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Abstract——Urotensin II (UII) is a cyclic neuropeptide
that was first isolated from the urophysis of teleost fish
on the basis of its ability to contract the hindgut. Sub-
sequently, UII was characterized in tetrapods including
humans. Phylogenetic studies and synteny analysis in-
dicate that UII and its paralogous peptide urotensin
II-related peptide (URP) belong to the somatostatin/
cortistatin superfamily. In mammals, the UII and URP
genes are primarily expressed in cholinergic neurons
of the brainstem and spinal cord. UII and URP mRNAs
are also present in various organs notably in the
cardiovascular, renal, and endocrine systems. UII and
URP activate a common G protein–coupled receptor,
called UT, that exhibits relatively high sequence identity

with somatostatin, opioid, and galanin receptors. The UT
gene is widely expressed in the central nervous system
(CNS) and in peripheral tissues including the retina,
heart, vascular bed, lung, kidney, adrenal medulla, and
skeletal muscle. Structure-activity relationship studies
and NMR conformational analysis have led to the rational
design of a number of peptidic and nonpeptidic UT
agonists and antagonists. Consistent with the wide
distribution of UT, UII has now been shown to exert
a large array of biologic activities, in particular in the
CNS, the cardiovascular system, and the kidney. Here,
we review the current knowledge concerning the
pleiotropic actions of UII and discusses the possible use
of antagonists for future therapeutic applications.

I. Introduction

In 1980, Howard Bern and his coworkers published
an article, now a citation classic, in which they reported
the characterization of a novel regulatory peptide from
the fish urophysis that they called urotensin II (UII)
(Pearson et al., 1980). Because the urophysis is a

neurohemal organ that is exclusively present in teleosts
(Bern et al., 1985), it had long been thought that UII
only existed in fish. However, subsequent studies have
led to the identification of UII orthologs in amphibians
(Conlon et al., 1992b) and mammals, including humans
(Coulouarn et al., 1998). Soon after, a UII receptor was

ABBREVIATIONS: ACAT-1, acyltransferase-1; ACTH, adrenocorticotropin; CHF, congestive heart failure; CHO, Chinese hamster ovary;
CNS, central nervous system; CSF, cerebrospinal fluid; CTF-prohUII, C-terminal fragment of human pro-UII; 3D, three-dimensional; ECL,
extracellular loop; FLIPR, fluorometric imaging plate reader; GPCR, G protein–coupled receptor; HCC, human corpus cavernosum; HPLC,
high-performance liquid chromatography; HTS, high-throughput screening; IP3, inositol-1-4-5 triphosphate; LDL, low-density lipoprotein;
MAPK, mitogen-activated protein kinase; NO, nitric oxide; PLC, phospholipase C; PPT, pedunculopontine tegmental nucleus; 2R, two whole-
duplication rounds; REM, rapid eye movement; ROS, reactive oxygen species; RT-PCR, reverse-transcription polymerase chain reaction; SHR,
spontaneously hypertensive rats; SNPs, single nucleotide polymorphisms; T2DM, type 2 diabetes mellitus; UCA, urocontrin A; UII, urotensin II;
URP, urotensin II–related peptide; UT, UII receptor; WKY, Wistar-Kyoto rats.
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identified, called UT, which is widely expressed in the
central nervous system (CNS) and in various peripheral
organs, notably in the cardiovascular system and in
the kidney (Ames et al., 1999; Liu et al., 1999; Mori
et al., 1999; Nothacker et al., 1999). More recently, the
existence of a UII paralog called urotensin II–related
peptide (URP) was characterized in the brain of rodents
(Sugo et al., 2003). Consistent with the widespread
distribution of UT, it has been shown that UII exerts
a number of biologic effects including regulation of
behaviors and neuroendocrine activities, as well as
central and peripheral control of blood pressure and
heart rate (Douglas et al., 2004a; Vaudry et al., 2010).
Clinical studies have provided evidence that UII and
UT are implicated in various pathologies, including
cardiovascular diseases (Douglas et al., 2002; Ng et al.,
2002; Richards et al., 2002; You et al., 2012; Watson
et al., 2013), renal diseases (Totsune et al., 2001), and
diabetes (Wenyi et al., 2003; Sidharta et al., 2009). The
various activities of UII and the potential implication of
the urotensinergic system in various pathologies have
prompted academic laboratories and pharmaceutical
companies to design specific agonists and antagonists
that are currently used for basic research and may
lead to therapeutic applications (Leprince et al., 2008;
Maryanoff and Kinney, 2010; Tsoukas et al., 2011;
Merlino et al., 2013).

II. Urotensin II

A. Discovery of Urotensin II in Fish

Teleost fish possess a singular neurosecretory system
located in the caudal region of the spinal cord. This
system consists of two rows of magnocellular secretory
neurons, termed Dahlgren cells (Dahlgren, 1914), sym-
metrically arranged in the ventral horn of the spinal cord,
that project their axons into a neurohemal organ called
the urophysis (Enami, 1959). The caudal neurosecretory
system of teleosts is thus anatomically and function-
ally similar to the hypothalamo-neurohypophysial neuro-
secretory system (Bern et al., 1985; McCrohan et al.,
2007).
Early studies have shown that urophysial extracts

contain substances that exhibit various pharmacological
activities both in fish and in mammals (Chan, 1975). Two
laboratories have concurrently undertaken the purifica-
tion and isolation of the bioactive peptides, collectively
named urotensins, that are responsible for the observed
pharmacologic effects. Thus, the group of Karl Lederis
characterized urotensin I, a 41-amino acid peptide
from an extract of the urophysis of the white sucker
Catostomus commersonii (Lederis et al., 1982), that was
found to be a paralog of corticotropin-releasing hormone
(Vale et al., 1981), while the group of Howard Bern
characterized UII, a 12-amino acid peptide, from an
extract of the urophysis of the goby Gillichthys mirabilis
(Pearson et al., 1980), that was found to exhibit some

structural similarity to somatostatin (Brazeau et al.,
1973).

The sequence of UII has been relatively well preserved
in all fish species studied (Vaudry et al., 2010), suggesting
that the peptide exerts important biologic functions. As
a matter of fact, in fish, UII induces a general spasmo-
genic activity that has been documented in various tis-
sue preparations including the trout (Salmo gairdneri)
urinary bladder, the trout posterior intestine, the guppy
(Poecilia reticulata) oviduct, the goby sperm duct, the eel
(Anguilla rostrata) caudal lymph heart (Bern et al., 1985),
and the dogfish (Scyliorhinus canicula) vascular ring
(Hazon et al., 1993). In unanesthetized trout (Oncorhynchus
mykiss), intra-arterial administration of UII causes an
increase in aortic blood pressure and a decrease in heart
rate (Le Mével et al., 2008). In fish, UII also contributes
to the control of hydromineral balance through a direct
action on ion transport across the skin, gill, intestine,
and urinary bladder (Marshall, and Bern, 1979, 1981;
Loretz and Bern, 1981; Loretz et al., 1982, 1983, 1985;
Mainoya and Bern, 1982, 1984; Lu et al., 2008). Finally,
UII participates in the neuroendocrine regulation of
prolactin secretion in tilapia (Oreochromics mossambicus;
Grau et al., 1982; Rivas et al., 1986) and cortisol se-
cretion in the trout (Arnold-Reed and Balment, 1994)
and the European flounder (Platichtys flesus; Kelsall
and Balment, 1998).

B. Discovery of Urotensin II in Mammals

Because the urophysis is a neurosecretory organ that
is exclusively found in teleosts, it has long been thought
that UII was present only in fish and not in other
vertebrates. Surprisingly however, biochemical experi-
ments have shown the occurrence of specific binding
sites for goby UII in rat arteries (Itoh et al., 1987, 1988),
and pharmacological studies have revealed that fish UII
exerts various effects in mammals such as relaxation of
the mouse anococcygeus muscle (Gibson et al., 1984)
and endothelium-independent contraction of the rat
aorta (Gibson, 1987). Goby UII also induces a marked
increase of intracellular calcium concentration ([Ca2+]i)
in rat aorta cells (Gibson et al., 1988). The observation
that fish UII possessed significant biologic activity in
rodents strongly suggested that an homologous peptide
might exist in mammals. In fact, immunohistochemical
studies have shown the presence of UII-immunoreactive
neurons in the brain and anterior spinal cord of fish
(Yulis and Lederis, 1986, 1988), indicating that UII could
be produced not only in the caudal neurosecretory organ
but also in extra-urophysial neurons.

The first unequivocal evidence for the occurrence of
UII in tetrapods was provided by the purification of
a UII-immunoreactive peptide from an extract of the
whole brain of the European green frog Rana ridibunda
(Conlon et al., 1992b), now renamed Pelophylax ridi-
bundus (Conlon et al., 2009). Structural characterization
of the isolated peptide showed that frog UII encompasses
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13 amino acids (Conlon et al., 1992b) instead of 12 amino
acids as in all fish UII sequences identified to date
(Lihrmann et al., 2013). However, the cyclic region that
is essential for the biologic activity of the peptide (Itoh
et al., 1987) is identical in fish and amphibian sequences
(Fig. 1). Unlike many other neuropeptides, UII is not
found in hypothalamic neurons, but is almost exclusively
produced in motoneurons of the frog brainstem and
spinal cord (Chartrel et al., 1996). The identification of
UII in the frog brain confirmed that 1) UII is produced in
extra-urophysial nervous tissues and 2) urotensinergic
systems exist in vertebrate phyla outside the fish lineage
(Conlon et al., 1997; Conlon, 2008; Vaudry et al., 2010).
This finding thus paved the way for the discovery of UII
and its receptor in mammals.
The cDNA encoding the UII precursor has been

cloned from a frog brain library (Coulouarn et al.,
1998). Frog UII cDNA has then been used to identify
an expressed sequence tag from bulk human colon
tumors and subsequently to clone the human prepro-
UII cDNA (Coulouarn et al., 1998). The existence of
a Lys-Lys-Arg cleavage motif in the C-terminal region
of the precursor (see section II.E) predicts that human
UII is an 11-amino acid peptide with a cyclic hexapeptide

motif (Cys-Phe-Trp-Lys-Tyr-Cys) identical to that of fish
and frog UII (Fig. 2, compound 1), explaining why fish
UII can excite mammalian UT (Gibson et al., 1984, 1988;
Gibson, 1987). Characterization of the cDNAs encoding
the rat, mouse (Coulouarn et al., 1999) and porcine
prepro-UII (Mori et al., 1999) rapidly ensued. The way
UII was identified in mammals is thus a remarkable
illustration of the power of the comparative approach for
the discovery of novel human neuropeptides (Conlon,
2000). Of note, urotensin I, the other regulatory peptide
initially characterized from the fish urophysis (Lederis
et al., 1982), led to the discovery of the urocortin peptides
(Vaughan et al., 1995). Other mammalian neuropeptides
characterized through a similar comparative strategy
are: melanin-concentrating hormone (Kawauchi et al.,
1983; Vaughan et al., 1989), cortistatin (Vaudry et al.,
1992; de Lecea et al., 1996), secretoneurin (Vaudry and
Conlon, 1991; Kirchmair et al., 1993), gonadotropin-
inhibitory hormone (Tsutsui et al., 2000; Kriegsfeld
et al., 2006), 26RFa/QRFP (Chartrel et al., 2003), and
adrenomedullin 2 (Takei et al., 2004a,b).

The amino acid sequence of UII has now been
determined in a number of vertebrate species from
lamprey to human (Fig. 1). As shown in Fig. 1, the

Fig. 1. Alignment of UII and URP sequences. The conserved cyclic hexapeptide is indicated in bold characters.
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sequence of the N-terminal region of UII is quite
variable, and the predicted length of the peptide ranges
from 11 amino acids for human UII to 17 amino acids
for mouse UII. In contrast, the primary structure of the

cyclic hexapeptide has been totally preserved from fish
to mammals. Immunohistochemical studies had long
suggested the existence of UII-like peptides in the CNS
of the marine mollusc Aplysia californica (González et al.,

Fig. 1. Continued.
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1992) and, recently, a peptide exhibiting structural sim-
ilarity to vertebrate UII has been characterized in this
gastropod (Romanova et al., 2012), suggesting that a
urotensinergic system may also exist in protostomes
(see section II.J.3).

C. Discovery of Urotensin II–Related Peptide

By combining high-performance liquid chromatogra-
phy (HPLC) analysis with radioimmunoassay detection,
Sugo et al. (2003) have isolated from a rat brain extract,
an 8-amino-acid peptide that they named URP (Fig. 2,
compound 2). The primary structure of URP is highly
similar to that of the C-terminal octapeptide region of
UII. The sequence of URP has now been determined in
representative species of teleost fish (Quan et al., 2012),
amphibians (Konno et al., 2013), birds (Tostivint et al.,
2006), and mammals (Dubessy et al., 2008), and it ap-
pears that the structure of the peptide has been strongly
preserved during vertebrate evolution (Vaudry et al.,
2010). As for UII, the sequence of the cyclic hexapeptide
of URP is identical in all species investigated so far
(Fig. 1).

D. Secondary Structure of Urotensin II and Urotensin
II–Related Peptide

Conformational analysis of goby (Bhaskaran et al.,
1994) and human (Flohr et al., 2002; Lescot et al., 2007)
UII and human URP (Chatenet et al., 2004) in solution
has been determined by nuclear magnetic resonance
spectroscopy and restrained molecular dynamics. The
solution structure of the cyclic UII hexapeptide is well-
defined, whereas the flanking linear segments appear to
be flexible (Bhaskaran et al., 1994; Flohr et al., 2002;
Lescot et al., 2007). However, no canonical turn motifs
involving intramolecular hydrogen bonds are observed
in the cyclic part of goby and human UII at 300 K
(Bhaskaran et al., 1994; Flohr et al., 2002). At a lower
temperature (280 K), the hydrogen/deuterium exchange
time of the amide protons of residues Tyr9 and Cys10 is
longer than that of the other amide protons, suggesting

the presence of a local stabilized structure (Lescot et al.,
2007). The optimal proximity between the NH of Tyr9

and the carbonyl group of Trp7 and between the amide
proton of Cys10 and the C=O moiety of Lys8 in com-
bination with the (w,c) dihedral angle values indicates
the occurrence of a distended inverse g-turn centered on
Lys8 together with a standard inverse g-turn centered
on Tyr9 (Lescot et al., 2007). In sodium dodecylsulfate
micelles used as a membrane mimetic environment,
human UII exhibits two distinct conformations that ex-
change slowly at 300 K, i.e., a major population that
encompasses an unprecedented type II9 b-hairpin motif
due to the presence of a b-turn from Phe6 to Tyr9 and
a minor population of random structures (Carotenuto
et al., 2004a). Identification of the structural character-
istics of UII in water at 280 K or in a membrane-like
environment has served as conformational templates to
generate three-dimensional three-point pharmacophores
(Flohr et al., 2002; Carotenuto et al., 2004a; Lescot et al.,
2007) for virtual screening of small-molecule libraries or
ligand-based drug design (see section IV.A) .

Nuclear Overhauser effect observed between the
amide proton of Tyr6 and the Hb of Trp4 and the (w,c)
dihedral angle values reveal that, in water, the structure
of URP at 280 K consists of an inverse g-turn that
extends from Trp4 to Tyr6 (Chatenet et al., 2004). In
very much the same way as for human UII (Lescot et al.,
2007), all the side-chains adopt a preferential orienta-
tion, and URP presents a hydrophobic surface formed
by the Phe3, Trp4, Tyr6, and Val8 residues (Chatenet
et al., 2004). The main difference between the solution
structures of human UII and URP lies in the important
variation in the position of the lysine side-chain (Lescot
et al., 2007).

E. Structure of the Urotensin II and Urotensin
II–Related Peptide Precursors and
Post-Translational Processing

The cDNAs encoding the UII and URP precursors
have been characterized in a number of vertebrate

Fig. 2. Chemical structures of human urotensin II (compound 1) and mammalian URP (compound 2).
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species from fish to mammals (Ohsako et al., 1986;
Coulouarn et al., 1998; Vaudry et al., 2010) (Fig. 1). In
all species, UII and URP precursors exhibit a similar
organization with a predicted 19- to 28-amino-acid signal
peptide (Petersen et al., 2011) and a 78 to 127 amino
acid N-terminal flanking peptide, the UII or URP
bioactive sequence being located at the C-terminal
extremity of the precursor (Fig. 3). However, compar-
ison of the cDNA sequences of, e.g., human (Coulouarn
et al., 1998), porcine (Mori et al., 1999), mouse
(Coulouarn et al., 1999; Elshourbagy et al., 2002), and
carp prepro-UII (Ohsako et al., 1986) reveals that the
dibasic motifs that constitute potential cleavage sites by
prohormone convertases (Artenstein and Opal, 2011;
Seidah et al., 2013) have been poorly conserved. For
instance, in human, the existence of a Lys91-Lys92-Arg93

tribasic motif (Coulouarn et al., 1998) suggests that the
UII precursor can produce an 11-residue form of UII. In
the mouse precursor, this cleavage site does not exist
and processing is thought to occur at the Arg105-Lys106

dibasic site (Coulouarn et al., 1999), thus generating
a 17-residue mature form of UII (Fig. 1). In the case of
the URP precursor, a Lys-Arg canonical cleavage motif

has been strongly preserved from fish to mammals
(Coulouarn et al., 1998; Lu et al., 2006) so that the con-
served cyclic hexapeptide is flanked at its N-terminal
position by a single residue (Figs. 1 and 2).

