Human Experimental Pain Models for Assessing the Therapeutic Efficacy of Analgesic Drugs

Anne Estrup Olesen, Trine Andresen, Camilla Staahl, and Asbjørn Mohr Drewes
Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg Hospital, Aarhus University Hospital, Aalborg, Denmark (A.E.O., T.A., A.M.D.); Grünenthal GmbH, R & D, Aachen, Germany (C.S.); and Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark (A.M.D.)

Abstract... 724
I. Introduction ... 725
II. The pain system .. 725
 A. Macro anatomy and mechanisms ... 725
 1. Sensory nerves ... 725
 a. Nociceptors in skin ... 725
 b. Nociceptors in muscle and bone. 726
 c. Nociceptors in viscera ... 726
 2. The spinal level ... 727
 3. The supraspinal level .. 727
 4. The sensitized pain system .. 729
 B. Cellular and receptor level ... 729
 1. Pain physiology .. 729
 2. Plasticity and sensitization .. 730
III. Animal versus human pain models .. 732
IV. Clinical studies versus experimental human pain models 733
V. Experimental human pain models .. 734
 A. Skin ... 734
 1. Mechanical stimulation .. 734
 a. Touch .. 735
 b. Pinprick .. 735
 c. Pressure .. 735
 2. Electrical stimulation ... 735
 3. Thermal stimulation .. 735
 a. Cold ... 735
 b. Contact heat .. 735
 c. Laser ... 736
 4. Models evoking hyperalgesia ... 736
 a. Capsaicin .. 736
 b. Nerve growth factor ... 737
 c. Glutamate ... 737
 d. Burn injury ... 737
 e. Freeze lesion .. 737
 f. Mustard oil ... 737
 g. Menthol .. 738
 h. Acid phosphate buffer .. 738
 i. Sodium lauryl sulfate. ... 738
 j. Pinch .. 738
 k. Electrical stimulation .. 738
 B. Muscle and bone.. 738

Address correspondence to: Dr. Anne Estrup Olesen, Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg Hospital, Mølleparkvej 4, 9000 Aalborg, Denmark. E-mail: aeo@mech-sense.com
This article is available online at http://pharmrev.aspetjournals.org.
http://dx.doi.org/10.1124/pr.111.005447.
1. Mechanical stimulation .. 739
 a. Muscle ... 739
 b. Bone ... 739
2. Electrical stimulation .. 739
3. Thermal stimulation ... 739
4. Models evoking hyperalgesia.. 740
 a. Ischemic stimulation .. 740
 b. Exercise-induced muscle pain.. 740
 c. Chemically induced muscle hyperalgesia 740
C. Viscera .. 741
 1. Mechanical stimulation... 741
 2. Electrical stimulation .. 742
 3. Thermal stimulation ... 742
 4. Models evoking hyperalgesia.. 742
VI. Experimental pain modulation.. 743
A. Conditioned pain modulation .. 743
B. Summation .. 743
C. Thermal stimulation ... 743
D. Chemical stimulation ... 743
E. Long-term potentiation/depression.. 744
VII. Pain assessment ... 744
A. Psychophysical methods... 744
 1. One-dimensional pain assessment tools.. 744
 2. Multidimensional pain assessment tools .. 744
B. Neurophysiological methods ... 745
 1. Magnetic resonance imaging .. 745
 2. Single photon emission computed tomography and positron emission tomography 745
 3. Electroencephalography .. 745
 4. Magnetoencephalography ... 746
C. The nociceptive withdrawal reflex.. 746
D. Referred pain area.. 746
VIII. Analgesic assessment by experimental human pain models in healthy volunteers 747
A. Nonopiods ... 747
 1. Nonsteroidal anti-inflammatory drugs and acetaminophen 747
 a. Acetylsalicylic acid (aspirin) .. 747
 b. Ibuprofen .. 747
 c. Keterolac. .. 748
 d. Acetaminophen (paracetamol). .. 748
 2. N-Methyl-D-aspartate antagonists.. 749
 a. Ketamine .. 749
 3. Adjuvant analgesics. ... 750
 a. Gabapentin and pregabalin .. 750
 b. Lamotrigine .. 750
 c. Imipramine... 751
B. Opioids .. 751
 1. Short-acting opioids .. 751
 a. Alfentanil and remifentanil .. 751
 2. Longer acting opioids. .. 752
 a. Traditional µ-receptor agonists .. 752
 b. Opioids with weak affinity for the µ-opioid receptor 755
 c. κ-Receptor agonists. .. 756
 3. Opioids with mixed binding profile. .. 756
 a. Tramadol. .. 756
C. Other types of analgesics .. 756
 1. Cannabinoids .. 756
 a. Δ⁹-Tetrahydrocannabinol. .. 756
Abstract—Pain models in animals have shown low predictivity for analgesic efficacy in humans, and clinical studies are often very confounded, blurring the evaluation. Human experimental pain models may therefore help to evaluate mechanisms and effect of analgesics and bridge findings from basic studies to the clinic. The present review outlines the concept and limitations of human experimental pain models and addresses analgesic efficacy in healthy volunteers and patients. Experimental models to evoke pain and hyperalgesia are available for most tissues. In healthy volunteers, the effect of acetaminophen is difficult to detect unless neurophysiological methods are used, whereas the effect of nonsteroidal anti-inflammatory drugs could be detected in most models. Anticonvulsants and antidepressants are sensitive in several models, particularly in models inducing hyperalgesia. For opioids, tonic pain with high intensity is attenuated more than short-lasting pain and nonpainful sensations. Fewer studies were performed in patients. In general, the sensitivity to analgesics is better in patients than in healthy volunteers, but the lower number of studies may bias the results. Experimental models have variable reliability, and validity shall be interpreted with caution. Models including deep, tonic pain and hyperalgesia are better to predict the effects of analgesics. Assessment with neurophysiologic methods and imaging is valuable as a supplement to psychophysical methods and can increase sensitivity. The models need to be designed with careful consideration of pharmacological mechanisms and pharmacokinetics of analgesics. Knowledge obtained from this review can help design experimental pain studies for new compounds entering phase I and II clinical trials.
I. Introduction

Chronic pain can have deleterious effects on health, employment, and daily life in the community (Smith et al., 2001). The prevalence of chronic pain in the adult population ranges from 2 to 40% with a median of 15% (Trescot et al., 2006). A higher prevalence of chronic pain among women (usually from musculoskeletal origin) has been reported (Ramage-Morin and Gilmour, 2010) and considerable costs for health systems, individuals, and society are associated with chronic pain (Reid et al., 2011).

Most of the knowledge on pain and pharmacology of pain has been obtained from studies in animals. However, the absence of verbal communication in animals is an obstacle to the evaluation of pain, and assessment can mainly be estimated by examining an animal’s response (neuropsychological or behavioral) to nociceptive stimuli (Le Bars et al., 2001; Dolgin, 2010). Such data can only partly be interpolated to the human condition, which is a net result of complex sensory, affective, and cognitive processing. Furthermore, there are major differences between species that limit predictivity of animal models. Therefore, human experiments of pain pharmacology are highly warranted.

Our knowledge about human pain is based to a major degree on clinical studies. However, pain in patients is often blurred by other symptoms, and sedative properties of some analgesics make evaluation difficult. Experimental methods to evoke and assess pain under controlled circumstances are advantageous because they encompass many of these problems and offer a unique opportunity to investigate analgesic effects on different pain modalities arising from different tissues as well as peripheral and central pain mechanisms (Drewes et al., 2003; Staahl et al., 2006b; Arendt-Nielsen and Yarnitsky, 2009).

In human experimental pain models, the evoked sensations can be assessed with subjective methods quantitatively (e.g., by using a visual analog scale) and qualitatively (e.g., by using the McGill Pain Questionnaire), and stimulus-response relationships can be investigated. Objective, physiological responses for the pain can also be recorded with, for example, the nociceptive reflex, cerebral evoked potentials, and imaging.

In this review, pain physiology and mechanisms are first described, followed by a discussion of differences between animal and human studies of pain. Next, differences between human experimental pain studies and clinical pain studies in patients are outlined, followed by a comprehensive review of human experimental pain models, including superficial models, deeper pain models, and models of hyperalgesia. We then provide review of various pain assessment methods and pain modulation methods; finally, results from studies testing different analgesics in healthy volunteers and patients by experimental pain models are reviewed and discussed.

II. The Pain System

A. Macro Anatomy and Mechanisms

As opposed to the traditional views of pain as a “hard wired” system, pain is now seen as a dynamic system that undergoes plastic changes. Hence, the complexity of the pain system is a result of modulation of afferent activity via peripheral and central mechanisms, although it is normally described in a simplified way, as in Fig. 1.

Information regarding pain and analgesic mechanisms can be obtained from 1) In vitro studies, 2) animal experiments, 3) experimental pain studies (healthy volunteers and patients), 4) observational clinical studies, and 5) interventional clinical studies. As individual sources of information, each of them is inadequate and limited by several biases (see section III), but in combination they have increased our information on the pain system and analgesic mechanisms substantially. In the following section, the most important data from such studies are used to give the reader a short introduction to the pain system. For more detailed information on the pain system the reader is referred to, for example, Meyer et al. (2005).

1. Sensory Nerves. Pain occurs when nociceptors are stimulated by, for example, chemical, thermal, or mechanical stimulation. Nociceptors are nerve endings that respond to potentially damaging stimuli by sending signals to the spinal cord and brain. They are located in skin, internal organs, joints, muscles, and tendons. All nociceptive fibers terminate as free nerve endings (Stacey, 1969). There are two kinds of nociceptive pain: somatic and visceral. Somatic pain occurs when skin, muscle, or bone is damaged, whereas visceral pain originates in the internal organs. Activation of receptors in the nerve endings results in a graded action potential reflecting the stimulus intensity (Julius and Basbaum, 2001). When peripheral sensory fibers (primary afferent fibers) respond to noxious stimuli, they transmit this information through the dorsal root ganglion to the dorsal horn of the spinal cord. From here, projection neurons activate higher brain centers and pain information reaches consciousness (D’Mello and Dickenson, 2008).

a. Nociceptors in Skin. In human skin, there are three main types of primary afferent fibers (Aβ, Aδ, and C fibers), each of which has different properties, allowing them to respond to different types of sensory information (D’Mello and Dickenson, 2008). Large and myelinated Aβ fibers are normally not involved in pain transmission but respond to light touch and convey tactile information. Aδ fibers are thinly myelinated nerves transmitting stimuli (more slowly than Aβ fibers; 5–30
m/s) to the central nervous system (CNS). They respond to mechanical stimulation, especially pinching or pinprick. In the skin, A\(\Delta\) fibers are mainly specialized for detection of potentially dangerous mechanical and thermal stressors and for triggering a rapid response and protective reflexes (Byers and Bonica, 2001). The fibers also play an important role in hyperalgesia (Craig, 2003). C fibers are thin and nonmyelinated nerves that transmit stimuli more slowly (less than 1 m/s) than A fibers. They constitute the majority of nociceptors. They respond to strong mechanical, thermal, or chemical stimuli. They are mainly polymodal, but some are specialized for detecting a single stimulus as heat or pinch. Moreover, there are “silent” sensory fibers that do not respond to high-intensity stimulation under normal conditions but are spontaneously activated and respond to innocuous stimuli under inflammatory conditions (Michaels et al., 1996). For detailed information, see Byers and Bonica (2001).

\subsection*{b. Nociceptors in Muscle and Bone.}
The clinical features of muscle pain are different from skin pain, because muscle pain is a cramp-like, aching, and diffuse pain whereas skin pain is more localized. Pain from deep structures (muscle, bone, and viscera) has traditionally been little investigated compared with pain of somatic origin (Ness, 1995). The lack of studies contrasts the fact that deep pain is the most frequent in the clinic. The different diseases giving rise to deep pain can be difficult to diagnose and the clinical picture is often blurred by coexisting symptoms and the presence of referred pain (see section II.A.2). This is partly explained by the sparse and diffuse termination of nociceptive afferents at the spinal level (reflecting the diffuse and nonspecific pain characteristics) together with the interaction between, for example, afferents from deep tissue and the somatic and autonomic nervous systems (Fig. 2). The majority of A\(\Delta\) and C fibers (in muscles also labeled type II and IV) serve as polymodal nociceptors (Cairns, 2008).

The periosteum of the bone is a frequent site of pain and is also innervated by A\(\Delta\) and C fibers. The terminals of these fibers mostly contain polymodal receptors (Byers and Bonica, 2001). The periosteum is therefore very sensitive to a variety of stimuli where mechanical activation is the most clinically relevant (Bonica and Loeser, 2001).

\subsection*{c. Nociceptors in Viscera.}
The neural information from visceral organs does not normally reach higher brain centers, except, for example, information regarding the filling of the esophagus, stomach, and rectum. However, when the organs are potentially in danger (e.g., because of disease), symptoms such as discomfort and pain are reported. Because of the diffuse spinal organization (see section II.A.2) these symptoms are typically vague and difficult to characterize. Visceral afferent fibers are either nonmyelinated C fibers (70–90\%) or thinly myelinated fibers belonging to the A\(\Delta\) class. Most visceral nociceptors are nonspecific (polymodal) and respond to many different kinds of stimuli (for more extensive review, see Cervero, 1994; Sengupta and Gebhart, 1994; Knowles and Aziz, 2009; Olesen et al., 2009c). The peritoneum and parietal serous membranes of the lungs and heart have their own parietal nerve supply, which is organized like the skin (Fig. 2). Hence, pain from these structures gives a distinct, intense, and localized pain comparable with the pain evoked by skin lesions. The visceral afferents, mediating conscious sensations, run predominantly together with nerves belonging to the sympathetic nerves, although some nociceptive afferents join parasympathetic and other pathways (Fig. 2). This complex anatomy creates the possibility for cross-talk with the autonomic nervous system at both peripheral and central levels (Jänig et al., 1993). The enteric nervous system is also closely

\begin{figure*}[ht]
\centering
\includegraphics[width=0.7\textwidth]{pain_signaling.png}
\caption{Pain signaling. The pain signals are encoded by peripheral nociceptors and information is led via afferent nerves (1) to the spinal cord. The afferent barrage activates neurons in the spinal cord (2) and the information is led to supraspinal centers (3). In addition, the brain can modulate the incoming activity via descending control systems (4).}
\end{figure*}
related to the nociceptive afferents and is considered a subdivision of the autonomic nervous system. It has been demonstrated that both pain and the autonomic nervous system can modulate the functions of the enteric nervous system, resulting in motility changes, nausea, and altered secretion/absorption of the gut, which can dominate the clinical picture (Wood et al., 1999).

2. The Spinal Level. Transmission of stimuli from periphery to the brain travels through the spinal cord. In the spinal cord, incoming sensory and nociceptive signals undergo convergence and modulation (D'Mello and Dickenson, 2008) (for details about spinal organization, see Terman and Bonica, 2001; D'Mello and Dickenson, 2008). The spinal cord contains various neuronal cell types connecting with the primary afferents. Some neurons are nociceptive-specific, whereas others are termed wide dynamic range neurons and receive input from all three types of sensory fiber. They respond to a full range of stimulation from light touch to noxious stimuli. Wide-dynamic-range neurons fire in a graded fashion depending on stimulus intensity and also exhibit “wind-up,” which is a short-term increase in the excitability of dorsal horn neurons after repeated stimulations of the afferents with the same intensity (D’Mello and Dickenson, 2008). The wind-up phenomenon results in amplification of the pain response from the periphery to the brain (D’Mello and Dickenson, 2008). Pain originating from muscle and viscera is typically felt in somatic areas remote from the stimulus (referred pain). This is seen, for example, in acute cholecystitis, where patients report pain referral to the right shoulder, or in patients suffering from cardiac ischemia, where pain is referred to the left arm or to the chin (Fig. 3).

3. The Supraspinal Level. The output from the dorsal horn in the spinal cord to higher brain centers is conveyed by spinal projection neurons (D’Mello and Dickenson, 2008). An extensive cortical network associated with pain processing has been revealed and is increasingly recognized as playing a major role in the representation and modulation of pain. These areas

Fig. 2. The afferent nerves of the pain system. Multiple afferents from the skin (pink) travel to the spinal cord via distinct nerve trunks, whereas afferents from muscle (red) are sparser but still well defined. Visceral afferents (blue) from the gut and other organs travel temporarily together with either the sympathetic or the parasympathetic nerves. These afferents primarily project to the spinal cord or brain stem, but because of the close relation to autonomic nerves, they can also “cross-talk” with the autonomic or enteric nervous systems through local or spinal reflexes via autonomic efferents. This may result in, for example, muscle contractions or changes in gut motility. During inflammation, “silent afferents” (dashed lines) may become activated. The peritoneum has its own parietal nerve supply organized as the somatic nervous system, and when these nerves become activated, the pain can change in nature and localization.
are termed the pain matrix (Iannetti and Mouraux, 2010) and most often include the primary somatosensory cortex, secondary somatosensory cortex, the anterior cingulate cortex, prefrontal cortex, insular cortex, and other limbic structures, such as the amygdala (Fig. 4) (Apkarian et al., 2009; Iannetti and Mouraux, 2010).

The brain controls a complex network that is able to modulate the incoming activity from primary afferents, and this network may undergo pharmacologic modula-

Fig. 3. Referred pain. Most visceral afferents converge with neurons that receive input from superficial and deep somatic tissue resulting in “referred pain.” Pain referral to somatic areas remote from the visceral organs is a common finding in visceral diseases [e.g., pain referral to the right shoulder in acute cholecystitis (left)]. Viscerovisceral convergence on spinal neurons receiving afferent supply from different viscera may present as visceral allodynia in areas remote from the original lesion. This may present as, for example, increased pain intensity during gallstone attacks in patients with background pain from ischemic heart disease (right).

Fig. 4. Main subcortical and cortical areas involved in pain processing and the connectivity between them. Primary afferents (Aδ, C, and Aβ fibers) transmit impulses from the periphery through the dorsal root ganglion to the dorsal horn of the spinal cord. Most nociceptive Aδ and C fibers terminate superficially in laminae I and II, but also project either directly (Aδ fibers) or poly synaptically (C fibers) to lamina V, whereas Aβ fibers terminate predominantly in laminae III to V. In the dorsal horn, the primary afferents connect with various neuronal cell types that project to different areas of the central nervous system. Neurons from lamina I project mainly to the periaqueductal gray (PAG), RVM, thalamus and parabrachial nucleus (PB). Neurons found in the deeper laminae III to V also project to the thalamus as well as to the formatio reticularis (FR) of the brainstem. Dotted lines represent the interaction between basal ganglia (BG), amygdala (amyg), and medial prefrontal cortex (MPFC), which constitutes the emotional, affective, and motivational components hypothesized to play an important role in chronic pain. Solid lines represent the areas involved in sensory-discriminative processing of pain and the connectivity between them—thalamus, cingulate cortex (cing), primary and secondary somatosensory cortices (S1 and S2), insula, and dorsolateral prefrontal cortex (DLPFC), hypothesized to play a role in acute pain. These areas then project to PAG, which in turn indirectly controls pain transmission in the dorsal horn through RVM and descending facilitatory or inhibitory pathways modulating spinal cord activity. [Modified from Apkarian AV, Baliki MN, and Geha PY (2009) Towards a theory of chronic pain. Prog Neurobiol 87:81–97. Copyright © 2009 Elsevier Ltd. Used with permission.]
tion. Hence, the subjective pain perception is a dynamic balance of bidirectional pain-control mechanisms (Fields et al., 2006). It has now become clear that several mechanisms contribute to the inhibition (or facilitation) of pain signals coming from the periphery (Le Bars, 2002). For simplicity, four different regions within the CNS contribute to pain control:

1. Segmental spinal inhibition (modified gate control), which involves interneurons located in the dorsal horn (Maxwell et al., 2007).
2. Diffuse noxious inhibitory control (DNIC), which operates through heterotopic conditioning stimulation and involves a spino-bulbo-spinal loop, including the dorsal reticular nucleus (Le Bars, 2002).
3. Inhibition through the brainstem network, consisting of centers in periaqueductal gray and rostral ventromedial medulla, which possesses modulating abilities through ON cells and OFF cells (nociceptive or antinociceptive, respectively) (Heinricher and Morgan, 1999).
4. Top-down control, where the role of cognitive and affective cortical centers seems to play a role (Moont et al., 2010).

DNIC is a phenomenon known from animals that can be experimentally induced. Nevertheless, in humans, the modular pain pathways are more complex, and it is now referred to as conditioned pain modulation (CPM) (Yarnitsky, 2010) (see section VI.A).

4. The Sensitized Pain System. Sensitization of the nervous system includes both peripheral and central components. An injury in the periphery results in release of numerous inflammatory mediators, described in section II.B. These mediators activate and sensitize terminals of primary afferents (Curatolo et al., 2006). The activated fibers develop ongoing activity and display major changes in receptive fields and patterns of referral within minutes after tissue irritation. This condition leads to increased afferent activity in the spinal cord and exacerbates pain.

Pain resulting from nerve damage is another entity. Neuropathic pain is defined as “pain arising as a direct consequence of a lesion or disease affecting the somatosensory system” (Treede et al., 2008). Neuropathic pain may develop for months or years after injury and, unlike nociceptive pain, it is often chronic and does not require a stimulation of specific pain receptors (Pazzaglia and Valeriani, 2009). With neuropathic pain, the function of the nerves typically becomes compromised and their activity increases (see section II.B.2). Although many mechanisms come into play, those in the CNS are of utmost importance. The abnormal activity causes other nerves to become ultrasensitive, leading to altered responses to perceived sensations, such as allodynia or hyperalgesia. Although neuropathic pain has mostly been described in the skin, diseases and lesions of the muscle and viscera may also give neuropathic pain (Drew et al., 2008).

B. Cellular and Receptor Level

This section is not a complete review of the microstructural pain system (see, for example, McMahon and Koltzenburg, 2006), but focuses mainly on the mechanisms by which endogenous modulation is possible and has been investigated in human experimental pain.

1. Pain Physiology. The physiochemical properties of noxious stimuli are converted to electrical activity by, for example, the transient receptor potential-generating channels (TRP channels) and purinergic channels. The electrical activity formed is then amplified by sodium, potassium, and calcium channels to elicit action potentials that travel to the central nervous system (Kuner, 2010) (Fig. 5).

The importance of ion channel subtypes will not be described in detail here, because extensive literature on this topic exists (Krishnan et al., 2009; Zamponi et al., 2009). As described above, sodium channels generate action potentials, and they can be seen as the accelerator of nociceptive messaging (Harvey and Dickinson, 2008). Potassium channels act as a brake in the system and prevent repetitive firing and after-firing (Rivera-Arconada et al., 2004; Krishnan et al., 2009) (Fig. 5). Voltage-gated calcium channels are expressed mainly at pre-synaptic nerve terminals, where they open in response to incoming action potentials and mediate calcium entry into the synapse. This in turn triggers synaptic vesicle release, which results in action potentials traveling to the brain via activation of receptors in second-order neurons (Fig. 6).

When the electrical signal travels to the spinal synapse, the change in membrane potential elicits release of neurotransmitters such as glutamate and substance P (Todd et al., 2000). These neurotransmitters mediate nociceptive signaling in the spinal cord through activation of various receptors. The most important are N-methyl-D-aspartate (NMDA) and 3-hydroxy-5-methyl-4-isoxazolopropionic acid (AMPA) receptors, but kainate receptor also plays a role (Dickenson, 1995). Glutamate is the predominant excitatory transmitter used by primary afferent synapses and intrinsic neurons in the spinal cord dorsal horn. Accordingly, ionotropic glutamate receptors mediate basal spinal transmission of sensory (including nociceptive) information that is relayed to supraspinal centers (Larsson, 2009). However, metabotropic glutamate receptors also are activated (Harvey and Dickenson, 2008). Schematic illustrations of the peripheral and spinal mechanisms are given in Figs. 5 and 6.

Despite solid knowledge of the structures engaged in pain transmission, the cerebral mechanisms involved in pain modulation are still not completely understood. Multiple neurotransmitters including opioid, glutamate, GABA, and dopamine transmitters are involved in modulation of pain by these cortical structures (Xie et al., 2009).
2. Plasticity and Sensitization. Molecules may change in an activity-dependent manner (for example, by phosphorylation) and thereby alter their function (for example, a drop in the activation threshold of an ion channel) or localization (for example, endocytosis or trafficking) (Liu and Salter, 2010). However, differential expression of a receptor also can cause a change in the nociceptive signaling process (Liu and Salter, 2010; Mucha et al., 2010). An injury in the periphery results in a release of numerous inflammatory mediators, such as histamine, serotonin, substance P, and prostaglandins (Fig. 5). Some inflammatory mediators directly activate the nociceptors, evoking pain, whereas others sensitize the pain system. This is typically seen in inflammation, enabling easier activation of the pain system in the presence of an injury (Liu and Salter, 2010; Mucha et al., 2010). After damage to peripheral nerves, primary afferent fibers can display aberrant “ectopic” activity. This can alter their pattern of excitability and conduction, causing neuropathic spontaneous pain and hyperalgesia that maintains central sensitization (Aurilio et al., 2008; Harvey and Dickenson, 2008). It is believed that one of the key molecular mechanisms is abnormal modulation of voltage-gated sodium channels in the soma and axonal membranes of dorsal root ganglion sensory neurons (Silos-Santiago, 2008).

