Furthermore, hydro-
phobic interactions between Tyr and Phe residues link
H-8 to the end of H-VII, allowing changes in the position
of H-VII to induce movements of H-8 upon activation
(Fritze et al., 2003). In higher resolution structures of
rhodopsin, a cluster of three waters appears to link H-I,
H-II, and H-VI (Okada et al., 2002; Faussner et al.,
2005). Further in-depth examination of bound water
interactions in this vicinity reveals that a similar net-
work of waters interact with the Asn residue (Angel et
al., 2009b). However, the interaction between Asn73 and
Tyr306 observed in rhodopsin crystal structures has not
been seen in any other determined GPCR structure,
suggesting this may be a rhodopsin-specific interaction
(Fig. 8), but the “local” structure within this region is
similar in all GPCRs.

3. Conservation of Water and Water-Binding Sites
within the Transmembrane Domain. In rhodopsin,
with the exception of Lys296, which is covalently modi-
fied with chromophore and residues Glu122 on H-III and
His211 on H-V, which are involved in salt bridges, all
charged residues in the transmembrane region interact
with crystallographically observed waters. Conservation
of a subset of these waters and associated charged res-
idues has been observed in all high-resolution GPCR
structures solved to date, suggesting that these waters
form a network of allosteric effectors upon which the
activation process relies (Fig. 9) (Angel et al., 2009a,b;
Jardón-Valadez et al., 2009; Orban et al., 2010). Radio-
lytic footprinting studies indicate that these waters are
not freely exchangeable with bulk solvent and that upon
activation undergo significant rearrangements, further
supporting their role as noncovalently bound prosthetic
groups (Angel et al., 2009b; Orban et al., 2010). Further
work probing the exact roles that these waters play in
the activation process is required.

4. Ligand-Binding Domains of G Protein-Coupled Re-
ceptors. GPCRs are activated by chemically diverse

classes of ligands that bind either to sites located within
the receptor’s transmembrane region, on its extracellu-
lar face, or within distinct extracellular ligand binding
domains. To date, all structurally determined GPCRs
are activated by binding within the transmembrane re-
gion. For rhodopsin, the 11-cis-retinal chromophore co-
valently linked to residue Lys296 in H-VII acts as an
inverse agonist, locking the receptor in its inactive state.
The retinal-binding cavity is closer to the extracellular
surface than to the cytoplasmic surface; structural and
mutational data reveal that the ligand-binding cavity is
located in a grossly similar position for many GPCRs
including those that bind amine ligands (e.g., the �2-
adrenergic receptor). The �1- and �2-adrenergic recep-
tors, which both bind epinephrine, constitute an intrigu-
ing case. The immediate residues that form the binding
pocket for this hormone are identical, but the two recep-
tors have distinctly different affinities for norepineph-

FIG. 9. Homology of water-binding sites within the transmembrane
region of GPCRs. Although overall sequence similarity, with the excep-
tion of globally conserved GPCR motifs, is low within the transmembrane
region, comparison of the positions of crystallographically observed (or-
dered) water molecules reveals several clusters of solvent in similar
positions. These similarities and the conservation of amino acid side
chains that interact with these waters suggest a functional role for these
water molecules. Water molecules from rhodopsin (PDB ID 1U19) are
depicted in red, �2-adrenergic receptor (PDB ID 2RH1) in green, A2A-
adenosine receptor (PDB ID 3EML) in yellow, �1-adrenergic receptor
(PDB ID 2VT4) in blue, and CXCR4 (PDB ID 3ODU) in cyan.
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rine, suggesting that residues that do not directly inter-
act with the ligand-binding site play a role in ligand
selectivity (Fig. 10). The amino-terminal region and ex-
tracellular loops of rhodopsin form a plug covering the
retinal-binding cavity and contacting the chromophore,
shielding the retinal binding pocket from the extracel-
lular milieu, a feature unique to rhodopsin. Because the
large majority of GPCRs must bind ligand supplied
through systemic circulation, this plug is absent and is a
likely site for ligand entry.

For many GPCRs that recognize amino acid (e.g.,
metabotropic glutamate receptor), peptide (e.g., vasoac-
tive intestinal peptide 1 receptor) or large protein hor-
mones (e.g., thyroid stimulating hormone receptor), the
ligand-binding site is located on a separate domain lo-
cated in the extracellular space. Although several struc-
tures of these isolated domains have been determined in
complex with their physiological ligands as well as with
inhibitors, the mechanism by which such ligand binding
is coupled to activation of the receptor remains unclear
(Kunishima et al., 2000; Fan and Hendrickson, 2005;
Parthier et al., 2007; Pioszak et al., 2008, 2010; ter Haar
et al., 2010). Although the mechanism by which these
GPCRs with large extracellular domains transfer their
activation signal to the 7-TM portion of the GPCR has
not been fully elucidated, some conclusions can be
drawn. Experiments performed with metabotropic glu-
tamate receptors mutated to have only one functional
ligand binding domain indicate that agonist activates

both protamers with equal efficiency (Brock et al., 2007).
Because these disparate ligand-binding domains are
linked to the 7-TM core via a single �-helix and these
receptors are constitutively dimeric, it is likely that the
activation signal is imparted through a mechanism that
relies upon intersubunit rearrangement(s) to drive the
changes in the 7-TM domain necessary to activate G
protein.

Considering the transmembrane architecture that all
GPCRs are expected to share, the conservation of motifs
within the transmembrane domain, the variability of
structural rearrangements that are observed in agonist
bound GPCR structures, the conservation of ordered
solvent binding sites within the transmembrane region,
and likely mechanism of activation for class B and C
GPCRs containing large extracellular ligand binding do-
mains, it becomes possible to propose the following con-
clusions about the activation process: 1) Rather than a
single distinct activated state that occurs upon binding
of agonist, there exist multiple conformations of the
protein backbone upon binding agonist, only a subset of
which are capable of activating G protein. 2) Binding of
agonist must act through a mechanism that begins not
with large movements of helices but with the release of
constraints that hold the GPCR in an inactive conforma-
tion. 3) A network of ordered solvent molecules plays an
integral role in transmission of the activation signal
through the transmembrane region. Despite the amaz-
ing level of progress in the determination of GPCR struc-

FIG. 10. Ligand-binding sites within selected GPCR structures. For these sites, all polar contacts within 3.4 Å of each other are indicated by brown
dashed lines and nonpolar side chains are also shown when they do not obscure the ligand. In some cases, portions of the transmembrane helices are
removed for clarity. A, chromophore of rhodopsin (PDB ID 1U19) is a tethered ligand (through a Schiff-base linkage); the only polar contact in the
inactive state is to the counter ion, Glu113. B, binding of the inverse agonist carazolol to the �2-adrenergic receptor (PDB ID 2RH1). C, antagonist
cyanopindolol bound to the �1-adrenergic receptor (PDB ID 2VT4). D, binding of the A2a-adenosine receptor (PDB ID 3EML) to the antagonist
ZM241385 implicates both solvent mediated interactions as well as direct interactions with amino acid side chains in ligand binding. E, structure of
CXCR4 bound to the antagonist It1t (PDB ID 3ODU) uses both solvent and direct interactions to define the ligand-binding pocket. F, D3 dopamine
receptor (PDB ID 3PBL) bound to the antagonist eticlopride.
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tures containing agonist compounds, more structural
work is still needed. To fully understand the activation
process, we still need the structures of intact class B and
C GPCRs in addition to crystal structures that capture
productive signaling states of the receptor in complex
with G protein and agonist compounds (see Note Added
in Proof).