Porcine kidney tissue exhibits urotensin II-converting
enzyme activity as shown by a mass spectrometry-
assisted enzyme-screening system (Schlüter et al., 2003).
Incubation of a 25-amino-acid C-terminal fragment of
human pro-UII (CTF-prohUII) with recombinant furin
gives rise to a mature 11-amino acid form of UII (Russell
et al., 2004). Permeabilized epicardial mesothelial cells
can also process CTF-prohUII to generate human UII,
and conversion of CTF-prohUII to human UII is reduced
in conditions known to inhibit furin activity (Russell
et al., 2004). These observations provide evidence for the
existence of intracellular furin-like urotensin II–converting
enzyme activity in human epicardial mesothelial cells.

The amino acid sequence of UII has been determined
in dogfish (Conlon et al., 1992a), flounder (Conlon et al.,
1990), frog (Conlon et al., 1992b), and pig (Mori et al.,
1999) confirming that the peptide is generated through
cleavage at the Arg115-Lys116-Arg117 site of the flounder
precursor (Lu et al., 2006), at the Lys112-Lys113-Arg114

Fig. 3. Structure of the human prepro-UII and prepro-URP genes. (A) The prepro-UII gene comprises five exons and encodes two precursor isoforms
(variants a and b) that only differ at their N-terminal extremity, the UII sequence being located at the C-terminal extremity. Each isoform generates
the same mature UII peptide through proteolytic cleavage at a tribasic site (KKR). (B) The prepro-URP gene comprises five exons. The URP sequence is
located at the C-terminal extremity of the URP precursor and the mature peptide is generated by proteolytic cleavage at a dibasic site (KR). SP, signal
peptide; ATG/AUG, initiation codon; Stop, termination codon. (Adapted from Lihrmann et al., 2013.)
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site of the frog precursor (Coulouarn et al., 1998), and at
the Lys107-Lys108-Arg109 site of the porcine precursor
(Mori et al., 1999). HPLC analysis of human brainstem
and spinal cord extracts has revealed that the major
UII-immunoreactive peptide coelutes with synthetic
11-residue human UII (Chartrel et al., 2004), whereas
in mouse brain extracts it coelutes with synthetic
17-residue mouse UII (Dubessy et al., 2008). These
findings strongly suggest that endoproteolytic processing
occurs at the Lys91-Lys92-Arg93 site of the human UII
precursor and at the Arg105-Lys106 site of the mouse UII
precursor.
To date, the amino acid sequence of the URP peptide

has only been determined in rat (Sugo et al., 2003). In
that case, cleavage of the precursor occurs at a Lys109-
Arg110 site (Sugo et al., 2003). The strong conservation
of this dibasic site across vertebrate species supports
the notion that all URP precursors undergo similar
endoproteolytic cleavage.

F. The Urotensin II and Urotensin II–Related
Peptide Genes

In human, the gene encoding the UII precursor, also
named uts2, is composed of five exons. Two distinct
precursor isoforms with 139 (isoform a) and 124 (isoform b)
amino acids have been characterized that likely result
from alternative initiation at two distinct AUG codons
(Coulouarn et al., 1998; Ames et al., 1999; Lihrmann
et al., 2013). These two isoforms only differ in their
N-terminal extremity and thus give rise to the same
mature UII peptide, the coding sequence of UII being
located in the last exon. In all other vertebrate species
studied so far (mouse, rat, pig, monkey, chicken, and
zebrafish), only isoform b has been identified. In the
zebrafish Danio rerio, two UII genes, UIIa and UIIb,
that exhibit the same organization, have been identified
(Tostivint et al., 2006). The uts2d gene encoding the
prepro-URP comprises five exons in all vertebrate spe-
cies examined. In tetrapods, the coding sequence of
URP is located in the fifth exon (Lihrmann et al., 2013),
whereas, in teleosts, it is split between exons 4 and 5
(Quan et al., 2012). As mentioned above (see section II.J),
two additional paralogous genes of the UII family have
been characterized in actinopterygians and sarcopterygians
and have been called URP1 and URP2 (Nobata et al.,
2011; Tostivint et al., 2013, 2014). In zebrafish, both
URP1 and URP2 genes contain five exons and, for each
gene, the coding sequence of the mature peptide is located
on the last exon (Parmentier et al., 2011).

G. Distribution of Urotensin II and Urotensin
II–Related Peptide in the Central Nervous System

UII was initially isolated and characterized from the
urophysis of teleost fish (Pearson et al., 1980). The axon
terminals releasing UII into the urophysis originate
from Dahlgren cells, i.e., large cholinergic neurons that
are located in the caudal region of the ventral horn of

the spinal cord of teleosts (Enami, 1959). Immunohis-
tochemical labeling has confirmed that UII is primarily
located in neurosecretory cells of the ventral spinal cord
(Owada et al., 1985; Oka et al., 1989; Parmentier et al.,
2006). However, subsequent studies have shown that
UII is also present in the fish brain (Waugh and Conlon,
1993), and the expression of UII mRNA in fish brain
has been confirmed by reverse-transcription polymerase
chain reaction (RT-PCR; Lu et al., 2006; Sun et al.,
2014). In various species of freshwater and seawater
fish, UII is found in cerebrospinal fluid (CSF)–contacting
neurons located within the ventral ependyma bordering
the central canal along the entire length of the spinal
cord and medulla (Yulis and Lederis 1986, 1988). These
UII-containing neurons project their axons toward the
external surface of the spinal cord, and ascending fibers
innervate various regions of the brain (Yulis and Lederis,
1986, 1988). Although nonteleost fish do not possess an
authentic urophysis, they do exhibit a neurohemal area
apposed to the ventral spinal cord that extends along
several spinal cord segments (Fridberg and Bern, 1968).
UII-immunoreactive cell bodies actually occur in the caudal
spinal cord of representative species of nonteleost fish,
including chondrichthyes (cartilaginous fish) and dipnoans
(lungfish) but not agnatha (jawless fish) (Onstott and
Elde, 1986).

In the CNS of tetrapods, UII is primarily expressed in
motoneurons of the brainstem and spinal cord. Specif-
ically, in the European green frog, UII immunoreactiv-
ity is found in neurons of the hypoglossal nucleus of the
medulla oblongata, which controls tongue muscles, and
in a subpopulation of motoneurons of the spinal cord,
particularly abundant in the caudal region (Chartrel
et al., 1996). In the brain of rodents, UII is primarily
expressed in brainstem nuclei including the dorsal
motor nucleus of the vagus, the hypoglossal nucleus,
the trigeminal motor nucleus, the facial motor nucleus,
the abducens nucleus, and the trigeminal motor nucleus
(Coulouarn et al., 1999; Dun et al., 2001; Dubessy et al.,
2008). Although the expression pattern of URP largely
overlaps with that of UII, differential levels of expres-
sion occur in most brainstem nuclei. For instance, the
expression of URP is substantially higher than that of
UII in the abducens nucleus, the dorsal motor nucleus of
the vagus, the Edinger-Westphal nucleus, the locus
coerulus, the lateral superior olive, the raphe obscursus
nucleus, the reticular nucleus, and the paragigantocel-
lular nucleus (Dubessy et al., 2008). Reciprocally, the
UII gene, but not the URP gene, is expressed in the
medial vestibular nucleus (Dubessy et al., 2008). In
mouse and rat, UII is expressed in a subset of spinal
motoneurons, the density of UII-positive neurons being
higher in the lumbar and sacral regions than in the
cervical segment (Coulouarn et al., 1998, 1999; Ames
et al., 1999; Dun et al., 2001; Pelletier et al., 2002, 2005;
Egginger et al., 2006; Dubessy et al., 2008). A majority of
mouse spinal motoneurons simultaneously express UII
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and URP mRNAs as well as androgen receptor mRNA
(Pelletier et al., 2005). Similarly, a vast majority of rat
motoneurons that express UII mRNA are also androgen
receptor immunopositive (Pelletier et al., 2002). Consis-
tent with these observations, in mouse and rat, andro-
gens downregulate UII and/or URP gene expression most
likely through a direct action at the level of motoneurons
(Pelletier et al., 2002, 2005). Developmental studies show
that UII mRNA is expressed in the rat spinal cord as
early as embryonic day 10, i.e., during terminal mitosis of
motoneurons (Phelps et al., 1988; Chen and Chiu, 1992),
suggesting that UII could play a role in motoneuron
differentiation, survival, and/or programmed cell death
(Coulouarn et al., 2001). In human, UII-immunoreactive
material is present in both the brainstem and spinal cord
(Chartrel et al., 2004). In the human spinal cord, UII is
contained in a subpopulation of ventral horn motoneur-
ons (Chartrel et al., 2004).

H. Distribution of Urotensin II and Urotensin
II–Related Peptide in Peripheral Organs

In mammals, early studies have shown that the UII
gene is widely expressed outside the CNS, notably
in the cardiovascular, renal, and endocrine systems
(Coulouarn et al., 1998; Ames et al., 1999; Matsushita
et al., 2001; Douglas et al., 2002; Dschietzig et al., 2002;
Elshourbagy et al., 2002). It was subsequently found
that URP mRNA is also present in various organs and
that, in peripheral tissues as in the CNS, the UII and
URP genes are differentially expressed (Sugo et al.,
2003; Dubessy et al., 2008). For instance, in mouse,
whereas the UII and URP genes are equally expressed
in skeletal muscle, UII expression predominates in the
vagina, uterus, and testis, and inversely, only URP ex-
pression occurs in the thymus, heart, colon, and seminal
vesicles (Dubessy et al., 2008). Measurement of the
arteriovenous gradient of UII/URP concentration in
sheep indicates that the heart, liver, and kidney re-
lease UII and/or URP in the circulation (Charles et al.,
2005).
In the cardiovascular system, UII mRNA is expressed

in vascular smooth muscle cells (Douglas et al., 2002),
endothelial cells (Totsune et al., 2003; McDonald et al.,
2007), and cardiac fibroblasts (Tzanidis et al., 2003). In
the human heart, UII mRNA is found in the right
atrium and ventricular septum (Matsushita et al., 2001).
UII and URP levels are upregulated in various cardio-
vascular diseases, including systemic and pulmonary
hypertension, atherosclerosis, and congestive heart
failure. In particular, UII and URP mRNA expression
is higher in the atrium of spontaneously hypertensive
rats (SHR) compared with age-matched Wistar-Kyoto
rats (WKY) (Hirose et al., 2009). In human, plasma
UII/URP is significantly elevated in congestive heart
failure (Ng et al., 2002; Richards et al., 2002; Russell
et al., 2003; Russell, 2008). Although in patients with
acute heart failure both plasma UII and URP levels

are elevated, URP concentrations are 10-fold higher
than those of UII (Jani et al., 2013). To date, little is
known regarding the regulatory mechanisms underly-
ing overexpression of UII and/or URP in cardiovascular
disease.

The renal system is another important site of UII
production. UII and URP mRNAs are present in the
human kidney (Coulouarn et al., 1998; Nothacker et al.,
1999; Matsushita et al., 2001; Totsune et al., 2001, 2003;
Sugo et al., 2003) but are virtually absent in the kidney
of monkey (Elshourbagy et al., 2002), rat (Sugo et al.,
2003), and mouse (Elshourbagy et al., 2002; Dubessy
et al., 2008). The UII peptide is localized in epithelial
cells of kidney tubules and collecting ducts notably in
the distal convoluted tubules (Shenouda et al., 2002;
Langham et al., 2004; Maguire et al., 2004; Balat et al.,
2007). UII immunoreactivity is also present in renal
capillary endothelial cells (Shenouda et al., 2002). The
occurrence of substantial urinary UII concentrations in
healthy individuals whose plasma UII levels are un-
detectable (Matsushita et al., 2001) indicates that UII is
released by the human kidney. Consistent with this
notion, in sheep, plasma UII concentrations are higher
in the renal vein than in the renal artery (Charles et al.,
2005), thus identifying the kidney as a source of cir-
culating UII. In SHR, URP but not UII mRNA is elevated
in kidney compared with WKY rats (Hirose et al., 2009;
Forty and Ashton, 2013), suggesting a potential role for
URP in spontaneous hypertension.

The liver is also a documented site of UII and/or URP
production in human (Coulouarn et al., 1998; Totsune
et al., 2001; Sugo et al., 2003), monkey (Elshourbagy
et al., 2002), and sheep (Charles et al., 2005). In
cirrhotic patients, UII mRNA expression is increased
in liver (Liu et al., 2010a) and plasma UII concentra-
tion is elevated, particularly in the hepatic vein com-
pared with the hepatic portal vein (Heller et al., 2002).
In patients with chronic liver disease, elevated serum
UII is associated with disease severity and the extent
of portal hypertension (Kemp et al., 2007).

The UII gene is expressed in various endocrine
glands including the pituitary, pancreas, and adrenal
in human and rat (Coulouarn et al., 1998; Totsune
et al., 2001; Sugo et al., 2003), whereas the URP gene is
expressed in the testis, ovary, and placenta in human
(Sugo et al., 2003) and testis and seminal vesicle in
mouse (Dubessy et al., 2008). In contrast, UII is not
expressed in monkey endocrine glands (Elshourbagy
et al., 2002). UII and/or URP are also produced in other
organs, such as the thymus, lung, spleen, stomach, and
intestine (Coulouarn et al., 1998, 1999; Totsune et al.,
2001, 2003; Elshourbagy et al., 2002; Sugo et al., 2003;
Maguire et al., 2004; Dubessy et al., 2008), but marked
species differences occur even between phylogenetically
related animals.

In the European flounder, UII mRNA is expressed in
the rectum, intestine, and bladder (Lu et al., 2006). The
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UII gene is also expressed in flounder and grouper
endocrine glands, including pituitary, head kidney (where
the interrenal tissue is located), and ovary (Lu et al.,
2006; Sun et al., 2014).
Plasma UII/URP concentrations are in the same

range in human (2.5–24 fmol/ml; Totsune et al., 2004),
rat (2.9 fmol/ml; Prosser et al., 2006), sucker (40 fmol/ml;
Kobayashi et al., 1986), goldfish Carassius auratus
(16 fmol/ml; Kobayashi et al., 1986), and flounder (5–8
fmol/ml; Lu et al., 2006).

I. Urotensin II and Urotensin II–Related Peptide in
Tumor Cells

The initial characterization of human prepro-UII cDNA
was performed by analysis of a cDNA library obtained
from colon tumors (Coulouarn et al., 1998). Subsequent
studies revealed that various human cell lines, such as
T98G glioblastoma cells, IMR-32 neuroblastoma cells,
BeWo choriocarcinoma cells, SW-13 adrenocortical carci-
noma cells, DLD-1 colorectal adenocarcinoma cells, and
HeLa cervical cancer cells, express UII mRNA, whereas
NB69 neuroblastoma cells do not (Takahashi et al., 2001).
In addition, SW-13 adrenocortical carcinoma cells secrete
a mature form of UII (Takahashi et al., 2001) that may
act as a tumor growth–stimulating factor (Takahashi
et al., 2003). UII mRNA is also expressed in adrenal
tumors, including adrenocortical adenomas, adrenocortical
carcinomas, pheochromocytomas, ganglioneuroblastomas,
and neuroblastomas, but UII immunoreactivity is pres-
ent in only a small proportion of these tumor tissues
(Takahashi et al., 2003; Zeng et al., 2006). The occurrence
of elevated UII mRNA has been confirmed in human
adrenal tumors compared with non-neoplastic adrenal
tissue (Morimoto et al., 2008), suggesting the involvement
of UII in adrenal tumor growth and steroidogenesis. UII
mRNA and UII immunoreactivity are also present in the
human lung adenocarcinoma cell line A549 (Wu et al.,
2010). Synthetic UII stimulates A549 cell proliferation in
vitro and accelerates growth of A549 tumor xenografts in
nude mice (Wu et al., 2010). Immunoreactive UII and
URP are present in interstitial nodular lesions of lungs
from patients with lymphangioleiomyomatosis, a rare
disease characterized by abnormal proliferation of smooth
muscle–like cells in the pulmonary interstitium (Kristof
et al., 2010). UII promotes lung adenocarcinoma growth
via a mechanism involving activation of the nuclear factor
kB pathway and a proinflammatory microenvironment
(Zhou et al., 2012).

J. Phylogenetic Evolution of Urotensin II

1. Discovery of Two Novel Urotensin II–Related
Peptide-Like Genes in Teleosts. Until recently, the
UII family was thought to be composed of only two
members, namely UII and URP. As mentioned above
(see section II.A), UII was initially discovered in teleosts
(Pearson et al., 1980) and subsequently characterized
in amphibians (Conlon et al., 1992b) and mammals

(Coulouarn et al., 1998, 1999). Conversely, URP was first
identified in mammals (Sugo et al., 2003) and later in
birds (Tostivint et al., 2006) and amphibians (Konno
et al., 2013). Hence, it was logical to search for the
existence of URP in fish. Using degenerated primers
designed from the amino acid sequence of mammalian
URP, Nobata et al. (2011) successfully amplified a cDNA
encoding for a novel URP-like peptide in the Japanese
eel. A blast search revealed the occurrence of the same
peptide, now called URP1, in several other teleost
species including the Brook trout, the Atlantic salmon,
and the zebrafish. However, it also appeared that tele-
osts possess a second URP-like peptide named URP2
(Nobata et al., 2011; Parmentier et al., 2011). Recently,
the URP1 and URP2 genes were also identified in the
spotted gar, a nonteleost ray finned fish (Tostivint et al.,
2013). As shown in Fig. 1, URP1 and URP2 exhibit very
similar structures. Like tetrapod URP, fish URP1/2
possess a nonpolar residue (instead of an acidic residue
for UII) upstream the cyclic region. In contrast, at their
C-terminal extremity, fish URP1 and URP2 exhibit a
3-residue tail, whereas all tetrapod URPs carry a single
hydrophobic residue at their C terminus. It has thus
been hypothesized that the URP1 and URP2 genes were
two co-orthologs of the tetrapod URP gene, in very much
the same manner as the zebrafish and sucker UIIa (also
called UIIA) and UIIb (also called UIIB) genes (Nobata
et al., 2011), which are the two counterparts of the tet-
rapod UII gene. However, this view was recently in-
validated by synteny analysis (Parmentier et al., 2011).
Using this approach, it was found that the URP1 and
URP2 genes, although present only in fish, emerged
long before the tetrapod/fish split and thus represent
two distinct paralogous genes, in addition to the UII
and URP genes. As mentioned in section II.C, a true
ortholog of the URP gene does also exist in teleosts
and was recently characterized (Quan et al., 2012;
Tostivint et al., 2014). As in tetrapods, teleost URPs
possess a single residue extension at their C terminus.
In contrast, teleost URPs exhibit a 3-residue extension
at their N terminus, whereas most tetrapod URPs carry
only one residue at their N-terminal end (Fig. 1).