Peripheral injury can produce central neuronal changes that are maintained even after the inputs from the injury are removed. Neurophysiological, central sensitization is characterized by increased spontaneous activity, decreased firing threshold, and expansion of the receptive fields of dorsal horn neurons (Coderre et al., 1993). The alterations in functional structure may result in central plasticity, hyperexcitability, and “pain memory,” which after some time may be consolidated and independent of the original peripheral input (Coderre et al., 1993). A widely acknowledged cause of sensitization is the postsynaptic mechanisms of synaptic potentiation via activation of the NMDA receptor, where potentiation results in amplified excitatory postsynaptic potentials (Liu and Salter, 2010).

Once signals have entered the dorsal horn of the spinal cord, they are modulated by inhibitory processes operated both by local inhibitory interneurons acting presynaptically on transmitter release and postsynaptically on relay neuron excitability. The main local inhibitory transmitter is GABA (Hill, 2001). However, cannabinoids, enkephalins, and adenosine also play an important role here (see Fig. 6) (Kuner, 2010).

The opioid system is a major component of the body’s ability to suppress pain. Most centers involved in descending control are rich in opioid receptors (Pinto et al.,

Fig. 5. Properties of nociceptor sensitization in the periphery. A noxious stimulus of, for example, thermal, chemical, or mechanical origin is converted into an electrical signal amplified by calcium and sodium channels to elicit action potentials that travel to the central nervous system. After an injury, mast cells close to the nerve terminal are activated. This leads to release of inflammatory mediators such as histamine, NGF, prostaglandin, and bradykinin. These act on receptors such as G-protein-coupled receptors (GPCR) and tyrosine kinase receptor type 1 (TrKA) expressed on the nociceptor nerve terminals, leading to peripheral nociceptor sensitization. Furthermore, there is release of neuropeptides (e.g., SP and CGRP), resulting in interaction between immune cells and nociceptors. PGE2, prostanglandin E2.
and opioids therefore play an important role in the brain’s pain control systems. The three main receptor subtypes, µ, δ, and κ, all have endogenous ligands (Roques et al., 1999; Fioravanti and Vanderah, 2008). These receptors are located on the primary afferents, in the spinal cord, and in the brain. The peripheral receptors are mainly important when inflammation is present (Stein, 1993; Stein et al., 1999; Labuz et al., 2007; Trescot et al., 2008). The µ receptor is the most abundant in the spinal cord and is the main modulator of the pain system, although δ and κ receptors seem to play a role during, for example, sensitization (Minami and Sato, 1995). Activating opioid receptors results in indirect inhibition of voltage-dependent calcium channels, decreasing cAMP levels and blocking the release of pain neurotransmitters such as glutamate, substance P (SP), and calcitonin gene-related peptide (CGRP) from the nociceptive fibers, resulting in analgesia (Trescot et al., 2008). Figure 7 is a simplified illustration of opioid mechanisms in CNS (Fig. 7).

At postsynaptic sites, the opioids open potassium channels via activation of distinct G protein-coupled receptors and hence dampen the excitability of the nerve cells (Dickenson, 1995). Opioids exert complex effects in the brain, where they bind to receptors in a variety of structures. The most important are prefrontal cortex, cingulate cortex, midbrain periaqueductal gray and rostral ventral medulla. The net action is an increase of the descending inhibition via a shift of activation of the ON and OFF cells in the rostral ventral medulla. The descending pathways release either noradrenaline or serotonin, in the end leading to modulation of the pain signal.
at spinal level (Pertovaara, 2006). Among other binding sites, α2-adrenoceptors on secondary neurons in the dorsal horn play a role, and these can be targeted pharmacologically (Pertovaara, 2006; Heinricher et al., 2009).

Cannabinoid receptors and their endogenous ligands are also present at supraspinal, spinal, and peripheral levels. Cannabinoids suppress nociceptive processing through activation of cannabinoid CB1 and CB2 receptor subtype G protein-coupled receptors. Activation of CB1 receptors modulates neuronal calcium and potassium conductance, causing less neurotransmitter release and neuronal excitability. CB2 receptors are primarily localized to cells of the immune system (Guindon and Hohmann, 2009).

III. Animal versus Human Pain Models

It is increasingly being recognized that only a few new analgesics have entered the general market to be of use in pain patients (Berge, 2011). Of these, only one new target has been discovered: the gabapentinoids (Chizh et al., 2009). There could be several reasons for this lack of success in drug development, but one of the explanations could be that the preclinical pain models do not properly predict the clinical efficacy in humans (Kola and Landis, 2004; Chizh et al., 2009).

Species differences can cause diverse responses to pharmacological treatment. Large interspecies differences exist even in related species of rodents such as rats and mice. This can be due to receptor dissimilarity, leading to different activity and/or pain attenuation in some species compared with others. Examples of this include neurokinin 1 (NK1) antagonists that showed prominent effects in a range of animal pain models but failed to attenuate pain in humans. This was highly unlikely to have been caused by differences in pharmacokinetics, because the human studies were well designed, dose-finding relying on positron emission tomography (PET) ligand studies (Hill, 2000; Bergström et al., 2004; Chizh et al., 2007). Therefore, the failure of this drug class was probably caused by species differences in the role of NK1 receptors in pain.

Species differences in pharmacokinetics can also lead to wrong doses applied in early clinical development. When incorrect doses are applied in clinical trials, this can produce either an unacceptable level of adverse events or a lack of efficacy, resulting in termination of development of the current drug (Lowe et al., 2007). Examples of important species differences in pharmacokinetics are those related to protein binding, metabolism, and the presence of active transporters at mem-
branes (Lin et al., 1994; Lin, 1995; Lin and Yamazaki, 2003). Examples of study failures due to pharmacokinetics, however, are rarely found in literature because such studies are usually not published.

Besides the presence of species differences, preclinical models look predominantly at evoked pain, whereas the clinical trial endpoint often include the results of a questionnaire (e.g., the mean numeric rating scale considering pain over the last 24 h). These types of endpoints reflect a sum of different components, whereas the predominant determinant should be spontaneous and ongoing pain, but with influence from confounders related to side effects, psychological responses, social situation etc. (Shankland, 2011). However, there has been an increasing focus on developing animal models that investigate pain-depressed behavior, which may reflect clinical pain to a larger extent (Negus et al., 2006).

The most potent analgesics have their actions in the central nervous system. Here, a key player such as the opioid system is different between species; considering the major morphological and functional differences between brains of rodents and humans, it is to be expected that differences are quite distinct (Yoburn et al., 1991). Animal studies are based mainly on motor reflexes or behavioral responses, and data from such studies can be interpolated only partly to pain, which is a net result of complex sensory, affective, and cognitive processing. Hence, in animals, there is an under-representation of key brain areas dealing with the affective component of pain (Price, 2000, 2002). Finally, because many of these models are also optimized for success, the construct validity is often limited (Chizh et al., 2009); in fact, only one analgesic (ziconotide) has ever gone from bench to bedside on the basis of animal models alone (Dolgin, 2010).

IV. Clinical Studies versus Experimental Human Pain Models

Pain in patients is accompanied by several factors, such as fear, emotion, anxiety, cognitive and autonomic responses, general malaise, and so forth, influencing the overall sensory experience (Melzack, 1975). Pain is a subjective experience and because of the influence of individualized factors, pain intensity does not correlate well with the severity of the pathological condition (Mao, 2009). Moreover, a painful experience often differs between sexes and cultural backgrounds (Price, 2000; Coghill et al., 2003; Greenspan et al., 2007; Campbell et al., 2008). Hence, improvement in depression, for example, during treatment with a new drug can result in lower pain ratings. It can therefore be difficult to evaluate analgesic effects and specific mechanisms in patients with pain, and even studies with well known analgesics such as NSAIDs are frequently inconclusive (Bjordal et al., 2004).

Experimental pain in healthy volunteers makes it possible to overcome some of this bias and therefore seems to be better suited not only to investigate the analgesic effects but also to study pain mechanisms. The basic concept in these models is to control the stimulus and assessment parameters (Fig. 8) (Staahl et al., 2006a; Arendt-Nielsen et al., 2007a). It is essential that intensity, duration, frequency, and localization of the experimental stimuli be controlled. These parameters determine the quantity of nociceptive information from the periphery to the central nervous system (Staahl et al., 2009a). To mimic the clinical situation, where many mechanisms come into play, different modalities (electrical, thermal, mechanical, or chemical) are typically used (Staahl et al., 2009a). When a given experimental stimulus results in a stable and reproducible response, it becomes a sensitive method for detecting analgesic actions (Fig. 8). The evoked pain sensation is often assessed quantitatively by use of a visual analog scale (VAS) or qualitatively by use of questionnaires. Nevertheless, the visual analog scale is typically used only for the sensory dimension of the pain sensation and is therefore not ideally suited for detailed investigation of pain pathways or elucidation of the underlying mechanisms. A combination of subjective measurements with objective assessments (for example, cerebral evoked potentials, nociceptive reflexes, or imaging) to assess the multiple dimensions of pain is therefore a better solution. In evaluation of analgesics, most studies have applied models in the skin, but from a clinical perspective, deep pain and models in which hyperalgesia and allodynia is evoked are more relevant. Subsequently, reliable and valid pain models from muscle, bone, and viscera have been developed together with chemical models evoking hyperalgesia (Drewes et al., 2003; Arendt-Nielsen et al., 2007a; Olesen et al., 2009b; Staahl et al., 2009a; Andresen et al., 2010). This mimics the clinical situation to a better extent, and in these models the effects of analgesics have been consistently reported (Koppert et al., 2005; Olesen et al., 2010a).

Human pain models can, at least in part, close the gap between preclinical measures and clinical trials (Olesen et al., 2009a). As such, they can give the researchers important confidence in continuing the development of a drug even in the case of inconclusive results in phase II trials. To recognize the time-dependent contribution of the concentration of a drug, pharmacokinetic-pharmacodynamic modeling is suitable. This type of analysis, normally used only in experimental pain studies when potential analgesics are tested, enables detailed study of the concentration-effect relationship of analgesics and their metabolites. This reveals any delay between measured plasma concentration and effect. In addition, both inter- and intraindividual variability can be elucidated, and multiple factors such as weight, height, and so forth can be accounted for. Therefore, the involvement of pharmacoki-
V. Experimental Human Pain Models

Several models of human experimental pain stimulation exist. Important experiments related to pathophysiological changes in the pain system are induction of hyperalgesia and allodynia (Dirks et al., 2002; Hughes et al., 2002; Koppert et al., 2003b). Such procedures may be helpful in the evaluation of various drug effects on peripheral and central mechanisms. In this section, human pain models are described and discussed for different tissues (skin, muscle, and viscera) and different modalities. Both acute models and models of hyperalgesia are described.

A. Skin

Experimental pain models in the skin are extensively used, probably because of the easy access to the skin. Mechanical, thermal, electrical, and chemical methods make up evaluated techniques.

1. Mechanical Stimulation. Different methods exist for mechanical skin stimulation. The advantages for mechanical stimulation of the skin are that an exact and reproducible pressure can be applied to the skin and...
that the response can be assessed quantitatively. Limita-
tions will be described after description of each specific
method.

a. Touch. Light mechanical stimulation can be ap-
plied by using a von Frey hair, a cotton swab, or a
brushstroke. Von Frey hairs are calibrated filaments
that bend when a certain pressure is reached and there-
fore can be used for mechanical stimulation. Αβ fibers
probably mediate touch sensation. Using thicker and
stiffer filaments will produce pinprick stimulation,
which activates predominantly Αδ fibers (see section
V.A.1.b) (Curatolo et al., 2000a; Le Bars et al., 2001).

This method has limitations, because applying light
mechanical stimulation will not induce pain. Therefore,
its main use is as a tool to explore allodynia or pinprick
hyperalgesia (Curatolo et al., 2000a). Furthermore, von
Frey hair stimulation is nonspecific and activates nocice-
tors as well as low threshold mechanoreceptors (Le
Bars et al., 2001).

b. Pinprick. Pinprick stimulation can be performed
by stimulating the skin with a needle or thick von Frey
filaments, predominantly activating Αδ fibers, reported
as pricking (Curatolo et al., 2000a; Le Bars et al., 2001).

A limitation is that conventional techniques do not
allow noxious stimuli to be delivered rapidly and briefly
enough to produce synchronous excitation of nerve
fibers. Moreover, if mechanical stimuli were truly nocice-
tive, they would probably produce lesions (Staalh and
Drewes, 2004).

c. Pressure. Pain can be induced in the skin by pres-
sure algometers (Curatolo et al., 2000a). For example,
skin or an ear lobe can be pinched between the algome-
ter probe and a pinch handle. Pain induced by pressure
stimulation is mediated by both Αδ and C fibers (Curat-
tolo et al., 2000a).

Limitations exist with this method. For example, when measuring any variable, it is important that the
examiner induces pain in a consistent way. Handheld
devices are often used and they have a “maximum hold”
function that displays the maximum pressure obtained
in any application (Kinser et al., 2009). Variation in rate
of pressure increase has been suggested to be the factor
most affecting reliability. To minimize this effect, most
pressure algometers use a fixed rate, and it has been
proposed that testing should be performed by one exam-
inor, which enhances reliability (Nussbaum and
Downes, 1998). Mechanoreceptors are excited in addi-
tion to nociceptors, limiting the use in psychophysiology.
Moreover, it is not possible to provide a fast and pre-
cisely controlled stimulus onset required for studies of,
for example, evoked brain potentials (Handwerker and
Kobal, 1993).

2. Electrical Stimulation. Various stimulator devices
connected to electrodes applied to the skin surface are
developed to evoke electrical stimulation of the skin
(Handwerker and Kobal, 1993).

Advantages are that the temporal aspects of electrical
stimuli are easy to control, and the method is widely
used for inducing pain in the skin (Handwerker and
Kobal, 1993). Various stimulation paradigms with di-
verse waveforms, frequencies, and durations are used to
selectively activate different afferents and nervous
structures and thereby evoke various pain sensations.
The method is suitable for neurophysiological assess-
ments of the pain. In addition, summated stimuli can
activate central mechanisms (Koppert et al., 2001). This
is described further in section VI.

However, limitations exist as well. For example, elec-
trical stimulation of the skin bypasses the sensory nerve
endings, resulting in loss of information on receptor
functioning in the periphery. Moreover, electrical stim-
uli will excite the afferent pathways in an unnatural
synchronized manner and excite the full spectrum of
peripheral nerve fibers unless parts of the fibers are
blocked (Handwerker and Kobal, 1993). Moreover, stim-
ulation of different body sites will show various electrode
impedance, and this may affect the results (Le Bars et
al., 2001).

3. Thermal Stimulation.

a. Cold. Cold sensation and pain in humans are me-
diated by Αδ and C fibers. Cold stimulation can be per-
formed by ice, a cold gel bag, a wet alcohol sponge, or a
cooling thermode to the skin. It is assumed that Αδ
fibers mediate cold sensations, and C fibers most likely
mediate cold pain in humans (Fowler et al., 1988). Cold
stimuli have been used in the form of the cold pressor
test, which is noxious cooling of the forearm or other
extremities by immersion in ice water. In this review,
the cold pressor test is described in section VLA.

The advantage is that warming and cooling are be-
lieved to be conveyed by different peripheral nerve fi-
bers: sensations of warming in unmyelinated peripheral
nerve fibers and those of cooling in small myelinated
fibers. Therefore, the capability of measuring the
threshold for warming and cooling separately is very
valuable, and estimation of thresholds can be used to
examine the functional integrity of these fibers, which
are inaccessible to clinical electrophysiological investi-
gations (Fowler et al., 1988).

The limitation is that a large variability in the mea-
surement of pain threshold, withdrawal threshold, and
subjective pain, especially in some subjects, has been
reported for the cold pressure test (Blasco and Bayés,
1988). Furthermore, there is no standardization with
respect to the duration of extremity cooling and how the
response is rated.

b. Contact heat. Heat pain can be evoked by a heat-
ing thermode. Rapid skin-heating pain activates first Αδ
fibers, where the evoked sensation corresponds to the
“first pain” felt within less than 0.5 s after the heat
stimulus. The first pain is followed by a C-fiber-medi-
ated second pain, which is of longer duration and less
well localized. A or C fibers are activated depending on
whether the skin is heated at a rapid or slow rate. Slow heating (less than 1°C/s) gives a preferential activation of C fibers (Handwerker and Kobal, 1993).

Advantages include that the contact heat evoked potential stimulator represents a novel technique that uses rapidly delivered heat pulses with adjustable peak temperatures to stimulate the differential warm/heat thresholds of receptors expressed by Aδ and C fibers resulting in evoked brain potentials (Le Pera et al., 2002; Roberts et al., 2008).

However, limitations include the fact that radiation devices and thermodes for heat stimulation exist. Therefore, even when the skin surface temperature is controlled, stimuli applied with different methods are not necessarily comparable, because the intracutaneous temperature profiles may be different depending on wavelength or type of contact (Handwerker and Kobal, 1993). This makes comparisons difficult between, for example, different drug studies. The speed of conventional cutaneous heating is usually slow and does not allow for an appropriate study of neural phenomena (Le Bars et al., 2001).

c. Laser. Light amplification by stimulated emission of radiation (i.e., LASER) is a special light source possessing the ability to evoke heat pain and are applied to the skin by noncontact radiation pulses emitted by CO2 lasers, thulium lasers, or diode lasers (Plaghi and Mouraux, 2003; Frahm et al., 2010). Aδ fibers (mean conduction velocity, 14 m/s) and C fibers (0.8 m/s) are activated simultaneously, and the perceived pain is described as “pricking” (Bromm and Treede, 1991). It has been demonstrated that short high-intensity diode laser pulses may selectively produce Aδ-mediated pain in humans and that longer duration, lower intensity pulses may selectively produce C-mediated pain in humans (Tzabazis et al., 2011). This knowledge may be useful in evaluation of differential pharmacological effects and physiologic mechanisms of these two distinct pain types (Tzabazis et al., 2011).

An advantage is that lasers deliver large amounts of energy to the skin in a highly reproducible manner and are therefore efficient and temporally well controlled heat stimulators that are useful for quantitative sensory testing and recording of time-locked evoked brain potentials (Plaghi and Mouraux, 2003; Frahm et al., 2010). Another advantage is that the stimulus can be applied without direct contact to the skin, providing a purely thermal stimulation (Staahl and Drewes, 2004; Tzabazis et al., 2011). In addition, lasers allow brief pulses (microseconds to milliseconds) with very fast rise time.

A limitation is that the response will vary according to transmission and absorption of the epidermis, resulting in high interindividual variability (Bromm and Treede, 1991). Furthermore, lasers are expensive and cumbersome to use.

4. Models Evoking Hyperalgesia. Administration of exogenous chemicals can activate and sensitize afferent nociceptors, leading to pain, hyperalgesia, and allodynia. Hyperalgesia is characterized by lowered pain thresholds and increased pain in response to normally painful stimuli and can occur within the injured tissue (primary hyperalgesia) but also in undamaged tissue outside the area of injury (secondary hyperalgesia) (LaMotte et al., 1991). Lewis (1936) was the first to publish an experimental study of the process by which a large area of undamaged skin surrounding a local cutaneous injury became hyperalgesic in response to mechanical stimuli. In this study, a normally innocuous light stroking evoked soreness or tenderness (“allodynia”) (Lewis, 1936).

Primary hyperalgesia is a peripheral mechanism that occurs at the site of injury, whereas secondary hyperalgesia is at least partially evoked by central mechanisms (Treede et al., 1992). However, it should be noted that the process of central nervous system sensitization is a consequence of input from primary afferent nociceptors that innervate an area of damage or inflammation (Willis, 2001). Models inducing hyperalgesia and/or allodynia may lead to visual flare, which is a diffuse erythema extending beyond the local reaction to a trauma. The flare is a neurogenic inflammatory response evoking vasodilation likely to be mediated by CGRP release from Aδ and C fiber nociceptors (Pedersen, 2000).

Various models have been used to induce cutaneous hyperalgesia and allodynia (e.g., intradermal/topical capsaicin, intradermal nerve growth factor (NGF) and glutamate, burn injury, freeze lesion, laser, electrical, mustard oil, topical menthol, topical sodium lauryl sulfate, repetitive pinching, and intradermal electrical stimulation (see below for details). General advantages and limitations are described in the end of this section.

a. Capsaicin. Capsaicin is one of the most widely used models for studying human pain. This model induces hyperalgesia by either intradermal injection or application of capsaicin to the skin. Capsaicin is the pungent agent of chili peppers, producing pain and sensitization via central and peripheral mechanisms. Intradermal injection of capsaicin induces spontaneous pain via activation of C mechano-heat fibers through binding to TRP vanilloid type 1 (TRPV1) receptors. Moreover, this model evokes pinprick hyperalgesia mediated by Aδ and C afferent fibers and mechanical allodynia mediated primarily by Aβ fibers (Scanlon et al., 2006). Mechanosensitive C nociceptors (silent nociceptors) have shown to play a pivotal role in capsaicin-induced hyperalgesia (Weidner et al., 1999).

The topical heat/capsaicin model has been developed to achieve a noninvasive paradigm that generates stable, long-lasting, and reproducible primary and secondary hyperalgesia. The model is best used in studies of compounds with a peak analgesic effect time of 2 to 3 h because of the duration of the cutaneous sensitization (Dirks et al., 2003; Andresen et al., 2010; Modir and Wallace, 2010). Andresen et al. (2010) further demon-
strated that red-haired women were less sensitized to capsaicin-induced hyperalgesia compared with blond/dark haired women, which could be important in future studies investigating anti-hyperalgesic drugs as well as treatment of pain.

b. Nerve growth factor. NGF is required during development for the growth and survival of neurons. It binds to the high-affinity tyrosine kinase receptor trk-A, expressed on peripheral nervous tissue, to promote the trophic actions (Nicol and Vasko, 2007; Rukwied et al., 2010b). Furthermore, NGF can induce a trkA- and phosphoinositide 3-kinase-mediated translocation of TRPV1 to the cell membrane. In addition to these local mechanisms, NGF/trkA can be internalized and transported to the dorsal root ganglia to induce an up-regulation of sensory proteins such as TRPV1 (Rukwied et al., 2010a). In adults, the primary function of NGF is to mediate the inflammatory and immune response after tissue injury, initiating and maintaining hypersensitivity (Nicol and Vasko, 2007). Hypersensitivity has been demonstrated in a few human experimental studies, where intradermal/subcutaneous injection of NGF evoked long-lasting mechanical sensitization and profound hyperalgesia to thermal stimuli. The observed sensitivity varied in a dose-dependent manner (Petty et al., 1994; Dyck et al., 1997; Rukwied et al., 2010a). A large number of inflammatory mediators act to increase NGF production, and increased levels of NGF have been reported in human painful disorders including arthritis (Kidd and Urban, 2001). Injection of NGF therefore mimics processes found in the clinical situation.

c. Glutamate. Several studies have shown that the glutamate level in the periphery is increased in cutaneous or deep tissues in response to nerve injury, electrical nerve stimulation, and inflammation in both animals and humans (Lawand et al., 1997; Kinkelin et al., 2000; McNearney et al., 2000; deGroot et al., 2000; Rosendal et al., 2004). Glutamate plays a role in pain modulation and sensitization via activation of peripheral glutamate receptors. The activation of peripheral glutamate receptors and related Ca²⁺ influx may enhance nociception via Ca²⁺-dependent phosphorylation of the glutamate receptors and/or further release of glutamate from the same neuronal terminal or adjacent surrounding peripheral terminals to amplify the release of glutamate into peripheral tissues (Lam et al., 2005). Moreover, glutamate receptors are also increased in cutaneous tissue during inflammation (Carlton and Coggeshall, 1999). Despite this knowledge, only one study has investigated the effect of injection of glutamate into human skin. Gazerani et al. (2006) demonstrated that subcutaneous injection of glutamate evokes pain, vasomotor responses, and pin-prick hyperalgesia in healthy volunteers. This study could also show sex-related differences in the hyperalgesic area, where women developed larger areas than men (Gazerani et al., 2006).

d. Burn injury. Burn injuries have the potential for releasing a large number of inflammatory and chemical mediators that produce sensitization and excitation of nociceptors, and the intense noxious input produces sensitization of central neurons in nociceptive pathways (Pedersen, 2000).

UV irradiation, especially UVB light (280–315 nm) produces a well-defined erythema (“sunburn”) evoking an inflammatory response as well as alldynia and hyperalgesia. The sunburn reaches maximum after approximately 24 h, with concomitant reductions in thermal and mechanical pain thresholds in the irradiated area. The erythema is accompanied by an increased sensitivity to mechanical stimulation (secondary hyperalgesia) in the surrounding area. This indicates that central sensitization contributes to UV-induced sensory changes (Bishop et al., 2009). Bishop et al. (2009) demonstrated that magnitude and duration of thermal and mechanical sensitivity is UVB dose-dependent.