IV. Advances in G Protein-Coupled Receptor
Structural Determination

A. G Protein-Coupled Receptor Construct Design
and Expression

The first hurdle in GPCR structural determination
continues to be the production and purification of ade-
quate amounts of homogenous, properly folded, and fully
functional protein. Purification from native tissue, as-
suming the protein of interest is present in sufficient
quantity, can provide fundamental advantages, such as
presenting normal post-translational modifications that
influence the folding of biologically relevant conforma-
tions. That said, only bovine rhodopsin has successfully
been crystallized from its native source and with an
intact sequence. All other GPCR structures thus far
determined have required significant protein (re)engi-
neering for stabilization. Cell-free expression, Esche-
richia coli, insect, yeast, and various mammalian cell
line systems have been used with various success rates
for GPCR expression. E. coli expression systems have
been employed to produce heterogeneous preparations of
neurotensin and olfactory receptors (Grisshammer,
2006, 2009; White and Grisshammer, 2007; Song et al.,
2009). Yeast Saccharomyces cerevisiae and Schizosac-
charomyces pombe expression systems have been used to
express large quantities of A2a-adenosine receptor with
ligand-binding characteristics near those of wild type
(Niebauer et al., 2004; Niebauer and Robinson, 2006;
O’Malley et al., 2009). Production through cell-free ex-
pression systems has proven useful for structural deter-
minations of both soluble and membrane protein targets
(Chen et al., 2007b), but large-scale use of these tech-
niques for GPCR expression have yet to yield a GPCR
structure (Klammt et al., 2007a,b; Junge et al., 2008,
2010). A variety of mammalian cell-based protocols us-
ing transfected and virally infected cells to express
GPCRs for biochemical as well as structural determina-
tion studies have been published (Sen et al., 2003;
Shukla et al., 2006a,b), but rhodopsin mutants ex-
pressed in transfected COS-1 cells constitute the only
success for this expression methodology (Standfuss et
al., 2007, 2011; Stenkamp, 2008). The most efficient and
successful method to date, apart from native expression,
has been the expression of truncated/stabilized/engi-
neered GPCR constructs in baculovirus-infected insect
cell hosts (Cherezov et al., 2007; Rosenbaum et al., 2007;
Roth et al., 2008; Warne et al., 2008, 2009; Tate and
Schertler, 2009). It is, however, entirely possible that

adequate quantities of native GPCRs needed for struc-
ture determination may be produced through novel ex-
pression methods that may require further development
(Zhang et al., 2005; Li et al., 2007; Salom et al., 2008).

It should be noted that the expense, equipment, and
expertise needed for cloning and producing the quality
and quantity of functional protein needed to begin crys-
tallization trials, let alone to achieve a structural deter-
mination, often exceed the means of many academic
laboratories. Large-scale protein production via out-
sourcing (e.g., Bio-Xtal consortium) has offered re-
searchers a way to access large quantities of membrane
protein without the need to invest in the associated in-
frastructure needed for their production. However, for rea-
sons likely associated with the need to experimentally ex-
plore and control conformational flexibility, such contract
services have yet to prove broadly useful for successful
GPCR crystallography.

B. Solubilization and Purification of G
Protein-Coupled Receptor Constructs

Once a suitable GPCR expression system has been
optimized, the task of establishing a production pipeline
for the purification of tens of milligrams of protein to the
nearly homogeneous quality needed for structural deter-
mination must be accomplished. Because no standard-
ized recipe/procedure is currently available for extract-
ing a GPCR or any other integral membrane protein
from its native environment and retaining its pharma-
cologically relevant conformation(s), a trial-and-error
process must be undertaken. On the basis of the several
successful crystallization campaigns reported to date,
several general guidelines have emerged: 1) ligand or
tag affinity purification of the target protein seems suit-
able for the isolation process. 2) Detergent selection and
concentration together with their effects upon isolated
receptor stability, homogeneity, and monodispersity
must be considered in addition to detergent effects on
ligand binding and receptor/G protein activation. Con-
comitant purification and screening of various deter-
gents together with appropriate stability testing can
provide a high-throughput mechanism to attack the em-
pirical challenge of GPCR purification (Vergis et al.,
2010). 3) Strategies that stabilize the GPCR are impor-
tant. Purification in the presence of high-affinity antag-
onist compounds can assist in retaining activity and
homogeneity through stabilization of the GPCR in an
inactive state. A major complication in the crystalliza-
tion of GPCRs is that the conformational flexibility in-
tegral to their function promotes inherently unstable
purified receptor proteins, thus complicating the goal of
generating uniform ordered crystal lattices. Indeed, het-
erologously expressed GPCR structures have all re-
quired at least point mutations or truncations, and most
have required the presence of antagonist or inverse ag-
onist compounds to restrain conformational flexibility
and allow crystallization. Determination of agonist-
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bound GPCR structures also continues to rely upon mu-
tational or other stabilization of the energetic minima
associated with the activated agonist bound states or
fortuitous stabilization via crystal contacts or binding/
insertion of entire proteins or domains.

C. Predicting G Protein-Coupled Receptor
Construct “Crystallizability”

Because of inherent difficulties in crystallization, a
variety of predictors and screening methods have been
proposed to determine the suitability of particular inte-
gral membrane protein constructs for crystallization.
These include measurements of self-interaction and
thermal denaturation to assess protein stability as a
preliminary estimate of crystallizability. For all these
predictors, it is assumed that by achieving more stable
protein solutions and constructs, the likelihood of crys-
tallization is increased. Although this hypothesis may
generally hold, there are exceptions to the need for
monodisperse, homogenous protein for crystallization
(Mileni et al., 2010).

1. Assays. Kawate and Gouaux (2006) used gel fil-
tration chromatography of membrane protein-fluores-
cent protein fusions in various solubilizing detergents to
screen for appropriate detergents based on the degree of
protein aggregation and monodispersity. Stability of
membrane proteins has also been assayed with the
“thermo-fluor” stability assay, wherein thermal dena-
turation of protein in a solution of fluorescent dye is
measured. Denaturation of the protein exposes hydro-
phobic core residues resulting in altered fluorescence
(Ericsson et al., 2006; Vedadi et al., 2006). Lipidic cubic
phase-melting temperature (LCP-tm) methodology al-
lows thermo-fluor type measurements in solid lipid cubic
phase crystallization matrices (Liu et al., 2010). Non-
fluorescent methods for measuring thermal stability
that rely upon residual ligand binding activity can also
provide complementary data in the case of GPCRs, be-
cause incomplete denaturation can have profound ef-
fects upon ligand binding (Tate and Schertler, 2009;
Warne et al., 2009), with the caveat that ligand binding
is not necessarily a definitive measurement of receptor
activity.

Light scattering data have also been proposed to pro-
vide predictive information for crystallization of soluble
proteins. Constructs having narrow unimodal size dis-
tributions are much more likely to yield diffracting crys-
tals; only a narrow range of values for the second os-
motic virial coefficient or B value were found to be
compatible with protein crystallization (D’Arcy, 1994;
George and Wilson, 1994). Static light scattering studies
of the E. coli integral membrane protein OmpF sug-
gested that these values are predictive for membrane
proteins as well (Hitscherich et al., 2000, 2001). The B
value conflates a variety of factors such as temperature,
ionic strength, and pH and estimates the extent of self-
interaction of a protein in solution. B values positively

correlate with increases in protein solubility. Self-inter-
action chromatography represents an easily usable
method for determining B values. For example, iterative
rounds of self-interaction chromatography and crystal-
lization yielded significantly improved Allochromatium
vinosum reaction center-1 crystals (Gabrielsen et al.,
2010). Although the isolated cases in which virial coef-
ficients have proven useful for improving crystal quality,
the broad utility of the second virial coefficient as a
predictor of GPCR or other membrane protein crystal-
lizability remains to be determined.

2. Stabilization of G Protein-Coupled Receptors with
Membrane Mimetics during Crystallization. Although
recent progress in structural determination of GPCRs
has been remarkable, it is still difficult to make gener-
alizations about optimal crystallization conditions. De-
tails available for the currently limited number of suc-
cessful campaigns, however, do provide clues as to how
crystallization trials of GPCRs should to be conducted.
Viscous lipidic cubic phases (LCP) composed of monoo-
lein were first used in crystallizing the light responsive
archaeal proton pump bacteriorhodopsin (Gouaux, 1998;
Pebay-Peyroula et al., 2000; Nollert et al., 2001) and
have been employed since to crystallize several other
membrane proteins, including the �2-adrenergic, A2a-
adenosine, CXCR4, and D3 dopamine receptors (Rosen-
baum et al., 2007; Hanson et al., 2008; Jaakola et al.,
2008; Warne et al., 2008; Chien et al., 2010; Wacker et
al., 2010; Wu et al., 2010). Reconstitution of membrane
proteins into this matrix from the detergent-solubilized
state provides stabilization with a more “membrane-
like” lipid environment. The dehydration of the cubic
phase by precipitant drives formation of a lamellar
phase from which protein crystals grow (Cherezov et al.,
2002).