In zebrafish, URP mRNA is primarily localized in
motoneurons of the brainstem and spinal cord (sub-
mitted manuscript), as previously reported in tetra-
pods (Coulouarn et al., 1998, 1999; Dubessy et al.,
2008; Konno et al., 2013), indicating that the expres-
sion pattern of the URP gene has been strongly con-
served during vertebrate evolution. In contrast, the
expression patterns of the URP1 and URP2 genes
differ markedly from that of the URP gene. Although
most URP1- and URP2-expressing cells are found in
the spinal cord, these cells are located in close contact
with the ventral aspect of the central canal (Parmentier
et al., 2011; unpublished data). URP1 and URP2
mRNAs colocalize in the same cells that also express
the glutamate decarboxylase gene, identifying them as
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CSF-contacting neurons (Vigh and Vigh-Teichmann, 1998).
It is likely that these URP1- andURP2-expressing neurons
correspond to the extra-urophysial UII system previously
described by Yulis and Lederis (1986, 1988).
2. Origin and Evolution of the Urotensin II Gene

Family in Vertebrates. The UII gene family thus ap-
pears to encompass four distinct paralogous genes,
namely the UII, URP, URP1, and URP2 genes. Synteny
analysis has revealed that the four chromosomal regions
comprising the UII/URP genes are highly conserved
across species. Indeed, all these regions contain paralogs
from at least 10 other gene families and thus clearly
represent a tetraparalogon (Fig. 4). These observations
support the view that the UII gene family has been
actually shaped through the two whole-duplication
rounds (2R) that occurred during early vertebrate
evolution (Van de Peer et al., 2010) (Fig. 5). They also
indicate that the original quartet of the UII/URP genes
has been fully preserved in teleosts (Parmentier et al.,
2011) and suggest that the existence of only two mem-
bers of the UII/URP gene family in tetrapods can be
ascribed to the loss of the URP1 and URP2 genes spe-
cifically in this lineage (Parmentier et al., 2011) (Fig. 5).
Synteny analysis also shows that the two copies of the
UII gene in teleosts, UIIa (or UIIA) and UIIb (or UIIB),
probably emerged through the teleost-specific whole-
genome duplication (also called 3R) (Fig. 5).
UII has been identified in all vertebrate classes,

including agnathans (Waugh et al., 1995). In contrast,
UII-like sequences have not been detected in the sea
lamprey (Petromyzon marinus; Decatur et al., 2013) and
in nonvertebrate chordates, such as tunicates or am-
phioxus. The existence of a UII-like peptide was recently
reported in the marine mollusc Aplysia californica
(Romanova et al., 2012), and UII has been found to
potentiate GABAA receptor–mediated chloride current
in Aplysia neurons (Sawada and Ichinose, 1999),
suggesting that UII is an ancient peptide that existed
before the emergence of vertebrates. However, two ob-
servations cast doubt on this hypothesis: 1) the sequence
of the Aplysia UII-like peptide is not located at the
C terminus of its precursor, as for all other members of
the UII/URP family; and 2) although several other
protostomian species do possess an orthologous UII-like
precursor gene, they are apparently devoid of UT-like
gene (personal communication).
3. Evolutionary Relationships between Peptides of the

Urotensin II and Somatostatin Families. UII was
initially described as a somatostatin-like peptide on
the basis of its structural similarities with somato-
statin (Pearson et al., 1980). UII and somatostatin
actually share several features including a disulfide
bridge and a common motif, Phe-Trp-Lys, which is
essential for their biologic activity (Fig. 6). Moreover,
the general organization of the UII and somatostatin
precursors is very similar (Tostivint et al., 2008). From
these observations, it was tempting to assume that UII

and somatostatin originate from a common ancestral
gene. However, it has long been considered that UII and
somatostatin were not phylogenetically related (Conlon
et al., 1997).

The evolutionary history of the somatostatin gene
family was recently clarified (Tostivint et al., 2004,
2006, 2008, 2013, 2014; Liu et al., 2010b). It has been
established that, in vertebrates, the current family
diversified from four ancestral genes that arose through
2R, namely SS1, SS2 (also called cortistatin in mammals),
SS5 and a fourth putative gene that was apparently lost
early during evolution. Interestingly, synteny analy-
sis shows that the UII and SS2 genes, and the URP
and SS1 genes are closely linked on the same chromo-
some in all species investigated so far (Tostivint et al.,
2006), whereas, in teleosts, the URP1 and SS5 genes are
located on the same block of doubly conserved synteny
(Parmentier et al., 2011) (Fig. 4). These observations
indicate that the UII- and somatostatin-related genes
belong to the same tetraparalogon and thus evolved
in parallel. In addition, these data suggest that the UII
and somatostatin ancestral genes probably arose through
tandem duplication of a single ancestral gene (Tostivint
et al., 2006; Parmentier et al., 2011). It is likely that this
duplication occurred long before the emergence of verte-
brates. Worthy of note, a somatostatin-related peptide,
called allatostatin C, is present in arthropods (Mirabeau
and Joly, 2013).

Fig. 4. Schematic representation of the putative ancestral tetraparalogon
bearing genes of the UII and somatostatin families. The other families
displayed are as follows: ATPB1B, ATPase, Na+/K+ transporting, b polypeptide;
ATP13A, ATPase type 13A; CLIC, chloride intracellular channel; DVL,
dishevelled homolog 1 (Drosophila); FGF, fibroblast growth factor; MBNL,
muscleblind-like splicing regulator 2; RAP2, member of RAS oncogene family;
SENP, SUMO1/sentrin specific peptidase; TP, tumor protein. The gray
dashed boxes represent lost genes. The color code is the same as in Fig. 3.
(Adapted from Parmentier et al., 2011.)
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III. The Urotensin II Receptor
A. Cloning and Characterization of Urotensin II
Receptor

Although UII/URP and somatostatin/cortistatin share
substantial structural similarities, UII and URP are poor

agonists of somatostatin receptors (Malagon et al., 2008;
Nothacker et al., 1999), indicating that the biologic effects
of UII and URP are mediated through distinct recep-
tors. Thus, soon after the identification of human UII,
four independent laboratories using a reverse pharmacology

Fig. 5. A proposed evolutionary model for the evolution of the UII gene family. The names of the different paralogous genes are given in the boxes.
Crossed-out boxes represent lost genes. R, rounds of whole-genome duplication. ? denotes genes that have not been detected, either because of
incomplete genome assembly in the relevant species or because these genes have been lost during evolution. (Adapted from Tostivint et al., 2014.)

Fig. 6. Amino acid sequences of human urotensin II (hUII), human urotensin II–related peptide and somatostatin (SST). All three peptides exhibit
a disulfide bridge and a conserved Phe-Trp-Lys motif (red box).
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strategy reported that the orphan receptor GPR14 pre-
viously characterized in rat (Marchese et al., 1995), also
called SENR (sensory epithelial neuropeptide-like
receptor) previously characterized in bovine (Tal et al.,
1995), was indeed the UII receptor (Ames et al., 1999;
Liu et al., 1999; Mori et al., 1999; Nothacker et al.,
1999). In contrast to most neuropeptides that usually
possess several receptor isoforms, GPR14/SENR, now
renamed UII receptor (UT) (Alexander et al., 2011), is
the only high affinity receptor for UII/URP known so far,
at least in mammals (see section III.G). This intronless
class A (rhodopsin family) G protein–coupled receptor
(GPCR) exhibits the highest degree of identity with the
somatostatin receptors SST2 (26%) and SST4 (27%) and
the m, d, and k opioid receptors (25–27%) (Marchese et al.,
1995; Fredriksson and Schiöth, 2005; http://www.iuphar-
db.org/DATABASE/FamilyMenuForward?familyId=65).
Human UT encompasses 389 amino acids and possesses
75% identity with rat GPR14 (Marchese et al., 1995; Ames
et al., 1999). As all class A GPCRs, UT is characterized by
a short N-terminal segment, an Asp residue in trans-
membrane domain 2 (TMD2) that is essential for ligand
binding, a D/ERY motif at the junction between TMD3
and the second intracellular loop 2 (ICL2), a NP(XX)Y
motif in TMD7 that is required for receptor internalization
and 12 potential Ser/Thr phosphorylation sites in the
intracellular loop 3 and the cytoplasmic tail (Fig. 7).
Conserved Cys123/Cys199 residues, which likely form
a disulfide bridge, are present in the first and second
extracellular loops (ECL1 and ECL2), respectively.

Two putative N-glycosylation sites are also observed
in the N-terminal extracellular domain (Fig. 7). A putative
palmitoylation site (Cys339) is present in rat UT (Marchese
et al., 1995) but absent in human UT (Ames et al., 1999).

Because UT exhibits relatively high sequence identity
with opioid receptors (Fredriksson and Schiöth, 2005), a
d-opioid receptor model was used to build the first three-
dimensional (3D) molecular model of rat UT (Kinney
et al., 2002). Thus, goby UII was docked into this
homology model by imposing the alignment of the Lys9

residue of UII toward the Asp130 residue of TMD3 of rat
UT. Although all the conformational space available in
the binding pocket was not explored, the hypothetical
docking position suggests interactions between UT and
the key side chains of the Tyr8, Lys9, and Tyr10 residues
of UII (Kinney et al., 2002). Subsequently, a human
homologymodel, based on the X-ray structure of rhodopsin,
has been constructed. Because the Lys9 residue of UII
was also aligned to the Asp130 residue of UT, this latter
model yielded very similar information on the putative
ligand binding pocket (Lavecchia et al., 2005). Photo-
labeling experiments combined with site-directed mu-
tagenesis indicate that the Phe6 residue of UII interacts
with the Met184 and/or Met185 residues of TMD4 of UT,
confirming the existence of a relatively deep binding
pocket (Boucard et al., 2003). Surface plasmon res-
onance assays show that UII and URP interact with
ECL2 and ECL3 but not ECL1, whereas the antago-
nist urantide only binds ECL2 (Boivin et al., 2006).
Docking studies confirm that UT agonists and antagonists

Fig. 7. Amino acid sequence and membrane topology of the human UII receptor. (Adapted from Kim et al., 2010, and Chatenet et al., 2013c.)
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differentially bind a UT model (Grieco et al., 2009).
Solution structure of the human UT(281–300) segment by
high-resolution NMR and molecular modeling in the
presence of UII also shows the occurrence of physical
interactions between UII and ECL3 (Boivin et al., 2008).
In dodecylphosphocholine micelles mimicking a mem-
brane environment, the human UT(281–300) sequence
exhibits a type III b-turn (Gln285–Leu288) followed by
an a-helical structure (Ala289–Leu299) that includes a
stretch of TMD7 (Boivin et al., 2008). The presence of a
binding site in rat UII ECL3 is confirmed by photo-
labeling data (Holleran et al., 2007). However, it is not
yet established whether this is a transient surface
interaction that precedes a deeper set of interactions
into the TMD bundle leading to receptor activation. This
contact may participate to the primary recognition pro-
cess of UT by UII and thus to the selectivity of the ligand,
or it may constitute an allosteric site of interaction. By
using the substituted-cysteine accessibility method (Javitch
et al., 2002), it was recently demonstrated that several
TMD3, TMD4, TMD5, TMD6, and TMD7 residues of rat
UT participate to the formation of the receptor binding
pocket (Holleran et al., 2009; Sainsily et al., 2013).
However, there are still numerous unsolved questions
regarding the molecular interactions between UT and
its natural ligands. Clearly, crystal structure character-
ization of UT and UT-UII complex is required to elucidate
the detailed mechanisms of binding and activation of the
receptor.

B. Signaling Mechanisms

Initial studies conducted in UT-transfected cells and
thoracic aorta segments indicate that UT is primarily
coupled to phospholipase C (PLC) activation through
the pertussis toxin-insensitive G protein Gaq/11 (Fig. 8).
Upon UII binding to UT, activation of PLC causes
hydrolysis of phosphatidylinositol-4-5 bisphosphate
(PIP2) to inositol-1-4-5 triphosphate (IP3) and diacyl-
glycerol (Saetrum Opgaard et al., 2000) (Fig. 9A). The
involvement of PLC in UT signaling has been con-
firmed in cultured rat cortical astrocytes (Castel et al.,
2006; Jarry et al., 2010). IP3 binds to the IP3 receptor,
a calcium channel on the membrane of the endoplasmic
reticulum, resulting in an increase in cytoplasmic
calcium levels (Parys and de Smedt, 2012) (Fig. 9B).
UII-induced intracellular calcium mobilization has now
been documented in a number of cell types, including
the porcine renal epithelial cell line LLCPK1 (Matsushita
et al., 2003), human aorta endothelial cells (Brailoiu
et al., 2008), and rat aorta vascular smooth muscle cells
(Rodríguez-Moyano et al., 2013). In endothelium-denuded
rat aorta, protein kinase C mediates the synergistic action
of UII and angiotensin II (Wang et al., 2007). In addition,
in rat spinal cord cholinergic neurons, UII causes calcium
influx from the extracellular space via N-type Ca2+

channels, and this effect is mediated through the protein
kinase A pathway (Filipeanu et al., 2002), whereas in

arterial smooth muscle cells, UII stimulates Ca2+ influx
via L-type Ca2+ channels (Sauzeau et al., 2001) indicating
that, depending on the cell type, UII-induced Ca2+ entry
occurs through various types of voltage-operated Ca2+

channels. Of note, UII provokes membrane depolariza-
tion in cholinergic neurons from the ventral tegmentum
(Clark et al., 2005) that is likely involved in the UII-evoked
control of rapid eye movements (de Lecea and Bourgin,
2008).

UT is also coupled to Gai/o, leading to activation of
the mitogen-activated protein kinase (MAPK) pathway
(Fig. 8). Thus, UII stimulates P38MAPK and extracel-
lular signal-regulated kinase 1/2 in UT-transfected cell
lines (Ziltener et al., 2002), cardiac myocytes (Zou et al.,
2001; Onan et al., 2004b), vascular smooth muscle cells
(Watanabe et al., 2001b; Tamura et al., 2003), airway
smooth muscle cells (Chen et al., 2004), endothelial cells
(Matsushita et al., 2003; Guidolin et al., 2010), and
endothelium-denuded rat aorta (Tasaki et al., 2004).
UII also stimulates proliferation of endothelial pro-
genitor cells through activation of p38 and p44/42
MAPK (Xu et al., 2012). The stimulatory effect of UII
on P38MAPK and extracellular signal-regulated kinase
1/2 in neonatal rat cardiomyocytes and cardiac fibro-
blasts depends on transactivation of epidermal growth
factor receptor (Onan et al., 2004b; Chen et al., 2008;
Liu et al., 2009). UT stimulates phosphorylation of
C-Jun N-terminal protein kinase in cardiac side pop-
ulation cells and inhibits proliferation of these stem/
progenitor cells (Gong et al., 2011). UII-induced activa-
tion of the small GTPase RhoA and its downstream
effector Rho-kinase mediates the contractile activity of
the peptide on rat vascular rings (Sauzeau et al., 2001),
its mitogenic effect on rat vascular smooth muscle cells
(Sauzeau et al., 2001), its chemoattractant activity on
humanmonocytes (Segain et al., 2007), and its stimulatory
effect on collagen synthesis and migration of adventitial
fibroblasts (Zhang et al., 2008). UII increases phosphory-
lation of both Akt and its downstream target glycogen
synthase kinase-3 in rat cardiomyocytes (Gruson et al.,
2010a). In these cells, UII also phosphorylates b-catenin
(Gruson et al., 2010a). Because the Akt/glycogen synthase
kinase-3 signaling pathway plays a pivotal role in
cardiomyocyte hypertrophy (Sugden et al., 2008),
these observations suggest that UT antagonists may
prove useful for the treatment of cardiac hypertrophy.

A possible implication of phospholipase A2 in the
contractile effect of UII has long been postulated
(Gibson, 1987) (Fig. 8). As a matter of fact, UII increases
the release of arachidonic acid from UT-transfected
Chinese hamster ovary (CHO) cells (Mori et al., 1999),
and the effect of UII on CHO and human embryonic
kidney cells are attenuated by a phospholipase A2 in-
hibitor (Lehner et al., 2007). In addition, UII-induced
contractions of guinea pig ileum or frog systemic arch,
bladder, and ileum are blocked by the cyclooxygenase
inhibitor indomethacin (Yano et al., 1994, 1995; Horie
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et al., 2005). Similarly, UII- and URP-induced vasodi-
lation in the rat heart is significantly attenuated by
indomethacin (Prosser et al., 2006), suggesting that the
biologic actions of UII are mediated, at least in part,
through stimulation of prostaglandin synthesis. How-
ever, prostaglandins are apparently not involved in the
vasoconstrictive effects of UII in dogfish (Hazon et al.,
1993), rat (Gibson, 1987; Itoh et al., 1987), and rabbit
aorta (Saetrum Opgaard et al., 2000). In the isolated rat
heart, nitric oxide (NO) and prostacyclin modulate the
constrictor response to UII (Gray et al., 2001).
UII stimulates the expression of the NADPH oxidase

subunits P22phox and NOX4 and potently activates the
production of reactive oxygen species (ROS) in human
pulmonary artery smooth muscle cells (Djordjevic et al.,
2005) (Fig. 8), suggesting that the peptide may play
a role in pulmonary hypertension through activation of
NADPH oxidases. Generation of ROS also plays an
important role in UII signaling in cardiac fibroblasts
(Chen et al., 2008). In fact, UII-mediated ROS generation

inhibits Src homology 2–containing tyrosine phosphatase
activity, thereby facilitating epidermal growth factor
receptor transactivation (Liu et al., 2009).