Heat stimulation has also been used to induce burns because it is easy to control and most nociceptors respond to heat (Pedersen and Kehlet, 1998). The degree of thermal burns is closely related to the surface temperature and exposure time. Various heat sources (e.g., contact thermode, lasers, and heat lamps) have been used to induce burns. One important difference between the heat sources is that the thermode coactivates slowly adapting mechanoreceptors (Aδ fibers) in contrast to radiant heat stimuli, activating only Aδ and C fibers (Pedersen, 2000). Heat burn has shown to induce reproducible acute inflammatory responses with differences between right and left arm regarding sensitivity (Pedersen and Kehlet, 1998). Thermal burns cause spontaneous pain during induction and lead to flare around the affected area (Norbury et al., 2007), which is not the case with UVB-induced burns (Bishop et al., 2009). The heat model has also shown to evoke habituation over time (in this context referred to as reduced responsiveness to painful stimuli during repeated stimulation). Habituation is not restricted to burn models, however, but is commonly observed in experimental pain models. Thus, habituation must be taken into consideration in pharmacology studies (Pedersen and Kehlet, 1998).

e. Freeze lesion. Induction of freeze lesions is mainly a model of peripheral hyperalgesia that stays stable over 72 h, providing the possibility for assessment of analgesic effect of long-lasting compounds or several doses. No spontaneous pain is experienced by use of the model, avoiding any interference with the evaluation of pain thresholds (Kilo et al., 1994).

f. Mustard oil. Mustard oil is a plant-derived irritant. The noxious effects of mustard oil are currently ascribed to specific activation of the cation channel TRPV1 ankyrin type 1 in nociceptive neurons. It has been proposed that it also activates human recombinant TRPV1 (Everaerts et al., 2011). Topical administration leads to a burning pain in the area exposed to mustard oil as well
as secondary allodynia and hyperalgesia in the surrounding unaffected area, similar to the topical capsaicin model (Koltzenburg et al., 1992).

g. Menthol. Menthol acts as an agonist on the TRP melastatin member 8. The topical application of high-concentration (40%) menthol, is thought to activate and sensitize cold-sensitive TRP melastatin member 8- and TRPV1-expressing C-nociceptors and activates cold-specific Aδ fibers (Binder et al., 2011). Moreover, it has been demonstrated that TRP ankyrin type 1 is a highly sensitive menthol receptor that very likely contributes to the diverse psychophysical sensations after topical application of menthol to the skin or mucous membranes of the oral and nasal cavities (Karashima et al., 2007). Topical application has been introduced as a surrogate model of cold hyperalgesia, which is a major clinical phenomenon in patients with peripheral or central nervous system lesions (Hatem et al., 2006). Besides cold hyperalgesia, the model elicits primary and secondary mechanical (pinprick) hyperalgesia combined with the sensation of burning (Binder et al., 2011). This model has been to be sensitive to a range of analgesics (Altis et al., 2009).

h. Acid phosphate buffer. Acid solutions are known to evoke severe pain when injected into the skin. In addition, tissue acidosis plays a role in painful inflammatory and ischemic conditions (Steen et al., 1995). Intradermal injection of acid phosphate buffer leads to graded cutaneous pain and mechanical hyperalgesia (Steen and Reeh, 1993).

i. Sodium lauryl sulfate. Sodium lauryl sulfate (SLS) is a skin irritant used in the evaluation of skin susceptibility to irritation. It induces the release of inflammatory substances [e.g., tumor necrosis factor-α, interleukin (IL)-1α, IL-6, and IL-8] considered pivotal in peripheral pain modulation. Petersen et al. (2010) demonstrated that SLS evoked localized inflammation and primary hyperalgesia to tactile and thermal stimulation 24 h after application. SLS-induced inflammation most likely involves some degree of C fiber activation. The model could be more relevant for studies of mechanisms that underlie inflammatory and neuropathic pain conditions (Petersen et al., 2010).

j. Pinch. By use of repetitive pinch to the web between the fingers, it is possible to increase pain rating, reflecting hyperalgesia to pinching. The model depends on the ability of the interdigital webs to become more sensitive to the pressure applied by repeated pinching. It is likely that C fibers are activated, leading to increased excitability of spinal neurons. This in turn leads to reduced mechanical threshold, activating Aβ fibers. In addition, inflammatory mediators are released, leading to increased sensitivity (Growcott et al., 2000). However, it is not clear whether the hyperalgesia stems from mechanisms other than those evoked by inflammatory mediators, because it is well known that if a stimulus is repeated at a fast rate (interstimulus interval below 3 s), the pain increases as a result of central amplification of the response (temporal summation) (Staahl and Drewes, 2004).

k. Electrical stimulation. The silent nociceptors are characterized by an unusually high transcutaneous electrical activation threshold, but application of high-intensity transcutaneous electrical stimuli (50 mA, 0.5 ms) induces large areas of secondary mechanical hyperalgesia and flare (Schmelz et al., 2000). The model has shown to be valid and stable over time. However, a major difference between this model and capsaicin is that electrical stimulation bypasses the nerve terminals by direct axonal activation, yielding better control of nociceptor firing frequency. The model will not detect effect of drugs that impair the response of peripheral nerve terminals. However, the model has shown to be suitable for investigating analgesic and antihyperalgesic effect of drugs (e.g., alfentanil, ketamine, and lidocaine) (Koppert et al., 2001).

Among the advantages is the fact that experimental models inducing allodynia and/or hyperalgesia have been used to show effect of analgesics (Staahl et al., 2009a,b). Such models are of interest when investigating effect and mechanisms of drugs because they can act as proxies for clinical manifestations and are therefore more clinically relevant than phasic pain models (Negis et al., 2006). Moreover, the models are suitable for studies investigating effect and mechanisms of drugs because they produce long-lasting allodynia and hyperalgesia for up to several days.

Limitations include the fact that models inducing not only allodynia and/or hyperalgesia but also inflammatory responses may activate silent C fibers. Thus the activation of Aδ fibers may transform into thresholds for activation of C fibers, and as these respond to other stimulus modalities, it may confuse the evaluation of analgesics (Le Bars et al., 2001).

It is also important to keep in mind that models inducing allodynia and/or hyperalgesia are more difficult to control with respect to reproducibility compared with the phasic pain models (Staahl et al., 2009a,b). This problem can be overcome by applying larger samples when analgesic effects are tested.

B. Muscle and Bone

Human experimental muscle pain models have been divided into methods without (endogenous) and with (exogenous) external stimuli. Ischemic and exercise-induced muscle pains are typical endogenous pain models, whereas external stimulation with mechanical, electrical, and chemical modalities constitutes the exogenous models (Graven-Nielsen and Arendt-Nielsen, 2003; Graven-Nielsen, 2006). Experimental muscle pain may also be perceived in areas remote from the affected part (referred pain), and the area of referred pain has shown to correlate with the intensity of muscle pain (Mense, 1997). The pathogenesis of
bone-associated pain is still not fully understood, but it is known that the periosteum is innervated by unmyelinated nociceptive afferents (Grönlund et al., 1984). These nociceptors are sensitive to high-intensity pressure (Grönlund et al., 1984).

1. Mechanical Stimulation.

a. Muscle. Mechanical stimulation by use of pressure, for example, is a typical exogenous experimental pain model. Handheld pressure algometry is the most frequently applied technique for quantification of pain. The method is an experimental parallel to palpation in clinical practice (Graven-Nielsen and Arendt-Nielsen, 2003). The pain threshold and tolerance thresholds are easily measured. In addition, stimulus-response functions give information on muscle hyperalgesia (and anaptic profiles). The force increase rate is normally kept relatively constant, and absolute values are monitored when hand-held algometers are used. Methodological concerns such as short- and long-term reproducibility, influence of pressure rates and muscle contraction levels, and examiner expectancy have been addressed carefully (Graven-Nielsen and Arendt-Nielsen, 2003). An alternative to handheld pressure algometry is a computer-controlled algometer, allowing rate and peak pressure to be predefined and controlled automatically (Graven-Nielsen and Arendt-Nielsen, 2003). However, the computer-controlled algometer is a more complex set-up compared with the handheld algometer. Another method for evoking mechanical stimulation is the cuff algometry technique. Compared with pressure algometry, the cuff model can be used to establish stimulus-response recording of pain response to increasing pressure. This technique is fully computer-controlled, which increases the reliability and sensitivity (Polianskis et al., 2001).

Advantages include the fact that standardization of the technique of pressure algometry has been attempted, and reference values for various muscles are published (Fischer, 1998). Pressure algometry has been used in evaluating drug efficacy (Staahl et al., 2006a; Arendt-Nielsen et al., 2009) as well as to evoke temporal summation by repeated pressure. It was demonstrated, for example, that temporal summation was facilitated in patients with fibromyalgia compared with healthy volunteers, indicating involvement of central sensitization in patients with fibromyalgia (Staud et al., 2003). The cuff algometry technique is reliable and sensitive, and the model has been applied in pharmacological testing (Arendt-Nielsen et al., 2009; Olesen et al., 2010a).

However, a limitation is that the techniques for mechanical muscle stimulation are not tissue-specific because receptors in the skin are activated as well (Graven-Nielsen and Arendt-Nielsen, 2003). Findings in a recent study suggest that pressure algometry-induced muscle pain is mainly related to muscle strain and is most efficiently induced by large rounded probes (Finocchietti et al., 2011).

b. Bone. Mechanical pressure has been applied to different bone structures (e.g., mastoid processes, external malleolus, and sternum) (Vatine et al., 1993). Most studies have used the tibia. First Hamilton et al. (1967) showed that pressure with a metal probe to the surface of the tibia evoked pain. A study by Finocchietti et al. (2012) demonstrated that probe size is important to evoke bone pain with clinical characteristics.

The advantage is that the model has been used in assessment of analgesics (Andresen et al., 2010), and it has been shown that the model is reproducible with minor pain component of the overlying skin (T. Andresen, M. P. Jensen, C. Brock, A. M. Drewes, L. Arendt-Nielsen, unpublished observations).

Limitations include the fact that indentation of the skin and shape of the probe are important factors influencing mechanical pressure stimulation (Greenspan and McGillis, 1991). It is therefore important to stimulate an anatomical site (e.g., the tibia) that is easy to access and has the least influence of pain deriving from other tissues (e.g., muscle and nerves) to evoke bone-associated pain. So far, however, no study has systematically investigated the probe size that would be optimal to evoke bone-associated pain.

2. Electrical Stimulation. Muscle pain can be induced experimentally by electrical stimulation by needle electrodes with uninsulated tips inserted into muscles (e.g., the left tibialis anterior muscle) (Schulte et al., 2003).

Advantages are that intramuscular electrical stimulation results in pain that is present only during the stimulation. Repeated electrical stimulation can induce temporal summation, manifested as increase in referred pain areas or pain rating, reflecting central changes (Schulte et al., 2003). Electrical stimulation offers a unique possibility to compare muscle and skin pain with the same modality. For example, it has been shown that remifentanil caused a higher increase in the muscular pain thresholds than in the cutaneous pain thresholds, and it was concluded that opioids inhibit muscular pain more strongly than cutaneous pain in humans (Curatolo et al., 2000b).

A limitation is that electrical stimulation first elicits non-nociceptive input to the CNS because it bypasses the receptors, resulting in a nonphysiologic stimulation. This is likely to alter the effects of the ensuing nociceptive input (Graven-Nielsen and Mense, 2001). Furthermore, concurrent activated muscle twitches may confound the sensation evoked by intramuscular electrical stimulation and lead to a change in placement of electrodes, thus reducing reproducibility (Staahl et al., 2006b).

3. Thermal Stimulation. Injection of 48°C isotonic saline has been used in a few cases for muscle stimulation. The injection elicits not a sensation of heat but mild pain, and it has therefore been suggested that thermally induced muscle pain is nociceptive-specific (Graven-
Nielsen et al., 2002). This methodology has not yet been applied in trials with analgesics.

Advantages include the fact that a thermal stimulus is a more specific stimulus compared with, for example, hypertonic saline (see section IV.B.4.c), because hypertonic saline activates a broader population of nociceptors.

One limitation is that in contrast to thermal skin stimulation, where subjects can differentiate between cold and warm stimuli, this is not possible for the thermal muscle stimulation (Graven-Nielsen and Mense, 2001). Knowledge on reproducibility would be useful for the use of this model in analgesic testing.

a. Ischemic Stimulation. The tourniquet model (see section V.B.1.a) can be used to induce ischemic muscle pain, for example in combination with voluntary muscle contractions or exsanguinations of the leg by gravity. Level of force and duration are important factors for the resulting pain. The mechanisms behind it are not fully understood, but accumulation of various substances (e.g., potassium, adenosine, lactate) has been suggested to play a major role in the excitement of muscle nociceptors (Graven-Nielsen and Arendt-Nielsen, 2003). The tourniquet can be left inflated as long as the subject tolerates the pain, for a maximum of 2 h.

Advantages include the fact that the model is applicable in experimental studies requiring a general tonic pain stimulus (Graven-Nielsen, 2001). Because the method is found reliable, it can be used in trials with analgesics (Graven-Nielsen and Arendt-Nielsen, 2003).

It is a very efficient model to induce pain in the muscles, but a limitation is that pain is not evoked solely from the muscle tissue and skin; periosteum and other tissues will contribute to the overall pain perception.

b. Exercise-induced muscle pain.

i. Concentric muscle work. Concentric muscle work is an endogenous method of exercise-induced muscle pain that is normally short-lasting and a result of impaired blood flow during work (Graven-Nielsen, 2006). It may therefore resemble ischemic muscle pain. However, ultrastructural damage resulting in the release of algic substances may lead to delayed onset of muscle soreness. This may produce an inflammatory reaction resulting in hyperalgesia (Graven-Nielsen, 2006).

An advantage is that the endogenous methods such as muscular contraction probably mimic clinical pain to a high degree. It has been demonstrated that the time to reach maximum intensity is inversely proportional to the amount of the load (Vecchiet et al., 1983).

The model has the disadvantage of involving several or all muscle groups within the region investigated and therefore may be difficult to control, producing less reproducible measures.

ii. Delayed onset muscle soreness. Delayed onset muscle soreness (DOMS) is a transient effect of unaccustomed eccentric exercise that in the healthy population typically peaks 24 to 48 h after exercise. DOMS is most apparent with movement or application of mechanical pressure over the affected muscles and may be considered a form of alldynia or mechanical hyperalgesia (Ayles et al., 2011). Intensity and duration of exercise are important factors influencing DOMS onset. Several hypotheses have been suggested for the mechanisms of DOMS (e.g., lactic acid, muscle spasm, connective tissue damage, muscle damage, inflammation, and enzyme eflux). However, integration of two or more of these mechanisms is likely to explain the muscle soreness (Cheung et al., 2003). A study by Nie et al. (2006) also demonstrated that pressure-evoked DOMS might facilitate temporal summation of pain, suggesting that central sensitizing is an important component in DOMS. Moreover, pressure pain thresholds decreased 24 h after exercise, indicating mechanical hyperalgesia of the involved muscle. The hyperalgesia could be a result of released endogenous substances such as bradykinin and prostaglandin E2, substances known to stimulate and/or sensitize muscle nociceptors (Nie et al., 2006).

An advantage is that the model could be of interest in trials investigating analgesic effects, because the model mimics the clinical situation to a high degree, central sensitization playing an important role in patients suffering from chronic pain. Another feature of delayed muscle soreness is that there is no pain at rest; pain is evoked by muscle function and during palpation, which is in contrast to spontaneous pain induced by exogenous experimental techniques (Graven-Nielsen and Arendt-Nielsen, 2003).

One limitation is that in general, it has been suggested that the development of muscular hyperalgesia is dependent on the size of the muscle and possibly the level of afferent barrage. This was supported by Svensson et al. (1995), demonstrating that pressure pain threshold was higher for a large muscle compared with a smaller muscle. This should be considered when results are compared between studies.

c. Chemically induced muscle hyperalgesia. Several models exist for intramuscular infusion of endogenous substances to evoke pain and tenderness (Mørk et al., 2003). A number of substances and concentrations as well as their combinations have been explored (Mørk et al., 2003). Examples given are NGF, hypertonic saline, capsaicin, glutamate, bradykinin, serotonin, histamine, prostaglandin, ATP, and phosphate buffer. In this review, only the most widely used methods are described, and the reader is referred to other papers for more specific information (Babenko et al., 1999a,b; Graven-Nielsen and Arendt-Nielsen, 2003; Graven-Nielsen et al., 2003; Mørk et al., 2003; Frey Law et al., 2008). Each substance is described individually and general advantages and limitations are given at the end of this section.

i. Hypertonic saline. Intramuscular injection of hypertonic saline (0.5 ml, 5.8%) has been used extensively (Graven-Nielsen and Arendt-Nielsen, 2003) because it
has been demonstrated that injection of hypertonic saline into tendon sites provokes localized mechanical hyperalgesia (Slater et al., 2011). It has been found that the proximal tendon-bone junction and tendon sites are more sensitive and susceptible to sensitization by hypertonic saline than muscle bellies (Gibson et al., 2006).

ii. Nerve growth factor. Intramuscular injection of NGF has been shown to induce long-term sensitization and time-dependent hyperalgesia, indicating potential involvement of both central and peripheral pain mechanisms (Andersen et al., 2008). NGF has been used in both basic pain studies and in studies investigating analgesic effects, and has been injected into, for example, the extensor digitorum longus muscle (Andersen et al., 2010), the middle of the muscle belly of the tibialis anterior (Andersen et al., 2008) or the masseter muscle (Svensson et al., 2008). The model has been shown to induce long-lasting, pressure-evoked soreness of the muscle and time-dependent pressure hyperalgesia, most likely involving peripheral and central mechanisms, and is applicable in testing of analgesics (Andersen et al., 2010). The effect of NGF on muscle contraction can also be tested, and this has been done by use of a custom-made shoe with 3 kg attached distally, leading to muscle hyperalgesia to distant areas, indicating involvement of central mechanisms (Andersen et al., 2008). NGF induced hyperalgesia has been found to be dose-dependent in both animals and humans (Petty et al., 1994; Hathway and Fitzgerald, 2006).

iii. Capsaicin and glutamate. Decreased pressure pain threshold after intramuscular injections of capsaicin has been shown (Witting et al., 2000). Intramuscular injections of glutamate produce pain and hyperalgesia to pressure stimuli in humans (Caírns et al., 2001; Svensson et al., 2003b). It has been demonstrated that intramuscular administrations of glutamate and capsaicin interact and influence pain and sensitization of muscle nociceptors: glutamate causes a sensitization to subsequent administration of capsaicin, whereas capsaicin is associated with desensitization to subsequent injection of glutamate (Arendt-Nielsen et al., 2008).

Advantages with models of chemically induced muscle hyperalgesia are that the induced pain caused by intramuscular infusion of endogenous substances is comparable with acute clinical muscle pain with localized and referred pain (Graven-Nielsen and Arendt-Nielsen, 2003). The method is reliable for studying referred pain from musculoskeletal structures because of longer lasting pain (Graven-Nielsen and Arendt-Nielsen, 2003). A major advantage of NGF injection is that it is not painful but causes a hyperalgesic area that increases over time. It has been demonstrated that injection of NGF into the human masseter muscle causes local signs of mechanical allodynia and hyperalgesia that persist for at least 7 days (Svensson et al., 2003a). Because of the long-lasting hyperalgesia it has been proposed that the NGF pain model mimics clinical pain conditions better than other models of muscle pain and hyperalgesia, such as intramuscular injection of hypertonic saline or electrical stimulation (Gerber et al., 2011).

On the other hand, a limitation is that intramuscular infusion of endogenous substances can be difficult to control, and the duration of hyperalgesia is dependent on dose and the size of the muscle (Andersen et al., 2008).

C. Viscera

The effect of analgesics on visceral pain is difficult to evaluate clinically because of the deep and diffuse nature of the pain and the accompanying autonomic symptoms (Drewes et al., 2003). Because of the localization of the organs, experimental pain studies in the viscera are difficult to perform. The risk of perforation and the increased autonomic responses to visceral stimuli also limit the possibilities (Ness and Gebhart, 1990). Despite these challenges, experimental pain has been evoked in different parts of the gastrointestinal (GI) tract (Ness and Gebhart, 1990; Drewes et al., 2003), the urinary tract (Maggi, 1993), and the uterine cervix (Drewes et al., 2003). Models have been developed in which the investigator can stimulate with different modalities and hence activate diverse groups of afferents. Sensitization of the nervous system is also possible by, for example, perfusion of the gut with chemical substances. Thus, peripheral and central mechanisms relating to the clinical situation involving chronic pain syndromes can be evoked and the effect on pharmacological modulation can be evaluated. Most models have been used in the GI tract, and only these will be reviewed here.

1. Mechanical Stimulation. The mechanical properties of the GI tract are important for its function as a digestive organ, and the gut contains mechanoreceptors at various locations in the wall, mainly in the muscle layers (Sengupta and Gebhart, 1994). Mechanical stimulation in hollow organs is done via distension. To distend organs such as the esophagus, the small intestines, or the rectum a balloon is used. Widely used methods are computerized systems such as the “Barostat,” where the pressure and volume can be controlled (van der Schaar et al., 1999). Several protocols and stimulation paradigms are recommended for the Barostat, such as, for example “phasic and tonic distensions.” The stimulation paradigms have been thoroughly discussed; for review, see van der Schaar et al. (1999).

The major advantage of the barostat system (and similar pressure-volume–based methods) is the relatively low costs and reliability making it useful for routine purposes. Most studies have used volume as a surrogate measure of the activation of mechanoreceptors and this produces acceptable reliability (Staab et al., 2006a,b; Arendt-Nielsen et al., 2009; Olesen et al., 2010a).

There are major limitations with these systems relating to, for example, elongation of the balloon during distension. Any bag will tend to elongate in the luminal
direction, where the resistance is less, rather than dis- tend the gut wall. Hence, recordings of volume (and tension) may suffer from errors due to elongation and deformation of the bag and do not reliably reflect the activation of mechanoreceptors (Gregersen and Christensen, 2000; Gregersen et al., 2007). Because many organs, such as the rectum and stomach, are not spherical, this may cause further bias in the assessment of the degree of distension. These problems may be overcome by calculation of the balloon radius and strain in the tissue using impedance planimetry or ultrasound (Drewes et al., 2003). In accordance with recent studies, strain of the gut is probably the most consistently mechanical parameter relating to the activation of mechanoreceptors and possibly the subjective sensory response (Drewes et al., 2003). However, the technical complexity of such systems has limited their use in drug studies.

2. Electrical Stimulation. Depolarization of the nerve afferents by electrical current has been widely used as an experimental stimulus of the human gut—for review, see Ness and Gebhart (1990).

Advantages are that the electrical stimuli have proved to be safe in all parts of the GI tract. Electrical stimuli are easily controlled over time, and central pain mechanisms can be studied by using, for example, repeated electrical stimuli (Drewes et al., 2003; Brock et al., 2009b).

The major limitation and challenge with electrical stimulation is the varying electrode contact with the mucosa, giving inconsistent results. Integrating the electrodes on the biopsy forceps for the endoscopes provides a solution to this problem, allowing stimulation of well-defined areas throughout the GI tract. However, this is for the subjects more unpleasant than application of a soft probe, and the increased unpleasantness can possibly interfere with the pain experience.

3. Thermal Stimulation. Luminal heat stimulation activates the afferents in the mucosa selectively through TRPV1 receptors. This is opposed to mechanical and electrical stimuli, activating afferents in both superficial and deeper layers in the viscera (Sengupta and Gebhart, 1994). Although thermal stimuli of the gut have been used to some extent in animal studies (Ness and Gebhart, 1990), only few human studies have used temperature stimuli in the human GI tract (Staalh et al., 2006; Arendt-Nielsen et al., 2009; Olesen et al., 2010a). Human trials show a uniform perception of thermal stimuli from the stomach to the jejunum with different reflex responses evoked by the stimuli (Villanova et al., 1997). In a previous study, the temperature of recirculating water was continuously measured inside a balloon positioned in the esophagus (Drewes et al., 2003). The model has been used in many studies unraveling pain mechanisms in patients and has recently been used in the rectum (Drewes and Gregersen, 2006; Brock et al., 2008).

An advantage is that the temperature stimuli showed a linear stimulus-response relationship, demonstrating validity of the model. Accordingly visceral temperature models have proven to be valid in trials with analgesics (Staalh et al., 2006a; Arendt-Nielsen et al., 2009).

The limitation with this method is that uncertainty in pain assessments as a result of fast increase in temperature (1.5°C/min) has been demonstrated, and it has been proposed that individual differences in reaction time could affect the accuracy of rating (Olesen et al., 2010a). Consequently, in future studies, a slower temperature increase has been recommended (Olesen et al., 2010b).

4. Models Evoking Hyperalgesia. Visceral hyperalgesia has been induced by, for example, acid, capsaicin, and glycerol (Drewes et al., 2003b; Hammer and Vogelsang, 2007; van den Elzen et al., 2009). Acid perfusion of the esophagus is the most widely used chemical stimulus inducing both peripheral and central sensitization as generalized hyperalgesia (Sarkar et al., 2001; Drewes et al., 2003a).

Tissue injury generates release of multiple molecules acting synergistically to produce inflammatory responses and hyperalgesia (Kidd and Urban, 2001). To mimic this situation, it may be necessary to use a mixture of chemical substances with diverse effects on the tissue. Such different cellular interaction sites of acid and capsaicin have been proposed in which the acid targets the TRPV1 extracellularly, whereas the capsaicin targets TRPV1 predominantly intracellularly (Welch et al., 2000). This method of combining chemicals has also been applied in human studies (Brock et al., 2009a; Olesen et al., 2009b, 2010a).

Advantages with these methods are that duration and magnitude of hypersensitivity is related to exposure area or dose of the chemicals (Sarkar et al., 2000, 2001; Drewes et al., 2005). Most of the studies on visceral hyperalgesia have demonstrated increased pain in response to one or more modalities after experimentally induced sensitization by chemicals (Sarkar et al., 2001, 2003; Drewes et al., 2003a; Hobson et al., 2004; Pedersen et al., 2004; Frøkjær et al., 2005; Sami et al., 2006; Willert et al., 2007; Brock et al., 2009a).