Other crystallization approaches for GPCRs also have
met with some success. Rhodopsin/opsin and squid rho-
dopsin were grown from detergent-solubilized protein
with ammonium sulfate as a precipitant, and the �1-
adrenergic receptor was also grown from alkyl-gluco-
side/maltoside-solubilized protein with a low molecular
weight polyethylene glycol (Okada et al., 2004; Salom et
al., 2006; Murakami and Kouyama, 2008; Shimamura et
al., 2008; Warne et al., 2008). Although it has not been
extensively employed in the crystallization of GPCRs,
reconstitution into lipid/detergent discs or bicelles has
been used to generate high-resolution diffracting crys-
tals of several integral membrane proteins and presum-
ably results in a more membrane-like environment than
LCPs (Faham and Bowie, 2002). Dimyristoylphosphati-
dylcholine bicelles were used successfully for the low-
resolution structural determination of the antibody Fv-
�2-adrenergic receptor complex solved by Rosenbaum et
al. (2007) and Bokoch et al. (2010). Another formulation
of the LCP/bicelle methodology, namely the lipidic
sponge phase, has also been proposed as a crystalliza-
tion matrix. This approach met with success in deter-
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mining a 2.2-Å structure for the photosynthetic reaction
center of Rhodobacter sphaeroides, offering improve-
ments in resolution and order over a previous structure
determined from LCP grown crystals. However, this ap-
proach has not yet been employed successfully in GPCR
structure determination (Wadsten et al., 2006; Johans-
son et al., 2009; Wöhri et al., 2009).

3. Expanding Soluble Domains of G Protein-Coupled
Receptors Using Nanobodies and Antibody Fv Frag-
ments. The rationale for this method is that, because
integral membrane regions of membrane proteins are
inherently hydrophobic, fewer specific hydrophilic inter-
actions exist around which a crystal lattice can be built.
By adding antibody fragments, it is possible to increase
the probability of these interactions and thus drive crys-
tallization. Successful examples involving these tech-
niques include voltage-gated potassium channels and
the SecYE� membrane antiporter (Zhou et al., 2001;
Jiang et al., 2003; Tsukazaki et al., 2008). With GPCRs,
this was first exemplified by the �2-adrenergic receptor
complexed with Fv fragments of an activating antibody,
although structures of limited resolution were obtained
(Day et al., 2007; Rasmussen et al., 2007; Bokoch et al.,
2010). The utilization of the single chain “nanobodies”
derived from Camelid spp. (Tereshko et al., 2008) for
stabilization/crystallization was successfully imple-
mented by Rasmussen et al. (2011) to crystallize an
agonist-bound T4-lysozyme-�2-adrenergic receptor con-
struct in complex with a nanobody.

D. Recent G Protein-Coupled Receptor Successes

Determining X-ray crystallographic structures of in-
tegral membrane proteins historically has been much
more difficult than those of soluble proteins. Less than
1% of the unique protein structures currently deposited
in the PDB represent integral membrane proteins, and
this number decreases to less than 0.1% when only
mammalian membrane protein structures are consid-
ered. Early attempts to crystallize GPCRs were success-
ful only with natively expressed protein (rhodopsin).
More recent studies have relied upon heterologously
expressed GPCRs artificially stabilized through protein
fusions and/or point mutations and often involving com-
plexation with antagonist/inverse agonist compounds. It
is also possible to dispense with the transmembrane
regions altogether and focus on the soluble extramem-
brane domains, which will provide structural guidance
for SBDD of certain ligands.

1. Rhodopsin and Related Structures. Rhodopsin
was the first GPCR to have its atomic structure deter-
mined (Palczewski et al., 2000) (PDB ID 1F88). Incre-
mental increases in resolution and model completeness
(PDB IDs 1L9H, 1GZM/3C9L) eventually yielded the
2.2-Å structure of bovine rhodopsin (Teller et al., 2001;
Okada et al., 2002, 2004), which remains the highest
resolution structure of any GPCR structure determined
to date (PDB ID 1U19). Additional structural work on

rhodopsin produced largely superposable structures of
the inactive photocycle end-product, opsin, as well as
opsin complexed with a peptide derived from the G�
subunit of transducin (Park et al., 2008; Scheerer et al.,
2008) (PDB IDs 3CAP and 3DQB). Further work with
crystals grown under these conditions revealed that
treatment with all-trans-retinal results in a meta II-like
state (PDB IDs 3PXO and 3PQR) (Choe et al., 2011).
These structures superpose well with the original opsin
structures with a RMSD of only �0.5 Å, and all exhibit
the same outward movement of the ends of H-V and
H-VI compared with ground state structures. An addi-
tional, constitutively active, heterologously expressed
rhodopsin structure solved by Standfuss et al. (2011)
also superposes well with the opsin structures (RMSD
�0.6 Å) and exhibits a similar displacement of H-V and
H-VI. The structure of invertebrate (squid) rhodopsin
(PDB IDs 2Z73 and 2ZIY) was determined after prote-
olysis of the receptor to remove a large cytoplasmic do-
main (Murakami and Kouyama, 2008; Shimamura et
al., 2008). By carefully controlling light exposure and
crystallization conditions, several photoactivated struc-
tures of bovine rhodopsin were determined, including
the early photointermediates batho- and lumirhodopsin
(Nakamichi and Okada, 2006a, b) (PDB IDs 2HPY and
2G87) as well as a photoactivated rhodopsin that exhib-
ited all the spectral and biochemical characteristics of
meta II rhodopsin, the physiologically activated state
(Salom et al., 2006) (PDB ID 2I37). Additional work with
synthetic retinoids resulted in the structure of 9-cis-
rhodopsin (Nakamichi and Okada, 2007) (PDB ID
2PED) (Fig. 11).

2. Reconciling Activated Structures of ( Rhod)opsin
with Biochemistry and Biophysics. Even before the ad-
vent of the first activated structures of rhodopsin, it
became apparent that the traditional phototransduction
cascade, which relies on spectral absorption changes in
the retinal chromophore, was not sufficient to com-
pletely characterize the conformation of the protein por-
tion of rhodopsin. RMSD between ground state struc-
tures is �1.0 Å, and structural differences are observed
in cytoplasmic loop 3 in all ground state rhodopsin struc-
tures determined to date, indicating its conformational
flexibility. The phototransduction cascade composed of
temperature and chemically trapped photointermedi-
ates has been of great utility in the understanding of the
activation process of rhodopsin and by extension all
GPCRs in general (Matthews et al., 1963; Yoshizawa
and Wald, 1964; Thorgeirsson et al., 1993). However, the
structural plasticity of even spectrally identical ground
state structures suggests that absorption is insufficient
to characterize the conformational states of rhodopsin.
Trying to “shoehorn” all of the photoactivated rhodopsin
structures into these artificially isolated, photointerme-
diate states is perhaps an academic exercise that has
little bearing upon our understanding of the activation
process. Each determined structure simply provides a
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structural snapshot along the continuum of conforma-
tional states that rhodopsin occupies after photoactiva-
tion. There is no requirement that the structure has
progressed through any particular intermediate state.

EPR spin-label experiments using heterologously ex-
pressed, spin-labeled rhodopsin were interpreted to sug-
gest that major conformational alterations on the order
of 15 to 20 Å occur within the transmembrane domain
upon transition of rhodopsin from an inactive to an
active conformation (Farrens et al., 1996; Hubbell et al.,
2003). Such large-scale alterations within the helical
bundle have been called into question after isolation of
various photointermediate states of rhodopsin that dis-
play characteristic absorbance maxima (Matthews et al.,
1963; Yoshizawa and Wald, 1964; Thorgeirsson et al.,
1993) More recent EPR studies have revised these initial
estimates for conformational alterations to �6- to 10-Å
displacements (Altenbach et al., 2008; Hornak et al.,
2010). Furthermore, the chemical differences between
the Meta I and Meta II states simply involve the changes
in protonation state, and each of these states is in equi-
librium. Were large scale movements of entire helices

before G protein binding involved, it is thermodynami-
cally unlikely that the equilibrium between the states
could be potentiated by a simple protonation/deprotona-
tion event(s). This line of reasoning can be extended,
taking into the changes observed in retinal dynamics
that occur upon photoactivation and the multiple acti-
vated states that this implies (only a subset of which are
capable of activating G protein) (Struts et al., 2011).