Most studies related to UT-associated intracellular
signaling pathways have been conducted with UII.
Although UII and URP produce similar biologic
actions, there is now evidence that the two peptides
may interact distinctively with UT and exert differen-
tial effects (Chatenet et al., 2013a,b,c). For instance,
in rat astrocytes, pertussis toxin, which inhibits
Gi/o-mediated processes, significantly decreases UII-evoked
incorporation of [3H]inositol into phosphatidyl-inositol
phosphates but does not affect URP-induced [3H]inositol
incorporation (Jarry et al., 2010). Morever, URP ac-
celerates the dissociation rate of membrane-bound
[125I]UII, whereas UII has no noticeable effect on
[125I]URP dissociation kinetics (Chatenet et al., 2013b).
It thus appears that, although both UII and URP can
activate UT, they may exert differential modulatory
effects.

Fig. 8. Signaling pathways associated with UT after UII or URP activation. AC, adenylyl cyclase; Akt, protein kinase B; cAMP, cyclic adenosine
monophosphate; EGFR, epidermal growth factor receptor; ERK1/2, extracellular signal-reduced kinase 1/2; GSK-3b, glycogen synthase
kinase-3b; JNK, c-Jun N-terminal kinase; P38, P38 mitogen-activated protein kinases; PIP2, phosphatidylinositol 4,5-bisphosphate; PKA,
protein kinase A; PKC, protein kinase C; PLA2, phospholipase A2; RhoA, Ras homolog gene family, member A; ROCK, Rho kinase; ROS, reactive
oxygen species.
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C. Structure-Activity Relationships

The in vitro activity of UII and URP analogs has
been measured by two complementary approaches,
i.e., displacement of [125I]UII binding and measure-
ment of [Ca2+]i in UT-transfected cells. Functional
characterization of the spasmogenic effect of the designed
compounds has been determined using various ex vivo
paradigms (Leprince et al., 2008). The most common
test consists in measuring the contractile response of
de-endothelialized aortic rings from the proximal

portion of the rat aortic arch (Itoh et al., 1987;
Douglas et al., 2000a; Rossowski et al., 2002; Brkovic
et al., 2003; Labarrère et al., 2003; Clozel et al., 2004;
Ishihata et al., 2006). Deletion of N- or C-terminal
amino acids of UII indicates that the C-terminal cyclic
octapeptide UII(4–11) (Fig. 10, compound 3) represents
the minimal sequence of UII with full biologic activity
(Itoh et al., 1987; Perkins et al., 1990; Kinney et al.,
2002; Brkovic et al., 2003; Labarrère et al., 2003).
Consistent with this observation, the primary struc-
ture of this C-terminal sequence has been highly
conserved across the vertebrate phylum, whereas the
N-terminal linear fragment is quite variable, both in
length and amino acid composition (Fig. 1). It should
also be recalled that the sequence of the C-terminal
octapeptide of UII is almost identical to that of URP.
Alanine and D-amino acid scanning studies of UII and
URP converge to demonstrate that the -Phe-Trp-Lys-
Tyr- motif within the cyclic sequence is the core of the
bioactivity with different contributions on UT binding
and activation (Flohr et al., 2002; Kinney et al., 2002;
Brkovic et al., 2003; Labarrère et al., 2003; Chatenet
et al., 2004). In particular, the Tyr residue is clearly
involved in UT binding and the Lys residue in UT
activation, whereas the Phe residue plays a dual role
(Chatenet et al., 2006). The importance of the disulfide
bridge in UII has been known for a long time (McMaster
et al., 1986). Reduced goby UII or linear UII analogs in
which the cystine moiety is replaced with two isosteric
serine residues, two S-substituted cysteines, or two
alanines are weak agonists or devoid of contractile activity
(McMaster et al., 1986; Flohr et al., 2002; Brkovic et al.,
2003; Labarrère et al., 2003; Guerrini et al., 2005).
Similarly, replacement of the disulfide bond by a lactam
bridge of various sizes yields less active or inactive analogs
(Grieco et al., 2002b). Concurrently, the cysteine-free
head-to-tail cyclic hexapeptide -Ala-Phe-Trp-Lys-Tyr-Ala-
displays a lower affinity compared with UII (Foister et al.,
2006). Replacement of the Tyr residue of this cyclic
hexapeptide with a b-naphtalene moiety enhances bind-
ing affinity but impairs selectivity for UT versus somato-
statin receptors (Foister et al., 2006). N-terminal acylation
is well tolerated and does not impair the binding
affinity and the functional activity of UII and URP
(Coy et al., 2002; Brkovic et al., 2003; Labarrère et al.,
2003; Chatenet et al., 2004; Song et al., 2006b). How-
ever, capping of the N-terminal function may improve
the stability of the analogs against proteolysis (Perkins
et al., 1990; Kinney et al., 2002; Labarrère et al., 2003).
Similarly, amidation of the C-terminal Val residue does
not significantly affect the ability of UII to contract rat
thoracic aortic rings (Coy et al., 2002; Brkovic et al.,
2003; Labarrère et al., 2003).

Several structure-activity relationship studies have
focused on the optimization of the Trp-Lys-Tyr triad
for the development of UT ligands with potent ago-
nistic or antagonistic activities. In URP as in UII, the

Fig. 9. Effect of human UII on inositol phosphate turnover and intracellular
calcium concentration ([Ca2+]i) in human UT-transfected CHO cells. (A) In
cells labeled with [3H]inositol, graded concentrations of UII, in the presence of
Li block, induces a dose-dependent increase of inositol phosphate (IPx)
formation. DPM, disintegrations per minute. (B) Time course effect of UII
(100 nM, black bar) on [Ca2+]i in Fura 2-loaded cells. In the presence of
extracellular Ca2+, a biphasic response in observed, i.e., a peak originating
from intracellular calcium stores (as a consequence of IP formation) and
a plateau phase caused by an entry of extracellular Ca2+. In the absence of
extracellular Ca2+, the response is monophasic with the plateau-phase missing.
(C) Effect of graded concentrations of UII on the peak [Ca2+]i response.
[Reprinted from McDonald et al. (2007). Used with permission.]
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tryptophan residue appears to be relatively tolerant to
stereoisomer substitution (Flohr et al., 2002; Brkovic
et al., 2003; Labarrère et al., 2003; Chatenet et al., 2004;
Guerrini et al., 2005). For instance, [DTrp4]URP retains
substantial binding affinity on human UT-transfected
cells and a weak ability to contract de-endothelialized
aortic rings. However, [DTrp4]URP totally suppresses the

UII-evoked contractile response (Chatenet et al., 2004),
indicating that this compound behaves as a partial
agonist of UT. Replacement of the Trp residue with
tetrahydroisoquinoline-1-carboxylic acid (Tiq) or L-1,2,3,4-
tetrahydronorharman-3-carboxylic acid (Tpi) in URP yields
two potent UT receptor agonists, [Tiq4]URP and [Tpi4]URP
(Chatenet et al., 2013a), suggesting that the indole ring

Fig. 10. Chemical structures of various pepditic ligands of UT. The residue(s) modified from the original scaffold are indicated in red.
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of the Trp residue is not critical for receptor interaction
(binding) and could in fact be involved in the intramolecular
stabilization of the bioactive conformation of URP
(Chatenet et al., 2013a). On the basis of the structural
similarities existing between UII and somatostatin on
the one hand (Pearson et al., 1980) and between UT
and SST4 on the other hand (Marchese et al., 1995), it
has been hypothesized that the interactions of UII
with UT may be similar to those previously reported
for somatostatin with SST4 (Kinney et al., 2002). In
particular, it has been proposed that the lateral amine
function of the Lys residue of UII may establish a
physical interaction with the carboxyl group of the Asp130

moiety of TMD3 of UT (Kinney et al., 2002; Lavecchia
et al., 2005) that is likely involved in receptor activation
(see section III.A). Thus, analogs with a reduced distance
between the side-chain NH2 group and the peptide
backbone in positions 8 and 5 of UII and URP,
respectively, which should limit receptor activation,
may exhibit antagonistic properties. Indeed, UII-related
compounds containing ornithine, 2,4-diaminobutyric
acid (Dab), or 2,3-diaminopropionic acid instead of the
lysine residue display significant attenuation of the
effects of UII. In particular, [Orn8]UII (Fig. 10, com-
pound 4) induces a rightward shift of the concentration-
response curve of UII on rat aortic strip contraction
(Camarda et al., 2002a) and prevents UII-evoked plasma
extravasation in mice (Vergura et al., 2004). However,
[Orn8]UII stimulates calcium mobilization in human and
rat UT-transfected cells (Camarda et al., 2002a), in-
dicating that this compound also acts as a partial UT
agonist. Conversely, the [Orn5]URP analog (Fig. 10, com-
pound 5), which retains high binding affinity (Chatenet
et al., 2004), behaves as a pure selective antagonist in both
rat aortic ring contraction and astrocyte [Ca2+]i mobilization
assays (Diallo et al., 2008; http://www.iuphar-db.org/
DATABASE/FamilyMenuForward?familyId=65).
To date, only a few peptidic UT superagonists have

been designed (Leprince et al., 2008). Consistent with
the observation that radio-iodinated UII ([125I]UII)
possesses high affinity for native UT (Maguire et al.,
2000) and UT-transfected cells (Nothacker et al., 1999),
it was found that [3-iodo-Tyr6]UII(4–11) (Fig. 10, com-
pound 6) is five times more potent than UII and UII(4–11)
in causing rat aortic ring contraction (Labarrère et al.,
2003). Similarly, substitution of the tyrosine residue
with hindered aromatic amino acids such as (2-naphtyl)-
L-alanine and biphenylalanine increases the binding
affinity and/or the biologic activity of the analogs,
probably through an enhancement of the hydrophobic
interactions within the binding pocket (Kinney et al.,
2002). In contrast, double iodination of the Tyr9 side-
chain, to produce [3,5-diiodo-Tyr9]UII(4–11), does not
modify the potency of the peptide to mobilize [Ca2+]i in
HEK293 cells expressing rat UT but causes a marked
decrease of the efficacy, indicating that the diiodinated
analog behaves as a partial agonist (Batuwangala

et al., 2009b). One of the most effective cycle modifica-
tions on activity is the single replacement of the Cys5

residue of UII(4–11) with a penicillamine, which yields
[Pen5]UII(4–11), also named P5U (Fig. 10, compound 7),
an analog that exhibits an affinity 3 times as high as
that of UII and an increased potency in the isolated rat
thoracic aorta assay (Grieco et al., 2002a; Patacchini
et al., 2003). Finally, replacement of the Tyr9 residue
in the P5U sequence with the benzothiazolyl-alanine
or the (3,4-Cl)Phe moities leads to analogs with pEC50

values at least 1.4 log higher than that of P5U being the
most potent UT agonists discovered to date (Carotenuto
et al., 2014).

Several peptidic antagonists have been designed
by combining multiple point modifications. For in-
stance, urantide ([Pen5, DTrp7, Orn8]UII(4–11); Fig. 10,
compound 8) acts as a UT antagonist in the rat aorta bio-
assay (Patacchini et al., 2003; Camarda et al., 2004) but
stimulates Ca2+ mobilization in CHO cells transfected
with humanUT (Camarda et al., 2004; Grieco et al., 2005).
Another analog, UFP-803 ([Pen5, DTrp7, Dab8]UII(4–11);
Fig. 10, compound 9), which does not evoke any con-
traction of thoracic aorta rings, shifts to the right the
UII concentration-response curve (Camarda et al., 2006).
However, UFP-803 is about 10-fold less potent than
urantide to antagonize UII-induced contraction (Patacchini
et al., 2003; Camarda et al., 2004, 2006). The cyclic
somatostatin analog SB-710411, i.e., Cpa-c[DLys-Pal-
DTrp-Lys-Val-Cys]Cpa-NH2 (Cpa: 4-chlorophenylalanine;
Pal: 3-pyridylalanine; Coy et al., 2000; Fig. 10, com-
pound 10) inhibits UII-induced contraction of isolated
rat aorta (Behm et al., 2002) but exerts agonistic activity
in monkey arteries (Behm et al., 2004b). Rather than
a species-dependent process, these divergent responses
may be ascribed to an assay-dependent phenomenon
inasmuch as [Orn8]UII behaves as an antagonist in the
rat aorta assay and as an agonist at the recombinant rat
UII (Camarda et al., 2002a). These discordant behaviors
can be accounted for by different UT expression levels
and/or different signal transduction–coupling efficiency.
It should be noted, however, that another somatostatin
analog, GSK-248451 (Cin-c[DLys-Pal-DTrp-Orn-Val-Cys]-
His-NH2; Cin: 4-chlorocinnamoyl; Fig. 10, compound 11),
acts as a potent UT antagonist in both native mamma-
lian tissues and recombinant cell systems (Behm et al.,
2006).

Functional studies have shown that UII and URP
exert both common and specific biologic activities (see
section III.B). Until recently, none of the UT agonists
and antagonists (either peptidic or nonpeptidic) could
selectively mimic/block the effects of UII or URP. How-
ever, two recent reports describe the design of allosteric
modulators of UT, i.e., urocontrin ([Bip4]URP; Bip: 4,49-
biphenylalanine; Fig. 10, compound 12) and urocontrin
A (UCA; [Pep4]URP; Pep: 4-(phenylethynyl)-phenylalanine;
Fig. 10, compound 13) and rat UII(1–7) (Fig. 10, compound
14), that can discriminate the biologic activities exerted by
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UII and URP both ex vivo and in vivo (Chatenet et al.,
2013a,b,c). In particular, in the rat and monkey aortic
ring contraction assays, UCA decreases the maximum
response to human UII but has no noticeable effect on
URP-induced vasoconstriction (Chatenet et al., 2013b).
Reciprocally, the N-terminal region of rat UII, i.e., rat
UII(1–7), significantly reduces the contractile activity of
URP but does not affect that of rat UII (Chatenet et al.,
2013b). The antagonistic activity of UCA can be ascribed
to an allosteric mechanism, because this compound in-
hibits UII and URP binding by means of a noncompet-
itive process.

D. Design of Nonpeptidic Urotensin II Receptor
Agonists and Antagonists

Over the past 15 years, the design of agonists and
antagonists of UII and URP has been carried out to
facilitate the delineation of their physiologic roles and to
explore new therapeutic strategies. Structure-activity
relationship studies (Flohr et al., 2002; Kinney et al.,
2002; Brkovic et al., 2003; Labarrère et al., 2003;
Chatenet et al., 2004; Guerrini et al., 2005; Leprince
et al., 2008; Merlino et al., 2013) led to the discovery of
peptide-derived analogs acting as potent agonists or
antagonists (Behm et al., 2002; Grieco et al., 2002a;
Herold et al., 2003; Patacchini et al., 2003; Carotenuto
et al., 2004b; Grieco et al., 2005; Carotenuto et al.,
2006; Chatenet et al., 2012, 2013a,b). However, those
molecules are usually not considered as the best
drug candidates, because their pharmacodynamic and
pharmacokinetic properties (bioavailability, metabolic
stability, biodistribution) are not optimal. Therefore, the
identification and evaluation of nonpeptidic urotensinergic
compounds were achieved following approaches based
on analysis of the molecular arrangements of UII-
and URP-related ligands or the 3D structure of the
UT receptor, together with high-throughput screening
(HTS).
Structure-activity relationship studies and NMR

conformational evaluations (Bhaskaran et al., 1994;
Flohr et al., 2002; Grieco et al., 2002b; Chatenet et al.,
2004; Lescot et al., 2007) of UII, URP, and analogs, in
conditions replicating UT-bound or -unbound ligand,
have revealed that the endocyclic triad -Trp-Lys-Tyr- is
the key pharmacophore (see sections II.D and III.C).
The spatial parameters determined from these studies
have been used to carry out virtual 3D screenings. For
instance, a virtual screening performed by Flohr et al.
(2002) on an Aventis chemolibrary, followed by a
biologic testis using fluorometric imaging plate reader
(FLIPR)–based functional assay, led to the identifica-
tion of S6716 (Fig. 11, compound 15), a benzamidine-
derived antagonist with an IC50 of 400 nM. Similarly,
a few years later, Lescot et al. (2007) established a
pharmacophore template after NMR studies of UII
and molecular dynamics calculations of nonpeptidic
UII antagonists identified by Takeda Chemical Industries

(Osaka, Japan) and Actelion (Allschwil, Switzerland).
Subsequently, a virtual screening of their compound
database (6626 molecules) revealed six chemical sub-
stances that showed affinities in the low micromolar
range, the best being compound 16 (Fig. 11; IC50: 1.4 mM).
The 3D arrangement of UT was also used (Kinney
et al., 2002; Lavecchia et al., 2005; Lescot et al., 2008b)
to determine the particular physicochemical require-
ments of the binding pocket of the receptor and help
for the design of new nonpeptidic UT ligands. Although
appealing, this approach remains complex because
GPCRs are dynamic biomolecules exhibiting confor-
mational changes upon activation (Preininger et al.,
2013). Nevertheless, the 3D information might be
very useful for understanding the binding process of
existing leads, as shown by docking studies performed
with the nonpeptidic UII agonist AC-7954 (Lavecchia
et al., 2005) (Fig. 11, compound 17; Acadia Pharma-
ceuticals, San Diego, CA; EC50: 316 nM for the
racemic mixture) (Croston et al., 2002). Noteworthy,
AC-7954 is the precursor of the potent UT agonists
(+)-FL68 (EC50: 50 nM), a 6,7-dimethylated derivative
of the lead compound (Lehmann et al., 2005), as well
as (+)-FL104 (Fig. 11, compound 18, Acadia Pharma-
ceuticals; EC50: 32 nM) and its optimized (+)-(S)-
naphtyl–containing derivative (Fig. 11, compound 19,
Acadia Pharmaceuticals; EC50: 23 nM) (Lehmann et al.,
2006, 2009).