However, one limitation is that it has been demonstrated that the response to acid is highly variable the first time a healthy volunteer is exposed to esophageal acid perfusion compared with the second time (Olesen et al., 2009d). Therefore, in drug studies, it is recommended to have a training session, where the subjects are introduced and exposed to chemical perfusion. Another limitation is that a direct comparison between studies investigating visceral hyperalgesia is difficult, because different doses of chemicals have been applied to various visceral organs.
VI. Experimental Pain Modulation

A. Conditioned Pain Modulation

Pain is a complex phenomenon that is modulated by different endogenous inhibitory and facilitatory mechanisms. The conditioning stimuli that activate DNIC have been shown to decrease the activity of rostral ventromedial medulla (RVM) ON cells (Hernández et al., 1994). Moreover, DNIC reduces the activity of convergent dorsal horn neurons through activation of opioids receptors (Willer et al., 1990; Le Bars et al., 1992a; Bouhassira et al., 1993). Animal studies also suggest that DNIC analgesia is mediated by the catecholaminergic, serotonergic, and opioid neuronal systems (Le Bars et al., 1981), and morphine can both inhibit and facilitate the DNIC-phenomenon (Le Bars et al., 1992b). Nevertheless, these studies were performed in different animal species, and the mode of opioid action and DNIC therefore remains controversial.

Assessing CPM (the human term for DNIC) most likely reflects the balance between descending inhibition and facilitation. The concept of CPM is that a tonic nociceptive stimulus (conditioning stimulus) inhibits pain induced by another nociceptive stimulus (test stimulus)—“pain inhibits pain.” The best effect is obtained if the test stimulus is applied extrasegmentally to the conditioning stimulus (Le Bars et al., 1979a,b).

CPM has been widely investigated using several stimulation modalities (Wilder-Smith et al., 2004; Pud et al., 2009; Moont et al., 2010; Olesen et al., 2010b; Treister et al., 2010; Brock et al., 2012), usually by applying two concomitant remote noxious stimuli (e.g., ischemic pain, heat, chemically induced pain, electrical induced pain, physically induced muscle pain, or cold pressor test) (Popescu et al., 2010). The most commonly used paradigm to induce CPM is the cold pressor test (Pud et al., 2009).

CPM responses can be quantified by psychophysical measures (Pud et al., 2009), somatosensory evoked brain potentials (Arendt-Nielsen and Gotliebsen, 1992), or nociceptive reflexes (Willer et al., 1990). A study by Moont et al. (2011) demonstrated increased activity in the orbitofrontal cortex and amygdala as well as reduced activity in, among others, the anterior cingulate cortex (Moont et al., 2011). The anterior cingulate cortex in particular is frequently involved in modulation of pain and analgesia (Willoch et al., 2003; Sprenger et al., 2011), and a coupling between this brain structure and the descending pain control system has been demonstrated to be modulated by the opioid antagonist naloxone in humans (Sprenger et al., 2011). A study by Willer et al. (1990) showed that naloxone blocked the CPM effect induced by painful thermal (46°C) conditioning stimuli (Willer et al., 1990), whereas naloxone did not block the CPM induced by the cold pressor test (Edwards et al., 2004) or by muscle pain (Graven-Nielsen et al., 2002).

B. Summation

Increasing pain in response to a series of stimuli (summation) reflects the first phase of “wind-up” in animal studies. Various modalities have been used to induce temporal summation of skin pain: heat (Granot et al., 2006), cold (Mauderli et al., 2003), mechanical pressure (Nie et al., 2006), and electrical stimulation (Arendt-Nielsen et al., 2000c). Temporal and spatial summation evoked experimentally in the skin reflects a central nervous system modulation of the response, and a number of drugs can block these phenomena (Dirks et al., 2002; Hughes et al., 2002; Koppert et al., 2003b). Temporal summation is believed to mimic neuropathic pain conditions because a likely contribution of central sensitization to neuropathic pain has been demonstrated (Woolf, 2011).

Intramuscular electrical stimulation can be used to assess the efficacy of temporal summation in muscles (Graven-Nielsen et al., 2000). Moreover, increased temporal summation is found during experimentally induced muscle hyperalgesia (Nie et al., 2006). In a study with patients with sigmoidostomy, it was demonstrated by use of repeated visceral stimuli that pain summation thresholds were significantly lower than the threshold in response to single-burst stimuli, indicating the importance of central, temporal summation for visceral pain (Arendt-Nielsen et al., 1997).

C. Thermal Stimulation

It has been shown that concurrent applications to the skin of spatially adjacent bands of innocuous warm and cool stimuli can elicit a noxious sensation (Leung et al., 2005). The frequency and intensity of painful sensations was directly related to the magnitude (i.e., 5–25°C) of the difference of the temperature between the warm and cold bars of the grill (Bouhassira et al., 2005). Two central mechanisms may mediate the painful grill illusion: 1) spatial summation in the warm sense and 2) spatial summation/integration of cold and warm channels (Defrin et al., 2008). Others have also addressed the possibility that there could be a central role involved in the thermal grill illusion (Craig and Bushnell, 1994). However, this remains unclear (Li et al., 2009).

D. Chemical Stimulation

Chemical stimulations can also lead to central sensitization. For example, induction of central sensitization has been demonstrated after intradermal injection of capsaicin (Simone et al., 1989; Koltzenburg et al., 1992; LaMotte et al., 1992). Therefore, intradermal capsaicin has also been used as a neuropathic pain model (Aykanat et al., 2012). Human studies of visceral hyperalgesia induced by perfusing the esophagus with acid, capsaicin, or a combination have demonstrated central sensitization (Sarkar et al., 2000; Brock et al., 2009a; Olesen et al., 2009b). These methods are described previously in section V.C.4.
E. Long-Term Potentiation/Depression

Long-term potentiation (LTP) and subsequently increased synaptic strength in nociceptive pathways shares several features with hyperalgesia and has been proposed to be a cellular mechanism of pain amplification in acute and chronic pain states. Hence, analysis of the molecular mechanisms underlying the generation and maintenance of central sensitization and LTP indicates that these mechanisms share distinct similarities (Sandkühler, 2010). Methods of experimentally inducing secondary hyperalgesia possibly involving LTP in rodents have previously been described in detail (Ruscheweyh et al., 2011). These methods include electrical nerve stimulation or such natural noxious stimulations as skin incision, chemical injury, and thermal injury (Ruscheweyh et al., 2011). The conditioning electrical stimulation of high-frequency stimulation of the same type that induces LTP in rodents has in humans been shown to induce long-lasting potentiation of pain perception (Ruscheweyh et al., 2011). In humans, electrical C fiber stimulation can be applied transcutaneously using specialized electrodes (Klein et al., 2004). Body regions such as the lower back and forearm are preferable because of their large receptive fields, allowing multiple electrode placements within the same receptive field (Jung et al., 2011).

Electrical low-frequency stimulation of nociceptive skin afferents has the opposite function and reliably induces long-term depression (LTD) of pain. It has been suggested that reduction of sharp pain points to Aδ fiber-mediated LTD (Rottmann et al., 2010). LTD can be induced not only in the stimulation site but also within a certain area of the receptive field (Jung et al., 2009; Rottmann et al., 2010). These findings could be important for electrostimulation in clinical use in humans (Jung et al., 2011).

It has been demonstrated that low frequency stimulation of Aδ fibers can reverse high-frequency–induced LTP (depotentiation), but the opposite is not possible (Ikeda et al., 2000). LTP and LTD share common properties, and both lead to an activation of NMDA receptors and increase in postsynaptic calcium channels, but during LTP, Ca²⁺ reaches high levels and preferentially activates a protein kinase. On the other hand, during LTD, lower Ca²⁺ levels are achieved, and this preferentially activates a protein phosphatase (Bear and Malenka, 1994).

VII. Pain Assessment

Pain can be measured by qualitative and quantitative methods, and these can be subjective and/or objective. Qualitative methods evoke responses that use categorical measures. For example, the responses “pain” and “no pain” indicate whether the drug or modulation inhibits pain or not (Curatolo et al., 2000a). The main limitation with categorical measures is that nonparametric statistical methods shall be applied, giving the measures less sensitivity for detecting analgesic responses. Therefore, responses evoked by quantitative methods are usually applied. The different quantitative methods are described below.

A. Psychophysical Methods

Psychophysics quantitatively investigates the relationship between physical stimuli and the sensations and perceptions they give. A central concept in psychophysics is that of thresholds. In pain research, several types of thresholds have been used (Handwerker and Kobal, 1993).

1. **One-Dimensional Pain Assessment Tools.**

 Psychophysical methods of pain assessment are based on a volunteer’s subjective pain experience. Frequently used methods are one-dimensional pain scales, such as verbal rating scales (e.g., none, mild, moderate, severe, or unbearable); VASs (e.g., 10-cm line with anchor points at each end), and numerical rating scales (Caraceni et al., 2002). These scales provide simple, efficient, and minimally intrusive measures of pain intensity that have been used widely in clinical and research settings in which a quick index of pain intensity is required and to which a numerical value can be assigned (Katz and Melzack, 1999). However, such rating scales can also be used to score dimensions of the pain experience other than intensity (e.g., the unpleasantness of pain stimuli). For threshold determinations, intensity of the stimulus is gradually increased, and drug effect can be quantified by recording the stimulus intensity at which the subject begins to perceive the stimulus (stimulus detection threshold), the stimulus intensity at which the stimulus perception becomes painful (pain detection threshold), or the stimulus intensity at which the pain is perceived as intolerable (pain tolerance threshold) (Brennum et al., 1992).

 A limitation is that the one-dimensional pain tools assess only a limited part of the experienced pain. Therefore, to grasp the full complexity of the pain experience, results from several assessments must be used to give a more complete picture of the evoked pain experience (Giordano et al., 2010). For example, pain intensity, pain relief, and psychological distress are independent subjective measures that interact in complex ways to determine the perception and experience of pain (see Fig. 8) (Frampton and Hughes-Webb, 2011).

2. **Multidimensional Pain Assessment Tools.**

 Multidimensional pain measurement tools can be used to assess a wider pain experience. The McGill Pain Questionnaire provides estimates of the sensory, affective, and evaluative dimensions of pain. It consists of 78 pain adjectives arranged into 20 groups further arranged into sets of words describing the different dimensions in pain (Melzack, 1975; Katz and Melzack, 1999). The McGill Pain Questionnaire has been developed for other languages and has proven consistency as a cross-cultural
pain assessment tool (Drewes et al., 1993). The McGill Pain Questionnaire seems to provide a more sensitive measurement of pain than does a simple VAS (Katz and Melzack, 1999). A reason could be that patients can be more precise in describing their experiences by selecting appropriate descriptors. This increased ability of the McGill Pain Questionnaire to detect differences in pain at the low end of the pain scale most likely is a function of the multidimensional nature of the McGill Pain Questionnaire and the large number of descriptors from which to choose (Katz and Melzack, 1999). A short-form McGill Pain Questionnaire was developed for use in specific research settings where time is limited but more information is needed than that provided by the one-dimensional pain tools. In addition, the Descriptor Differential Scale was developed using sophisticated psychophysical techniques and was designed to measure separately the sensory and unpleasantness dimensions of pain (Katz and Melzack, 1999).

A limitation of the multidimensional pain tools is that they can be more comprehensive. For example, the discriminative capacity of the McGill Pain Questionnaire is limited when the patient presents with high levels of anxiety or psychological disturbance (Melzack, 1975). Moreover, in specific comprehensive research settings, time can be limited, making a one-dimensional tool more appropriate.

B. Neurophysiological Methods

1. Magnetic Resonance Imaging. Magnetic resonance imaging (MRI) allows imaging of both brain structure and activity. Brain activity measured by MRI has most commonly been acquired by the blood oxygenation level-dependent technique, which is based on different paramagnetic properties of oxy- and deoxyhemoglobin in the blood. Lately, other techniques, such as arterial spin labeling and signal enhancement by extravascular water protons, have been applied (Chen et al., 2011). A clear advantage of functional MRI (fMRI) is that it operates in a noninvasive and nonradioactive environment, allowing subjects to be studied repetitively (Frøkjaer et al., 2011). Functional MRI has been used to detect analgesic effects (Borsook and Becerra, 2006; Ianetti and Wise, 2007; Borsook et al., 2011).

The limitation is that the temporal resolution of fMRI is clearly inferior to electroencephalography (EEG) and magnetoencephalography (MEG), meaning that fMRI is not a specific tool for investigating the primary neuronal activity directly related to the painful stimuli (first few hundred milliseconds after stimulus). In contrast to PET studies, a limitation in MRI studies is the lack of information regarding neurotransmitters or involved receptors. Functional MRI has an excellent spatial resolution (2–5 mm), especially in the more superficial layers, but limitations are seen in the deeper structures, such as the brainstem and thalamus, as a result of pulsation artifacts (Frøkjaer et al., 2011). Another practical limitation is that MRI scanners are expensive.

2. Single Photon Emission Computed Tomography and Positron Emission Tomography. Single photon emission computed tomography (SPECT) and PET are nuclear imaging techniques that can trace radiolabeled molecules injected into the bloodstream. The distribution, density, and activity of receptors in the brain can thereby be visualized. For example, in vivo functional imaging by means of PET is a method for providing a quantitative measurement of opioid receptor-mediated signaling in the central nervous system. A decrease in opioid receptor availability related to acute pain has been demonstrated (Henriksen and Willoch, 2008). PET and SPECT have been used for imaging of the opioid system and allow precise pharmacokinetic and pharmacodynamic measurements (Lever, 2007).

Limitations are that the temporal resolution of SPECT and PET is poor (minutes) compared with EEG, and group analysis is needed for meaningful results (Frøkjaer et al., 2011). Moreover, the subjects receive radiation, and the expense for the synthesis and the PET ligand is high. Finally, the experimental setup and the choice of tracer may affect the results and explain any divergence in findings (Henriksen and Willoch, 2008).

3. Electroencephalography. EEG is a method to assess electrical activity in the brain generated by firing between neurons. The activity can be recorded as evoked potentials (EPs) after painful stimuli (Fig. 9). The analysis of EPs is typically based on an averaging process including multiple stimuli, because the amplitudes of the single EPs tend to be low compared with spontaneous EEG activity. The EPs can then be analyzed in terms of amplitude and latency and by more advanced analysis based on time-frequency analysis, classification methods, and inverse modeling of brain sources. EEG may be used to study pain processing and to identify alterations of pain processing in different patient groups or due to pharmacological intervention, as illustrated in Fig. 9. It has consistently been shown that EPs are affected by analgesics (Banoub et al., 2003; Staahl et al., 2011).

The main limitation is the relatively poor spatial resolution. However, various inverse modeling algorithms and signal decomposition procedures have overcome this limitation to some extent and ongoing research in this field holds promise for further improvements of the methods (Lelic et al., 2009; Lelic et al., 2011). Moreover, although multichannel EEG, cerebral EPs, and inverse modeling offers a noninvasive approach to study brain activity, it must not be overlooked that the position of the calculated dipolar source does not represent the accurate position but more the “center of gravity” of brain activity (Lelic et al., 2011). Any stimulus applied probably activates nociceptive and non-nociceptive pathways. Therefore, the electrophysiological response may
be a result of both components, and the results should always be correlated to the subjective pain intensity. However, EPs provide important complementary information in pharmacological research (Curatolo et al., 2000a).

4. Magnetoencephalography. MEG is a technique for mapping brain activity by recording magnetic fields produced by electrical currents in the brain (Smith et al., 2011). The electrical currents (as measured by the EEG) accompanying brain activity result in small magnetic fields. These fields can be measured in magnetic shielded rooms by superconducting detectors. MEG has added knowledge to the characterization of the somatotopic organization of the primary and secondary somatosensory areas as well as the association between pain and cortical reorganization in somatic and neuropathic pain studies (Sharma et al., 2009). MEG has been used to explore the effects of various psychopharmacological agents on resting brain, sensory, and cognitive processing and may be used for analgesic evaluations as well (Kähkönen, 2006; Iannetti and Wise, 2007).

Limitations are that the MEG is an expensive and very technically demanding technique that is available only in a few specialist centers. Furthermore, it is limited by its incapacity to resolve radial currents generated by deep brain sources (e.g., in the cingulate cortex), which are of major importance in pain processing (Lelic et al., 2011).

C. The Nociceptive Withdrawal Reflex

A nociceptive input followed by secondary processing in the spinal cord initiates generation of the withdrawal reflex. In human, electrical stimulation is frequently used to elicit the reflex but laser stimulation and heat stimulations have been used as well (Andersen et al., 2006; Mørch et al., 2007). The reflex can be evoked by stimulation of the sural nerve at the ankle. During the after-withdrawal, the electromyogram is recorded from the tibialis or biceps muscle. Modulation of the reflex threshold or the reflex size can be used as outcome measures. A high correlation between the pain intensity stimulus-response curve and the reflex size stimulus-response curve has led to the suggestion that the reflex can be used as an objective measure of experimental pain (Willer, 1977). The model of nociceptive withdrawal reflex has mostly been used for pharmacological evaluation in animals (Peterbauer et al., 2008), but human studies have found analgesic effects in this model as well (Poulsen et al., 1995; Sandrini et al., 2005).

A limitation is that electrical stimulation, which is frequently used to elicit the reflex, explores only a single dimension of the complex sensory and affective experience of pain (Neziri et al., 2010). Therefore, it cannot be used as a measure of the complex pain experience on its own (Gracely, 1999). On the other hand, the relative robustness of the tests may be used advantageously when the influence of confounding parameters is limited. This may be the case for pharmacological studies conducted on small samples, in which it may be difficult to control for confounding factors (Neziri et al., 2010). Moreover, it has been demonstrated that sedation can affect the reflex threshold (Petersen-Felix et al., 1996). This should be considered when evaluating analgesic effects because many analgesics have sedative effects as well.

D. Referred Pain Area

Referred pain is defined as pain felt in an area other than the stimulation site and can be assessed as the size of the area (Fig. 3) (Curatolo et al., 2000a). Referred pain...
is evoked by different pain modalities (e.g., electrical, mechanical, cold, and heat) in muscle and viscera, and, as outlined in section II.A.2, it can be considered a proxy for the central pain processing (Drewes et al., 2003b; Olesen et al., 2010a). An increase in referred pain areas after, for example, acid perfusion can be used to monitor central sensitization (Drewes et al., 2005; Drewes and Gregersen, 2006).

One limitation is that a large variation in the reporting of referred pain areas has been demonstrated. This large variation could be due to difficulties of reporting the phenomenon (Olesen et al., 2010a). The larger S.D. for the referred pain areas will result in the need of large sample sizes for detection of analgesic effects (Staahl et al., 2006b).

VIII. Analgesic Assessment by Experimental Human Pain Models in Healthy Volunteers

Experimental pain models are useful in evaluation of the mechanisms of analgesics. The focus in this review is analgesic assessment by human experimental pain models in different patient groups. However, for overview purposes and to attain a deeper discussion between findings from healthy volunteers and those from patient studies, this section provides a brief summary on how the efficacies of analgesics have been assessed in healthy human volunteers using experimental pain models. For more detailed reviews, the reader is referred to previous publications (Staahl et al., 2009a,b). Dosing regimens and mechanistic aspects are discussed briefly at the end of each section. To be able to illustrate the importance of various experimental designs in discussion, only studies of analgesics that have been tested in at least five different trials were included. Moreover, seven was regarded as the minimum sample size for the studies included in this section.

A. Nonopioids

1. Nonsteroidal Anti-Inflammatory Drugs and Acetaminophen. Different NSAIDs and acetaminophen (paracetamol) have been evaluated in experimental human pain models in healthy volunteers.

a. Acetylsalicylic acid (aspirin). Acetylsalicylic acid has been tested extensively in the past. Topical as well as systemic preparations have been used.

i. Skin, nasal, and dental mucosa. Acetylsalicylic acid has been tested against pain from radiant heat, electrical stimulation, nasal gaseous CO₂ stimulation, and infusion of low pH solutions (Cruccu et al., 1982; Schaffler et al., 1987; Bromm et al., 1991; Steen et al., 1996). Kobal et al. (1990) found only significant modulation of the evoked potentials and not subjective pain ratings after nasal gaseous CO₂ stimulation. Supporting this Schaffler et al. (1987) found good effect of acetylsalicylic acid on the evoked vertex potential from radiant heat stimulation.

ii. Skin hyperalgesia. Pain from repeated mechanical impact of the interdigital web is a classic model for detecting analgesia from NSAIDs, and this model is sensitive to analgesia from acetylsalicylic acid (Forster et al., 1988). Topically applied acetylsalicylic acid was efficacious in tonic pain from cutaneous infusion of a low pH solution (Steen et al., 1996). Allodynia and hyperalgesia from pinprick after capsaicin was diminished by acetylsalicylic acid, whereas heat hyperalgesia was unaffected (Schmelz and Kress, 1996). Imaging has been used for pain assessment of the analgesic effect of acetylsalicylic acid in the UVB pain model, where differences in the brain structures responsible for attenuation of pain and hyperalgesia were found (Maihofner et al., 2007).

iii. Muscle. Tonic muscle pain, such as ischemic muscle pain in one study, was unaffected by acetylsalicylic acid when measured by various subjective ratings (Posner, 1984).

iv. Muscle hyperalgesia. Acetylsalicylic acid did not affect delayed-onset muscle soreness (Barlas et al., 2000).

v. Conclusions. The therapeutic dose for weak pain is normally set at 100 to 500 mg, and in most of the experimental trials reviewed here, doses within this range were used, although toward the upper end of the dose range.

b. Ibuprofen. Ibuprofen has often been used as a representative of weak NSAIDs.

i. Skin and nasal mucosa. Ibuprofen has been tested against various types of electrical pain and found to be effective. To be able to detect analgesia, electrical pain stimulation needs to be intense and evoke pain intensity well above the pain detection threshold (Sandrini et al., 1992; Oertel et al., 2008). Here, as seen with other weak analgesics, only evoked potentials and not subjective pain ratings changed after drug administration (Kobal et al., 1994). Pain from argon laser stimulation was also attenuated by ibuprofen. This could be because the repeated strong laser pulses caused sensitization of the skin, leading to a model of skin hyperalgesia (Nielsen et al., 1990).

ii. Skin hyperalgesia. Ibuprofen has been tested twice against hyperalgesia after freeze lesions (Kilo et al., 1995; Chassaing et al., 2006). Topical application of ibuprofen showed an effect in the primary hyperalgesic area to pinprick (von Frey hair) demonstrating a local effect of the drug, whereas systemic administration decreased both primary and secondary hyperalgesia to pinprick, demonstrating both central and peripheral antihyperalgesic mechanisms of ibuprofen (Chassaing et al., 2006). In the study by Kilo et al. (1995), only mechanical hyperalgesia was sensitive to ibuprofen analgesia. Capsaicin-induced allodynia to stroking was not affected by ibuprofen (Kilo et al., 1995). Repetitive pinching of the interdigital web has also been used in trials of ibuprofen; however, results were inconsistent.
for this model (Kilo et al., 1995; Petersen et al., 1997). UVB radiation of the skin promotes hyperalgesia to heat and mechanical hyperalgesia, which was decreased by ibuprofen (Bickel et al., 1998; Sycha et al., 2003). The burn injury model has also been applied in the testing of ibuprofen, where pain in response to brushing but not to punctate stimuli was reduced in the secondary hyperalgesic area (Petersen et al., 1997). In the model of menthol-induced hyperalgesia, ibuprofen was ineffective (Altis et al., 2009).

iii. Muscle. Eccentric jaw exercise caused muscle fatigue and low levels of postexercise pain and soreness that was attenuated by ibuprofen (Svensson et al., 1997). Pain from statically applied pressure was also affected by ibuprofen (Kilo et al., 1995).

iv. Models that induce endogenous pain modulation. The cold pressor test has been tested with ibuprofen and found insensitive (Jones et al., 1988). The test has a known sensitivity to many opioids, but apparently the test is not suitable for testing weak NSAIDs (Poulsen et al., 1996a; Eckhardt et al., 2000; Schulte et al., 2003; Grach et al., 2004; Enggaard et al., 2006; Pud et al., 2006).

v. Conclusions. The therapeutic dose for treatment of weak pain is 200 to 400 mg (three to four times daily); however, rheumatic pain needs doses ranging from 300 to 600 mg (three to four times daily). The experimental studies enrolled in this review applied doses ranging from 400 to 800 mg. Two studies found equal effect of 400 and 800 mg in hyperalgesia, suggesting a plateau for the dose-response profile (Nielsen et al., 1990, 1992). Conflicting results exist for electrically induced pain. Pain from repeated electrical stimulation mimicking the previously mentioned central integration of the response was unaffected by acetaminophen. In the study in which the electrical pain was decreased by acetaminophen, modulation was most distinct for the evoked brain potentials compared with the subjective pain rating (Bromm et al., 1992; Olesen et al., 2007). Tonic and phasic pain from stimulation of the nasal mucosa with gaseous CO2 and dry air has been tested. For the phasic pain induced by gaseous CO2 stimulation, only evoked potentials and not subjective pain ratings were affected by drug administration. The subjective pain ratings were affected for the more tonic pain induced by dry air (Renner et al., 2007).

vi. Conclusions. In general, ketorolac is potent in the reviewed models, but the trial by Eisenach et al. (2010) shows that the spinal effect of ketorolac is limited in the administered dose.

d. Acetaminophen (paracetamol).

i. Skin and nasal mucosa. Acetaminophen has been tested against pain from laser and electrical stimulation of the skin. The model involving laser was sensitive to acetaminophen (Nielsen et al., 1991, 1992). Conflicting results exist for electrically induced pain. Pain from repeated electrical stimulation mimicking the previously mentioned central integration of the response was unaffected by acetaminophen. In the study in which the electrical pain was decreased by acetaminophen, modulation was most distinct for the evoked brain potentials compared with the subjective pain rating (Bromm et al., 1992; Olesen et al., 2007). Tonic and phasic pain from stimulation of the nasal mucosa with gaseous CO2 and dry air has been tested. For the phasic pain induced by gaseous CO2 stimulation, only evoked potentials and not subjective pain ratings were affected by drug administration. The subjective pain ratings were affected for the more tonic pain induced by dry air (Renner et al., 2007).

ii. Skin hyperalgesia. Pain and hyperalgesia from the freeze lesion model was unaffected by acetaminophen. Furthermore, acetaminophen has been tested against hypoalgesia evoked by continuous electrical stimulation. Here the ongoing pain was unaffected, whereas the hyperalgesia was decreased (Filitz et al., 2008; Bandschapp et al., 2011). However, there have been conflicting results in this model, because no effect could be demonstrated in a recent study of acetaminophen (Dusch et al., 2010).

iii. Skin hyperalgesia. Areas of hyperalgesia and allodynia from the heat-capsaicin model were unaffected by intrathecal ketorolac (Eisenach et al., 2010). In the same study, the UVB-burn model was applied and was unaffected by ketorolac (Eisenach et al., 2010). The same study applied heat rekindling after the UVB-burn induction, and here it was shown that intrathecal ketorolac had a small but significant effect on the area of allodynia but not on the area of hyperalgesia. Furthermore, this group tested the UVB/heat rekindling model with intravenous ketorolac and found effects on areas of hyperalgesia as well as areas of allodynia (Eisenach et al., 2010).

iv. Muscle hyperalgesia. Pain and hyperalgesia from intramuscular capsaicin was unaffected by ketorolac (Kumar et al., 2006).

v. Models that induce endogenous pain modulation. One study found that ketorolac was ineffective on experimental cold pressor test in the overall study population but found significant response when examining women as a subgroup (Compton et al., 2003).

vi. Conclusions. In general, ketorolac is potent in the reviewed models, but the trial by Eisenach et al. (2010) shows that the spinal effect of ketorolac is limited in the administered dose.
water immersion of the hand reinforced acetaminophen analgesia (Pickering et al., 2008).