The activated rhodopsin structures determined to
date can be grouped into two broad categories: those
derived from photoactivated rhodopsin (PDB ID 2I37)
and those determined from the end product of the pho-
totransduction cascade, opsin (PDB IDs 3PXO, 3PQR,
3CAP, 3DQB, and 2X72) (Park et al., 2008; Scheerer et
al., 2008; Choe et al., 2011; Standfuss et al., 2011).
Although the PDB ID 2I37 structure exhibits small-
scale changes in the conformation of cytoplasmic loops
and the ends of H-V and H-VI (Salom et al., 2006), the
changes in these regions of opsin-derived structures are
of a larger magnitude. It is important to consider that all
opsin-derived protein structures begin with material at
the end product of the phototransduction cascade and

FIG. 11. Structural coverage along the continuum of states that comprise the activation of rhodopsin. The structural plasticity necessary for
transmission of the activation signal from receptor to G protein is evident even in the ground state structures of rhodopsin; although all three groups
of structures are grossly similar, each structure captures distinctly different conformers of the opsin backbone although each is spectroscopically
identical and each exhibits little to no activity toward G protein. Although slight differences are scattered throughout the structure, the major
differences observed are in the third cytoplasmic loop (C-III), the loop connecting H-V and H-VI, the ends of which are proposed to undergo structural
rearrangement upon activation. The early photointermediate structures (denoted in pink), which are spectroscopically distinct from both ground state
and later photointermediates superpose well with only the PDB ID 1U19 (P41) structures, again with major differences observed only in the C-III loop
compared with PDB IDs 2I35/2I36 (P3112) or PDB IDs 3C9L/1GZM (P64) structures. The structure of PDB ID 2I37 (which was the first crystal
structure to exhibit the characteristic absorbance at 360 nm indicative of deprotonation of the Schiff base linking the chromophore to Lys296, a
hallmark of attaining the activated state) demonstrated only small- to medium-scale shifts in structure that were confined to the C-II and C-III loops,
rather than the large-scale rigid body movements proposed by earlier studies. The observed structural changes could best be explained as being due
to a loss of constraint within the transmembrane region, resulting in altered protein backbone dynamics. Because ground state crystals in the same
unit cell and space group (PDB ID 2I36) were available, the direct comparison with photoactivated rhodopsin (PDB ID 2I37) revealed structural
changes that accompanied photoactivation apart from structural changes due to differences in crystallization conditions/unit cell contacts. These
crystals were capable of returning to the ground state upon storage in the dark but were incapable of surviving treatment with hydroxylamine to
remove chromophore. From the other end of the spectrum, the Ernst group has to great success used the phototransduction cascade end product, opsin,
as a structural target and starting point for probing the activation of rhodopsin. The initial crystal structure of opsin (PDB ID 3CAP) and a following
structure opsin with a peptide derived from the C terminus of the � subunit of transducin (Gt) (PDB ID 3DQB), although mostly colorless, contain
density within the chromophore active site that may correspond to precipitant, buffer, detergent, or hydrolyzed chromophore when composite omit
maps are calculated from the deposited data, which was fortuitous as the instability of opsin state in the detergent solubilized state would further
complicate crystallization. The PDB ID 3CAP and PDB ID 3DQB structures both exhibited larger movements of H-V and H-VI (and the connecting
C-III loop) than observed in the PDB ID 2I37 structure. The structure of opsin in the Gt peptide bound structure was postulated by the authors to be
the conformation of opsin in its G protein-interacting state. By treating these very same crystals with all-trans-retinal (PDB IDs 3PXO and 3PQR),
the authors were able to obtain crystals that were spectrally indistinguishable from the PDB ID 2I37 crystals. Standfuss et al. (2011) were also able
obtain an additional crystal form of photoactivated rhodopsin from heterologously expressed, constitutively active opsin “regenerated” with all-trans-
retinal (PDB ID 2X72). All of the opsin derived structures are identical (with the exception of the observed chromophore) within the precision of
structures determined at this resolution (RMSD � 0.4 Å). These crystals were incapable of being pushed to the ground state by reconstitution with
11-cis-retinal. Recent solid-state NMR studies suggest the existence of multiple conformational states after photoactivation with only a subset
competent to transduce the signal to G protein (Struts et al., 2011). These multiple activated states (highlighted with a blue-gray box in the figure)
underlie a fundamental structural disconnect between the two groups of activated state structures. It will only be through direct structural observation
of the complex or complexes between rhodopsin and Gt that the precise nature of the interactions between activated rhodopsin and G protein will be
observed.
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neither addition of the Gt peptide nor addition of chro-
mophore has an appreciable change upon the structure
(RMSD for the transmembrane region of all opsin struc-
tures is � 0.4 Å). When these observations and struc-
tures are coupled with the retinal dynamics observed
upon photoactivation by solid state NMR (Struts et al.,
2011), it becomes clear that spectrophotometric analysis
and these structures are not sufficient to fully describe
the activation process. Measurements of the displace-
ment of cytoplasmic loop three, H-V and H-VI observed
in opsin-derived structures upon activation agree quite
well with the later EPR-based estimates, with the ca-
veat that these measurements were performed with het-
erologously expressed opsin mutants, which were then
regenerated. Although the PDB 2I37 crystals could rei-
somerize their chromophore when removed from light,
reforming the ground state, the opsin-derived crystals
are incapable of being regenerated with 11-cis-retinal to
form the ground state. Furthermore, treatment of the
photoactivated (PDB ID 2I37) crystals with hydroxyl-
amine to form opsin resulted in a loss of diffraction
similar to the loss of diffraction seen in the opsin crystals
treated with 11-cis-retinal chromophore (O. Ernst, per-
sonal communication). This hints at a fundamental dis-
connect between the PDB ID 2I37 photoactivated struc-
ture and the opsin-derived structures, because it is not
possible to take either class of crystals to the opposite
endpoint of the phototransduction cascade. Thus, nei-
ther class of crystal structures is sufficient to describe
the dynamic and conformational state(s) of the receptor
that pass the activation signal from the chromophore
pocket to the cytoplasmic face where G protein binding
and activation occurs.

Comparisons of agonist-bound nonrhodopsin GPCRs
all exhibit some movement of the H-VI and to a lesser
extent H-V, but the movement is smaller in magnitude
than that observed between ground-state rhodopsin and
opsin-derived structures. Were the activation process to
rely upon release of internal restraints that lead to a
profound change in receptor dynamics, these sorts of
variations can be explained. The influences that crystal-
lization conditions, crystal contacts, and thermostabiliz-
ing mutations could simply remove energetic barriers
present in the wild-type receptor, thus exhibiting a
larger degree of structural plasticity needed to fully bind
and activate G protein (summarized in Fig. 11).

Comparative analysis of all high-resolution structures
of rhodopsin and other GPCRs reveals a subset of crys-
tallographically observed waters found in similar posi-
tions within the transmembrane bundle (Angel et al.,
2009a). These “homologous” waters and their interac-
tions with highly conserved and functionally important
residues such as the D(E)RY and NPxxYx(5,6)F motifs
thought to play crucial roles in receptor activation (Mir-
zadegan et al., 2003) suggests that these waters are
functionally important or even essential to the mecha-
nism of activation (Angel et al., 2009a,b; Jardón-Valadez

et al., 2009) (Fig. 9). Furthermore, these internal waters
do not freely exchange with bulk solvent in ground-state
rhodopsin, meta II, or opsin states, further supporting
the notion that these waters are noncovalent cofactors
integral to the activation process. This however does not
imply that the transmembrane region is completely im-
pervious to bulk solvent. Indeed, the Schiff base can be
deuterated in unactivated rhodopsin placed in D2O
(Deng et al., 1994), and the water used for chromophore
hydrolysis is derived from bulk solvent (Jastrzebska et
al., 2011), suggesting that only a subset of these solvent
molecules are tightly bound. Further work is needed to
elucidate the exact role(s) of these ordered waters in the
GPCR activation process.