HTS is, by far, the most common strategy for dis-
covering template candidates for a drug. This approach
has been applied for identifying nonpeptidic UT ligands
and many hits were obtained for both antagonists and
agonists. Among the first series of antagonists to be
reported, the aminoalkoxybenzylpyrrolidines, identified
by GlaxoSmithKline (Brentford, UK), showed prom-
ising antagonistic properties (Dhanak et al., 2001; Jin
et al., 2005). This series is illustrated by compound
SB-436811 (Fig. 11, compound 20), an optimized hit
that exhibits a good affinity for human UT (Ki: 200 nM)
but a weak binding potency on rat UT (Ki: 3.2 mM).
GlaxoSmithKline also described the preparation of
sulfonamide derivatives (Dhanak et al., 2002; Douglas
et al., 2005). In particular, the lead sulfonamide mole-
cule, SB-611812 (Fig. 11, compound 21), which binds to
rat UT (Ki: 121 nM), antagonizes UII-elicited rat aortic
contractions and exhibits very good pharmacokinetic
properties (;100% oral bioavailability and a 5-hour
half-life), has been used in a rat congestive heart failure
model. After 8 weeks of treatment, health improvement
was observed, as demonstrated for instance by the de-
crease of right ventricular systolic pressure, cardiomyo-
cyte hypertrophy, and lung edema, which altogether
reduced the overall mortality (Bousette et al., 2006a).
Further refinements within the sulfonamide series
gave rise to the UT antagonist SB-706375 (Fig. 11,
compound 22), which potently blocks UII binding (low
nanomolar range) with a reversible mode of action,
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and inhibits contraction of the rat isolated aorta, as well
as intracellular calcium mobilization (Douglas et al.,
2005). Likewise, the Johnson & Johnson group, after
applying an HTS protocol to a library of about 500,000
molecules, found new antagonist ligands based on the
piperazinophtalimide chemotype (Lawson et al., 2009).
Their lead compounds showed only a moderate antag-
onistic activity and were metabolically unstable. To
improve the drug properties of their hits, they in-
troduced various chemical groups in the scaffold and
discovered JNJ-39319202 (Fig. 11, compound 23; rat and
human IC50 in FLIPR: 4.8 and 150 nM, respectively, and
humanUTKi: 35 nM) (Lawson et al., 2009; Maryanoff and
Kinney, 2010). Interestingly, this piperazinophtalimide
derivative contains a sulfonamide function, which appears
to enhance the interaction of the ligand with the UT
receptor. In parallel, Lawson et al. (2009) explored a series
of piperazinoisoindolinone-based derivatives that are mole-
cules structurally close to the piperazinophtalimide-derived

compounds. Their study showed that the removal of one
carbonyl group in the phtalimide moiety does not much
change the activity, because compound 24 exhibits single-
digit nanomolar affinity and antagonistic potency (Lawson
et al., 2009).

Quinolone and quinoline templates have been used
by a few pharmaceutical companies [such as compound
25 from GlaxoSmithKline, compound 26 from Encysive
Pharmaceuticals (Houston, TX), and compound 27
from Takeda] for the design of UT antagonists (Dhanak
and Knight, 2002; Kessler and Wu, 2009; Tarui et al.,
2001). These compounds show variable potencies. Simi-
larly, Actelion carried out a structural study of
4-ureidoquinoline derivatives and, in 2004, the company
reported the characterization of ACT-058362 (Fig. 11,
compound 28), also known as palosuran (Clozel et al.,
2004). This molecule exhibits high inhibitory binding
potency on human UT receptor (IC50: 3.6 nM). In a
functional FLIPR assay with human UT, an IC50 of 17 nM

Fig. 11. Chemical structures of various nonpeptidic agonists and antagonists of the UT receptor. Compounds 17, 18, and 19 are agonists; the
remaining compounds are antagonists.
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was reported. By contrast, palosuran is poorly recog-
nized by the rat UT. Hence, Actelion initiated human
clinical trials with patients afflicted by hypertension
and diabetic nephropathy. Yet, no significant changes
in renal hemodynamic parameters, such as glomerular
filtration rate and renal blood flow, were observed and
the clinical trials were stopped in 2005 (Maryanoff and
Kinney, 2010).
Finally, various optimized chemical substances,

based on a benzazepine template (Fig. 11, compound 29
from Takeda), as well as on carboxamide cores, such
as 5,6-bisaryl-2-pyrimidinecarboxamide, 5,6-bisaryl-2-
pyridinecarboxamide, and 5,6-bisaryl-2-pyrazinecarboxamide
(for example, compound 30 from Sanofi-Aventis, Paris,
France), were reported (Tarui et al., 2002; Altenburger
et al., 2008, 2009, 2011). The corresponding com-
pounds exhibited potent antagonistic properties,
and thus Sanofi launched a phase I clinical trial
with a 5,6-bisaryl-2-pyridinecarboxamide derivative
(SAR101099). However, this trial was discontinued
because of the lack of efficacy in diabetic nephropathy
(en.sanofi.com/Images/29618_20120208-2011_Results_
EN.pdf).
This section represents a summary of nonpeptidic

ligands for the urotensinergic system; more information
can be obtained in the reviews from Cosenzi (2008),
Lescot et al. (2008a), Maryanoff and Kinney (2010), and
Merlino et al. (2013). Thus, the literature shows that
most major pharmaceutical companies are involved in
a research program aimed at designing highly potent
agonists and antagonists of the UT receptor. So far,
excellent ligands have been developed and some com-
pounds have even been evaluated in clinical trials.
However, mixed clinical results (Maryanoff and Kinney,
2010; Portnoy et al., 2013; en.sanofi.com/Images/
29618_20120208-2011_Results_EN.pdf) were obtained,
for instance by Actelion, Sanofi, and GlaxoSmithKline,
and consequently, several trials were stopped. It was
recently found that UII and URP exhibit not only
common but also dissimilar biologic activities (Prosser
et al., 2008; Jarry et al., 2010; Doan et al., 2012). Thus,
ligands able to discriminate between the UII and URP
effects have been developed (Chatenet et al., 2012,
2013a,b,c). Pharmacological studies using these com-
pounds confirmed that the urotensinergic system is far
more complex than initially thought. These observa-
tions might explain some of the failures of clinical trials
and, therefore, this aspect should be considered when
designing new UT ligands.

E. Distribution of Urotensin II Receptor in the Central
Nervous System

The localization of UT mRNA has been determined
in the brain and spinal cord by RT-PCR and in situ
hybridization histochemistry (Liu et al., 1999; Clark
et al., 2001; Gartlon et al., 2001; Totsune et al., 2001;
Elshourbagy et al., 2002; Jégou et al., 2006; Dubessy

et al., 2008), and the localization of UII binding sites
has been studied by autoradiography using [125I]UII
or [125I]URP as a radioligand (Maguire et al., 2000;
Clark et al., 2001; Jégou et al., 2006; Bucharles et al.,
2014). The distribution and relative density of UT mRNA
and UII binding sites in the rat CNS are compared
in Table 1.

High concentrations of UT mRNA are found in most
regions of the CNS, including the cerebral cortex,
olfactory bulb, hippocampus, amygdala, pineal gland,
hypothalamus, tegmentum, brainstem, cerebellum,
and spinal cord (Gartlon et al., 2001; Jégou et al.,
2006). Expression of UII mRNA occurs in neurons
(Jégou et al., 2006), astrocytes (Castel et al., 2006;
Desrues et al., 2012), and endothelial cells (Spinazzi
et al., 2006).

In rat, the expression of UT mRNA is particularly
intense in the piriform cortex, the pineal gland, the
arcuate nucleus of the hypothalamus, the choroid plexus,
the locus coeruleus, the dorsal motor nucleus of the vagus
nerve, the trigeminal nucleus, the facial nucleus, the
medial superior olive, the medioventral periolivary
nucleus, the nucleus of the trapezoid body, the pontine
nuclei, and in the Purkinje cell and granule cell layers of
the cerebellum (Jégou et al., 2006; Hunt et al., 2010).
High levels of UT mRNA are also observed in the
entorhinal cortex, the piriform cortex, the tenia tecta, in
several regions of the amygdala including the nucleus of
the lateral olfactory tract, the bed nucleus of the accessory
olfactory tract, the anterior and posterolateral cortical
amygdaloid nuclei, the medial amygdaloid nucleus and
the posteromedial amygdalohippocampal transition area,
in the parabigeminal nucleus, the medial habenular
nucleus, the supraoptic and ventromedial hypothalamic
nuclei, the area postrema, the dorsal laterodorsal and
ventral tegmental nuclei, the interpeduncular nucleus,
the nucleus of the solitary tract, the nucleus ambiguus,
the nucleus abducens, the hypoglossal nucleus, the
principal sensory nucleus, the lateral periolivary nucleus,
the supragenuate nucleus, the inferior olivary complex,
the magnocellular subdivision of the red nucleus, and
layers 9 and 10 of the ventral horn of the spinal cord
(Jégou et al., 2006; Hunt et al., 2010). In the mesopontine
tegmentum area and the spinal cord, the UT gene is
strongly expressed in motoneurons (Clark et al., 2001,
2005; Jégou et al., 2006; Bruzzone et al., 2010). The
fact that UII induces an increase in [Ca2+]i in cultured
rat motoneurons indicates that the UT mRNA is
translated into functional UT receptor (Filipeanu et al.,
2002).

Autoradiographic labeling with [125I]UII confirmed
the presence of UII binding sites in several areas of the
rat brain that actively express the UT gene such as
the endopiriform nucleus in the olfactory system, the
subiculum complex in the hippocampal formation, the
medial amygdaloid nucleus, the parabigeminal nu-
cleus in the visual system, the medial aspect of the
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TABLE 1
Distribution of UT mRNA and UII binding sites on the rat brain

The distribution of 125I-labeled UII binding sites has been described in three reports: 1) Maguire et al., 2000; 2) Clark
et al., 2001; 3) Jégou et al., 2006. [Reprinted from Jégou et. al. (2006). Used with permission.]

Structure GPR14 mRNA UII Binding Sites

Isocortex +/++
Allocortex

Cingulate cortex +/++
Insular cortex +
Orbital cortex +
Retrosplenial cortex +
Entorhrinal cortex ++/+++

Olfactory system
Main olfactory bulb

Mitral cell layer ++
Internal granular layer ++
Glomerular layer +

Anterior olfactory nucleus ++
Dorsal endopiriform nucleus ++ Yes (2, 3)
Piriform cortex +++/++++
Tenia tecta +++
Olfactory tubercle +++

Claustum ++
Basal ganglia

Caudate putamen +/2
Globus pallidus —

Accumbens nucleus +/2 Yes (2)
Ventral pallidum +/2
Islands of Calleja —
Substantia nigra

Pars compacta ++
Pars reticularis —

Subthalamic nucleus +/++
Ventral tegmental area + Yes (2)

Septum
Lateral septal nucleus, dosal + Yes (2, 3)
Lateral septal nucleus, intermediate +
Lateral septal nucleus, ventral +
Horizontal limb of the diagonal band of Broca +

Hippocampal formation
Ammon’s horn

Stratum oriens Patchy labeling
Pyramidal cell layer +++/++++
Stratum radiatum Patchy labeling

Dentate gyrus +++/++++
Subiculum complex ++ Yes (2)

Amygdala
Nucleus of the lateral olfactory tract +++
Bed nucleus of the accessory olfactory tract +++
Anterior cortical amygdaloid nucleus +++
Posterolateral cortical amygdaloid nucleus +++
Posteromedìal cortical amygdaloid nucleus ++
Amygdalopiriform transition area ++
Medial amygdaloid nucleus +++ Yes (3)
Posteromedial amygdalohippocampal transition area +++
Basolatetal amygdaloid complex ++
Basomedial amygdaloid complex ++
Central amygdaloid complex ++
Bed nucleus of the stria terminalis, lateral + Yes (2, 3)

Visual system
Parabigeminal nucleus +++ Yes (3)
Lateral geniculate nuclei, ventral and dorsal +/2 Yes (2, 3)
Pretectum + Yes (3)
Superior colliculus +

Epithalamus
Pineal gland ++++
Habenular nucleus

Medial +++ Yes (2)
Lateral ++

Thalamus
Paraventricular thalamic nucleus ++
Anterodorsal thalamic nucleus ++
Anteroventral thalamic nucleus +/++ Yes (2, 3)
Centromedian thalamic nucleus +
Reticular thalamic nucleus +
Mediodorsal thalamic nucleus +
Reuniens thalamic nucleus +

(continued )
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TABLE 1—Continued

Structure GPR14 mRNA UII Binding Sites

Rhomboid nucleus +
Ventrolatetal thalamic nucleus +
Ventroposterior lateral thalamic nucleus +
Ventroposterior medial thalamic nucleus +
Ventromedial thalamic nucleus +
Posterior thalamic nuclear group +
Paratenial thalamic nucleus +

Zona incerta ++
Hypothalamus

Anterior hypothalamic area, anterior +
Anterior hypothalamic area, posterior ++
Anterior medial preoptic nucleus —

Anteroventral preoptic nucleus —
Medial preoptic area —

Medial preoptic nucleus +/++ Yes (2)
Lateral preoptic area —
Median preoptic nucleus ++
Lateroanterior hypothalamic nucleus +
Magnocellular preoptic nucleus —
Supachiasmatic nucleus ++
Supraoptic nucleus +++
Ventromedial hypothalamic nucleus +++
Lateral hypothalamic area +
Posterior hypothalamic area +
Dorsomedian hypothalamus, dorsal +
Paraventricular nucleus, magnocellular part ++
Paraventricular nucleus, median parvocellular +
Arcuate nucleus +++/++++
Mammillary nucleus, medial, lateral ++

Circumventricular organs
Area postrema +++
Choroid plexus ++++

Reticular formation
Paramedian reticular nucleus Patchy Labeling
Medullary nucleus, ventral, dorsal

Ventral Patchy Labeling
Dorsal —

Lateral paragigantocellular nucleus Patchy Labeling
Rostroventrolateral reticular nucleus ++
Dorsal paragigantocellular nucleus —
Gigantocellular reticular nucleus Patchy Labeling

Ventral Patchy Labeling
Alpha Patchy Labeling

Intermediate reticular nucleus +
Parvocellular reticular nucleus Patchy Labeling
Pontine reticular nuclei Patchy Labeling
Periaqueducal gray +
Cuneiform nucleus +
Dorsal tegmental nucleus +++
Ventral tegmental nucleus +++
Laterodorsal tegmental nucleus +++ Yes (2)
Microcellular tegmental nucleus —

Pedunculopontine tegmental nucleus +/2 Yes (2, 3)
Deep mesencephalic nucleus —

Raphe complex
Dorsal raphe nucleus ++
Median raphe nucleus ++
Raphe pallidus nucleus ++

Interpeduncular nucleus ++/+++ Yes (2)
Locus coeruleus ++++
Brainstem nuclei associated to autonomic functions

Nucleus of the solitary tract +++
Dorsal motor nucleus of the vagus +++/++++
Ambiguus nucleus +++
Parabrachial nucleus

Medial ++
Lateral ++

Motor nuclei
Oculomotor nucleus ++
Trochlear nucleus ++
Trigeminal nucleus ++++
Abducens nucleus +++ Yes (1)
Facial nucleus +++/++++
Hypoglossal nucleus +++

Somatosensory system

(continued )
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habenular nucleus, the medial preoptic nucleus, the
laterodorsal tegmental nucleus in the reticular forma-
tion, the interpeduncular nucleus, the abducens nu-
cleus, the pontine nuclei, and the Purkinje cell layer
(Maguire et al., 2000; Clark et al., 2001; Jégou et al.,
2006). However, a number of brain nuclei that are
enriched with UT mRNA do not contain detectable
amounts of UII binding sites. This mismatch suggests
that, in certain brain regions, the UT protein may be
occupied by endogenous UII or URP. Consistent with
this notion, it has been shown that, in various tissues,
UII binds tightly to its receptor in a quasi-irreversible
manner (Qi et al., 2005; Song et al., 2006b; Du et al.,
2010), and dissociation of UII from cat UT appears to be
very slow (Aiyar et al., 2005) (Fig. 12). Alternatively, in
brain regions that contain high concentrations of

UT mRNA but are devoid of UII binding sites, the re-
ceptors may be transported along the axons to dis-
tant projecting areas (Jégou et al., 2006). This latter
hypothesis would also explain why UII binding sites
are observed in a few brain regions that are virtually
devoid of UT mRNA, e.g., the nucleus accumbens and
the pedunculopontine tegmental nucleus (Jégou et al.,
2006). A recent study has shown that the distribution of
[125I]URP binding sites totally overlaps that of [125I]UII
(Bucharles et al., 2014). Intriguingly, UII and URP
binding sites are observed along the wall of the fourth
ventricle (Bucharles et al., 2014), suggesting that the
urotensinergic system may regulate chemical commu-
nication between CSF and brain parenchyma.