\textit{v. Conclusions.} The reviewed studies applied doses at and above the therapeutic range. It is noteworthy that intravenous dosing seem to give a better effect in the electrical hyperalgesia model, where even 2 g p.o. intravenous dosing seem to give a better effect in the at and above the therapeutic range. It is noteworthy that electrical hyperalgesia model, where even 2 g p.o.

2. \textit{N-Methyl-d-aspartate Antagonists.}

\textit{a. Ketamine.} Ketamine has pronounced side effects preventing wide clinical use as an analgesic. However, ketamine is used to some degree in difficult clinical cases and has been intensively investigated as a “model drug” because of the substantial scientific interest in the NMDA receptor.

\textit{i. Skin.} Ketamine has been tested against sensations and pain from heat, cold, and electrical skin stimulation. Results are conflicting, because the effect of ketamine can be detected in some trials with these acute models and not in others applying the same type of stimuli (Warncke et al., 1997; Wallace et al., 2002a,b; Pöyhiala and Vainio, 2006). However, an effect was detected when applying electrical pain (particularly strong pain intensities) and heat pain in some studies (Arendt-Nielsen et al., 1996; Koppert et al., 2001; Schulte et al., 2003). Pricking “first pain” from laser stimulation was unaffected by ketamine (Arendt-Nielsen et al., 1995), whereas another study found effect on the affective components of heat pain and “second pain” after thermal stimulation (Hughes et al., 2002; Strigo et al., 2005). Pain from repeated and continuous electrical stimulation was sensitive to ketamine (Arendt-Nielsen et al., 1996; Koppert et al., 2001). A study analyzing drug effects in relation to drug plasma concentrations found a more pronounced effect toward heat pain than electrical pain (Sigtermans et al., 2009). One study analyzed the cerebral effects of ketamine and found dose-dependent effects on pain processing to heat pain. This study also found that pain unpleasantness decreased more than pain intensity, possibly reflecting the effects in insula and anterior cingulate cortex (Sprenger et al., 2006).

\textit{ii. Skin hyperalgesia.} Hyperalgesia to stroking and pinprick were affected by systemic but not locally applied ketamine (Sethna et al., 1998; Gottrup et al., 2000a,b; Wallace et al., 2002b). One study evaluated the hyperalgesia with laser heat and electrical stimulation; only the electrical stimulation in the secondary hyperalgesic area was sensitive to the drug (Andersen et al., 1996). Hyperalgesia evoked by burn injury is decreased by ketamine, and substantial effects could be seen on hyperalgesia in response to pinprick and allodynia in response to stroking (Ilkjaer et al., 1996; Warncke et al., 1997; Schulte et al., 2004). Allodynia and hyperalgesia from continuous electrical stimulation were all affected by ketamine (Koppert et al., 2001), which should be expected because the inflicted pain is strong and lasting, and it probably activates the NMDA receptors.

\textit{iii. Muscle and joints.} Muscular pain in response to electrical stimulation, pressure pain, and hypertonic saline infusion was decreased after ketamine treatment (Arendt-Nielsen et al., 1995, 1996; Schulte et al., 2003). Pain elicited by glutamate injection into the temporomandibular joint was inhibited by local coinjection of ketamine, showing peripheral effects in the trigeminal pain system (Alstergren et al., 2010).

\textit{iv. Muscle hyperalgesia.} Mechanical hyperalgesia after glutamate injection in the masseter muscle was attenuated by intramuscular ketamine, showing an effect of ketamine on the peripheral nerves, where NMDA receptors have also been demonstrated (Cairns et al., 2006).

\textit{v. Viscera.} Pain from visceral distension was also decreased by ketamine (Strigo et al., 2005).

\textit{vi. Visceral hyperalgesia.} Hyperalgesia to electrical pain has been induced in the esophagus by infusion of hydrochloric acid. This study showed that ketamine was able to both prevent the development of hyperalgesia and reverse hyperalgesia already developed (Willert et al., 2004).

\textit{vii. Models that induce endogenous pain modulation.} One study found that ketamine decreased the endogenous pain inhibitory response. This study also looked into the response to prolonged heat pain stimulation, producing off-set analgesia. Ketamine was not significantly different from placebo in affecting this response (Niesters et al., 2011). A trial applying the “thermal grill” found that ketamine reduced the “paradoxical pain” but not the normal heat pain sensations and nonpainful heat sensations (Kern et al., 2008).

\textit{viii. Conclusions.} The ability of ketamine to reverse hyperalgesia seems to depend on the model and tissue wherein the hyperalgesia is induced. Warncke et al. (1997) found that several of the decreased hyperalgesic responses to brushing and pinprick returned to the original state 15 min after ketamine administration. This could very well be caused by the short half-life of ketamine, meaning that the plasma level was markedly reduced after 15 min. It illustrates the importance of testing at time points where the drug is present in the body. Wallace et al. (2002b) infused mean amounts of 0.33, 0.52, and 0.82 mg/kg and accordingly found more pronounced effects than Sethna et al. (1998), who used a lower dose.

The NMDA receptor is mainly activated under strong or repeated stimulation (Arendt-Nielsen et al., 1995; Dickenson, 1995); accordingly, temporal and spatial summation (central integration of the afferent barrage via the NMDA receptor) is likely to be affected by ketamine (Arendt-Nielsen et al., 1996; Koppert et al., 2001). In general, models involving hyperalgesia induce longlasting and strong pain and therefore could demonstrate analgesia from ketamine. Deep pain from muscle and viscera was affected more than superficial pain (Serdahl et al., 1994; Strigo et al., 2005). Wallace et al.
Gabapentin and pregabalin. Gabapentin and pregabalin are anticonvulsive agents believed to have similar mechanisms of action and are therefore reviewed together. Both drugs are widely used in neuropathic pain.

i. Skin. Heat pain and pain from stimulation with von Frey filaments have been tested with gabapentin. The subjective pain ratings were unaffected by gabapentin, but in fMRI studies, activations in the bilateral insula were modulated (Dirks et al., 2002; Iannetti et al., 2005). On the other hand, a recent electrophysiological study showed that pregabalin did not change location of electrical brain sources in response to visceral stimulation, and the effects of pregabalin are probably mediated primarily through subcortical mechanisms (Olesen et al., 2011b).

ii. Skin hyperalgesia. Several groups have tested gabapentin against hyperalgesia and allodynia from cutaneous capsaicin stimulation. All studies showed analgesic effect on at least one hyperalgesia parameter (Dirks et al., 2002; Gottstrup et al., 2004; Iannetti et al., 2005). One study showed no effect on subjective pain ratings, but only on brainstem activation in an fMRI study (Iannetti et al., 2005). One study applied the capsaicin model in a multiple dose regimen and surprisingly found no significant effect of gabapentin (Wallace and Schulteis, 2005). On the other hand, a recent electrophysiological study showed that pregabalin did not change location of electrical brain sources in response to visceral stimulation, and the effects of pregabalin are probably mediated primarily through subcortical mechanisms (Olesen et al., 2011b).

iii. Muscle. Arendt-Nielsen et al. found that pain from infusion of hypertonic saline was attenuated after gabapentin (Arendt-Nielsen et al., 2007b). However, these findings were contrasted in a study using the same stimulation and assessment methods, even with application of higher and multiple doses (Segerdahl, 2006).

iv. Models that induce endogenous pain modulation. The cold pressor test, which is sensitive to opioids, was insensitive to gabapentin (Eckhardt et al., 2000).

v. Conclusions. A straightforward dose-response relationship is not apparent for the trials of gabapentin and pregabalin. In the hypertonic saline model, inducing muscle pain, an effect was seen in the study applying the lower dose. Segerdahl (2006) used a single dose of 1200 or 2600 mg distributed over 24 h, whereas Arendt-Nielsen et al. (2007b) found effect of a single dose of 1200 mg. Gottstrup et al. (2004) applied a daily dose of 2400 mg p.o. for 15 days but revealed an effect only on allodynia in response to brushing. The study by Dirks et al. (2002), however, applied a rather low dose and found an overall good effect on several pain parameters. In the clinic, this drug needs a slow titration to effect, and it can take weeks for the analgesia to appear. However, this was not reflected by a better sensitivity in trials with multiple dosing regimens, exemplified by the trials from Segerdahl (2006) and Wallace and Schulteis (2008).

b. Lamotrigine. Lamotrigine is an anticonvulsant drug and a sodium-channel antagonist used in the treatment of neuropathic pain.

i. Skin and nasal mucosa. Lamotrigine has been tested against heat pain in the skin and in pain from CO₂ stimulation of the nasal mucosa. The drug generally showed no effects in any of these models (Klant and Posner, 1999; Petersen et al., 2003; Wallace et al., 2004).

ii. Skin hyperalgesia. Lamotrigine has been tested against capsaicin with and without combination with heat. In these models, no effects were found (Petersen et al., 2003; Wallace et al., 2004).

iii. Models that induce endogenous pain modulation. The cold pressor test, which is sensitive to opioids, was also sensitive to the analgesic effects of lamotrigine (Webb and Kamali, 1998).

iv. Conclusions. Slow up-titration of lamotrigine is used in the clinic to achieve efficient doses without the presence of unacceptable side effects. This was not done in the above trials, and doses that produced profound side effects were applied. However, in most trials, these doses produced no significant analgesic effects (Klant and Posner, 1999; Petersen et al., 2003).

Adjuvant analgesics have limited effect in physiological pain mechanisms as produced by acute pain models. The effect seems to depend on the reduction of pathological neurotransmitter release, and this could well explain the lack of effect in short-lasting acute pain models (Laughlin et al., 2002). It is noteworthy that lamotrigine decreases pain from immersion of the hand into ice-water. This could be due to the tonic (and relatively long-lasting) nature of the evoked pain in this model, because the membrane-stabilizing effects of lamotrigine would not be expected to induce descending noxious inhibitory control (Webb and Kamali, 1998). The anticonvulsives have been tested extensively in the capsai-
cin model, where only gabapentin and pregabalin showed effect. Lamotrigine has a clinical effect comparable with that of gabapentin and pregabalin, but apparently the mechanisms of lamotrigine cannot be shown in experimental hyperalgesia (Chizh et al., 2007). It should be stressed that even in experimental models, inducing hyperalgesia, central plasticity is not induced in the same manner and to the same extent as in patients with chronic pain. For instance, up-regulation of calcium channels is unlikely to occur. Therefore, it seems that for the anticonvulsives the experimental pain models applied to healthy volunteers does not seem to be readily translatable into patients.

c. Imipramine. Serotonin and norepinephrine re-uptake inhibitors and tricyclic antidepressants are both used in treatment of neuropathic pain, but only imipramine has been tested in more than four studies.

i. Skin and nasal mucosa. Imipramine has been tested in models involving heat, electrical, and laser stimulation of the skin as well as nasal gaseous CO₂ stimulation (Bromm et al., 1986b; Hummel et al., 1994; Poulsen et al., 1995; Sindreup et al., 1998; Enggaard et al., 2001). Electrical stimulation was sensitive to imipramine (Enggaard et al., 2001). Sensations from laser stimulation (reflecting a fast heat stimulus) were unaffected by imipramine, whereas the heat pain intensity was decreased (Poulsen et al., 1995; Sindreup et al., 1998). The rate of the heating in the study by Poulsen et al. (1995) was slow, securing more selective C fiber activation (Le Bars et al., 2001). Sensation to intracutaneous electrical stimulation was decreased by imipramine. The effect was detectable on both subjective pain ratings and in the evoked potential (Bromm et al., 1986b). Poulsen et al. (1995) found a profound effect of imipramine on the reflex threshold and subjective pain ratings to single stimulations, whereas the effect on the repeated stimulations was detected only by the subjective pain rating.

ii. Muscle. Deep pressure pain was decreased by imipramine, but only when the stimulus intensity exceeds the pain threshold (Poulsen et al., 1995; Enggaard et al., 2001).

iii. Viscera. Painful sensations to distension of the esophagus were affected (Peghini et al., 1998).

iv. Models that induce endogenous pain modulation. In contrast to findings from most other analgesics, pain evoked by the cold pressor test was unaffected by imipramine (Enggaard et al., 2001).

v. Conclusions. Most studies applied high doses (100 mg) compared with clinically used doses (~75 mg in chronic pain), and this could be part of the reason for the overall good effect of imipramine in the majority of the studies. However, in the clinical situation, there is often a delay of 1 to 2 weeks before the drug works, and this aspect was not reflected in the models.

The fact that imipramine works through many different analgesic mechanisms may also have contributed to the effects found in several experimental models. However, the majority of the studies above showed a pain specific action of imipramine with a decrease of sensations at the pain detection threshold or of higher intensity (Poulsen et al., 1995; Peghini et al., 1998; Enggaard et al., 2001).

B. Opioids

Opioids are described in separate sections as short-acting opioids (only sufficient studies of alfentanil and remifentanil exist) and longer acting opioids. It is believed that short-acting opioids are very similar in their modes of action, and this is to some degree reflected in the findings in experimental pain models.

1. Short-Acting Opioids

a. Alfentanil and remifentanil. Alfentanil and remifentanil are short-acting opioids that have been tested in human experimental pain models in healthy volunteers.

i. Skin and teeth. Alfentanil has been tested in several acute models in the skin using, for example, heat, cold, and electrical stimulation (Petersen-Felix et al., 1994, 1996; Luginbühl et al., 2001; Wallace et al., 2002; Olofsen et al., 2005; Schulte et al., 2006). The tested models were generally all sensitive to alfentanil. Remifentanil has been tested against heat and electrical stimulation (Curatolo et al., 2000b; Gustorff et al., 2001; Petersen et al., 2001; Luginbühl et al., 2003). The studies showed a reduction in pain in response to heat stimuli as well as to single and repeated electrical stimulation. The effect of remifentanil on heat pain was furthermore evaluated by positron emission tomography. The study showed a decrease of the pain-induced brain activation and increased brain activity in the cingulofrontal cortex and periaqueductal gray (Wagner et al., 2007). Short pulses of gaseous CO₂ applied to the nasal mucosa evoked pain that was dose-dependently decreased by alfentanil. More interestingly, this study applied functional magnetic resonance imaging to investigate the opioid effects and found this assessment method sufficiently sensitive to see differential effects on the affective and sensory components of the pain (Oertel et al., 2008). Furthermore, this study, as one of few, was able to demonstrate how carriers of different genetic variants of the µ-opioid receptor responded differently to alfentanil. Alfentanil has also provided robust analgesia in electrically evoked pain in the teeth (Chapman et al., 1990).

ii. Skin hyperalgesia. Alfentanil has been tested in a model that evokes hyperalgesia by intradermal injection of capsaicin (Eisenach et al., 1997; Sethna et al., 1998; Wallace et al., 2002a,b). Three of four studies found effect on the evoked pain, hyperalgesia and allostynia (Eisenach et al., 1997; Wallace et al., 2002a,b). Remifentanil has also been tested in the capsaicin model, where two studies demonstrated that the area of secondary hyperalgesia obtained with heat/capsaicin stimulation
was reduced for both pinprick and brush (Petersen et al., 2001, 2003; Hood et al., 2003). Furthermore, alfentanil has been tested against electrically evoked secondary hyperalgesia and in this model, pain intensity as well as hyperalgesia and allodynia was reduced (Koppert et al., 2001; Schulte et al., 2005; Wehrfritz et al., 2010). Four studies tested remifentanil in the above model, showing a reduction in ongoing pain and hyperalgesia (Koppert et al., 2003a, b; Tröster et al., 2006; Singler et al., 2007).

In the burn injury model, alfentanil reduced secondary hyperalgesia to pinprick, further suggesting a central effect of this opioid (Schulte et al., 2005). Finally, Lötsch and Angst (2003) found effect of remifentanil on hyperalgesia in response to mechanical (brush, punctated, and blunt) and electrical stimulation before and after induction of hyperalgesia with a freeze lesion.

iii. Muscle. Alfentanil is well characterized in experimental muscular pain such as deep pressure, intramuscular electrical stimulation, intramuscular injection of hypertonic saline, and ischemic pain. Black et al. (1999) found that alfentanil reduced pain intensity (Luginbühl et al., 2001). In contrast, remifentanil induced hyperalgesia to pressure pain (Luginbühl et al., 2003). Alfentanil showed analgesic effect in tests involving pressure and injection of hypertonic saline (Luginbühl et al., 2001; Schulte et al., 2003, 2006; Angst et al., 2004; Olofsen et al., 2005). Two studies investigated and found effect of remifentanil to single and repeated electrical stimulation of the muscle (Curatolo et al., 2000b; Luginbühl et al., 2003). The tourniquet model (mainly evoking muscle ischemia), was not sensitive to alfentanil (Luginbühl et al., 2001). Furthermore, the effect of remifentanil against pain from pressure applied to the tibia has been tested and evaluated by fMRI, where the drug decreased the pain-induced regional increase in the cerebral blood flow (Lorenz et al., 2003).

iv. Models that induce endogenous pain modulation. The cold pressor test was sensitive to the effects of alfentanil (Luginbühl et al., 2001).

v. Conclusions. Alfentanil is a very potent opioid showing convincing analgesia in experimental pain over a broad dose range. However, in the study by Schulte et al. (2006), a dose-response relationship was seen, and the pain parameters were mainly affected at the high dose. Seven of the 11 studies with remifentanil were comparable in dosing (Gustoff et al., 2001; Petersen et al., 2001, 2003; Lorenz et al., 2003; Tröster et al., 2006; Singler et al., 2007; Wagner et al., 2007). The studies generally showed robust analgesia in both acute and hyperalgesic pain models and drug doses throughout the therapeutic interval seems to work in experimental pain models.

The traditional opinion that opioids attenuate mainly C-fiber-mediated pain is not always correct; two studies could not detect analgesia from alfentanil toward heat pain and one was not sensitive to cold pain (Luginbühl et al., 2001; Wallace et al., 2002b). This is not explained by an insufficient dose, because heat pain was affected by alfentanil in a study using a lower dose than in the study by Luginbühl et al. (2001) (Angst et al., 2004). In general, it would be expected that a μ-opioid agonist would affect pain conveyed through C fibers, and heat pain is traditionally believed to be conveyed through these fibers (Hallin et al., 1982; Tian et al., 2005). However, nociception to a fast increase in temperature, which is associated with Aδ fiber stimulation, can be less sensitive to opioids; hence, it could be argued that the increase in temperature (1.5–2°C/s) was too fast in the nonsensitive studies (Le Bars et al., 2001; Luginbühl et al., 2001; Wallace et al., 2002b). On the other hand, another study using argon laser stimulation showed analgesia to alfentanil although the heating rate was higher (Petersen-Felix et al., 1996; Luginbühl et al., 2001; Wallace et al., 2002b). However, the heating rate for laser stimulation is measured in Joules and cannot readily be converted into °C per second, making a direct comparison difficult.

The capsaicin model evokes intense and tonic pain; it could therefore be expected that opioid analgesia can be shown in this model. However, conflicting findings exist and one study found no effects of alfentanil on the capsaicin model, which could be related to the problematic repeatability of the evoked secondary hyperalgesia (Sethna et al., 1998). In theory, an analgesic can inhibit secondary hyperalgesia by lowering the nociceptive barrage from the periphery to the spinal synapse. Furthermore, hyperalgesia can be prevented by inhibition of several central mechanisms such as wind-up (Dickenson, 1995). Because alfentanil decreased the immediate pain response to capsaicin, the incoming nociceptive barrage is probably lowered. However, it is difficult to conclude whether the peripheral effect is the cause for the subsequent decrease in the secondary hyperalgesic area or if alfentanil, by a direct spinal/supraspinal mechanism, prevents the development of hyperalgesia. The model by Koppert et al. (2001) in which hyperalgesia is evoked from continuous intradermal electrical stimulation illustrates how alfentanil affects both peripheral and central pain mechanisms.

Carriers of different genetic variants of the μ-opioid receptor responded differently to alfentanil (Oertel et al., 2008). This indicates that factors other than dose and experimental setup can influence the outcome in human experimental pain studies.

2. Longer Acting Opioids.

a. Traditional μ-receptor agonists. Morphine is a widely used analgesic, and it has been tested extensively in experimental pain. Fewer investigations have been performed for fentanyl and oxycodone. Fentanyl is actually a short-acting opioid, but in the reviewed studies, it was applied via transdermal depot formulation, producing effects more comparable with the long-lasting opioids. Both morphine and oxycodone are μ-receptor agonists. Animal studies have indicated that oxycodone has
a more pronounced effect at the \(\kappa \)-receptor compared with morphine (Ross and Smith, 1997). However, this has been debated (Kalso, 2005, 2007), and in this review, oxycodone is described with morphine because these two opioids have been compared in some experimental pain studies in healthy volunteers.

i. Skin and teeth. Both morphine and oxycodone have been tested against cutaneous heat and cold pain, mechanical (pinching) pain, and electrical pain, and generally these models reflect analgesia from these opioids (Naef et al., 2003; Schulte et al., 2003; Joly et al., 2005; Staahl et al., 2006a; Arendt-Nielsen et al., 2009; Olesen et al., 2010a; Samer et al., 2010). Three studies found sensitivity of electrical pain for morphine, whereas another did not (Schulte et al., 2003; Joly et al., 2005; Staahl et al., 2006a). Two studies showed effect of morphine on the warmth detection threshold and pain detection threshold in response to heat, pressure and electrical stimulation (Arendt-Nielsen et al., 1991a,b; Joly et al., 2005). EEG recordings have been used to assess electrically induced pain in the teeth and skin. This type of pain assessment showed opioid analgesia in accordance with the psychophysical pain scoring (Chapman et al., 1990; Quante et al., 2004). Fentanyl has been tested against electrical and thermal (heat and cold) skin pain. Electrical pain was unaffected by fentanyl in two studies, whereas two studies found effect on this pain modality (Ginosar et al., 2003; Tucker et al., 2005; Koltzenburg et al., 2006; Andresen et al., 2010). Effects on heat pain have been tested through various stimulation paradigms and conflicting results exist. Figure 10 gives an example of the analgesic effect of transdermal fentanyl on heat pain (Fig. 10). Three studies found that fentanyl attenuated this parameter, which was contradictory to the finding of Tucker et al. (Tucker et al., 2005; Koltzenburg et al., 2006; Andresen et al., 2010). Repetitive heat pain was unaffected by fentanyl, whereas repetitive cold pain was attenuated by fentanyl (Ilkjaer et al., 2002). Electrical dental pain has been tested and found to be attenuated by fentanyl (Chapman et al., 1990; Hill et al., 1990).

ii. Skin hyperalgesia. Morphine has been tested in various models involving hyperalgesia, such as burn injuries, freeze lesions, continuous electrical stimulation, and radiation with ultraviolet light (Møiniche et al., 1993; Warncke et al., 1997; Koppert et al., 1999; Tegeder et al., 2003; Schulte et al., 2004). Hyperalgesia and allodynia from burn injuries were unaffected in two studies (Warncke et al., 1997; Schulte et al., 2005). However, when Schulte et al. (2005) applied a higher dose of morphine (0.2 mg/kg for 15 min and 0.66 mg/kg for 110 min), reduction of the area of secondary hyperalgesia was seen as the only modulation. However, peripheral effects of morphine were detected by the burn injury model in the study by Møiniche et al. (1993). Koppert et al. (1999) investigated the peripheral effects of morphine (applied as intravenous regional anesthesia) in the UVB-induced hyperalgesia model and found that morphine attenuated primary hyperalgesia to heat pain. Fentanyl has been tested once in the above model and showed no effect here, where the UVB model was also applied but was not sensitive to fentanyl (Andresen et al., 2010).

iii. Muscle and bone pain. Morphine has been tested against pain from deep pressure algometry, electrical stimulation, injection of hypertonic saline, and ischemic pain (Plesan et al., 2000; Schulte et al., 2003; Pud et al., 2006; Staahl et al., 2006a). Ischemic pain and pain in
response to electrical stimulations was decreased by morphine (Smith et al., 1966; Segerdahl et al., 1994; Plesan et al., 2000; Pud et al., 2006). Pain in response to hypertonic saline was sensitive to modulation from morphine when a high dose was administered (Schulte et al., 2003, 2006). Oxycodeone has been tested against pain from deep pressure algometry and electrical stimulation, where it was effective (Staahl et al., 2006a). Furthermore, both drugs were applied in the cuff-pressure model, in which it was found that the opioids had similar effect for pain at the pain detection threshold, but for pain tolerance threshold, oxycodeone was more effective than morphine (Fig. 11) (Arendt-Nielsen et al., 2009; Olesen et al., 2010a). In a model of bone pain, pressure pain from the tibial bone was unaffected by fentanyl (Andresen et al., 2010).

iv. Muscle hyperalgesia. Hyperalgesia produced by eccentric muscle contraction was decreased by morphine (Smith et al., 1966; Segerdahl et al., 1994). In contrast, hyperalgesia after intramuscular injection of nerve growth factor was unaffected by fentanyl (Andresen et al., 2010).

v. Viscera. Morphine and oxycodeone were both effective against mechanical and electrical esophageal pain, but only oxycodeone attenuated thermal esophageal pain (Staahl et al., 2006a; Arendt-Nielsen et al., 2009).

vi. Visceral hyperalgesia. Oxycodeone and morphine have been tested in esophageal hyperalgesia induced by a combination of acid and capsaicin. Here, only oxycodeone showed effect, and only on the parameters of pain detection threshold in response to electrical stimulation and referred pain area to heat (Olesen et al., 2010a). Figure 12 illustrates the multimodal esophageal probe and the effect of oxycodeone and morphine on electrical esophageal stimulation (Fig. 11).

vii. Models that induce endogenous pain modulation. Different opioids have been applied in studies using the cold pressor test and have been found to be effective. The model was even sensitive enough to separate the effects of different genotypes in the subjects (Eckhardt et al., 2000; Grach et al., 2004; Zwisler et al., 2009, 2010; Samer et al., 2010). Fentanyl has been tested in the cold pressor test, and this model was sensitive to the analgesia induced. The analgesic effect was shown more robustly when assessed as the area under the VAS curve compared with the peak pain intensity and the mean pain intensity (Koltzenburg et al., 2006).

viii. Conclusions. In the study by Roberts et al. (2006), it would be expected that the applied heat pain would be sensitive to morphine. The lack of effect could be explained by the low dose used in this study, which was designed to determine the synergistic effect for morphine in combination with tetrahydrocannabinol (0.0.2 mg/kg i.v.). Schulte et al., 2003, 2006 did a doseResponse study of morphine against pain in response to injection of hypertonic saline and found that a dose above 0.14 mg/kg i.v. was necessary to show effect in this model. However, other studies that used other pain models applied doses under 0.14 mg/kg i.v. and found an effect of morphine, illustrating how the pain models differ in sensitivity to a given dose (Price et al., 1985; Plesan et al., 2000; Tegeder et al., 2003). Accordingly, the study by Brennum et al. (1993) had a good sensitivity of almost all sensory tests toward morphine. Here, 4 mg of morphine was administered in the epidural space; this dose is in the upper end of the therapeutic range (Joly et al., 2005). In the study by Staahl et al. (2006a), analgesia was seen for both oxycodeone and morphine for several pain parameters in various tissues, and this group also applied doses in the therapeutic range.