3. Adrenergic Receptor Structures. In 2007, the re-
port of the X-ray structure for the human �2-adrenengic
receptor marked a breakthrough in the structural study
of liganded GPCRs. The structure was solved by two
different techniques (Rasmussen et al., 2007; Rosen-
baum et al., 2007). In one approach, an antibody Fv
fragment–�2-adrenergic receptor complex was gener-
ated that yielded low-order diffracting crystals with a
well-defined Fv entity but a considerably less ordered
�2-adrenergic receptor portion (PDB IDs 2R4R and
2R4S). In a second approach, since used to determine the
majority of nonrhodopsin GPCR structures to date, a T4
lysozyme fusion was introduced within the third cyto-
plasmic loop of heterologously expressed �2-adrenergic
receptor to aid crystallization in a modified lipid cubic
phase matrix and resulted in high-order diffracting crys-
tals (Cherezov et al., 2008; Hanson et al., 2008; Roth et
al., 2008). In addition to the high-resolution 2.4-Å cara-
zolol-bound structure (PDB ID 2RH1), a series of adren-
ergic receptor structures have been solved that con-
tained a variety of antagonist and inverse agonist
compounds (Hanson et al., 2008; Roth et al., 2008;
Wacker et al., 2010) (PDB IDs 3D4S, 3NYA, 3NY9, and
3NY8). These structures revealed a common binding
mode and contact residues for such compounds, suggest-
ing further avenues for structure-based drug design us-
ing these structures as restraints.

The crystallization of the turkey �1-adrenergic recep-
tor involved a series of mutations/truncations designed
once again to constrain the flexibility of the purified
receptor and facilitate the formation of the crystalline
lattice. The effects of individual modifications were pre-
liminarily assessed by thermal denaturation analysis
and when combined as an ensemble into to a new con-
struct produced diffracting crystals (Tate and Schertler,
2009; Warne et al., 2009). Cocrystallization, as has been
true with all nonopsin GPCR templates determined to
date, with an antagonist (cyanopindolol, in this case)
was needed to obtain crystals, which diffracted to 2.7 Å
(Warne et al., 2008). In this case, standard crystalliza-
tion methodology (i.e., vapor diffusion rather than LCP
methods) was employed. Comparison of structures re-
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vealed similar binding modes of antagonist to both �1-
and �2-adrenergic receptors (Lodowski et al., 2009).

Crystallographic structure determination of both �1
and �2 adrenergic receptors has continued with the so-
lution of several full and partial agonist structures using
variations upon the above crystallization schema.
Warne et al. (2011) recently published a series of five full
and partial agonist-bound structures of thermostabi-
lized turkey �1-adrenergic receptor that exhibit only
small-scale structural changes compared with the struc-
ture of turkey �1-adrenergic receptor with antagonist
bound. These changes are consistent with the scale of
structural changes observed in the low-resolution pho-
toactivated rhodopsin structure (Warne et al., 2011).
Rasmussen et al. (2011) and Rosenbaum et al. (2011)
have also recently solved two agonist bound structures
of their T4-lysozyme inserted human �2 adrenergic re-
ceptor by two different crystallization schemes but with
conflicting results. Although both structures use T4 ly-
sozyme-inserted mutant protein, one structure uses a
covalently attached ligand and shows very little change
upon agonist binding compared with their antagonist
bound counterparts (Rosenbaum et al., 2011). The other
uses a complex with a camelid nanobody and exhibits
structural changes on the scale of those seen in opsin
compared with ground-state rhodopsin (Rasmussen et
al., 2011).

4. A2a-Adenosine Receptor Structure. Again, a T4-
lysozyme chimera coupled with the antagonist 4-(2-(7-amino-
2-(furan-2-yl)-[1,2,4]triazolo[1,5-a][1,3,5]triazin-5-ylamino)
ethyl)phenol (ZM241385) and use of a cholesterol-saturated
LCP crystallization method yielded crystals of the A2a-
adenosine receptor refracting to 2.6 Å (Jaakola et al., 2008)
(PDB ID 3EML). As expected and in agreement with all
other GPCRs determined to date, the binding site for this
orthosterically competitive ligand was located within the
transmembrane region, grossly overlapping binding sites
determined for adrenergic receptor ligands and the rho-
dopsin chromophore. More recently, an agonist bound
structure of a T4-lysozyme A2a-adenosine receptor struc-
ture was determined (Xu et al., 2011). Compared with the
antagonist bound structure, this agonist-bound structure
shows smaller changes in the conformation of H-V and
H-VI than seen in opsin-derived structures.

5. C-X-C Chemokine Receptor Type 4 Structures. The
Stevens group determined the structure of the chemo-
kine GPCR, CXCR4, also as a T4 lysozyme chimera in
complex with the small molecular antagonist IT1t (6,6-
dimethyl-5,6-dihydroimidazo[2,1-b][1,3]thiazol-3-yl)
methyl N,N�-dicyclohexylimidothiocarbamate as well as
with a cyclic peptide antagonist (CVX15), (Wu et al.,
2010) (PDB IDs 3ODU, 3OE9, 3OE6, 3OE8, and 3OEO).
This receptor is of great importance to human health,
because it is involved in both HIV viral entry and cancer
metastasis. It is noteworthy that these structures com-
pletely lack the amphipathic helix H-8 present in all
other GPCR structures determined to date that func-

tions in receptor activation. All CXCR4 crystal struc-
tures determined to date exhibit a crystallographic
dimer that is quite similar to that seen in squid rhodop-
sin (PDB ID 2Z73) as well as in models of rhodopsin
oligomerization derived from atomic force microscopy
data (PDB ID 1N3M) (Fig. 6).

6. Dopamine D3 Receptor Structure. The T4-ly-
sozyme fusion technique was also used to obtain a crys-
tal structure of the D3 dopamine receptor in complex
with the D2/D3 selective antagonist eticlopride (R-22)
(Chien et al., 2010). Because dopamine signaling is in-
volved in cognition and emotion, structures of the dopa-
mine receptor can outline possible structure-based drug
design targets for modulation of these activities. Al-
though in many other of the T4 lysozyme fusion con-
structs, the ionic lock was found to be disrupted, here it
was found to be intact, suggesting that this crystal struc-
ture more fully recapitulates the inactive state of the
receptor.

7. Structures of G Protein-Coupled Receptor Extracel-
lular Domains. In contrast to GPCRs that have their
ligand-binding domains situated within the transmem-
brane region, many GPCRs contain large extracellular
ligand-binding domains. These extracellular domains
can bind the entire size range of ligands seen in all
classes of GPCRs, from single ions in the case of the
Ca2� receptors to entire proteins in the case of the
follicle-stimulating hormone receptor (Figs. 1 and 7).
Crystallization of these domains ex situ can provide
information regarding ligand recognition. Several sub-
types of metabotropic glutamate receptor extracellular
ligand-binding domains have been studied (Kunishima
et al., 2000; Muto et al., 2007) (PDB IDs 3HSY, 3MQ4,
3LMK, 3FUZ, 2E4U, 1LSR, 1EWK, and at least 15 oth-
ers) and have defined ligand binding modes and local-
ized structural changes that occur upon both agonist
and antagonist binding. All of these glutamate GPCRs
are obligate dimers. The distance observed between each
monomer fits well with the spacing observed for rhodop-
sin oligomers within rod outer segment membranes (Fo-
tiadis et al., 2003, 2004) and with dimers observed in
rhodopsin, opsin, and CXCR4 structures (Salom et al.,
2006; Lodowski et al., 2007; Park et al., 2008; Scheerer
et al., 2008; Wu et al., 2010), providing further evidence
for the physiological existence of GPCRs as dimers or
higher order oligomers (Fig. 6).

Ligand-binding domains from GPCRs that recognize
larger soluble protein/peptide hormones have also been
determined. These include follicle-stimulating hormone
complexed with the follicle-stimulating hormone recep-
tor (Fan and Hendrickson, 2005) (PDB ID 1XWD), thy-
roid-stimulating hormone receptor in complex with an
activating antibody (Sanders et al., 2007) (PDB ID
3GO4), parathyroid hormone receptor complexed with
parathyroid hormone (Pioszak et al., 2010) (PDB ID
3L2J), calcitonin gene-related peptide receptor (ter Haar
et al., 2010) (PDB IDs 3N7P, 3N7R, and 3N7S), cortico-
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tropin-releasing factor receptor 1 (Pioszak et al., 2008)
(PDB IDs 3EHS and 3EHT), and frizzled 8 receptor
(Dann et al., 2001) (PDB ID 1IJY). What is immediately
obvious upon examination of these isolated ligand-bind-
ing domains is that although they share little to no
structural homology there must be some shared mecha-
nism by which these disparate domains can be linked to
the transmembrane portion of the receptor. This raises
the concern that because the structures for these do-
mains have been solved without the contextual con-
straints of the GPCR functional core, usage of such
ligand-binding domain structures, although promising
from a SBDD standpoint, should be approached with the
additional caveat that the modes of ligand binding ob-
served may not fully recapitulate that seen in intact
receptor.