In the mouse CNS, RT-PCR analysis revealed that
the expression pattern of UT is globally similar to that

TABLE 1—Continued

Structure GPR14 mRNA UII Binding Sites

Mesencephalic trigeminal nucleus ++++
Principal sensory nucleus, dorsomedial ++/+++
Nucleus of the spinal tract

Oral +/++
Caudal +
Interpolar part +

External cuneate nucleus ++
Cuneate nucleus —
Paratrigeminal nucleus ++

Auditory system
Lateral superior olive ++
Medial superior olive ++++
Medioventral periolivary nucleus ++++
Lateroventral periolivary nucleus +++
Nucleus of the trapezoid body ++++
Dorsal cochlear nucleus ++
Ventral cochlear nucleus

Anterior ++
Posterior ++

Ventral nucleus of the lateral lemniscus +/++
Inferior colliculus +
Medial geniculate body +

Vestibular system
Superior vestibular nucleus +
Lateral vestibular nucleus +
Medial vestibular nucleus ++
Prepositus hypoglossal nucleus ++

Supragenuate nucleus +++
Precerebellar nuclei

Pontine nuclei ++++ Yes (2, 3)
Reticulotegmental nucleus of the pons ++
Inferior olivary complex +++
Lateral reticular nucleus ++

Red nucleus
Parvocellular ++
Magnocellular +++

Cerebellum
Purkinje cell layer ++++ Yes (3)
Granular layer ++++
Molecular layer —
Medial cerebellar nucleus +/++
Interposed cerebellar nucleus +/++
Lateral cerebellar nucleus +/++

Spinal cord
Layer 2–4 ++
Layer 5 +
Layer 7–8 ++
Layer 9 +++
Layer 10 ++/+++

The symbols provide a semiquantitative evaluation of the density of UT mRNA: ++++, very high density; +++, high
density; ++, moderate density; +, low density; —, no hybridization signal.
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described in rat with high concentrations of UT mRNA
in the septum, hippocampus, amygdala, hypothalamus,
cerebellum, medulla oblongata, and spinal cord (Dubessy
et al., 2008). In the anterior horn of the spinal cord,
intense expression of UT is observed in motor neurons
(Liu et al., 1999; Sun et al., 2014).
In the human CNS, UT mRNA is present in the

cerebral cortex, hypothalamus, and medulla oblongata
(Totsune et al., 2001), whereas, in the cynomolgus
monkey, UT mRNA is found in the spinal cord but not
in the cerebral cortex and cerebellum (Elshourbagy
et al., 2002). In addition, UII peptide is also detected in
the CSF of pregnant women (Cowley et al., 2005). The
occurrence of UII binding sites has also been reported
in the human brain (Maguire et al., 2000).
In the European flounder, the UT gene is strongly

expressed in the spinal cord and in the caudal neu-
rosecretory system (Lu et al., 2006). In the flounder
and the orange-spotted grouper Epinephelus coioides,
UT transcripts are also present in all regions of the
brain including the forebrain, midbrain, hypothala-
mus, and hindbrain (Lu et al., 2006; Sun et al., 2014).

F. Distribution of Urotensin II Receptor in
Peripheral Organs

The localization of UT mRNA and UT protein has
been investigated by RNase protection assay, Northern
blot analysis, RT-PCR, immunohistochemistry, and
binding experiments. Early reports on the character-
ization of rat and bovine GPR14/SERN, now renamed
UT (see section III.A), revealed that, in mammals, this
receptor is actively expressed in the retina and heart

muscle (Marchese et al., 1995; Tal et al., 1995).
Subsequent studies showed that UT mRNA is widely
expressed in peripheral organs such as the eye, heart,
pancreas, lung, and skeletal muscle (Ames et al., 1999;
Liu et al., 1999; Davenport and Maguire, 2000; Dubessy
et al., 2008; Wang et al., 2009). In particular, in mouse,
the highest expression of UT mRNA is observed in the
lung (Dubessy et al., 2008), suggesting a role of UII/URP
in respiratory function. Consistent with this hypothesis,
UII induces in vitro a concentration-dependent contrac-
tion of airways and pulmonary blood vessels from the
cynomolgus monkey (Hay et al., 2000).

In the cardiovascular system, the UT gene is expressed
in the atrium, ventricle, coronary artery, thoracic aorta,
left internal thoracic artery, great saphenous vein, and
umbilical vein (Ames et al., 1999; Davenport and
Maguire, 2000; Matsushita et al., 2001; Zhang et al.,
2007). Autoradiographic analysis indicates that [125I]UII
binds to rat aorta and human left ventricle and coronary
artery (Maguire et al., 2000). At the cellular level, UT-like
immunoreactivity is observed in arterial and venous
smooth muscle cells and cardiomyocytes (Maguire et al.,
2008).

The UT transcript is found in the kidney of human
(Ames et al., 1999; Lehner et al., 2007), rat (Gartlon
et al., 2001; Hirose et al., 2009; Mori et al., 2009;
Forty and Ashton, 2013), and mouse (Lehner et al.,
2007). In the rat kidney, the UT gene is expressed in
glomerular arterioles, thin ascending limbs, and inner
medullary collecting ducts (Song et al., 2006a; Forty
and Ashton, 2013). Quantitative receptor autoradiog-
raphy confirms the presence of [125I]UII binding in
the human kidney cortex (Maguire et al., 2000) and
in the rat kidney medulla (Disa et al., 2006). At the
cellular level, UT-like immunoreactivity is located in
renal tubular cells, vascular smooth muscle cells, and
vascular endothelial cells of the rat kidney (Mori
et al., 2009).

In the human endocrine system, UT mRNA is
expressed in the adrenal gland (Takahashi et al.,
2003) and pancreas (Ames et al., 1999). Immunohisto-
chemical staining indicates that the UT protein occurs
in the human adrenal medulla (Morimoto et al., 2008).
UT mRNA is also expressed in the rat testis.

In the European flounder and the killfish Fundulus
heteroclitus, UT mRNA is expressed in heart, ovary,
bladder, kidney, pituitary, and gill (Lu et al., 2006; Evans
et al., 2011). In the flounder and the grouper, UT-like
immunoreactivity is evident in vascular elements irri-
gating osmoregulatory tissues such as kidney glomeruli
and collecting ducts and the primary and secondary
lamellae of the gill (Lu et al., 2006; Sun et al., 2014).

G. Urotensin II Receptor in Tumor Cells

The UII gene is expressed in a number of human
cell lines including T98G glioblastoma cells, IMR-32
neuroblastoma cells, NB69 neuroblastoma cells, BeWo

Fig. 12. [125I]human UII binding to recombinant human UT. (A) [125I]UII
binding is presented with Scatchard analysis of the binding isotherm.
Addition of a peptidase inhibitor cocktail (+PI; i.e., amastatin, bestatin,
phosphoramidon, and captopril) does not affect binding. (B) Addition of
an excess of unlabeled UII (dotted line) fails to induce radioligand dissociation.
[Reprinted from Song et al. (2006b). Used with permission.]
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choriocarcinoma cells, SW-13 adrenocortical carcinoma
cells, DLD-1 colorectal adenocarcinoma cells, and HeLa
cervical cancer cells (Takahashi et al., 2001). The UT
gene is also expressed in pheochromocytomas, adreno-
cortical adenomas (including adenomas with primary
aldosteronism, adenomas with Cushing syndrome, and
nonfunctioning adenomas), adrenocortical carcinomas,
ganglioneuroblastoma, and neuroblastomas (Takahashi
et al., 2003; Zeng et al., 2006). Of note, all these cell
lines except NB69 neuroblastoma cells also express
UII mRNA (Takahashi et al., 2001, 2003). Functional
human UT has been characterized in rhabdomyosar-
coma SJRH30 and TE671 cell lines (Douglas et al.,
2004b; Batuwangala et al., 2009a). Both UT mRNA and
UT protein are present in human lung adenocarcinoma
A549 cells and exogenous UII activates proliferation
of these cells in vitro and in vivo (Wu et al., 2010).
UII-evoked lung adenocarcinoma growth is likely
mediated through the nuclear factor kB pathway (Zhou
et al., 2012). Abundant expression of UT mRNA and
UT protein is observed in the interstitial nodular lesions
of patients with lymphangioleiomyomatosis, whereas
UT mRNA is not expressed in normal human lungs
(Kristof et al., 2010). UT mRNA expression is signifi-
cantly elevated in androgen-dependent LNCaP prostate
cancer cells and reduced in androgen-independent PC3
and DU145 prostate cancer cells (Grieco et al., 2011).
Interestingly, there is a significant correlation between
UT expression and the prognosis of human prostate
adenocarcinoma, suggesting the potential use of UT as
a prognostic marker for prostate cancer (Grieco et al.,
2011). Collectively, these findings indicate that further
studies should be pursued on the role of UT in the
pathogenesis of various cancers as well as its potential
as a diagnostic and prognostic marker.

H. Phylogenetic Evolution of Urotensin II Receptor

As mentioned above (see section III.A), UT exhibits the
highest degree of sequence identity with somatostatin,
opioid, and galanin receptors. Consistent with this ob-
servation, phylogenetic analysis shows that all of these
receptors group into the same clade, called the g-group
of rhodopsin receptors (Mirabeau and Joly, 2013).
The close evolutionary relationships between UII- and
somatostatin-related peptides (Parmentier et al., 2011;
see section II.J.3) on the one hand and between UT and
somatostatin receptors on the other hand are consistent
with the hypothesis that all these peptides, together with
their cognate receptors, coevolved from a single ancestral
ligand-receptor pair (Tostivint et al., 2006, 2014).
Although the UII family encompasses several mem-

bers (i.e., two in tetrapods and up to five in teleosts),
until recently only one UII/URP receptor had been
identified. However, in a recent study, Larhammar
et al. (2012) provide evidence that UT also belongs
to a multigenic family and show that the vertebrate

ancestor likely possessed five distinct UT subtypes.
They propose that the single ancestral UT gene was
quadrupled in 2R and that one of these copies un-
derwent a local duplication (Fig. 13). It now appears
that all five UT subtypes have been preserved in some
reptile species, notably in the anole lizard (Anolis
carolinensis), whereas in teleosts and birds, for instance,
only four are still present. In contrast, placental mam-
mals have lost four of the five ancestral UT genes (Fig. 13).
These new data reveal a totally unexpected complexity of
the urotensinergic system in vertebrates (Tostivint et al.,
2014). Further studies are now needed to grasp the full
biologic significance of such a complexity, particularly in
teleosts where many ligands and receptors coexist. In any
event, it is now clear that the relative simplicity of the
urotensinergic system in placental mammals (i.e., two
ligands for only one receptor) should no longer be viewed
as a general rule.

IV. Biologic and Pharmacologic Effects of
Urotensin II and Urotensin II–Related Peptide

A. Effects of Urotensin II/Urotensin II–Related
Peptide in the Central Nervous System

The widespread distribution of UT in the brain and
spinal cord indicates that UII and URP may regulate
various neurophysiological and behavioral activities. As
a matter of fact, central administration of UII induces
a number of biologic effects (Watson and May, 2004; do
Rego et al., 2005; Nothacker and Clark, 2005; Vaudry
et al., 2010).

1. Action on Rapid Eye Movement Sleep. The pres-
ence of UT mRNA and UII binding sites in cholinergic
neurons of the pedunculopontine tegmental nucleus (PPT)
and the lateral dorsal tegmental area (Clark et al., 2001),
two structures of the pons-midbrain transition area
involved in the control of rapid eye movement (REM)
sleep (Baghdoyan et al., 1984; Webster and Jones, 1988;
Quattrochi et al., 1989; Steriade and McCarley, 1990),
lends credence to the idea that the UII system may be
implicated in the regulation of the sleep-wake cycle.
Consistent with this hypothesis, intracerebroventricular
administration of UII or local bilateral injection of UII
into the PPT increases the number of REM sleep
episodes in rat (Huitron-Resendiz et al., 2005; de Lecea
and Bourgin, 2008). Interestingly, only a low dose
(0.6 pmol) of UII significantly augments the amount of
REM sleep, whereas a 10-fold higher dose is ineffective.
The UT antagonist SB-710411 blocks the UII-induced
REM sleep response. Whole cell recording from rat brain
slices revealed that UII triggers cholinergic PPT neurons
by activating a slow inward current (Huitron-Resendiz
et al., 2005).

High concentrations of UT mRNA and UII binding
sites are also observed in the locus coeruleus (Jégou
et al., 2006), a structure involved in the regulation of the
sleep-wake cycle (Jacobs, 1985). In rat brain slices, UII
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stimulates the release of norepinephrine in a concentra-
tion-dependent manner, and this effect is blocked by the
UT antagonist UFP-803 (Ono et al., 2008). The UII-
evoked norepinephrine release is also inhibited by the
central-type benzodiazepine agonist midazolam (Kawaguchi
et al., 2009), suggesting that the effect of UII on REM
sleep may be mediated, at least in part, through in-
teraction with the GABAA receptor. In addition, UII
triggers the release of three other wakefulness-promoting
neurotransmitters, i.e., dopamine, serotonin, and hista-
mine (Ono et al., 2008).
2. Action on Food Intake and Energy Homeostasis.

The UT gene is actively expressed in brain regions
that are known to control feeding behavior, both in
the hypothalamus, i.e., the arcuate nucleus and the

ventromedial hypothalamic nucleus, and in the brain-
stem, i.e., the nucleus of the solitary tract and the
parabrachial nucleus (Jégou et al., 2006). However,
pharmacological studies aimed at investigating the
effect of intracerebroventricular injections of UII on
feeding behavior have led to divergent results. Thus, in
food-restricted mice, intracerebroventricular adminis-
tration of graded doses of UII (10 ng–10 mg per mouse)
provokes a bell-shaped increase in food consumption
with a maximum effect at a 100 ng per mouse dose,
associated with a dose-related increase in water intake
with a maximum effect at a 10 mg per mouse dose (do
Rego et al., 2005). In contrast, in normally fed rats,
intracerebroventricular injection of UII induces a
modest decrease of food intake (Yasuda et al., 2012).

Fig. 13. A proposed evolutionary model for the UT gene family. The names of the different paralogous genes are given in the boxes. Crossed-out boxes
represent lost genes. R, rounds of the whole-genome duplication. [Adapted from Tostivint et al. (2014).]
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Concurrently, intracerebroventricular administration of
UII stimulates the expression of the genes encoding the
uncoupling proteins UCP1 and UCP3 in brown adipose
tissue and causes an increase in sympathetic nerve
activity (Yasuda et al., 2012). In unanesthetized sheep,
intracerebroventricular infusion of UII causes a marked
increase of plasma glucose (Watson and May, 2004; Hood
et al., 2005). Collectively, these observations indicate that
UII may act centrally to regulate food intake and energy
expenditure, but the neuronal systems mediating these
effects are still unknown.
In the marine snail Aplysia californica, the UII-related

peptide (see section II.J.2) modifies the electrophysiolog-
ical activity of neurons that play a role in satiety and/or
aversive signaling (Romanova et al., 2012), supporting
the view that the involvement of UII in the control of
feeding behavior has been conserved during evolution
from molluscs to rodents.
3. Action on Cardiovascular Activity. A high density

of UT mRNA is present in magnocellular neurons of the
paraventricular and supraoptic nuclei and in discrete
regions of the medulla oblongata and pons that are
involved in the control of the multisynaptic cardiovas-
cular reflex arc, including the nucleus of the solitary
tract, the dorsal nucleus of the vagus, the ambiguus
nucleus, the gigantocellular and paragigantocellular
reticular nuclei, the locus coeruleus, and the para-
brachial nuclei (Jégou et al., 2006). This observation
suggests that UII/URP may act centrally to regulate
cardiovascular activity. In normotensive rats, intra-
cerebroventricular administration of 1–10 nmol UII
provokes an increase in arterial blood pressure and
heart rate within 5 minutes after the onset of injection
(Lin et al., 2003a) and the pressure action is exaggerated
in hypertensive rat (Lin et al., 2003b). Similarly, in
sheep, intracerebroventricular administration of UII
(0.2 nmol/kg) provokes a prolonged increase in heart
rate, cardiac output, and blood pressure (Watson et al.,
2003; Hood et al., 2005). In rat, the nicotinic receptor
antagonist pentolinium abrogates the pressor and
tachycardic responses to intracerebroventricularly ad-
ministered UII (Lin et al., 2003a), whereas in sheep, the
b-adrenoreceptor blocker propranolol suppresses the
cardiac responses to intracerebroventricularly injected
UII (Hood et al., 2005). These findings indicate that the
central cardiac actions of UII are mediated through
cholinergic and/or adrenergic neuronal pathways. Intra-
cerebroventricular injection of UII also causes a robust
increase in cortical blood flow (Huitron-Resendiz et al.,
2005; Chuquet et al., 2008). After induction of cerebral
ischemia by occlusion of the right cerebral artery in rat,
intracerebroventricular injection of UII induces a signifi-
cant increase of hemispheric infarction volume, suggesting
that UII exacerbates brain damage caused by an ischemic
insult (Chuquet et al., 2008). Local administration of UII
in discrete brain nuclei produces differential cardiovascu-
lar responses. For instance, microinjection of UII into the

paraventricular or arcuate nucleus of the rat hypothala-
mus significantly increases arterial blood pressure and
heart rate (Lu et al., 2002). In contrast, microinjection
of UII into the A1 (noradrenergic cells) area of the
medulla oblongata induces a dose-related depressor and
bradycardic response (Lu et al., 2002). In normotensive
rats, pentolinium suppresses hypertension and tachy-
cardia induced by intracerebroventricularly injected UII
(Lin et al., 2003a), indicating that the central cardio-
vascular action of UII is mediated through activation of
the sympathetic system. The fact that the hypertensive
effect of UII is significantly greater in SHR than in
WKY (Lin et al., 2003b) provides further evidence for
a role of UII in the pathogenesis of hypertension. In
unanesthetized trout and eel, intracerebroventricular
injection of UII evokes an increase in arterial blood pres-
sure and heart rate (Lancien et al., 2004; Nobata et al.,
2011; Le Mével et al., 1996, 2008, 2012). In these two
teleost fish species, the central vasopressor action of UII
is mimicked by URPs, but the duration of the effect of
URPs is shorter (Nobata et al., 2011; LeMével et al., 2013).