As stated previously, opioids mainly attenuate pain intensities above the pain detection threshold (Poulsen et al., 1995; Enggaard et al., 2001). However, two studies showed effect of morphine on the warmth detection threshold and pain detection thresholds in response to heat, pressure, and electrical stimulation (Arendt-Nielsen et al., 1991a,b; Joly et al., 2005). Warmth sensations are conveyed by C fibers; hence, there is a neurophysiologic explanation for morphine modulating the sensation of warmth (Le Bars et al., 2001). Because morphine mainly affects dorsal horn activity produced from tonic C-fiber activation, it is most likely that morphine will produce significant effect on a pain tolerance threshold evoked by a tonic type of pain (van der Burght et al., 1994; Fillingim et al., 2005b; Staahl et al., 2006a). However, exceptions exist, and the study by Roberts et al. (2006) found no effect of morphine on 5-s stimulation at 51°C, stimulus intensity normally considered well above the pain detection threshold. For heat pain to be sensitive to opioid modulation, it has been argued that it needs to be applied with slow temperature rises (<1°C/s) (Le Bars et al., 1976; van der Burght et al., 1994). On the other hand, morphine has also shown an effect on pain from rapid increases in temperature (Arendt-Nielsen et al., 1995).
Compared with models in which the painful stimulus is applied to the skin, morphine analgesia seems to be more robust in deep pain. The reason for this could be that deep pain is often considered more unpleasant than skin pain, and the muscular models often apply a more tonic type of pain (hypertonic saline, cold pressor test, etc.). The unpleasantness of pain is associated with the limbic structures in the brain, an area in which opioids traditionally are known to modulate the pain response (Apkarian et al., 2005; Sprenger et al., 2006). Morphine and oxycodone show different effects in visceral pain (Staalh et al., 2006a; Olesen et al., 2010). These studies revealed important tissue differences in opioid analgesia, particularly when comparing somatic and visceral pain. This reflects the clinical situation in which visceral pain in contrast to somatic pain can be difficult to treat with traditional μ-opioid agonists, and in a few clinical studies, oxycodone has been found more effective than morphine (De Schepper et al., 2004; Lenz et al., 2009).

Morphine and oxycodone are generally effective toward pain from many different stimulus modalities (Chapman et al., 1990; Naef et al., 2003; Tegeder et al., 2003; Schulte et al., 2004; Joly et al., 2005). However, the results are not as clear-cut as seen with alfentanil, and this could be caused by the complex pharmacokinetic profile of morphine. The amount of morphine absorbed is very individual, and this opioid enters the main effect site (the CNS) by crossing the blood-brain barrier slowly (D’Honneur et al., 1994). All this causes increased variability of the individual subject’s response to morphine, blurring the findings in experimental pain research (Chapman et al., 1990; Lütsch, 2005).

b. Opioids with weak affinity for the μ-opioid receptor. Codeine is an analgesic with weak affinity for the μ-opioid receptor and has been tested in experimental pain studies in healthy volunteers.

i. Skin. Codeine worked against acute experimental pain in response to heat, pressure, and single/repeated electrically stimulation (Stacher et al., 1982; Poulsen et al., 1996b; Walker and Zacny, 1998; Arendt-Nielsen et al., 2000a,b; Enggaard et al., 2001).

ii. Models that induce endogenous pain modulation. Codeine has shown effect on the cold pressor test (Poulsen et al., 1996b; Arendt-Nielsen et al., 2000b).

iii. Conclusions. Codeine has been applied in supra-therapeutic doses in all studies, and this could be the explanation for the effects. However, the application of supratherapeutic doses has probably given a significant plasma concentration of morphine/morphine-6-glucoronide, and this could explain the convincing effect seen in the more phasic pain models that traditionally are thought to be less sensitive to opioid analgesia. On the other hand, two studies applied both the cold pressor test and more phasic pain tests, such as heat, electrical, and pressure pain. These studies did only find effect in the more tonic pain from the cold pressor test (Poulsen et al., 1996b; Arendt-Nielsen et al., 2000b).

Codeine is a weak opioid that is metabolized in the liver to morphine and the main effect of codeine is thought to be mediated via μ-receptors, mainly through the main metabolites, morphine and morphine-6-glucoronide (Guay et al., 1987; Srinivasan et al., 1997). Seven percent of white people lack the ability to metabolize codeine, whereas 25% of Ethiopians are ultrarapid metabolizers because of a polymorphism of the enzyme responsible for this metabolism (P4502D6) (Poulsen et al., 1991b; van der Burght et al., 1994; Naef et al., 2003; Joly et al., 2005).
al., 1996b). This is reflected in experimental pain models, where subjects who are slow metabolizers do not have any analgesic effect of codeine (Poulsen et al., 1996b), and it enriched enrollment (excluding slow metabolizers) could be considered when codeine effects are assessed.

c. κ-Receptor agonists. Pentazocine is a κ-opioid agonist and has been subject for large interest regarding gender differences, because this has been found in clinical studies (Gear et al., 1996).

i. Skin and nasal mucosa. Heat and electrical stimulation produces pain that is sensitive to pentazocine analgesia (Stacher et al., 1982, 1983; Bromm et al., 1986a; Ribeiro-Dasilva et al., 2011). Event-related potentials and pain ratings to different gaseous stimulation of the nasal mucous were also responsive to pentazocine analgesia (Kobal, 1985; Bromm et al., 1986a; Kobal et al., 1990).

ii. Muscle. Pressure pain and ischemic pain are both sensitive to analgesia from pentazocine (Fillingim et al., 2004, 2005a; Ribeiro-Dasilva et al., 2011).

iii. Conclusions. Pentazocine worked well in several types of experimental pain models but gender differences were generally not confirmed in studies involving experimental pain models (Fillingim et al., 2004, 2005a).

3. Opioids with Mixed Binding Profile.

a. Tramadol.

i. Skin and nasal mucosa. Tramadol has shown effect in experimental pain from pressure stimulation, electrical stimulation of the sural nerve (nociceptive reflex), and the cold pressor test (Poulsen et al., 1996a; Enggaard et al., 2006). Phasic pain from stimulating the nasal mucosa by gaseous carbon dioxide was attenuated by tramadol (Hummel et al., 1994; Thürauf et al., 1996). Here, the pain was assessed by subjective pain ratings but also by electrophysiological assessment of pain using evoked brain potentials. In the study by Thürauf et al. (1996), an effect was found only on evoked brain potentials and not on pain ratings (Thürauf et al., 1996). Furthermore, tonic pain from stimulating the nasal mucosa with dry air is sensitive to tramadol (Thürauf et al., 1996; Joly et al., 2005). Pain from electrical stimulation of the tooth pulp was also sensitive to tramadol, but mainly with doses above 50 mg (Rohdewald et al., 1988; Närfi et al., 1992; Högger and Rohdewald, 1999).

ii. Skin hyperalgesia. Tramadol has been tested against continuous electrically evoked secondary hyperalgesia and in this model, the on-going pain intensity was reduced, but the hyperalgesia and allodynia was not affected significantly (Filitz et al., 2008). Tramadol significantly reduced menthol-evoked cold hyperalgesia (Altis et al., 2009).

iii. Muscle. Ischemic pain was unaffected by tramadol (Loram et al., 2005).

iv. Muscle hyperalgesia. The delayed-onset muscle soreness was unaffected by tramadol in the study by Loram et al. (2005) (see conclusions below).

vi. Conclusions. Hummel et al. (1994) used doses above the therapeutic range (150 mg) of tramadol, and this could be a cofactor explaining the robust effect seen in this study. Ischemic pain and delayed onset muscle soreness was unaffected in a study engaging a therapeutic-like dosing regime, and the use of doses in the lower end of the therapeutic range in the study by Loram et al. (2005) may explain the lack of analgesia in this otherwise well designed study, mimicking the clinical situation with multiple dosing. Likewise, tramadol mainly affected pain from electrical tooth pulp stimulation when doses in the range of 100 mg were applied (Rohdewald et al., 1988; Högger and Rohdewald, 1999). These findings indicate that doses above or in the upper end of the therapeutic range are necessary to show an effect under experimental conditions. When a drug with an active metabolite is being tested, it can also be crucial to locate poor/extensive metabolizers, because such individuals can add increased variation and decrease the statistical power of the trial (Poulsen et al., 1996a).

Besides effects in the opioid system tramadol exerts analgesia through actions in the noradrenergic and serotonergic systems (Minami et al., 2007). Tramadol exerts its opioid action through a metabolite (O-desmethyl-tramadol), which has an affinity for the μ-opioid receptor approximately 10 times lower than that of morphine (Gillen et al., 2000). As for codeine polymorphism of the enzyme (P4502D6), responsible for this metabolism exists in a significant proportion of the population (Poulsen et al., 1996a). This genetic factor is reflected in the findings in experimental pain studies, where only extensive metabolizers exhibit convincing analgesia in experimental pain from pressure stimulation, electrical stimulation of the sural nerve (nociceptive reflex), and the cold pressor test (Poulsen et al., 1996a; Enggaard et al., 2006). However, a weak inhibition of the enzyme did not influence analgesia (Noehr-Jensen et al., 2009).

C. Other Types of Analgesics

1. Cannabinoids

a. Δ9-Tetrahydrocannabinol.

i. Skin. Δ9-Tetrahydrocannabinol has been tested in models involving sensation to warmth/heat and cold as well as pain evoked by mechanical [pinprick (von Frey) and brush] and electrical stimulation (Naef et al., 2003, 2004; Roberts et al., 2006; Wallace et al., 2007). The majority of the studies found no effect on the pain parameters except for brush- and pinprick-evoked pain (Wallace et al., 2007). However, in an older study applying electrical skin pain and repeated pressure algometry, the pain detection thresholds, but not the pain tol-
erance thresholds, to these pain stimulations were increased after administration of Δ9-tetrahydrocannabinol.

ii. Skin hyperalgesia. After intradermal injection of capsaicin, there was no effect of smoking cannabis on secondary hyperalgesia in response to heat or pinprick or in response to allodynia from stroking (Wallace et al., 2007).

iii. Models that induce endogenous pain modulation. The cold pressor test has been used with different routes of administration of the drug, where no effect was found after either oral, intravenous, or pulmonary administration (Naef et al., 2003; Naef et al., 2004).

iv. Conclusions. Because this drug has not been approved for pain treatment, no therapeutic range for clinical use exists. However, a dose range of 5 to 10 mg p.o. has been found to be effective in sclerosis (Svendsen et al., 2004). On the other hand, even doses of 20 mg p.o. did not produce significant analgesia in acute experimental pain (Naef et al., 2003). The only model in which Δ9-tetrahydrocannabinol produced significant analgesia (spontaneous pain from intradermal capsaicin) administered the drug via smoking of cannabis. This exposed the subjects to a mixture of cannabinoids, several of which possess activity in the central nervous system (Wallace et al., 2007). This makes it difficult to compare the dose of this study with those in other studies using the clean compound. Furthermore one study found an inverse dose-response relation for Δ9-tetrahydrocannabinol (Wallace et al., 2007).

The analgesic effect of Δ9-tetrahydrocannabinol is difficult to show in acute experimental pain models. However, the drug has shown a complex pattern of analgesia, with a stronger effect on pain intensities below the pain detection threshold than those above (Raft et al., 1977). This pattern is opposite that of classic analgesics such as opioids and could reflect that Δ9-tetrahydrocannabinol works on the sensory-discriminative rather than affective-motivational aspects of pain, which is in consensus with the findings of Raft et al. (1977) and Wallace et al. (2007). The limited effect of this compound reflects the fact that the evidence of clinical effect of cannabinoids is limited to sclerosis and painful spasticity (Karst et al., 2010).

IX. Analgesic Assessment by Experimental Human Pain Models in Patients

It has been suggested that patients with chronic pain may have an enhanced sensitivity to analgesics. This can be exemplified by the increased sensitivity to exogenous and endogenous opioids (Price et al., 2002). The enhanced sensitivity could result from several possible factors, including increased sensitivity or density of opioid receptors or enhancement of factors that contribute to placebo analgesia. For example, it is possible that patients experience enhanced desire for pain reduction, greater expectations of pain reduction, and consequently an increased placebo contribution to effects of analgesics. Another explanation could be that, for example, opioid antinociceptive effects are more pronounced in inflamed tissue. It has been shown that after induction of peripheral inflammation, the axonal transport of opioid receptors in fibers of the sciatic nerve is greatly enhanced. Subsequently, the density of opioid receptors on cutaneous nerve fibers in the inflamed tissue increases (Walker, 2003). Furthermore, animal studies have shown that in the inflammatory state opioid agonists have easier access to neuronal opioid receptors, because 1) inflammation entails a disruption of the perineurium (a normally rather impermeable barrier sheath encasing peripheral nerve fibers) and 2) the number of peripheral sensory nerve terminals is increased in inflamed tissue (sprouting) (Obara et al., 2009). Therefore, testing the effect of analgesics by experimental pain in patients can provide further insight into analgesic mechanisms in the up-regulated pain system. This section addresses how the efficacy of analgesics has been assessed in different patient groups using experimental pain models. Conclusions on dosing regimes or mechanistic aspects are included in each subsection. Because fewer studies have been performed in patients compared with healthy volunteers, most studies performed in patients are included.

A. Nonopioids

1. Nonsteroidal Anti-Inflammatory Drugs and Acetaminophen. Diclofenac, ibuprofen, and naproxen are NSAIDs that have all been tested in experimental pain in patients (Table 1). Acetaminophen has been tested in only a single study in patients.

a. Acetaminophen. Acetaminophen was investigated in patients whose main complaint was moderate to severe dental pain. The change in pain threshold was measured by electric pulp testing. Acetaminophen increased the pain threshold in response to electrical stimulation (Carnes et al., 1998).

b. Diclofenac, ibuprofen, and naproxen. Diclofenac was tested on postoperative pain after caesarean delivery. Electrical sensory thresholds significantly increased after surgery when diclofenac was given in combination with tramadol. Diclofenac showed no analgesic effect on its own (Wilders-Smith et al., 2003a). Ibuprofen cream was tested in patients with arthritis using an electronic pressure algometer on the affected joints. Ibuprofen caused a significant increase in pressure pain tolerance threshold but not in pressure pain threshold (Arendt-Nielsen et al., 1994). Naproxen was tested in patients whose chief complaint was moderate to severe dental pain. The change in pain threshold was measured by electric pulp testing. No elevation of pain threshold was seen (Carnes et al., 1998).

c. Conclusions. The administered dose of diclofenac (75 mg) was lower than the normal therapeutic dose for weak pain (200–400 mg, three to four times daily),
which could explain the reason why no clinical effect was observed. Furthermore, there is need to perform more studies before a conclusion can be drawn.

Even though an effect of acetaminophen was demonstrated in experimental testing in patients with dental pain, the authors concluded that this difference was probably not clinically meaningful (Carnes et al., 1998). Therefore, at usual doses, NSAIDs and acetaminophen are not particularly effective at changing the threshold in response to sharp pain in experimental pain studies (Carnes et al., 1998). Only ibuprofen was tested in patients with chronic pain who had rheumatoid arthritis. Dermal application caused a significant increase in pressure pain tolerance, whereas pain detection threshold was not affected, likely reflecting that more intense pain is needed to show an effect in this model (Arendt-Nielsen et al., 1994).

2. N-Methyl-D-aspartate Antagonists. Both dextromethorphan and ketamine are NMDA antagonists that have been studied in experimental pain in patients (Table 2).

a. Dextromethorphan. Dextromethorphan is a weak NMDA antagonist (Siu and Drachman, 2007). It has been tested in two studies (Ilkjaer et al., 2000; Staud et al., 2005). In patients with elective abdominal hysterectomy, pressure pain detection threshold was determined 2 cm caudal to the middle of the surgical incision with a handheld electronic pressure algometer. Pain detection thresholds were assessed by applying von Frey hairs of increasing diameter to the skin 5 cm from the surgical incision, but dextromethorphan had no effect on this model (Ilkjaer et al., 2000). In patients with fibromyalgia, temporal summation to thermal skin pain and mechanical muscle pain was evoked in both hands. Dextromethorphan showed effect on both thermal and mechanical summation elicited by train pulses in a dose-dependent manner (Staud et al., 2005).

b. Ketamine. Ketamine is a NMDA antagonist that has been widely studied in experimental pain in patients. Seven studies investigated the effect of ketamine on skin pain (Eide et al., 1995; Wilder-Smith et al., 1998; Leung et al., 2001; Jørum et al., 2003; Gottrup et al., 2006; Ayesh et al., 2008), whereas one study tested the effect on muscle pain (Graven-Nielsen et al., 2000). In patients with temporomandibular joint arthralgia, von Frey filaments were used for assessment of pinprick and tactile (touch) sensations around the temporomandibular joint. Presence or absence of allodynia or hypoesthesia to light mechanical brush of the skin was also assessed. A pressure algometer was used to test the sensitivity to deep stimuli of the joint. No effect of ketamine was found on any of those measures (Ayesh et al., 2008). Eide et al. (1994) examined patients with post-herpetic neuralgia in two studies. In the first study, allodynia was assessed using an electric toothbrush on the affected skin area. Pain in response to temporal summation with pinprick was evoked by von Frey filaments. Threshold temperatures for sensations of warm, cold, and heat pain were determined in cervical, thoracic, lumbar, and facial regions. Ketamine showed an effect only against allodynia and temporal summation. The second study by Eide et al. (1995) was a dose-response study using continuous (subcutaneous) infusion of ketamine in five patients who previously reported pain relief after ketamine using a comparable methodology. Allodynia was markedly reduced after the start of ketamine infusion, and after 1 week of infusion at the rate of 0.05 mg·kg\(^{-1}\)·h\(^{-1}\), allodynia was reduced 59 to 100%. The reduction of allodynia was more pronounced in only one patient after 1 week of infusion at the higher rate of 0.75 mg·kg\(^{-1}\)·h\(^{-1}\). In the other patients, there was no further reduction of allodynia with increasing infusion rates. Pain in response to temporal summation was also reduced by infusion of ketamine with increasing effect of higher infusion rates (Eide et al., 1995). In patients suffering from chronic complex regional pain syndrome type 1, the effect of ketamine on experimental heat pain was investigated. Seven intravenous 5-min low-dose S(+-)-ketamine infusions with increasing doses at 20-min intervals were applied. The skin on the volar side of the forearm was stimulated by heat. Ketamine had a dose-dependent antinociceptive effect (Sigtermans et al., 2010).
<table>
<thead>
<tr>
<th>Drug and Dose</th>
<th>Method</th>
<th>Comment</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dextromethorphan 150 mg oral</td>
<td>Pressure stimulation and von Frey hair stimulation to the skin near surgical incision in 50 patients scheduled for elective abdominal hysterectomy.</td>
<td>No significant effects.</td>
<td>Ilkjaer et al. (2000)</td>
</tr>
<tr>
<td>60 or 90 mg oral</td>
<td>Repeated stimulation by thermal pulses applied to the skin or by mechanical stimuli to the muscle in 14 patients with fibromyalgia.</td>
<td>Thermal and mechanical repeated stimulations were reduced by both doses, 90 mg being most effective.</td>
<td>Staud et al. (2005)</td>
</tr>
<tr>
<td>Ketamine 30-min (0.3 mg/kg i.v.)</td>
<td>Pressure, intramuscular, and cutaneous electrical stimulation. The pain intensity during experimental muscle pain by intramuscular hypertonic saline was also recorded in 17 patients with whiplash-associated disorder.</td>
<td>No significant effects in any of the tests.</td>
<td>Lemming et al. (2005)</td>
</tr>
<tr>
<td>0.3 mg/kg i.v.</td>
<td>Pressure pain stimulation at tender points and control points in 11 patients with fibromyalgia.</td>
<td>Pressure pain thresholds and pain tolerances at tender points and control points increased.</td>
<td>Sörensen et al. (1995)</td>
</tr>
<tr>
<td>0.3 mg/kg i.v.</td>
<td>Pressure pain stimulation at tender and nontender point areas in 18 patients with fibromyalgia.</td>
<td>Patients were classified as responders or nonresponders according to clinical pain intensity ratings taken before, during, and after the tests. Pressure pain and tolerance thresholds increased significantly in responders but not in nonresponders</td>
<td>Sörensen et al. (1997)</td>
</tr>
<tr>
<td>Seven 5-min low-dose i.v. infusions with increasing doses at 20-min intervals</td>
<td>Skin heat pain stimulation in 10 patients suffering from chronic complex regional pain syndrome type 1.</td>
<td>A dose-dependent anti-nociceptive effect to skin heat stimuli was observed. This effect ended immediately after termination of the infusion.</td>
<td>Sigtermans et al. (2010)</td>
</tr>
<tr>
<td>0.55 mg i.v.</td>
<td>Tactile, pinprick, and pressure pain stimulation at 11 sites around the temporomandibular joint in 18 patients with temporomandibular joint arthralgia.</td>
<td>No significant effects in any of the tests.</td>
<td>Ayesh et al. (2008)</td>
</tr>
<tr>
<td>0.15 mg/kg i.v.</td>
<td>Brush (alldynia), repeatedly pricking the affected skin area, tactile, and thermal stimulations of the skin were examined in eight patients with postherpetic neuralgia.</td>
<td>No significant changes in thermal pain thresholds or tactile sensations were observed. Alldynia and pain evoked by repeatedly pricking the affected skin area were significantly decreased.</td>
<td>Eide et al. (1994)</td>
</tr>
<tr>
<td>0.24 mg/kg as 30 min infusion</td>
<td>Brush and repetitive pinprick stimuli of the skin, and stimulation by acetone drop on the allodynic skin in 20 patients with nerve injury pain.</td>
<td>Evoked pain to brush and repetitive pinprick was reduced. Acetone-induced cold alldynia was unchanged.</td>
<td>Gottrup et al. (2006)</td>
</tr>
<tr>
<td>0.3 mg/kg over 30 min</td>
<td>Intramuscular infusion of hypertonic saline into the anterior tibial muscle as well as intramuscular electrical stimulation (single and repeated), muscle pressure, and cutaneous electrical stimulations were performed in 15 patients with fibromyalgia.</td>
<td>Pain from hypertonic saline was reduced. Local and referred pain areas were reduced. No differences in response to single electrical stimulation but temporal summation to intramuscular and cutaneous electrical stimuli decreased. Muscle pressure pain tolerance threshold was increased, whereas pressure pain threshold was not affected.</td>
<td>Graven-Nielsen et al. (2000)</td>
</tr>
<tr>
<td>Bolus 60 µg/kg; infusion, 60 µg/kg/min (20 min)</td>
<td>Heat/cold stimulation and alldynia/hyperalgesia to heat/cold stimulation were determined inside the affected skin area and in a contralateral non-painful area in 12 patients with neuropathic pain.</td>
<td>No significant differences in detection thresholds but reduction in pain at threshold for cold pain. Hyperalgesia was reduced.</td>
<td>Jørum et al. (2003)</td>
</tr>
<tr>
<td>50, 100, and 150 mg/ml i.v.</td>
<td>Thermal stimulations (cold and heat) and pinprick stimulation in the region of alldynia in 12 patients with neuropathic pain.</td>
<td>Cold threshold and cold pain thresholds increased. No effect on heat stimulation. Reduction in stroking and von Frey evoked alldynic area.</td>
<td>Leung et al. (2001)</td>
</tr>
<tr>
<td>0.5 mg/kg</td>
<td>Electrical stimulations in 15 patients after abdominal hysterectomy.</td>
<td>Electric sensation, pain detection and tolerance thresholds increased.</td>
<td>Wilder-Smith et al. (1998)</td>
</tr>
</tbody>
</table>
In a group of patients with nerve injury pain, the effect of ketamine was investigated in response to pain evoked by brush and repetitive pinprick stimuli and acetone. Brush, tactile, pressure, and thermal thresholds were measured. Maximum evoked pain score by repetitive brush and pinprick was reduced significantly by ketamine, but cold allodynia was not attenuated (Gottrup et al., 2006). In another study in patients with neuropathic pain syndromes after trauma (including surgery), the effect of ketamine on cutaneous thermal thresholds and hyperalgesia and on mechanical allodynia was investigated. In the affected skin area, ketamine reduced thresholds for cold pain and light brushing, but did not change the threshold for heat pain. In contralateral, nonaffected skin areas, there were no significant changes (Jørum et al., 2003). Leung et al. (2001) also investigated the effect of ketamine in patients with neuropathic pain and showed a concentration-dependent increase in cold pain thresholds but not on warm or hot pain thresholds. Ketamine had no effect on von Frey hair stimulation thresholds or pain scores but showed a concentration-dependent reduction in stroking pain score and a reduction in stroking-evoked allodynic area and von Frey-evoked allodynic area. Wilder-Smith et al. (1998), investigated sensory changes and pain after elective abdominal hysterectomy. Thresholds were measured using electric constant current skin stimulation on the dominant upper arm, the lateral breast fold 10 cm lateral to the incision, and above the patella. Arm, thoracic, incision, and leg sensory and pain thresholds were increased by ketamine, but differences in sensory processing were not reflected in clinical measures.