E. The Need for More G Protein-Coupled Receptor
Structural Work

With many distinct GPCR structures now available to
us, there is a good body of information for delineating
common features present within the transmembrane
region of class A GPCRs that give some insight into their
ligand binding and possibly their activation. Further
structures will strengthen confidence in such common
features but could reveal a subclass of GPCRs with
different modes of ligand binding within the TM region.
However, certain approaches to structure determination
of GPCRs will be particularly helpful for increasing our
understanding of how ligands bind GPCRs, how this
binding event is coupled to receptor activation, and how
these activated receptors consequently catalyze G pro-
tein activation. First, a greater diversity of GPCR tem-
plates, especially those of class B and C receptors, is
needed. Second, continued characterization of agonist-
bound structures will help define determinants of endog-
enous ligand binding and the structural changes that
accompany GPCR activation. This information would be
particularly valuable in the rationale design of thera-
peutic ligands and allosteric modulative compounds.
Third, and most obviously, structures of agonist-bound
GPCRs in complex with their intact appropriate hetero-
trimeric G proteins provide the best chance to capture
the structural changes that enable G protein activation.
(Please see Note Added in Proof for recent structural
work on GPCR-G protein complexes.)

V. Ramifications for G Protein-Coupled Receptor
Drug Discovery

A. Brief History of De Novo Approaches

1. Examples of Success. Most drugs in our collective
medicine chests have been and still are discovered by
serendipitous methods (Kubinyi, 1999). Contemporary
medicines have emerged from broad screens of large and
complex collections of chemical or biological substances
that, though individually diverse in origin and content,

share en mass an important trait—a low percentage hit
rate. Cursory inspection of compound and program at-
trition common to the pharmaceutical sector under-
scores the long odds faced during drug discovery. Still,
the content and effectiveness of our pharmacopeia is a
testament to the use of empirically based screening. No
doubt it is foolish to depend solely on serendipity, but we
cannot discount it either. Accordingly, our use of random
screening will not likely disappear, nor should it, be-
cause it continues to be a proven approach for the dis-
covery of novel therapeutics.

Yet for those with a more calculating disposition, the
pursuit of new drugs through de novo design presents a
compelling logic. Benefiting from advances in biophysics
and computational methods, this discipline has steadily
advanced over the past 30 years and produced scores of
groundbreaking therapeutics. These approaches can be
broadly categorized into ligand- and structure-based
methods depending upon the origin of the blueprint that
guides the actual synthesis of molecules. Ligand-based
approaches are based on quantitative structure-activity
relationship (QSAR) studies of pre-existing molecules
known to specifically interact with a target system of
interest. These data are distilled to generate an ideal-
ized pharmacophore model that is then used to design
new candidates for synthesis. Structure-based methods,
on the other hand, rely upon a high-resolution map of a
target’s putative ligand-binding sites, to provide a mir-
ror-image blueprint for the a priori design (or modifica-
tion) of entirely novel molecules. Obviously, these two
methods are complementary. Both have had their share
of success, and both are used throughout the pharma-
ceutical industry along with computer-aided docking,
visualization strategies, and empirically driven assay
platforms, often deriving QSAR information from data
generated by high-throughput screens.

An early success for the ligand-based approach was
the design of highly selective small molecule antagonists
against integrin receptors for the treatment of thrombo-
sis, cancer and osteoporosis. This work used conforma-
tionally constrained cyclic peptides bearing a similar
small binding motif to inform the design of small mole-
cule leads that had remarkably high selectivity for
closely related integrin receptor subtypes (Engleman et
al., 1996; Samanen, 1996; Samanen et al., 1996; Keenan
et al., 1997).

Perhaps the most often cited early example of a suc-
cessful “rationally designed” drug is the small molecule
captopril, an angiotensin-converting enzyme inhibitor
for the treatment of hypertension. Its design benefited
from a prior decade’s QSAR study of the inhibitory ac-
tion of bradykinin potentiating factor on the conversion
of angiotensin as well as from insights gained from the
three-dimensional structure of the closely related en-
zyme carboxypeptidase A (Harrold, 2008). Other early
examples of purely structure-based approaches are the
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carbonic anhydrase inhibitor dorzolamide for the treat-
ment of glaucoma (Greer et al., 1994), the HIV protease
inhibitors saquinavir, indinavir, ritonavrir, and nelfina-
vir (Lu et al., 1995; Kaldor et al., 1997; Vacca and Con-
dra, 1997) and the neuraminidase-inhibiting influenza
medications zanamivir and oseltamivir (von Itzstein et
al., 1993; Kim et al., 1999). To date, more than 40 drugs
have been derived from structural insight into their
proper targets (Kuhn et al., 2002).

2. Strengths and Weaknesses. Despite their suc-
cesses, de novo approaches, especially those involving
structure-based methods, have historically lacked the
high throughput and reliability of more traditional
screening methods. Because these design-based meth-
ods rely on the time-consuming elucidation of new target
structures (typically through either X-ray or NMR meth-
ods), successes were (and continue to be) hard won.
Progress is subject to the difficulties inherent in each
step of the structural process, beginning with securing
adequate amounts of suitable target protein and pro-
ceeding through isolating concentrated samples of phar-
macologically relevant target conformations, crystalliz-
ing said conformers, achieving high resolution X-ray
diffraction or NMR data, and finally solving the struc-
ture. For integral membrane proteins, each step has
been additionally aggravated by the target’s require-
ment for its supportive membrane environment and the
complications that inclusion of such hydrophobic mate-
rial confers on the isolation and crystallization pro-
cesses. The pursuit of compounds targeting integral
membrane proteins has shown encouraging benefits
from significant technical advances in both the front-
and back-end stages of high-throughput structural biol-
ogy platforms.

Virtually comprehensive cDNA target collections,
standardized heterologous expression systems for large-
scale protein production and high-throughput parallel
purification procedures have all facilitated the genera-
tion of multiple target constructs and production of their
respective proteins as an entree to crystallization trials
(Waldo et al., 1999; Stevens, 2000; Lesley, 2001; Gilbert
and Albala, 2002). At the other end of the process, mul-
tiple-wavelength anomalous dispersion, microfocused
synchrotron beamlines, beamline automation, and auto-
mated structure solution methods enable data collection
and structure determination in a fraction of the time
than was required just a few years ago (Guss et al., 1988;
Hendrickson et al., 1990; Garman, 1999; Perrakis et al.,
1999; Abola et al., 2000; Adams and Grosse-Kunstleve,
2000; Muchmore et al., 2000). Although incorporation of
these methodological improvements into the drug dis-
covery process has helped to streamline the efficiency of
drug discovery for soluble protein targets, crystallization
still remains one of the greatest challenges for integral
membrane protein targets.

B. Future Directions for Integral Membrane Proteins in
Drug Discovery

1. The Current Industry Climate for G Protein-Cou-
pled Receptor Drug Discovery. Despite the pharmaceu-
tical sector’s increasing investment in technical infrastruc-
ture and a steady flow of information about basic biological
processes from academia, the rate of drug discovery for all
target classes is in steady decline (Fig. 12) (Kola and Lan-
dis, 2004). As would be expected, this fact is cause for
concern for both potential patients and for those in the
drug discovery business, where it is the focus of much
analysis and debate. From a larger perspective, it may well
be that current and future targets, especially systemic and
age-related maladies, are more complex than diseases we
have successfully tackled before. The usefulness of inter-
vention paradigms based upon ascribing a given pathology
to the action of a single target protein is waning. For
example, common therapy for hypertension can involve
inhibition of a kidney transporter, a GPCR, and a soluble
blood enzyme. Going forward, the involvement and thera-
peutic control of multiple molecular systems spatially and
temporally intertwined in pathophysiological conditions
will probably become the norm. Accordingly, the map-
ping of these complex systems-level relationships will
increasingly preoccupy drug discovery scientists as
they hypothesize new therapeutic paradigms (Butcher
et al., 2004).