4. Action on Locomotor Activity. The high expres-
sion of UII and URP mRNAs in motoneurons of the
brainstem and spinal cord (Dun et al., 2001; Chartrel
et al., 1996, 2004; Coulouarn et al., 1998, 1999, 2001;
Pelletier et al., 2002, 2005; Dubessy et al., 2008) and
the presence of UT mRNA and UT protein in various
regions of the CNS implicated in the regulation of motor
activity and arousal, such as the cortex, thalamus,
amygdala, striatum, nucleus accumbens, motor nuclei
of the brainstem, and spinal cord (Ames et al., 1999;
Liu et al., 1999; Clark et al., 2001; Gartlon et al., 2001;
Jégou et al., 2006; Bruzzone et al., 2010) strongly
suggest that UII/URP may affect locomotor activity.
Indeed, intracerebroventricular injection of UII in
mouse (10 nmol) and rat (5–15 nmol) induces a dose-
dependent increase of ambulatory movements (Gartlon
et al., 2001; Clark et al., 2005; do Rego et al., 2005, 2008)
(Fig. 14). In rat, UII excites mesopontine cholinergic
neurons (Clark et al., 2005). In mouse cervical spinal
synaptosomes, UII induces a concentration-dependent
stimulation of acetylcholine release (Bruzzone et al.,
2010). In frog, UII accelerates spontaneous transmitter
release at motor nerve terminals (Brailoiu et al., 2003).
These observations indicate that, in mammals and
amphibians, UII may control motor functions through
modulation of motoneuron activity both centrally within
the spinal cord and peripherally at the neuromuscular
junction. In unanesthetized trout, intracerebroventricu-
lar injection of UII or URPs (5–50 pmol) causes a long-
lasting increase in motor activity (Lancien et al., 2004;
Le Mevel et al., 2013). Of note, the minimum effective
doses of UII/URPs influencing locomotion in trout are
10 times lower than those necessary to affect respiratory
or cardiovascular parameters (Lancien et al., 2004).

5. Action on Anxiety and Depression. The UT gene is
expressed in brain regions involved in the control of
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motivation, vigilance, and arousal such as the bed
nucleus of the stria terminalis, the locus coeruleus,
the ventral tegmental area, the laterodorsal tegmental
nucleus, and the nucleus ambiguus (Clark et al., 2001;
Gartlon et al., 2001; Jégou et al., 2006; Hunt et al.,
2010). Intracerebroventricular injection of 15 pmol–3
nmol UII in mice causes anxiogenic-like effects as
assessed in the black-and-white, hole-board, and ele-
vated plus maze tests (Matsumoto et al., 2004; do Rego
et al., 2005, 2008) (Fig. 15). The anxiogenic action of UII
is attenuated by central-type benzodiazepine receptor
antagonists (Kawaguchi et al., 2009). UT mRNA and
UII binding sites also occur in brain regions involved in
the pathophysiology of mood disorders such as the
limbic system (i.e., cerebral cortex, nucleus accumbens,
amygdala, hippocampus), thalamic nuclei, and striatum
(Gartlon et al., 2001; Matsushita et al., 2001; Totsune
et al., 2001; Jégou et al., 2006). Intracerebroventricular
injection of UII in mice causes an increase of the
immobilization time in the tail suspension test and the
forced swimming test (do Rego et al., 2005), two classic

tests used to assess depressive-like behavior. Because
otherwise UII induces hyperlocomotion in mice (do Rego
et al., 2005), the prolonged immobility time observed
in the forced swimming and tail suspension tests cannot
be accounted for by nonspecific effects on locomotor
activity.

6. Action on Ventilation. In trout, intracerebroven-
tricular injection of 0.5 nmol UII or URP1 induces
a strong increase in the ventilation amplitude and
ventilation frequency (Le Mével et al., 2008, 2013).

7. Neuroendocrine Actions. The expression of UT
mRNA in hypothalamic nuclei, notably in the arcuate
nucleus, the supraoptic nucleus, the ventromedial
hypothalamic nucleus, the magnocellular aspect of
the paraventricular nucleus, and the median preoptic
nucleus (Jégou et al., 2006) provides the anatomic
substrate for neuroendocrine actions of UII. In support
of this hypothesis, intracerebroventricular adminis-
tration of UII (0.2 nmol/kg) in unanesthetized ewes
provokes a marked increase in plasma adrenocortico-
tropin (ACTH) and adrenaline levels (Watson et al.,

Fig. 14. Effect of UII on locomotor activity. Mice were given intracerebroventricular injections of vehicle or graded doses of UII (10–10,000 ng/mouse)
and the horizontal (A) and vertical (B) components of motor activity were measured for four consecutive periods of 10 minutes. Mean 6 S.E.M. of data
from 14 mice per group. Dunnett’s t test (*P , 0.005; **P , 0.01; ***P , 0.001). [Reprinted from do Rego et al. (2005). Used with permission.]
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2003). In contrast, intravenous injection of UII (2–40
nmol/kg) does not significantly affect ACTH secretion
(Watson et al., 2003), indicating that UII acts centrally
to stimulate ACTH secretion. Similarly, in rat, intra-
cerebroventricular injection of UII causes an increase
of plasma cortisol level (Watson et al., 2008). The
anxiogenic-like activity of UII (do Rego et al., 2008) is
consistent with a central effect of UII on the hypo-
thalamo-pituitary-adrenal axis. The expression of UT
mRNA in parvocellular neurons of the paraventricular
nucleus (Jégou et al., 2006) suggests that UII-induced
ACTH secretion may be ascribed to a direct stimulatory

action on corticotropin-releasing hormone-producing neu-
rons. Consistent with this notion, intracerebroventricular
injected UII causes an increase of Fos immunoreactivity
in the paraventricular nucleus that contains a dense
population of corticotropin-releasing hormone neurons
(Watson et al., 2008).

In fish, UII exerts neuroendocrine actions at differ-
ent levels of the hypothalamo-pituitary complex. Thus,
at the hypothalamic level, UII stimulates mRNA ex-
pression of growth hormone–releasing hormone and
inhibits mRNA expression of the two isoforms of so-
matostatin, SS1 and SS2, in the orange-spotted grouper

Fig. 15. Effect of UII on anxiety-like behavior. Mice were given intracerebroventricular injections of vehicle or graded doses of UII (1–10,000
ng/mouse) and were placed at the center of an elevated plus-maze 10 minutes later. The number of entries (A), the time spent (B), and the distance
traveled (C) in the open arms, in the central area, and in the closed arms of the maze were measured for 5 minutes. Mean 6 S.E.M. of data from 10 to
20 mice per group. Dunnett’s t test (*P , 0.05; **P , 0.01; ***P , 0.001). [Reprinted from do Rego et al. (2005). Used with permission.]
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(Sun et al., 2014). At the pituitary level, UII inhibits
prolactin secretion in tilapia (Grau et al., 1982; Rivas
et al., 1986) and stimulates growth hormone mRNA
expression in grouper (Sun et al., 2014).

B. Effect of Urotensin II/Urotensin II–Related Peptide
on the Cardiovascular System

The most studied aspect of UII is its vascular activity
(Camarda et al., 2002b; Kompa et al., 2004; Barrette
and Schwertani, 2012; Zemanciková and Török, 2013).
Although previously thought to be endothelin-1, UII
has been demonstrated to be the most potent physio-
logic vasoconstrictor peptide (Ames et al., 1999). Both
endothelium-dependent vasorelaxation and endothelium-
independent vasoconstriction mediated by UII have been
demonstrated in rat-isolated aorta (Gibson, 1987). Despite
being characterized as the most potent isolated vasocon-
strictor, the constrictive effects of UII are variable and
appear to be dependent on the vascular bed (Itoh et al.,
1987, 1988) and the species from which it is isolated
(Douglas et al., 2000b). In addition to its potent vasoactive
effects, UII has several other crucial roles in cardiovascular
physiology and pathophysiology, many of which have only
begun to be identified in recent years. Under normal
physiologic conditions, UII/UT binding is integral in the
control of vascular tone, blood pressure, and maintaining
blood glucose levels (Douglas and Ohlstein, 2000; Douglas
et al., 2000b; Loirand et al., 2008). The physiologic roles of
UII also include mediating the release of endothelial-
derived vasodilators, such as NO, and thus controlling
the contraction and relaxation of vascular smooth
muscle cells (Itoh et al., 1987; Gardiner et al., 2001;
Stirrat et al., 2001). The pathologic roles for the UT
receptor system are still emerging. There is evidence
implicating this system in conditions such as conges-
tive heart failure, atherosclerosis and coronary artery
disease, and both systemic and pulmonary hyperten-
sion, cirrhosis, and chronic renal failure, among others.
There is also evidence suggesting that positive and
negative inotropy, arrhythmias, cardiomyocyte hyper-
trophy, vascular smooth muscle cell proliferation, extra-
cellular matrix production, and hyperpermeability of
endothelial cells are among some of the other cardio-
vascular effects of the urotensinergic system in patho-
physiological conditions (Russell, 2004). This section
will provide an overview of what is currently known
about the physiologic and pathophysiological roles of
UII and URP in the cardiovascular system, with par-
ticular emphasis on the implications in cardiovascular
disease.
1. Remodeling of Vascular Tissue. UII promotes the

formation of the extracellular matrix and proliferation
of various cardiovascular cell types (Matsushita et al.,
2001, 2003; Sauzeau et al., 2001; Watanabe et al.,
2001b; Papadopoulos et al., 2008; Albertin et al., 2009;
Guidolin et al., 2010; Dai et al., 2011; Xu et al., 2012).
For instance, UII stimulates proliferation of vascular

smooth muscle cells via epidermal growth factor re-
ceptor transactivation (Tsai et al., 2009). The effect of
UII on smooth muscle cells growth is abrogated by the
Rho-kinase inhibitor Y-27632 and by the membrane-
permeant RhoA inhibitor TAT-C3 (Sauzeau et al., 2001),
indicating that the growth-stimulating effect of UII is
mediated through activation of the small GTPase RhoA
and its downstream effector Rho-kinase.

UII also promotes proliferation of bone marrow-
derived endothelial progenitor cells (Xu et al., 2012).
In both rat and human endothelial cells, UII exerts a
proangiogenic action in vitro that is comparable to that
of the reference angiogenic cytokine fibroblast growth
factor-2 (Spinazzi et al., 2006; Albertin et al., 2009). In
human umbilical vein endothelial cells, UII increases
mRNA and protein expression of the proangiogenic
factors vascular endothelial growth factor, endothelin-1,
and adrenomedullin (Albertin et al., 2011).

In neonatal rat cardiac fibroblasts, UII increases the
expression of mRNAs for procollagens type I and III
and fibronectin (Tzanidis et al., 2003). UII also stim-
ulates proliferation of neonatal cardiac fibroblasts and
this effect is suppressed by the UT antagonist SB-611812
(Bousette et al., 2006b). In these cells, UII promotes
transforming growth factor-b1 (TGF-b1) expression and
UII-induced collagen synthesis is blocked by a TGF-b1
neutralizing antibody (Dai et al., 2007), indicating that
TGF-b1 mediates the profibrotic effects of UII. Alto-
gether, these observations give credence to the notion
that UII plays a role in tissue remodeling associated
with cardiovascular diseases.

2. Regulation of Vascular Tone. Initial studies of
UII demonstrated a potent vasoconstrictor activity
on isolated arteries from fish, birds, and mammals
(Muramatsu and Kobayashi, 1979; Gibson et al., 1986;
Bottrill et al., 2000) (Fig. 16). Similarly, UII causes
vasoconstriction on human coronary, mammary, and
radial arteries with their endothelia removed (Maguire
et al., 2000; Paysant et al., 2001). In an in vivo study in
human subjects, Böhm and Pernow (2002) observed
potent vasoconstrictor activity upon local administra-
tion of UII. However, a great amount of heterogeneity of
vasoactive responses to UII has been observed among
vascular beds from different species, as well as different
regions within the same species (Medakovic et al., 1975;
Douglas et al., 2000b; Camarda et al., 2002b). Potent
vasodilation in response to UII has been frequently
observed (Gibson, 1987; Stirrat et al., 2001). Interest-
ingly, in a review by Desai et al. (2008) it is suggested
that the vasoactivity of UII is dependent on blood vessel
diameter: smaller arteries of 0.07 mm in diameter,
whose responses are thought to be more endothelium
mediated, vasodilate in response to UII, whereas arteries
0.07–0.25 mm in diameter show a more attenuated
response and large vessels with a 0.25 mm diameter,
whose responses are thought to be more smooth muscle
mediated, show no response (MacLean et al., 2000;
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Stirrat et al., 2001; Bennett et al., 2004). However,
another study reports that UII has no vasoconstrictor
action in human arteries and veins of varying calibers
from different vascular beds (Hillier et al., 2001). The
absence of effect of UII on forearm resistance vessels has
been confirmed in vivo (Wilkinson et al., 2002; Cheriyan
et al., 2009). Properties of the signal transduction cascade
of the UT receptor system could be contributing to the
differential vasoactive effects of UII (see section III.B).
When the UII peptide binds UT in vascular smooth muscle
cells, this leads to dissociation of the abg-G protein com-
plex and activation of Gaq/11. The activated Gaq/11 causes
the PLC-mediated hydrolysis of phosphatidylinositol-4-5
bisphosphate into IP3 and diacylglycerol. IP3 can then
bind to its receptors on endoplasmic/sarcoplasmic retic-
ula, causing the increase in intracellular Ca2+ underlying
contraction (see section III.B). In the endothelium-mediated
vasodilation caused by UII, UT activation on the endothe-
lium leads to the release of NO and endothelium-derived

hyperpolarizing factor, causing vasodilation (McDonald
et al., 2007). Differences in expression of UT in vessels
of different sizes and locations may also contribute
to the variability in response to UII (Onan et al.,
2004a). Interestingly, through its two receptor subtypes,
endothelin-1 also mediates endothelium-independent
vasoconstriction and endothelium-dependent vasocon-
striction (Maguire et al., 2000). Despite being the most
potent vasoconstrictor, UII is often described as having
the most variable responses (Russell and Molenaar, 2004)
and the least efficacy compared with other vasoconstrictors
such as endothelin-1, angiotensin II, and noradrenaline
(Douglas et al., 2000a; Maguire et al., 2000; Camarda
et al., 2002b). Finally, URP has been demonstrated to be
a less potent vasoconstrictor (Chatenet et al., 2004) and
vasodilator (Prosser et al., 2006) than UII in rat, despite
having the same binding affinity to the UT receptor.

The action of UII on vascular tone has also been
explored in submammalian vertebrates. In the bullfrog

Fig. 16. Effect of UII and other vasoactive agents on isolated descending rat aorta. HumanUII provokes a concentration-dependent contraction of aortic rings.
(A) Representative experimental traces illustrating the contractile responses of aortic rings from three separate rats upon exposure to 10 nM UII. Contraction
was sustained and tone did not return to basal levels for .30 minutes after removal of peptide from the organ bath. Also evident are the cyclical changes in
tone frequency observed upon (a) addition or (b) removal of UII to or from [or both (c)] the organ bath. (B) HumanUII was both efficacious and potent compared
with [Arg8]vasopressin, angiotensin II, and prostaglandin PGF2a. [Reprinted from Douglas et al. (2000). Used with permission.]
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Rana catesbeiana, now renamed Lithobates catesbeia-
nus, UII induces a concentration-dependent contrac-
tion of vascular rings from the proximal and distal
regions of the left and right systemic arches (Yano
et al., 1995). In vivo, UII causes a marked reduction of
cardiac output that is not accompanied by a fall in
arterial blood pressure, confirming that UII increases
systemic vascular resistance (Yano et al., 1995; Conlon
et al., 1996). In vascular rings prepared from trout
celiacomesenteric and branchial arteries, UII produces
robust contractions (Le Mével et al., 1996). In un-
anesthetized trout, intra-arterial administration of UII
provokes a dose-dependent increase in arterial blood
pressure associated with a decrease in heart rate (Le
Mével et al., 1996). Collectively, these data indicate
that, in amphibians as in fish, the pressor effects of UII
are mediated predominantly by an increase in systemic
vascular resistance.
3. Regulation of Myocardial Contractility. The di-

rect effects of UII on human myocardial contractility
have been studied in strips of myocardium isolated
from human patients that were stimulated to contract
at 60 beats/min. Application of UII increases the
contractile force in the right atrium and right ventricle,
identifying UII as the most potent inotropic agent to
date, surpassing endothelin-1, serotonin, and nor-
adrenaline (Russell et al., 2001). UII displays similar
contractile activity on myocardial strips isolated from
rats (Gong et al., 2004). In vivo studies in cynomolgus
monkeys and anesthetized rats have shown that acute
systemic infusion of UII mediates a drop in mean
arterial blood pressure, which is contradictory to the
supposed positive inotropic effects of UII (Ames et al.,
1999; Hassan et al., 2005). A potential explanation for
the observed variability in contractile responses to UII
administration is that the drop in blood pressure and
contractility could be due to coronary artery constric-
tion caused by UII (Desai et al., 2008).
4. Role in Hypertension. The status of UII as the

most potent endogenous vasoconstrictor suggests a po-
tential role in essential hypertension (Krum and Kemp,
2007; Desai et al., 2008). Hypertensive patients were
found to have elevated levels of UII compared with
normotensive controls in a study by Cheung et al. (2004),
where UII was directly related to systolic blood pressure.
Hypertensive survivors of myocardial infarction also
have significantly elevated plasma UII levels after
exercise compared with similar patients without hyper-
tension (Rdzanek et al., 2006). A study by Thompson
et al. (2003) was first to measure UII concentrations in
CSF and found CSF UII levels to be lower than those
of plasma and, remarkably, found a significant positive
correlation between CSF UII concentrations and mean
arterial blood pressure. After demonstrating that URP
and UT expression are upregulated in the kidneys of rats
with chronic renal failure or hypertension (Mori et al.,
2009), Hirose et al. (2009) went on to examine the gene

expression of UII, URP, and UT in the heart and aorta of
hypertensive rats and found an increased expression of
the entire urotensinergic system (Hirose et al., 2009).
A development in the study of the urotensinergic system
in hypertension is the study by Behm et al. (2004a)
that reports a hypertensive cat model to be useful in
monitoring classic systemic hypertensive responses and
the effects of UII administration and UT antagonism on
these parameters.