The effect of ketamine was also tested in patients with fibromyalgia. Pressure pain thresholds were determined at three bilaterally located tender points and at the tibialis anterior muscle (control). Pain threshold in response to electrical stimuli of the muscle and skin at the tibialis anterior was assessed, and muscular pain and referred pain were assessed by infusion of hypertonic saline into the right tibialis anterior. Mean pressure pain tolerance threshold from the three paired tender points was increased by ketamine. Pressure pain threshold at the anterior tibial muscle was increased after ketamine, whereas pain and referred pain areas after intramuscular infusion of hypertonic saline were reduced. Ketamine had no effect on the pain threshold in response to single electrical stimulus, but the summation ratio to intramuscular and cutaneous electrical stimuli was decreased (i.e., inhibited temporal summation) (Graven-Nielsen et al., 2000). Two other studies investigated the effect of ketamine in patients with fibromyalgia. In one study, tenderness was measured at tender points and control points with pressure algometry before and 15 min after each injection. Ketamine (0.3 mg/kg) showed a significant reduction in pain changes (Sørensen et al., 1995). In another study in patients with fibromyalgia pressure, pain threshold and pain tolerance increased significantly after ketamine (0.3 mg/kg) in responders (Sørensen et al., 1997).

The analgesic responses to intravenous administration of ketamine were also evaluated in patients with chronic whiplash-associated pain (Lemming et al., 2005). Experimental pain in response to pressure and electrical stimulation was assessed. The pain intensity during experimental muscle pain evoked by intramuscular hypertonic saline was also recorded. Ketamine showed no significant differences in any of the variables (Lemming et al., 2005).

Moreover, (S)-ketamine was tested in patients with chronic pancreatitis pain, where pressure pain thresholds were measured in five different dermatomes and the sum of pressure pain thresholds was calculated before, at the end of, and after infusion of (S)-ketamine (Bouwense et al., 2011). (S)-Ketamine increased the sum of pressure pain thresholds at infusion end but returned to preinfusion level 1 h after infusion (Bouwense et al., 2011).

c. Conclusions. Sigtermans et al. (2010) concluded from their study in patients suffering from chronic complex regional pain syndrome type 1 that ketamine’s effect on acute pain is plasma concentration-driven, displaying an on-off effect, and involves inhibition of NMDA receptors involved in the processing of acute pain. NMDA receptors are important players in the plasticity seen in chronic pain. As mentioned previously, dextromethorphan most likely shows analgesic effect through NMDA antagonism, and this could explain the observed effect in response to temporal summation pain, because NMDA receptors are activated in this phenomenon (Staud et al., 2005; Gottrup et al., 2006). Furthermore, the effect of NMDA antagonists can be shown in patients with muscle pain (e.g., fibromyalgia), because enlarged referred pain areas are an indicator of central hyperexcitability (Graven-Nielsen et al., 2000). Even though lower doses were studied in patients with fibromyalgia compared with patients undergoing elective ab-

TABLE 2—Continued.

<table>
<thead>
<tr>
<th>Drug and Dose</th>
<th>Method</th>
<th>Comment</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)-Ketamine 3-h infusion at 2 μg/kg/min</td>
<td>Pressure pain stimulation in five different dermatomes and the sum of pressure pain tolerances before, at end of, and after infusion were calculated for nine patients with chronic pancreatitis pain.</td>
<td>The sum of pressure pain tolerances at end of infusion was significantly higher than for placebo but returned to preinfusion values 1 h after end of infusion.</td>
<td>Bouwense et al. (2011)</td>
</tr>
</tbody>
</table>

dominal hysterectomy, an effect of dextromethorphan was demonstrated only in the study in which temporal summation was elicited. This indicates that, regarding NMDA antagonists, it can be more important to evaluate analgesic effects in patients by a proper experimental pain stimulation paradigm than by increasing doses. Supporting this, Graven-Nielsen et al. (2000) could demonstrate no effect of ketamine to single intramuscular electrical stimulation, but an effect on repeated stimulation was demonstrated, indicating a predominant effect on temporal summation. Ayesh et al. (2008) could not demonstrate any effect of ketamine on tactile, pin- prick, pressure pain threshold and pressure pain tolerance in patients with temporomandibular joint arthralgia. Nevertheless, it is not always possible to study temporal summation in patients; for example, Ayesh et al. (2008) were not able to specifically study primary and secondary hyperalgesia or temporal summation, because it was not possible to apply repetitively intra-articular pain assessment techniques in these patients. Bouwense et al. (2011) demonstrated an effect of (S)-ketamine on pressure pain thresholds. This effect did not outlast the infusion. The authors posited that this may be related to a relatively short infusion period and the low dosage chosen (Bouwense et al., 2011). However, it could also be related to the stimulation paradigm, because temporal summation was not induced. Staud et al. (2005) investigated the effect of dextromethorphan on temporal summation of pain in both patients with fibromyalgia and healthy control subjects. Dextromethorphan attenuated the central integration in both groups. Thus, they concluded that although fibromyalgia patients appear to have enhanced NMDA receptor mechanisms, they do not differ from healthy control subjects in their sensitivity to NMDA receptor antagonism. This is different from findings of opioid effect, where a more pronounced effect is found in the inflamed, up-regulated pain system (Walker, 2003).

3. Adjuvant Analgesics. Adjuvant analgesics such as gabapentanoids and antidepressants have been investigated by experimental pain studies in different patient groups (Table 3).

a. Gabapentin and pregabalin. Gabapentanoids have been investigated in experimental visceral pain in patients with irritable bowel dysfunction (IBS). Gabapentin was investigated in patients with diarrhea-predominant IBS. Pain was evoked by rectal distensions. The distending pressure triggering a first sensation of defeation was not altered by gabapentin, but threshold pressures for bloating, discomfort, and pain were increased (Lee et al., 2005). Pregabalin was studied in patients with IBS and in patients with painful chronic pancreatitis. In patients with IBS, rectal sensitivity was assessed using a barostat technique. Pregabalin significantly increased the sensory thresholds, desire to defecate, and pain (Houghton et al., 2007). In patients with painful chronic pancreatitis, perceptual thresholds in response to electrical stimulation of the sigmoid with recording of corresponding evoked brain potentials were obtained. Pregabalin increased pain threshold in response to electrical gut stimulation in patients with chronic pancreatitis, whereas no differences in evoked brain potential characteristics were seen (Olesen et al., 2011b).

b. Conclusions. The exact pathophysiology of IBS remains unclear and is probably multifactorial, involving altered intestinal motility, psychosocial factors, autonomic dysfunction, neuroimmune modulation, mucosal inflammation, as well as increased visceral sensitivity as a result of a dysregulated bidirectional communication between the enteric nervous system and the brain (Ghaith et al., 2010). It has been suggested that abnormalities of central nociceptive processing are present in IBS (Verne and Price, 2002). Gabapentin and pregabalin decrease hyperalgesia and allodynia and are widely used in treating neuropathic pain. Gabapentin and pregabalin also exert antinociceptive effects in animal models of neuropathic, surgical, inflammatory, acute, and chronic pain. This was supported by positive findings in the described human experimental pain models in patients (Lee et al., 2005; Houghton et al., 2007). The mechanism of action is not fully known, but part of the therapeutic action on neuropathic pain is thought to involve voltage-gated calcium ion channels (Field et al., 2006; Bauer et al., 2010). In patients with chronic pancreatitis, which is also thought to be a neuropathic pain disorder (Drewes et al., 2008), the experimental measure translated into a clinical efficacy, confirmed by traditional questionnaire endpoints (Olesen et al., 2011a).

The study by Lee et al. (2005) demonstrated that for adjuvant analgesics as well, perception thresholds for discomfort as assessed by experimental rectal distension can probably not be considered nociceptive thresholds. This was supported by the study by Olesen et al. (2011b), where it was demonstrated that patients with chronic pancreatitis had increased pain thresholds in response to experimental gut stimulation after pregabalin treatment compared with placebo, although sensation thresholds were not modified. As for opioids, it could be speculated that gabapentin in the dose investigated by Lee et al. (2005) is fairly selective in its ability to attenuate noxious inputs and to have only modest effects on non-noxious somatic sensations. However, an effect of pregabalin on sensory thresholds from the first sensation was found in another study (Houghton et al., 2007). The difference between the outcomes of the two studies could be related to differences between mechanisms of action of pregabalin and gabapentin but also to the fact that different dosing regimens were used (Lee et al., 2005; Houghton et al., 2007). As in experimental human pain models in healthy volunteers, there seems to be a nonlinear relation between dose and effect in patients as well. It has been suggested that the antinociceptive mechanisms of pregabalin action are mediated primar-
ily through subcortical mechanisms, because no effects were seen as changes in characteristics of evoked brain potentials (Olesen et al., 2011b).

b. Amitriptyline. Amitriptyline is a tricyclic antidepressant that inhibits both serotonin and noradrenaline reuptake and has been tested in three studies in patients with chronic tension-type headache (Göbel et al., 1994; Bendtsen and Jensen, 2000; de Tommaso et al., 2006). In a study by Bendtsen and Jensen (2000), amitriptyline did not affect pressure pain thresholds at the finger and the temporal region or the electrical pain threshold at the mouth. Göbel et al. (1994) found that amitriptyline reduced suprathreshold pain sensitivity in response to mechanical pressure applied to the vertex (experimental induced headache). In a third study, evoked brain potentials in response to laser stimulation of the skin at the dorsum of the right hand and above different muscles in the neck and head were recorded.

<table>
<thead>
<tr>
<th>Drug and Dose</th>
<th>Method</th>
<th>Comment</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabapentin 3-day treatment with gabapentin 300 mg/day and then 600 mg/day for 2 days</td>
<td>Mechanical distension of rectum in 40 patients with diarrhea-predominant IBS.</td>
<td>Pressure pain thresholds increased.</td>
<td>Lee et al. (2005)</td>
</tr>
<tr>
<td>Pregabalin 3 weeks’ oral pregabalin titrated to a final dose of 200 mg × 3</td>
<td>Rectal distension in 26 patients with IBS with rectal hypersensitivity.</td>
<td>Pregabalin increased the sensory thresholds for first sensation and moderate pain.</td>
<td>Houghton et al. (2007)</td>
</tr>
<tr>
<td>Escalating doses of pregabalin (300–600 mg/day) for 3 weeks</td>
<td>Electrical stimulation of the sigmoid with recording of corresponding evoked brain potentials in 13 patients with painful chronic pancreatitis.</td>
<td>Increase in pain threshold to electrical gut stimulation. No differences in evoked brain potential characteristics were seen.</td>
<td>Olesen et al. (2011)</td>
</tr>
<tr>
<td>Amitriptyline 75 mg daily in 32 weeks</td>
<td>Pressure pain stimulations at the dorsum of a finger and of the temporal region of the head as well as electrical stimulation of the labial commissure of the mouth in 33 patients with chronic tension-type headache.</td>
<td>No significant effects.</td>
<td>Bendtsen and Jensen (2000)</td>
</tr>
<tr>
<td>75 mg daily for 6 weeks</td>
<td>Mechanical pressure pain applied to vertex of the head in 24 patients with chronic tension-type headache.</td>
<td>The experimental pain sensitivity for mild and moderate mechanically induced pressure pain was not altered. Reduction in suprathreshold pain sensitivity for severe pain.</td>
<td>Göbel et al. (1994)</td>
</tr>
<tr>
<td>10 mg daily in 2 months</td>
<td>Laser pulse stimulation in 18 patients with chronic tension-type headache.</td>
<td>The pain rating of laser stimulus was not different at any of the stimulated sites. The amplitude of P2 response elicited by stimulation of pericranial zones showed a reduction.</td>
<td>de Tommaso et al. (2006)</td>
</tr>
<tr>
<td>50 mg daily for 4 weeks</td>
<td>Cerebral activation during rectal distension was assessed with fMRI in 19 patients with IBS.</td>
<td>No effect on rectal pain during distension. Reduced pain related cerebral activations in the perigenual ACC and the left posterior parietal cortex, but only during stress.</td>
<td>Morgan et al. (2005)</td>
</tr>
<tr>
<td>10 mg at bedtime for 2 weeks, then 25 mg at bedtime for 4 weeks</td>
<td>Rectal distension in 12 patients with IBS.</td>
<td>Pain threshold to rectal distension increased.</td>
<td>Poitras et al. (2002)</td>
</tr>
<tr>
<td>Amitriptyline 50 mg for 4 weeks</td>
<td>Esophageal distention in seven patients with functional dyspepsia.</td>
<td>No significant effect.</td>
<td>Mertz et al. (1998)</td>
</tr>
<tr>
<td>Imipramine 25 mg for 1 week, then 50 mg for 3 weeks</td>
<td>Cardiac pain stimulation by right ventricular electrical stimulation and esophageal balloon distention in 22 patients with noncardiac chest pain.</td>
<td>Significant reduction in the prevalence of chest pain provoked by right ventricular electrical stimulation. No change in esophageal sensitivity to balloon distention.</td>
<td>Cannon et al. (1994)</td>
</tr>
<tr>
<td>Fluoxetine 20 mg daily for 6 weeks</td>
<td>Rectal distension in 40 patients with IBS.</td>
<td>No significant effect.</td>
<td>Kuiken et al. 2003</td>
</tr>
</tbody>
</table>

ACC, anterior cingulate cortex.
Amitriptyline reduced the vertex P2 amplitudes at the
neck point, masseter, and temporal sites that were corre-
related with the percentage rate of reduction of head-
ache frequency (de Tommaso et al., 2006).

Amitriptyline was also studied in patients with IBS in
two studies. Morgan et al. (2005) investigated cerebral
activation with fMRI during rectal distension. Amitri-
tyline reduced pain related cerebral activations in the
perigenual anterior cingulate cortex and the left poste-
rior parietal cortex, but only during stress. However,
reductions in brain activation were not definitely linked
to reduced sensitivity to rectal pain. Poiras et al. (2002)
evaluated visceral sensitivity in patients with IBS and
found that the pain threshold in response to rectal dis-
tension increased after drug treatment. In patients with
functional dyspepsia, amitriptyline showed no changes
in perception of gastric distension (Mertz et al., 1998).

c. Imipramine. Imipramine was studied in patients
with noncardiac chest pain. No change in esophageal
sensitivity to balloon distension was found, whereas
imipramine caused a reduction in the chest pain pro-
voked by right ventricular electrical stimulation (Can-
non et al., 1994).

d. Fluoxetine. Fluoxetine is a selective serotonin-re-
uptake inhibitor and was studied in patients with IBS
but did not alter the threshold for discomfort/pain dur-
ning rectal distensions (Kuiken et al., 2003).

e. Conclusions. The results showed variation in ef-
fect of amitriptyline on experimental pain. Different
doses, different patient groups, and different models
were used; therefore, it is difficult to compare the re-
results. However, objective measurements such as fMRI
and laser-evoked potentials are potential models when
investigating the central effect of amitriptyline, as
shown with the studies performed by Morgan et al.
(2005) and de Tommaso et al. (2006). It was concluded
that interventions at the supraspinal levels (as with
amitriptyline) improved the outcome of headache (de
Tommaso et al., 2006). However, a significant weakness
of de Tommaso et al.’s (2006) study design was the lack
of placebo.

The effect of tricyclic antidepressants in, for example,
patients with IBS is unlikely to be due to the antide-
pressant effect, because a positive effect is mainly seen
in nondepressive patients, the dose is generally below
antidepressant dose, and treatment response occurs ear-
lier than antidepressive effect. Morgan et al. (2005) pos-
tulated that the effect of amitriptyline is central as a
result of reduced pain-related cerebral activations.
Bendtsen and Jensen (2000) concluded that their find-
ings indicate that amitriptyline elicits its analgesic ef-
fect in chronic myofascial pain by reducing the trans-
mision of painful stimuli from myofascial tissues rather
than by reducing overall pain sensitivity. They sug-
gested that this effect could be caused by a segmental
reduction of central sensitization in combination with a
peripheral antinociceptive action. The studies above in-
dicate that the analgesic effects of tricyclic antidepres-
sants are complex.

Rectal pain thresholds were increased in patients
with IBS treated with amitriptyline, and the effect was
correlated to clinical improvement of the gastrointesti-
nal symptoms (Poiras et al., 2002). In contrast, Mertz et
al. (1998) found no effect of amitriptyline on the percep-
tual responses to gastric distensions in patients with
functional dyspepsia. These authors speculated that am-
itriptyline conceivably had an effect on pain modulatory
brain systems that reduce the affective component of
pain and thereby increased tolerance without altering
perceptual thresholds. The same was demonstrated by
Göbel et al. (1994); no effect of amitriptyline was found
for mild and moderate mechanically induced pressure
pain at vertex in patients with chronic tension-type
headache, whereas a significant reduction in the sup-
prathreshold pain sensitivity for severe pain occurred
during the course of treatment. Thus, when evaluating
antidepressants in experimental pain in patients, it is
important to use methods of suprathreshold stimula-
tion. Moreover, because of the conflicting results in ex-
perimental trials involving this drug class, a combina-
tion of objective and subjective assessments are highly
recommended when the central analgesic effect of anti-
depressants is evaluated in experimental pain in differ-
ent patient groups.

4. 5-Hydroxytryptamine-3 Receptor Antagonists. 5-
hydroxytryptamine-3 (5-HT3) antagonists are known to
act on both peripheral and central 5-HT3 receptors (Ri-
ering et al., 2004). The indication is nausea and vomit-
ing, but 5-HT3-antagonists may also have antinoce-
tive effects. Three different 5-HT3-antagonists have
been tested in experimental pain models in patients
(Table 4).

a. Alosetron. Alosetron was tested in patients with
IBS in three different studies. (Delvaux et al., 1998;
Thumshirn et al., 2000; Mayer et al., 2002). Alosetron
increased bag volumes at the time of first sensation of
abdominal pain (Delvaux et al., 1998). This was sup-
ported by a PET study in which alosetron decreased
activity in amygdala, ventral striatum, hypothalamus,
and infragenual cingulate gyrus after rectosigmoid dis-
tension (Mayer et al., 2002). In contrast, another study
could not demonstrate an effect on sensation by rectal
balloon distension with a barostat (Thumshirn et al.,
2000).

b. Granisetron. Granisetron was tested in patients
with fibromyalgia to pressure pain threshold over the
masseter muscle. No significant effect was seen (Erf-
berg et al., 2003). Granisetron was also tested in pa-
ients with IBS using rectal distension. Granisetron
caused a dose-dependent reduction in rectal sensitivity,
manifested by an increase in the threshold volumes at
which the sensations of gas, desire to defecate, urgency,
and discomfort were perceived. This reached signifi-
cance for all sensations at the higher dose level (Prior and Read, 1993).

c. Ondasetron. Several studies were performed in patients with IBS, and most had positive outcomes (Prior and Read, 1993; Delvaux et al., 1998; Mayer et al., 2002). However, one study in patients with diarrhea-predominant IBS had negative outcome, because ondansetron did not alter visceral (barostat) or somatic (immersion of the hand in cold water) perception scores (Zigelboim et al., 1995). An effect of multiple dosing for 1 week of the 5-HT3-antagonist alosetron on abdominal pain induced by distension of the colon was found to increase colonic compliance without affecting the pressure required for the perception of the first sensation of abdominal pain (Delvaux et al., 1998; Mayer et al., 2002), who found decreases in brain activity caused by rectosigmoid distension after treatment with 5-HT3-antagonists. Therefore, inclusion of brain imaging for visceral pain could improve and accelerate the drug discovery and development process, including the identification of more effective compounds for treatment of GI disorders (Mayer et al., 2008).

B. Opioids

The opioids alfentanil, asimadoline, fedotozine, fentanyl, morphine, oxycodeone, and tramadol have all been studied in experimental pain in patients (Table 5). Opioids are described in two separate sections as short-acting and longer acting opioids. The results from studies of opioid effects are discussed in general in the end of this section.

1. Short-Acting Opioids.

a. Alfentanil. Alfentanil is a µ-receptor agonist with a short duration of action and has been tested in two studies of experimental skin pain in patients with neuropathic pain. Jørum et al. (2003) investigated the effect of alfentanil by use of heat and cold thresholds. They found that alfentanil decreased allodynia and hyperalgesia in the affected skin area. Heat pain detection threshold was significantly elevated. In contralateral, nonaffected skin areas, there were no significant changes. Leung et al. (2001) investigated the effect of alfentanil in patients with neuropathic pain in different locations and found that the drug showed a concentration-dependent increase in thresholds in response to cold stimulation. The heat thresholds were not affected. There was no effect on von Frey hair stimulation thresh-
<table>
<thead>
<tr>
<th>Drug and Dose</th>
<th>Method</th>
<th>Comment</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfentanil</td>
<td>Heat and cold stimulations and mechanical allodynia/hyperalgesia in response to heat/cold stimulation in 12 patients with neuropathic pain.</td>
<td>Alldynia and hyperalgesia to cold as well as alldynia to mechanical stimulation were reduced. Heat pain detection threshold was elevated.</td>
<td>Jørum et al. (2003)</td>
</tr>
<tr>
<td>Meperidine</td>
<td>Electrical stimulation in 20 patients with dental pain.</td>
<td>No significant effect.</td>
<td>Carnes et al. (1998)</td>
</tr>
<tr>
<td>Morphine</td>
<td>Brush (allodynia), repeatedly pricking the affected skin area with von Frey, tactile von Frey stimulation, and thermal stimulation in cervical, thoracic, lumbar, and facial regions in eight patients with postherpetic neuralgia.</td>
<td>No significant change in pain thresholds for thermal or tactile sensation. Allodynia was significantly decreased. Pain to repeated pricking stimulation was significantly increased.</td>
<td>Eide et al. (1994)</td>
</tr>
<tr>
<td>Oxycodone</td>
<td>Pressure stimulation at tender and control points in nine patients with fibromyalgia.</td>
<td>Patients were classified as responders or nonresponders according to clinical pain intensity ratings taken before, during, and after the tests. Pressure pain thresholds significantly increased in responders but not in nonresponders.</td>
<td>Sörensen et al. (1995)</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>Rectal distension and transcutaneous electrical skin stimulation was recorded in 17 patients with diagnosed whiplash-syndrome.</td>
<td>Mechanical and heat pain tolerance threshold were increased in skin. In muscles, mechanical pain tolerance threshold was increased. In esophagus, mechanical and heat pain thresholds were increased. Electrical pain thresholds were unaffected in all tissue.</td>
<td>Staahl et al. (2007)</td>
</tr>
</tbody>
</table>

References

- Jørum et al. (2003)
- Leung et al. (2001)
- Carnes et al. (1998)
- Eide et al. (1994)
- Staahl et al. (2007)
- Wilder-Smith et al. (1999a)
- Wilder-Smith et al. (1999b)
- Sörensen et al. (1995)
- Sörensen et al. (1997)
- Lemming et al. (2005)
- Lembo et al. (2000)
- Price et al. (1986)
- Price et al. (2002)
- Staahl et al. (2007)
- Wilder-Smith et al. (1996)
olds, but a reduction in stroking-evoked allodynic area was found.

b. Meperidine. Meperidine is a μ-opioid receptor agonist and a fast-acting opioid analgesic that was tested in patients with dental pain. In the study, no increase in pain threshold in response to electrical stimulation of the pulp could be detected (Carnes et al., 1998).