Even within individual target classes and certainly for
GPCRs, the problem of target/activity complexity per-
vades our considerations. Drug discovery for this super-
family has focused on the generation of compounds that
directly orthosterically compete with endogenous sub-
stances to either activate or block the action of the re-
ceptor. However, this approach is becoming less and less
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FIG. 12. Return on investment. Output of new chemical entities
(NCE) has declined over a 10-year period despite an increase in overall
R&D spending and a steady average development time for those drugs
that eventually prove successful. Factors contributing to this problem
involve increased governmental regulatory requirements such as the
(now) larger patient pools needed to satisfy FDA standards. More funda-
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productive as we pursue receptor-ligand systems involv-
ing more elaborate recognition and activation relation-
ships, such as peptidergic and glycohormone subtypes
involving protein-protein interactions generally consid-
ered intractable for small molecular intervention. There
is also the problem of building selectivity into com-
pounds that operate within the highly conserved agonist
sites of closely related receptor subtypes. There is thus
an increasing need to consider nonorthosteric modes of
action as the basis for new types of GPCR therapeutics.
An a priori understanding of the three-dimensional
structure of such sites could both suggest nonobvious
modifications for orthosteric leads and reveal allosteric
opportunities for the design of entirely novel molecules
and mechanisms of action.

2. Requirements for the Optimal Use of Structural
Studies. To provide timely guidance, structure-based
drug design must lead the medicinal synthesis curve.
That is, it must prospectively suggest new designs
rather than limiting itself to retrospectively explain-
ing how old designs work. Understanding how mole-
cules already “in-hand” bind and regulate their tar-
gets is valuable, of course, but to achieve its maximum
potential, structural information must act as a spring-
board to suggest innovative compound designs un-
likely to be included in a medicinal chemist’s usual
to-do list. Given the speed and rigor with which me-
dicinal chemistry and screening now operates, this is
indeed an ambitious goal.

A key requisite for progress will be the ability to
rapidly solve apo-protein crystals and ligand-protein co-
crystals, ideally before commitment and expenditure of
substantial medicinal chemistry resources. Given the
internal competition of projects for medicinal chemistry
support, such insights would be welcome and could be
exploited to make the synthesis aspects of drug develop-
ment more efficient. Initially, tactical arguments for
targeting specific GPCRs for structural determination
are likely to be reminiscent of debates about the value of
mounting HTS campaigns for targets with speculative
therapeutic validity. Such deliberations eventually
eased as efficiencies in enabling and executing HTS
improved, the ratio of information return over a smaller
experimental investment increased, and the prospect of
securing chemical tools to assist in the validation and
prioritization of target programs became better ac-
cepted. Likewise, one can expect some push back in a
proposed mainstream pursuit of GPCR structures until
they can be more routinely and easily solved. At that
point the expectation that comparative structures
should be part of a program, even at an early project
stage, will likely become the norm and further encour-
age a priori generation and selection of drug designs
targeting unconventional binding sites and mechanisms
of action.

VI. Unresolved Issues and Concluding Remarks

The study of GPCR pharmacology has been the sub-
ject of structure-function conjecture since its inception
and has long awaited the type of intuitive insights that
only high-resolution atomic coordinates can provide. The
accelerating success in generating such structures ob-
served over the past few years suggests that we can now
begin to discern the molecular basis of GPCR function.
Although these breakthroughs have been impressive
and the promise of their utility is great, a variety of
hurdles remain that must be overcome as we reduce the
art of GPCR structure determination to the practice of
drug discovery.

A. Caveats about Static Crystal Structures

The increasing availability of GPCRs structures will
undoubtedly provide insights into the structural basis of
their molecular function. It is important however, to
appreciate caveats associated with individual struc-
tures, the most obvious of which is that they represent
only a “snapshot” of one of many conformations available
to the receptor. This issue is especially relevant to 3D
coordinates derived from X-ray crystal structures. In
such cases, these structures “freeze” at a thermody-
namic minimum, which may not fully recapitulate the
receptor’s native membrane environment but rather re-
flect restraints imposed by its crystallization matrix.
This concern is amplified by the use of modified receptor
constructs and/or ligands to stabilize receptors for crys-
tallization. Use of crystal structures derived from spe-
cifically stabilized ligand-receptor complexes can predis-
pose the resulting drug designs to those ligand-defined
conformations, thus limiting the de novo approach. Fur-
thermore, in the case of ligand-induced stabilization
methods and dependent upon the method employed, in-
voking the use of an a priori ligand molecule suggests
that this area of chemical space has been previously
probed, further diminishing the novelty of subsequent
drug designs. Modified receptor protein further removes
the solution from in vivo reality and can increase the
risk of guiding design efforts down unfruitful paths. A
partial answer to such conundrums can be to structur-
ally solve and compare a variety of discrete conforma-
tional solutions to provide a kinescopic view of the pro-
tein’s dynamics within its full range of function. Such
merging and comparison of dynamic states would bene-
fit from other forms of structural information such as
provided by solution and solid state NMR and dynamic
computational modeling. The problem, of course, is to
crystallize such discrete conformations.

B. Partnering with Computational Methods

The accuracy of homology models for GPCRs built
from templates that are in turn based upon actual three-
dimensional coordinates of a previously solved but dif-
ferent GPCR structure becomes increasingly less predic-
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tive as the receptors diverge. This observation is
especially applicable to drug design when sub-Ångstrom
tolerances and “second shell” contacts provide the basis
for selectivity and action. Thus, efforts to improve ho-
mology modeling algorithms and merge them with de
novo structure assignment methods by, for example,
taking into consideration template information, knowl-
edge of fold space derived from structural genomics ini-
tiatives, and improved ab initio structure prediction
techniques, should ultimately provide us with computer-
aided design tools that are both predictive and intui-
tively effective. Such methods development will be facil-
itated by additional GPCR structure determinations to
provide more points of reference and to validate model
based predictions across GPCR subtypes, types, and
classes. Applications of static models to in silico screen-
ing using compound and fragment-based libraries has
become a popular exercise but is limited by current
docking algorithms that focus on preconceived-binding
domains of the receptor, effectively eliminating alloste-
ric opportunities. Such constraints are largely driven by
processor limitations that require a practical shrinkage
of the possible binding box. Our need to understand and
exploit important functional phenomena such as alloste-
ric modulation and collateral efficacy inherent in the
purposeful conformational adaptability of GPCRs seems
more suited to the application of molecular dynamic
(MD) simulations inclusive of all of the system’s protein,
lipid bilayer and water atoms. Such MD simulations are
also limited by processor resources available and the
accuracies of current atomic force fields and MD algo-
rithms. As these factors improve, these tools will nat-
urally merge with extant GPCR structural informa-
tion to improve drug design that is conformation
specific.

C. Rate of Structure Determination

Structure determination of specific GPCR drug tar-
gets runs the risk of being retrospective. To be unequiv-
ocally guiding, the process of moving from target selec-
tion to structure availability must proceed rapidly
enough to provide nonobvious drug designs that would
have been unlikely to be identified through random
screening or QSAR and SAR methods. The rate of gen-
erating new designs from structures compared with the
pace of discovering new molecules via comprehensive
synthetic analog campaigns is thus a common point-
counterpoint for all de novo versus randomization de-
bates. Typically, the rationale for obtaining a structure
is more compelling when either chemical starting points
do not exist, such as when no hits emerge from a HTS or
where SAR guided synthesis fails to improve selectivity
across related targets, or other off-target phenomena
cannot be avoided. Since the initial structures for rho-
dopsin and �2-adrenergic receptor were reported, the
pace of new GPCR structural determinations has rap-
idly accelerated. If target structures can routinely be

solved within 12 months of project inception, this would
compare favorably with the lead time it typically takes
to enable and execute a HTS study for a given target.
This suggests that as the pace of structural determi-
nation increases, structurally informed drug design
can be merged with screening-based hit identification
and QSAR campaigns not only to bootstrap new proj-
ects but also to provide guidance for ongoing efforts
that have encountered insurmountable chemistry
challenges.

D. Structure versus Function

Functional (i.e., screening) approaches to GPCR drug
discovery that seek to exploit a textured (i.e., allosteric)
approach to pharmacological action will become increas-
ingly powerful provided cell-based assays that are more
refined than the current norm are employed. Such prog-
ress will also require that ligands (both controls and
screening compounds) that modulate these new areas of
pharmacological space currently exist in our screening
collections. The novelty of such space is encompassed by
both the specifics of the target and the specifics of the
conformational state that is to be modulated. It seems
reasonable to expect that in some if not most cases, such
space is poorly populated in our current collections. De
novo approaches on the other hand are not beholden to a
priori molecular content but rather require insight into
whether or not the structure (i.e., conformation) under
study is relevant to the disease-defined mechanism of
action (i.e., target-effector pathway). Both approaches
can be synergistically combined, providing a powerful
tool for future GPCR-targeted drug discovery.

E. Cocrystallization with Ancillary Protein(s)

As crucial components of GPCR signaling system and
equal partners in the kinetics of their action, ancillary G
protein subunit structures, especially the G� subunit, in
complex with their receptor partners will help shed light
on structural determinants of GPCR activity. More spe-
cifically, the use of G proteins to capture pathway-spe-
cific conformations could reveal binding opportunities
associated with ligand trafficking in either the receptor’s
orthosteric domain or elsewhere on more accessible and
less conserved regions of the GPCR. Furthermore, struc-
tures of protein complexes such as GPCR-G protein,
GPCR with receptor activity modifying proteins, GPCR-
GPCR dimers can suggest a means of allosteric regula-
tion of GPCR function by interfering with heretofore-
untargeted protein-protein interactions. The structures
of these GPCR complexes will reveal novel “druggable”
sites present for targeting via SBDD.

F. Impact upon Compound Libraries

Clearly, a high resolution view of the internal and
surface landscape of GPCRs should assist in the identi-
fication and design of novel pharmacophores and as such
will constitute an invaluable resource for SBDD. This is
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especially true for a potentially large number of alloste-
ric designs whose corresponding chemical space is most
probably unoccupied in existing libraries. Without such
guidance, these sectors of pharmacologically active com-
pound space will only slowly become populated through
the creeping expansion of pre-existing, distant, and or-
thosterically oriented structural neighborhoods. The
current trend in generation and utilization of target-
focused libraries for drug discovery is typically rational-
ized by invoking the savings realized in screening a
smaller number of compounds with a higher en mass hit
rate. This scenario can be true when the focused library
is tasked with providing structures that act through
mechanisms (and sites) similar to those affected by the
populated prototypes. But it cannot account for alloste-
ric/nonorthosteric sites. Realizing that GPCRs consti-
tute the core component of a still poorly understood
allosteric system, the design of screening libraries would
benefit from as few assumptions as possible when select-
ing chemical structures for its population. In the case of
novel mechanisms of action and allosteric targets, diver-
sity cannot be achieved by reference to prior knowledge.
Given the almost infinite number of possible compounds
that encompass all of chemical space, the efficient pur-
suit of diversity would benefit from the reciprocal map-
ping of novel target binding sites, sites uniquely pro-
vided through structural data. Such spatial leads could
then be embraced on a manageable scale by focused
library approaches to rationally but more efficiently in-
crease performance and diversity.

G. Synergy with Biologics

As regards the generation of very-large-molecule
drugs for GPCRs (e.g., therapeutic antibodies), use of
GPCR structures becomes more complicated because of
the manner in which these therapeutic molecules bind to
targets and the in vivo methods employed for antibody
generation. Multiple recognition sites spread over a re-
ceptor’s surface make structural information enlighten-
ing but difficult to employ on a purely synthetic basis.
Still, one could envision instances where knowledge of
disparate epitopes constituting a conformational lock
might be employed to construct an artificial mimetic for
use as an in vivo immunogen or capture reagent. The
fact that such a protein would be stabilized in a partic-
ular conformation relevant to the targeted molecular
mechanism would be of particular benefit and a signifi-
cant advance over current methods.

H. Other Synergies

Availability of purified receptor proteins generated as
part of the drug discovery process will undoubtedly con-
stitute a windfall for the enabling of other drug discov-
ery tools. It is expected that this protein will also be used
for additional assays including NMR and fluorescence
based measurements of receptor-ligand dynamics, new
generations binding assays via measurement of plasmon

resonance and molecular exclusion and various other
proteomic/biophysical approaches to characterize and
map structure-function aspects of the receptor.

I. Selection of Therapeutically Validated Targets

However promising and inherently powerful a struc-
ture-based drug design approach may be, its ultimate
value can only be realized if it can operate within the
drug discovery pipeline at large. As such, the breadth of
application of a structural approach will inevitably face
constraints beyond its scope, perhaps the most impor-
tant of which is the identification and validation of
GPCR targets. To these ends, concerted efforts to ex-
haustively catalog and manage information about nor-
mal versus pathological tissue distribution, knock-in/
knock-out phenotypes, chromosomal mapping of disease
linkages, and generation and correlation of microarray
and gene copy information with disease models have
only grudgingly given up the secrets embedded in their
data, perhaps because of the immensity of the task and
the difficulty of formulating therapeutic paradigms from
such diverse information. Application of systems analy-
ses to these information layers, although still in its
infancy, promises to elucidate complex causal relation-
ships and reveal key regulatory points for therapeutic
intervention. Given the emergence of pluridimensional
GPCR potency and the prospect that structure-based
drug design could be instrumental in designing mole-
cules to selectively regulate one of the many interactions
and pathways of a given GPCR, it seems reasonable to
expect that a retrospective analysis of past GPCR pro-
grams will ensue. Salvage of failed targets and programs
might then be possible through consideration of the
broader range of molecular phenomena now known to
occur within the GPCR signaling paradigm.

In conclusion, the likelihood that the challenges and
opportunities discussed in this review will be met and
bested seems reasonable, and the convergence of GPCR
structural methods with therapeutic exploitation of newly
emerging modes of GPCR pharmacology will significantly
and favorably affect the field of GPCR drug discovery.

Note Added in Proof

Since the submission of the manuscript for this article, several
articles of note regarding structure have been published that shed
light on agonist and antagonist binding as well as the activation of
GPCRs and mechanisms of G protein binding. A structure of a
T4L-histamine H1 receptor fusion bound to the subtype-specific antag-
onist doxepin [(3Z/E)-3-(dibenzo[b,e]oxepin-11(6H)-ylidene)-N,N-
dimethylpropan-1-amine] has been determined, exhibiting the subtle-
ties of antagonist specificity (Shimamura et al., 2011). Additional work
with thermostabilized A2a-adenosine receptor in complex with the an-
tagonist compounds caffeine and xanthine have further characterized
the diversity of the binding site (Doré et al., 2011; Xu and Stevens,
2011). Further work with these thermostabilized A2a-adenosine recep-
tor constructs has produced structures bound to the agonists adenosine
and 5�-N-ethylcarboxamido adenosine, revealing the variability of
structural changes within the transmembrane region compatible with
agonist binding, as well as proposing mechanisms by which the binding
of agonist may effect attainment of the activated state or states (Lebon
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et al., 2011). A 20-Å molecular envelope calculated from single particle
analysis of negatively stained electron microscopic images of the com-
plex between native purified rhodopsin and transducin has been iso-
lated, revealing the pentameric structure of the receptor-G protein
complex and providing a snapshot of the activation complex (Jastrzeb-
ska et al., 2011). A structure of an agonist-bound T4L-�2 adrenergic
receptor in complex with a Gs-containing heterotrimer stabilized by a
camelid antibody has also been determined that may show some of the
structural interactions between GPCR and G protein necessary for
recognition and nucleotide exchange (Rassmussen et al., 2011).
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Johansson LC, Wöhri AB, Katona G, Engström S, and Neutze R (2009) Membrane
protein crystallization from lipidic phases. Curr Opin Struct Biol 19:372–378.

Jojart B, Kiss R, Viskolcz B, Kolossvary I, and Keseru GM (2010) Molecular dynam-
ics simulation at high sodium chloride concentration: toward the inactive confor-
mation of the human adenosine A2A receptor. J Phys Chem Lett 1:1008–1013.
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