2. Longer Acting Opioids.

a. Traditional μ-receptor agonists. The effect of morphine was studied in patients with postherpetic neuralgia. Morphine had no effect on thresholds for warm, cold, or heat stimulation or on tactile sensation. Pain evoked by non-noxious stimulation of the skin (alldynia) was inhibited by morphine, whereas wind-up–like pain (repeated pricking of the affected skin area) was significantly increased by morphine (Eide et al., 1994). Staahl et al. (2007) performed an experimental pain study in patients with chronic pancreatitis and found that mechanical, heat and electrical pain in skin and mechanical and electrical muscle pain was unaffected by morphine. Morphine increased esophageal mechanical pain tolerance threshold, whereas esophageal heat and electrical pain thresholds were unaffected. Wilder-Smith et al. (1999a) also investigated the effect of morphine in patients with chronic pancreatitis but found no effect on rectal distension thresholds. In another study by Wilder-Smith et al. (1999b), morphine increased pain tolerance to rectal distension and to electrical skin pain on the right shoulder in patients undergoing abdominal hysterectomies. However, morphine showed no effect on transcutaneous electric sensation or skin electric pain tolerance thresholds tested 5 cm from the incision wound (Wilder-Smith et al., 1999b). The effect of morphine has also been investigated in patients with fibromyalgia. In one study, there was no effect on pressure pain intensity measured at tender points and control points before and 15 min after each injection (Sørensen et al., 1995). Another study in patients with fibromyalgia examined four tender points with an electronic pressure algometer. Two non–tender-point areas were examined in the same way. Pressure pain threshold and pain tolerance increased significantly after morphine administration (0.3 mg/kg) in patients characterized as responders (Sørensen et al., 1997). The analgesic responses to intravenous administration of morphine were also evaluated in patients with chronic whiplash-associated pain (Lemming et al., 2005). Experimental pain assessments were performed on the lower legs, but there was no effect on pressure pain thresholds, intramuscular and cutaneous electrical stimulations, and intramuscular hypertonic saline. (Lemming et al., 2005).

Oxycodone is an opioid agonist with affinity for the μ-opioid receptor and a low affinity for the κ-opioid receptor. The effect of oxycodone was investigated only in an experimental pain study in patients with chronic pancreatitis, where the effect was better than morphine. For skin stimulations, mechanical and heat pain tolerance thresholds were increased, whereas electrical pain tolerance thresholds were unaffected. For muscle stimulations, mechanical pain tolerance threshold was increased and electrical pain tolerance threshold was unaffected. For esophageal stimulations, both mechanical and heat pain thresholds were increased, whereas electrical pain tolerance threshold was unaffected (Staahl et al., 2007).

Fentanyl dose-dependently increased perception thresholds in response to rectal distension in patients with irritable bowel syndrome (Lembo et al., 2000). In patients with low back pain, fentanyl patches caused increased pain threshold in response to heat stimulation in the skin on the forearm (Price et al., 1986). In patients with fibromyalgia, no effect of fentanyl was found on heat skin pain, whereas both repeated heat and cold stimuli were attenuated by fentanyl (Price et al., 2002). Fentanyl was also investigated in a study in patients undergoing elective herniated intervertebral disc sur-

<table>
<thead>
<tr>
<th>Drug and Dose</th>
<th>Method</th>
<th>Comment</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 μg/kg</td>
<td>Electrical skin stimulation in 15 patients after abdominal hysterectomy</td>
<td>All thresholds were increased.</td>
<td>Wilder-Smith et al. (1998)</td>
</tr>
<tr>
<td>Asimadoline</td>
<td>0.5 mg Phasic distension of colon in 20 patients with IBS.</td>
<td>Area under curve of pain intensity decreased significantly.</td>
<td>Delvaux et al. (2004)</td>
</tr>
<tr>
<td>Federazine</td>
<td>100 mg Phasic distention of colon in 14 patients with IBS.</td>
<td>Thresholds of perception were increased.</td>
<td>Delvaux et al. (1999)</td>
</tr>
<tr>
<td>Tramadol</td>
<td>100 mg Electrical stimulation at or distant from the incision were studied in 120 patients who had elective cesarean delivery</td>
<td>No significant differences for tramadol, but an increase was seen for the combination tramadol plus diclofenac.</td>
<td>Wilder-Smith et al. (2003)</td>
</tr>
<tr>
<td></td>
<td>732.5 ± 152 mg i.v. Rectal distension and transcutaneous electrical stimulation in 50 patients undergoing abdominal hysterectomies</td>
<td>No significant effects.</td>
<td>Wilder-Smith et al. (1999a)</td>
</tr>
<tr>
<td></td>
<td>50 mg four times daily Rectal distension in 25 patients with chronic pancreatitis pain.</td>
<td>Rectal distension thresholds increased.</td>
<td>Wilder-Smith et al. (1999b)</td>
</tr>
<tr>
<td></td>
<td>100 mg p.o. Electrical skin stimulation in 60 patients with osteoarthritis.</td>
<td>Reduced pain thresholds.</td>
<td>Wilder-Smith et al. (2001)</td>
</tr>
</tbody>
</table>

TABLE 5—Continued.
Surgery. Sensation, pain detection, and tolerance thresholds in response to electrical stimulation were measured before operation and 1, 2, 4, 6, 24 h, and 5 days after operation and were increased after fentanyl administration (Wilder-Smith et al., 1996). In another study by Wilder-Smith et al. (1998), the effect of fentanyl was investigated in patients undergoing elective abdominal hysterectomy. Thresholds were measured using electrical skin stimulation on the arm, the lateral breast fold, 10 cm lateral to the incision and above the patella. Fentanyl was found to increase electrical pain thresholds compared with baseline 1 to 24 h after surgery for all measurement sites, but these differences in sensory processing were not reflected in clinical measures (Wilder-Smith et al., 1998).

b. \(\kappa \)-Receptor agonists. Asimadoline is a full \(\kappa \)-opioid agonist, with high affinity and selectivity. It exerts its effect through a peripheral action, not crossing the blood-brain barrier in significant amounts, because it is actively transported out of the brain via a \(p \)-glycoprotein (Jonker et al., 1999). One study demonstrated that asimadoline decreased the perception of pain induced by colonic distension in patients with IBS, whereas it did not influence perception of nonpainful colonic distensions (Delvaux et al., 2004).

Fedotozine acts mainly as a \(\kappa \)-opioid agonist and has been studied in patients with IBS. In IBS, sensory thresholds were elicited by left colon phasic distention up to a sensation of abdominal pain. Fedotozine increased thresholds of first perception and pain (Delvaux et al., 1999).

3. Opioids with Mixed Binding Profile.

a. Tramadol. Tramadol exerts actions at the \(\mu \)-opioid receptor as well as the noradrenergic and serotonergic systems and was investigated in four studies all performed by Wilder-Smith et al. (1999a,b, 2001, 2003a). One study in patients who had undergone elective cesarean delivery demonstrated that pain thresholds at or distant from the incision significantly increased after surgery only when tramadol was combined with diclofenac and unaffected by tramadol alone (Wilder-Smith et al., 2003a). Another study was performed in patients undergoing abdominal hysterectomies. Skin pain tolerance thresholds in the incisional dermatome, pain tolerance threshold at the shoulder, and rectal distension pain tolerance pressure thresholds were unaffected by tramadol (Wilder-Smith et al., 1999b). In a study in patients with chronic pancreatitis, rectal distension threshold increased with tramadol (Wilder-Smith et al., 1999a). In patients with osteoarthritis, electrical sensation and pain thresholds over the osteoarthritic joint and at a distant location were increased during treatment (Wilder-Smith et al., 2001).

The lack of effect of morphine in patients with postherpetic neuralgia, reported by Eide et al. (1994), could be due to a low dose of morphine (0.075 mg/kg) Sørensen et al. (1995, 1997) investigated the effect of morphine in two different studies; in their first study; they found no effect of morphine (10 mg i.v.) on experimental pain in patients with fibromyalgia, whereas an effect of a higher dose (0.3 mg/kg) was found in the later study. Supporting this Leung et al. (2001) found a dose-dependent increase of alfentanil in cold pain thresholds, and it was demonstrated that fentanyl dose-dependently increased the perception thresholds in patients with IBS (Lembo et al., 2000). Thus, as in healthy volunteers, it is important to evaluate the right dose of opioids in experimental pain studies in patients.

The fast acting \(\mu \)-receptor agonist alfentanil increased the cold pain threshold and hyperalgesia to cold in the skin in the affected skin areas in two studies after intravenous administration (Leung et al., 2001; Jørum et al., 2003). This could be caused by a pronounced central effect of the drug, because central sensitization mechanisms are probably involved in cold hyperalgesia (Woolf and Mannion, 1999). However, in the study by Jørum et al. (2003), analgesic effect could not be demonstrated in the contralateral, nonaffected skin areas even though contralateral decrease in cold pain thresholds were demonstrated compared with healthy volunteers. Therefore, an effect on peripheral opiate binding sites could be an alternative mechanism as a result of de novo synthesis and peripherally directed axonal transport of opiate receptors in chronic pain states (Walker, 2003). Opioids might suppress spontaneous pain via central inhibitory mechanisms, whereas there seem to be peripheral mechanisms of opioids on pre-existing neuropathic pain states (Leung et al., 2001).

In patients undergoing abdominal hysterectomies, both somatic and visceral stimulations were unaffected by tramadol (Wilder-Smith et al., 1999b), whereas rectal distension threshold pressures increased with tramadol in patients with chronic pancreatitis (Wilder-Smith et al., 1999a). This illustrates that the pain system and the opioid system are up-regulated or changed differentially in different pain states, and highlights the importance of investigating analgesic effect in different chronic pain types and not only in postoperative pain. This was supported by the study in patients with osteoarthritis in which sensation and pain thresholds over the osteoarthritic joint and at a distant location were increased after treatment with tramadol (Wilder-Smith et al., 2001). However, with strong opioids, it is possible to demonstrate effect on postoperative pain, because both fentanyl and morphine were effective in patients undergoing elective disc surgery or abdominal hysterectomies (Wilder-Smith et al., 1996, 1998, 1999b).

First pain from, for example, single heat stimulation, which is mediated by selective input from A\(\delta \) afferents (Handwerker and Kobal, 1993), showed no effect of fentanyl in patients with fibromyalgia, whereas the second pain summation tests, which are considered to be primarily associated with C fiber stimulation (Handwerker
and Kobal, 1993), showed an effect of fentanyl compared with placebo (Price et al., 2002). This finding can have important implications for control of clinical pain, because temporal summation may reflect mechanisms of the beginning stages of central hyperalgesia associated with persistent pain conditions such as those seen in fibromyalgia. This highlights the importance of studying the second pain, when analgesic effects are evaluated in experimental pain settings in patients, because opioids seem to affect the second pain more than the first pain (Handwerker and Kobal, 1993). An increase in pharmacological sensibility induced by an inflammatory agent during disease could be due to C fiber polymodal nociceptors being particularly susceptible to sensitization phenomena. In addition, several C fibers are silent under normal conditions but respond to thermal and mechanical stimuli in inflamed tissue (Le Bars et al., 2001). However, regarding heat stimulation of the skin, analgesia was not detected after administration of morphine (Eide et al., 1994; Staahl et al., 2007). Whether this is related to heating rate or experimental bias in the patient studies cannot be determined and awaits further studies.

Electrical stimulation can be used to detect a central effect of opioids. Pain evoked by electrical stimulation of the skin, however, was rarely attenuated by morphine, oxycodone, or tramadol in patient studies (Wilder-Smith et al., 1999a,b, 2003b; Staahl et al., 2007). Moreover, electric pulp tests are affected little by meperidine; Carnes et al. (1998) concluded that electric pulp tests stimulate sharp pain, that there is a difference between sharp pain and dull pain analgesia, and that sharp pain is not significantly altered by opioids (Carnes et al., 1998). The negative results in the study with tramadol could be caused by the fact that the effect was evaluated at pain detection threshold (Brennum et al., 1993; Wilder-Smith et al., 2001). Few studies found an effect of opioids on electrical skin stimulation; an effect of tramadol (Wilder-Smith et al., 1999b) showed effect on this experimental pain stimulation in patients. Staahl et al. (2007) investigated the effect of morphine and oxycodone on pain induced by distension, heat, and electrical stimulation of esophagus and found differentiated effects of the two drugs; oxycodone was superior to morphine in attenuating visceral pain. An explanation could be differential analgesic profiles of opioids that might be caused by action on different opioid receptors. Animal studies have shown that κ-opioid agonists attenuate visceral pain (Sengupta et al., 1996). Moreover, experiments with animals indicate that κ-opioid receptor is up-regulated in response to peripheral inflammation (Sengupta et al., 1999) and that oxycodone could be a more potent κ-agonist compared with morphine (Ross and Smith, 1997). The resulting barrage of noxious activity and the inflammatory pain component in patients with chronic pain and inflammation has been hypothesized to effectuate peripheral, spinal, and supraspinal changes in the pain system (Cervero, 2000). These changes may include altered expression and activity of opioid receptors (Stanfa and Dickenson, 1995; Sengupta et al., 1999); for example, up-regulation of κ-opioid receptors (Sengupta et al., 1999), thereby also explaining the demonstrated effect of the κ-opioid agonists, asimadoline and fedotozine, on colon distension in patients with IBS (Delvaux et al., 1999; Delvaux et al., 2004). The effect of fedotozine has also been demonstrated clinically in patients with nonulcer dyspepsia and in patients with functional dyspepsia (Fraitag et al., 1994; Read et al., 1997).

Perception thresholds for discomfort as assessed by experimental rectal distension can probably not be considered nociceptive thresholds; they are not associated with significant heart rate responses and are significantly lower than visceral pain thresholds reported in the literature (Lembo et al., 2000). In general, opioids are thought to be fairly selective in their ability to attenuate noxious inputs and to have only modest effects on non-noxious somatic sensations. This was also demonstrated in healthy volunteers, where strong tonic pain was attenuated more than short lasting pain and non-painful sensations (Staahl et al., 2009a). The same was shown in IBS patients by Delvaux et al. (2004), who showed that the κ-receptor agonist asimadoline de-
creased only the perception of painful colonic distension and not the perception of nonpainful colonic distension. However, others argue that diffuse low-intensity pains are reduced by opiates to a greater extent than are sharp intense pains and that opiates have effects throughout the nociceptive range. Therefore, it may not be necessary to use severe and long-duration experimental pains to demonstrate analgesic effects (Price et al., 1986). If the applied method is sensitive enough (and, e.g., evaluates visceral pain), it is possible to detect the effect of a well established μ-opioid analgesic compound, such as fentanyl, on perception of nonpainful and painful visceral stimuli (Lembo et al., 2000). This could be explained by fentanyl’s having a greater attenuating effect on unpleasantness of visceral stimuli by activating brain regions, such as the perigenual anterior cingulate and prefrontal cortices, and possibly periaqueductal gray, that have been found to show a blunted response to the anticipation of an unpleasant visceral stimulus (Lembo et al., 2000).

Different outcomes could be the result of heterogeneity in responses to different pharmacological challenges in patients. This could be a reflection of heterogeneity in many areas, such as etiology, pain processing, genetics, and psychosocial factors. Moreover, some patients may have several active pain mechanisms that have to be targeted in clinical practice. Simultaneous treatment with several analgesic drugs with effects at different levels and receptors might be necessary when designing the pharmacological treatment of an individual patient.

X. Recommendations and Conclusion

Most of the reviewed studies found an effect of the tested analgesics. Lack of demonstrating analgesic effect could be due to 1) use of experimental models not activating specific pain mechanisms thought to be involved in the analgesic action of the drug investigated, 2) not using several modalities and/or activating several tissues as in clinical diseases, or 3) inadequate dose. The experimental pain models should also be thoroughly tested for reliability, should be internally valid (i.e., design must limit bias possibility to a minimum), and should aim for external validity (clinically useful in a way that the result must also be relevant to analgesic mechanisms or a definable group of patients in a particular clinical setting) (Rothwell, 2005; Drewes and Gregersen, 2006). External validity of the model of rectal distension was demonstrated by Morgan et al. (2005), where patients reported that the discomfort of pain induced by rectal distension was similar to their IBS symptoms. A crossover design gives the advantage of minimizing the interindividual variation and increases the statistical power. Nevertheless, disadvantage of a crossover design is carryover effect and regression toward the mean.

The characteristics of the noxious stimuli may be important in bridging experimental and clinical pain responses. Overall, suprathreshold pain stimuli are more clinically relevant than responses to pain threshold level (Edwards et al., 2005). This was seen from studies in both healthy volunteer and patients; pain intensities above the pain detection threshold were attenuated to a higher degree than intensities below the pain threshold.

Assessment with neurophysiologic methods and imaging is valuable as a supplement to psychophysical methods, mainly for explanation of analgesic mechanisms. Statistical considerations may also be important; associations between clinical pain and experimental pain responses may be most apparent when studying extreme groups (e.g., the most and least pain-sensitive patients) (Edwards et al., 2005).

Applying experimental pain to both healthy volunteers and to patients can be beneficial, because differentiated outcomes can give further information about pain physiology and pathophysiology. An example is the differences in effect of oxycodone and morphine demonstrated in patients with chronic pancreatitis (Staahl et al., 2007), which were not present when healthy volunteers were investigated in a previous study using the same experimental pain model (Staahl et al., 2006a). Nevertheless, the difference in opioid effect could also be demonstrated in healthy volunteers when a translational human experimental pain model including hyperalgesia was used (Olesen et al., 2010a). Therefore, experimental pain models in healthy volunteers should aim for translation to the clinical situation, where inflammation and hyperalgesia is present.

Two studies by Sørensen et al. (1995, 1997) looked at responders versus nonresponders, which could explain positive findings. The exclusion of nonresponders in pharmacological trials is described as enriched enrollment study design. Eide et al. (1995) used this paradigm as well; only five patients that reported pain relief after acute intravenous injection of ketamine were included, and the study had a positive outcome. Enriched enrollment is believed to add both to trial sensitivity and to the measured effect of an intervention (Straube et al., 2008). An example of enriched enrollment was seen in a recent study by Krarup et al. (2011), where only subjects who showed sensitization to acid perfusion of the esophagus were included. However, the effects of complete enrichment also mean that the data are not valid for the general patient population.

Whether the findings of experimental pain studies are relevant to the clinical experience of pain is a matter of debate. Experimental models that use acute stimuli may activate the nervous system in different ways compared with pain generated from ongoing inflammation, as in patients. However, correlation between analgesic effect on clinical pain and experimental pain has been consistently reported (Poitras et al., 2002). Certainly, experimental studies of pain create important hypotheses.
that, if possible, should be tested in more traditional clinical studies. However, this is not always possible because of the many confounders in clinical studies and the limitation in finding large homogenous patient groups to test in a more traditional way.

The application of experimental pain in healthy volunteers as well as in patients may bridge the knowledge obtained from animal studies to clinical studies, making experimental studies an important tool in translational pain research. To improve pain treatment, it is important to study the underlying physiological mechanisms of pain in different patient groups as well as the underlying pharmacological mechanism of actions of analgesics. One aim of such research is that clinicians may be better equipped to choose the optimal analgesic and dose or to make informed decisions regarding analgesic rotation strategies in efforts to achieve the best individual patient outcomes. To explain clinical behavior it may also be possible to use specific drugs as a diagnostic test to guide therapy, using a mechanism-based diagnosis based on drug effects (Gottrup et al., 2006). In summary, several factors need to be considered when planning an experimental human pain study to evaluate analgesic effect, given in Table 6.

A. Conclusion

Assessing analgesic effect by experimental pain models in healthy volunteers and patients may contribute to mechanism-based classification of pain and thereby to a better understanding of the underlying symptoms. The methods can be used in testing new and existing analgesics and have a major impact in the development process of potential new analgesics as well as in decision-making, such as indications and dosing. This may affect the ability of clinicians to predict patient responses to analgesics in efforts to individualize optimal analgesic therapy.

B. Perspectives

Selection of methods and experimental design is highly variable across countries and researchers. Standardization of experimental pain models across laboratories may increase their reliability and validity and allow comparison of findings. Responses to different experimental pain modalities represent different specific dimensions (Neziri et al., 2011), and therefore a battery of experiments shall be selected with proper selection of the optimal tests (i.e., on the basis of the data in this review) together with statistical considerations regarding multiple comparisons. Many of these complicated methods are manufactured locally and are available only in the most advanced laboratories, but possibilities for acquiring commercially developed equipment has improved in recent years. Collaboration between researchers such as that recently established in the German Research Network on Neuropathic Pain (Rolke et al., 2006) may also be helpful in establishing databases for quantitative sensory testing and may be used to infer underlying mechanisms from somatosensory phenotypes in drug evaluation. Finally, combination of sensory testing with neurophysiological and imaging assessmen-

<table>
<thead>
<tr>
<th>Topic and Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacokinetics</td>
</tr>
<tr>
<td>Design experiment according to pharmacokinetic profile.</td>
</tr>
<tr>
<td>If possible, select drugs with specific and potent analgesic effect especially if models only permit less intense pain intensity.</td>
</tr>
<tr>
<td>Select appropriate (and preferable relative high) dose.</td>
</tr>
<tr>
<td>Use dose–response regimen when possible.</td>
</tr>
<tr>
<td>Stimulations</td>
</tr>
<tr>
<td>Select models with optimal control of stimulus intensities.</td>
</tr>
<tr>
<td>Use models with large dynamic range.</td>
</tr>
<tr>
<td>Use models evoking peripheral and central pain mechanisms (e.g., single and repeated electrical stimulation) where appropriate.</td>
</tr>
<tr>
<td>Consider multimodal tests that are advantageous in many experimental conditions.</td>
</tr>
<tr>
<td>In selected cases use multistimulation.</td>
</tr>
<tr>
<td>Design protocol with stimulations at appropriate time according to pharmacokinetics.</td>
</tr>
<tr>
<td>Select deep stimuli whenever possible to mimic the clinical situation.</td>
</tr>
<tr>
<td>Use tonic rather than phasic stimulation to evaluate pain intensity.</td>
</tr>
<tr>
<td>When feasible, add models evoking allodynia and hyperalgesia to mimic clinical pain.</td>
</tr>
<tr>
<td>Use supratherreshold pain stimuli especially in evaluation of weak analgesics.</td>
</tr>
<tr>
<td>Select the stimulus paradigm according to known drug mechanisms (e.g., summated stimuli in evaluation of NMDA antagonists).</td>
</tr>
<tr>
<td>Consider selecting stimulus according to known pain mechanisms (e.g., projection of referred pain in functional diseases).</td>
</tr>
<tr>
<td>Use models with activation predominantly of C fibers.</td>
</tr>
<tr>
<td>Apply “methods of limits” if possible.</td>
</tr>
<tr>
<td>Only models tested for reliability should be selected.</td>
</tr>
<tr>
<td>Prefer models with high internal validity (i.e., most sensitive for analgesics in the painful range of sensations).</td>
</tr>
<tr>
<td>Prefer models with high external validity (i.e., mimics clinical pain and drug mechanisms).</td>
</tr>
<tr>
<td>Consider arousal status of the subjects (avoid prolonged experiments without breaks).</td>
</tr>
</tbody>
</table>

Assessments

- Use both subjective and objective pain assessments if feasible.
- Select reliable psychophysical scales.
- In selected cases, use more qualitative pain assessments (e.g., McGill Pain Questionnaire).
- Select explanatory neurophysiological or imaging methods if feasible.
- Use predefined and robust output parameters.
- In selected cases, use supplementary assessments (e.g., referred pain areas).

Subjects

- In design, re-evaluate ethical considerations.
- Consider selection of subjects using psychological evaluation.
- Consider enriched enrollment (i.e., evaluate sensitivity to the tests or drugs).
- Select appropriate sample (volunteers/patient groups).
- Consider selection according to gender, age, genotype, etc.
- Reduce anxiety through screening, pretesting and proper instruction.
- Train subjects in pain ratings to increase reliability.

Laboratory

- Use well educated and experienced staff trained in the tests.
- Use same person to perform tests for repeated assessments.
- Pay attention to theoretical and practical education of staff.
- Ensure recommendations for good clinical and laboratory practice are followed.
- Avoid any interruption and disturbing factors during experiments.
- Isolate equipment between experiments to ensure stability (mainly for advanced electronic equipment).
- Reconsider safety issues whenever necessary.

Data analysis

- Evaluate according to predefined primary and secondary endpoints.
- Use statistical adjustment for multiple comparisons.
- Perform baseline corrections in repeated testing.
- Use expert evaluation of neurophysiological/imaging data.
pharmacodynamic considerations together with advanced statistical modeling such as adapted medical decision systems may in the future pave the road for optimized development of analgesics and stratified medicine with the goal to tailor individualized medicine.

Acknowledgments
Philippe Petitdejan from Aalborg Hospital is acknowledged for assisting in graphic layout of figures.

Authorship Contributions
Wrote or contributed to the writing of the manuscript: Olesen, Andreassen, Staahl, and Drewes.

References