Given the accumulating evidence for a role of the
urotensinergic system in systemic hypertension, studies
have emerged on the roles in pulmonary hypertension.
On the one hand, human UII is a potent vasoconstrictor
in pulmonary arteries isolated from hypoxic rats, and
this response increases at the onset of pulmonary
hypertension (MacLean et al., 2000). On the other hand,
pulmonary arteries isolated from humans did not re-
spond to UII (MacLean et al., 2000; Stirrat et al., 2001).
Although plasma and lung concentrations of UII are
unchanged in hypoxic rats, there was an observed
pulmonary pressure-induced increase in UT expression
in the right ventricle (Zhang et al., 2002). In another rat
model of pulmonary hypertension, UII immunoreactive
staining was upregulated in endothelial cells and smooth
muscle cells of small pulmonary arteries (Qi et al., 2004).
To determine a more direct role for UT in pulmonary
hypertension, a recent study by Onat et al. (2013) used
the UT antagonist palosuran in a rat model for pul-
monary hypertension and observed significant decreases
in mean pulmonary arterial pressure, right ventricular
hypertrophy, and right ventricular myocardial infarction.
There are limitations to this study, because the palosuran
inhibitor also decreased endothelin-1 and TGF-b levels.
More selective inhibitors and further research will
continue to provide insight into the direct roles of the
urotensinergic system in pulmonary hypertension and
other cardiovascular pathologies.

5. Role in Atherosclerosis. Atherosclerosis is a lead-
ing cause of death in Western societies and is a major
contributing factor to several cardiovascular diseases.
Thus determining the role of the urotensinergic system in
atherosclerosis is a critical area of study (Pakala, 2008).
Bousette et al. (2004) were first to demonstrate that
atherosclerotic lesions of the human carotid arteries and
aorta have increased expression of UII and UT compared
with healthy vessels. More specifically, using immuno-
histochemistry, strong UII immunoreactivity was ob-
served in endothelial, smooth muscle, and inflammatory
cells, particularly in the intima, in both carotid and aortic
plaques. Using quantitative real time RT-PCR analysis,
they demonstrated that UII production mainly occurs in
leukocytes, whereas UT expression is mediated primarily
by monocytes and macrophages (Bousette et al., 2004).
This suggests that inflammatory cells play an important
role in the UT-dependent atherosclerotic function. In
a later study, the same group found elevated levels of UII
mRNA and protein in atherosclerotic coronary arteries
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compared with normal coronary arteries, with UII
expression being highest in endothelial cells in areas
with inflammatory or fibrofatty lesions (Hassan et al.,
2005). Similarly, in another study, UII expression was
reported to be localized to areas of macrophage in-
filtration in atherosclerotic coronary arteries (Maguire
et al., 2004). Elevated UII levels have also been observed
in human plasma of patients with atherosclerosis
(Heringlake et al., 2004; Lapp et al., 2004; Loirand
et al., 2008). UII alone and synergistically with oxidized
low-density lipoprotein (LDL) and serotonin also en-
hances vascular smooth muscle cell proliferation, a key
process for the intimal thickening stage of atherosclerosis
(Watanabe et al., 2001a,b). This is of great clinical
significance, because oxidized LDL is a major contribut-
ing factor to atherosclerotic plaque formation. Further-
more, UII has also been linked to increased foam cell
formation in atherosclerosis (Watanabe et al., 2005).
Acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1),
is a key enzyme in cholesterol homeostasis that functions
to convert intracellular free cholesterol into cholesterol
ester for storage in lipid droplets. ACAT-1 is important
in the formation of foam cells, which form early in
atherosclerotic lesions by macrophages continuously
taking up oxidized LDL via scavenger receptors. The
accumulation of these macrophage-derived foam cells
contributes to the necrotic fibrofatty cores seen in
atherosclerotic lesions (Bousette and Giaid, 2006). The
stimulating effects of UII on foam cell formation seem to
involve various intracellular signaling pathways, because
they were inhibited by selective UT antagonist urantide,
protein kinase C inhibitor rottlerin, MEK inhibitor
PD98059, Rho kinase inhibitor Y27632, c-Src protein
tyrosine kinase inhibitor PP2, and G protein inactivator
GDP-b-S (Watanabe et al., 2005). In recent years,
significant evidence has begun to emerge about the roles
of the urotensinergic system in atherosclerosis by the
use of genetic inhibition and the development of new
pharmacological inhibitors. A recent study by You et al.
(2012) demonstrates that UII gene deletion in athero-
sclerotic mice, as well as the use of the UT antagonist
SB657510, ameliorates many features of atherosclerosis,
including reducing serum cytokines and adipokines,
improving aortic atherosclerosis, reducing weight gain
and fat deposition, decreasing blood pressure, and im-
proving glucose tolerance. After observing increased
UII expression in diabetes-associated atherosclerotic
mice and humans, Watson et al. (2013) demonstrated
that the same UT antagonist, SB657510, attenuated
diabetes-associated plaque development. Interestingly,
Bousette et al. (2009) observed that genetic deletion
of UT on ApoE knockout mice (a model for atheroscle-
rosis) increased atherosclerosis as well as serum insulin
and lipids in these mice. It is suggested that UT deletion
in these mice downregulates ACAT-1 expression, ulti-
mately decreasing receptor-mediated lipoprotein up-
take in the liver. This increases hyperlipidemia, decreases

hepatic steatosis and, along with UT-KO–associated
hypertension, is thought to contribute to the increase
in atherosclerosis seen in these mice. The further de-
velopment of pharmacological agents capable of in-
terfering with the urotensinergic system and their
use in animal models will contribute to a better
understanding of the roles of UII and URP in athero-
sclerosis as well as the development of novel thera-
peutic approaches.

6. Role in Heart Failure. Under physiologic con-
ditions, UII expression is strongest in the CNS but is
significantly increased in the heart in cardiovascular
disease states (Bousette and Giaid, 2006; Khan et al.,
2007). Both UII and UT expression increase signifi-
cantly in patients with end-stage congestive heart
failure (CHF), particularly in cardiomyocytes and to
a lesser extent in vascular smooth muscle cells,
endothelial cells, and inflammatory cells (Douglas et al.,
2002). There is a correlation between UII levels and
cardiac dysfunction, because the previously mentioned
study observed an inverse relationship between UII
levels and ejection fraction (Douglas et al., 2002). This
increase in UII seen in cardiac dysfunction is supported
by several studies demonstrating elevated plasma UII
levels in patients with CHF (Ng et al., 2002; Richards
et al., 2002; Russell et al., 2003) or acute myocardial
infarction (Khan et al., 2007). In studies where disease
data were separated by etiology, UII levels in plasma
increased similarly in both ischemic and nonischemic
CHF (Douglas et al., 2002; Russell et al., 2003). The
inverse relationship between UII and ejection fraction in
CHF patients is supported by additional studies by
Gruson et al. (2006). Conversely, there have also been
studies showing no difference in plasma UII in CHF
patients compared with healthy controls (Dschietzig
et al., 2002; Jołda-Mydłowska et al., 2006), potentially
due to differences in patient populations (Bousette and
Giaid, 2006). Recently, Jani et al. (2013) developed
a solid phase extraction technique such that both
plasma UII and URP can be differentially isolated and
assayed separately. Given the structural similarity
between UII and URP, this ensures the specificity of
both measurements. Using this newly developed tech-
nique, Jani et al. (2013) observed significant increases
in both UII and URP plasma levels in patients with
acute heart failure compared with healthy controls,
suggesting roles for the entire urotensinergic system in
acute heart failure. This is supported by a study by
Nakayama et al. (2008) that demonstrates an increase
in gene expression of URP, UII, and UT in the hearts of
rats with CHF.

Although there is accumulating evidence associating
plasma UII levels with cardiac dysfunction (Totsune
et al., 2001, 2004), current studies aim to elucidate
functional roles for the urotensinergic system in heart
failure. In a study by Lim et al. (2004), a noninva-
sive iontophoresis technique was used to examine the
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effects of UII on cutaneous blood flow in healthy and
CHF patients. Although UII administration caused
vasodilation in healthy patients, in patients with CHF,
UII caused vasoconstriction, indicated by reduced
blood flow in skin microcirculation. Because endothe-
lial dysfunction is a common feature of CHF (Katz,
1997) and several studies have shown UII to have
differential endothelium-dependent and independent
vasoactive effects (Gibson, 1987; Lim et al., 2004), this
suggests that the functional state of the endothelium
in CHF is a critical consideration in determining the
effect of the urotensinergic system in CHF. Using
selective UT receptor antagonist SB-611812 in rats
after coronary artery ligation, Bousette et al. (2006a)
demonstrated significantly improved cardiac dysfunc-
tion. Specifically, blocking UT led to decreases in left
ventricular end diastolic pressure, lung edema, right
ventricular systolic pressure, central venous pressure,
cardiomyocyte hypertrophy, and ventricular dilata-
tion. A subsequent study in a rat model of ischemic
CHF showed that SB-611812 administration attenu-
ates cardiac remodeling (Bousette et al., 2006b).
SB-611812–mediated UT blockage decreases myocar-
dial fibrillar collagen deposition and leads to a reduced
ratio of collagen type 1 to type III (Bousette et al.,
2006b), which has been previously linked to decreased
diastolic dysfunction (Nishikawa et al., 2001). This is
consistent with previous work demonstrating the
fibrotic effects of UII in vitro and in vivo. Tzanidis
et al. (2003) demonstrated that incubation of cardiac
fibroblasts with UII leads to increased expression of
fibronectin, type I and type III procollagen mRNAs,
and significant collagen peptide synthesis upon over-
expression of recombinant UT. This suggests that the
fibrotic role of UII in myocardial remodeling would be
enhanced in diseased states where increased UT has
been repeatedly demonstrated (Russell, 2004). There
is an increasing amount of evidence implicating UII
in cardiac hypertrophy. Overexpression of UII and UT
in rat cardiomyocytes increases cardiomyocyte growth
(Zou et al., 2001), enhances sarcomere organization
(Zou et al., 2001) and produces a hypertrophic pheno-
type (Tzanidis et al., 2003; Onan et al., 2004b). In
addition to demonstrating UII-mediated hypertrophic
effects, Johns et al. (2004) found that UII-stimulated
cardiac myocytes secreted inflammatory cytokine IL-6,
suggesting a potential proinflammatory role for UII in
heart failure.

C. Effect of Urotensin II/Urotensin II–Related Peptide
on the Urogenital Tract

The fact that UII is produced and released by human
(Nothacker et al., 1999; Shenouda et al., 2002; Matsushita
et al., 2003) and monkey kidney (Elshourbagy et al.,
2002), the expression of UTmRNA in the rat kidney (Song
et al., 2006a) and the presence of [125I]UII binding sites in
the human (Maguire et al., 2000), cat (Aiyar et al., 2005),

and rat kidney (Disa et al., 2006) indicate that the
urotensinergic system may be implicated in physiologic
regulation of renal function and/or renal pathology.
Indeed, UII infusion causes a marked reduction in
glomerular filtration rate, urine flow, and sodium excre-
tion rate (Abdel-Razik et al., 2008). UII immunoreactivity
is present in the glomerular basement membrane, glo-
merular mesangium, and Bowman capsule of children
with membranoproliferative glomerulonephritis and mem-
branous glomerulonephritis. In the kidney of diabetic
patients, UII and UT gene expression are markedly
increased (Langham et al., 2004). UII and UT mRNA
levels are also significantly elevated in the kidney medulla
of SHR, and the effects of UII on renal blood flow and
glomerular filtration rate are stronger in SHR than in
WKY (Abdel-Razik et al., 2008), supporting a role for UII
in renal pathophysiology.

The URP gene is overexpressed in a mouse model of
obstructive nephropathy called “megabladder,” which
results from lack of bladder smooth muscle differenti-
ation (Singh et al., 2008), suggesting that URP may
play a critical role in bladder smooth muscle development.
In frog, UII produces a concentration-dependent increase
in the frequency of contraction of bladder strips (Yano
et al., 1994). Similarly, in trout,UII induces a spasmosgenic
action on the urinary bladder (Lederis, 1970).

The UII gene is expressed in the human corpus
cavernosum (HCC), and UT is present in endothelial
cells of HCC (d’Emmanuele di Villa Bianca et al., 2010).
In rat, intracavernous injection of UII causes an in-
crease in intracavernous pressure without affecting
systemic blood pressure (d’Emmanuele di Villa Bianca
et al., 2010). In HCC tissue, UII causes an endothelium-
dependent relaxation involving the NO pathway (Bianca
et al., 2012). These observations suggest that the UII/UT
system may represent a novel therapeutic target to treat
erectile dysfunction.

D. Effect of Urotensin II/Urotensin II–Related Peptide
on the Gastrointestinal Tract

The genes encoding UII and/or URP mRNAs are
expressed in the human (Coulouarn et al., 1998; Sugo
et al., 2003; Ong et al., 2005), rat (Sugo et al., 2003), and
mouse intestine (Dubessy et al., 2008), and the UT gene is
expressed in the mouse intestine and colon (Elshourbagy
et al., 2002). UII provokes concentration-dependent con-
tractions of guinea pig ileal segments via activation of
ganglionic cholinergic neurons (Horie et al., 2003). The
contractile response is blocked by cyclooxygenase and
phospholipase A2 inhibitors (Horie et al., 2005), in-
dicating that the effect of UII on myenteric neurons is
mediated through prostaglandin biosynthesis. Moreover,
UII potently relaxes the mouse anococcygeus muscle
(Gibson et al., 1984), suggesting that UII may play
a role in the control of defecation.

In isolated bullfrog longitudinal ileal strips, UII
provokes a concentration-dependent increase in the
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frequency and strength of contractions (Yano et al.,
1994). Pretreatment of the tissues with indometh-
acin significantly reduces the response to UII (Yano
et al., 1994), indicating that prostaglandins mediate the
spasmogenic action of UII in the frog ileum. The ability
of UII to induce contractions of the fish hindgut has
been exploited to set up bioassays that have been used
successfully to monitor chromatographic separation of
fish UII (Zelnik and Lederis, 1973; Chan et al., 1978;
Pearson et al., 1980). Thus, purified UII fractions from
Catostomus commersonii (Zelnik and Lederis, 1973) or
Gillichthys mirabilis urophysial extracts (Chan et al.,
1978) induce contractions of trout rectal strips in a
concentration-dependent manner.
In addition to its spasmogenic action, UII stimulates the

transport of sodium and chloride ions across the goby
posterior intestinal epithelium (Loretz, 1990; Loretz et al.,
1983, 1985), lowers [Ca2+]i in isolated goby enterocytes
(Loretz and Assad, 1986), and increases water absorption
in intestinal sacs from seawater-adapted tilapia (Mainoya
and Bern, 1982). Electrophysiological studies indicate that
UII exerts a dual effect on the isolated posterior intestine
of freshwater-adapted European eel Anguilla anguilla: UII
reduces short-circuit current and transepithelial potential
difference at concentrations ranging from 10 to 100 nM
and increases these parameters at a concentration of
500 nM (Baldisserotto and Mimura, 1997). Altogether,
these observations substantiate a role of UII in osmoreg-
ulation in fish.

E. Effect of Urotensin II/Urotensin II–Related Peptide
on the Pancreas

The UT gene is expressed in the human (Ames et al.,
1999; Douglas and Ohlstein, 2000), monkey, and mouse
pancreas (Elshourbagy et al., 2002). The UII gene is also
expressed in the human and rat pancreas (Coulouarn
et al., 1998; Ames et al., 1999; Sugo et al., 2003), and the
evidence of the presence of the UII peptide has been
found in a rat pancreas extract by reversed-phase HPLC
analysis combined with radioimmunoassay detection
(Silvestre et al., 2004), suggesting that UII may control
pancreatic activity. The effect of UII on the endocrine
pancreas has been studied using an in situ perfused rat
pancreas model (Silvestre et al., 1986). It was first
observed that synthetic frog UII, at doses of 10 and
100 nM, significantly reduces glucose-evoked insulin re-
lease but does not affect glucagon and somatostatin
secretion (Silvestre et al., 2001). Frog UII also inhibits
the insulin response to arginine (Silvestre et al., 2001).
It was subsequently shown that rat UII provokes a
concentration-dependent inhibition of glucose-induced
insulin secretion with an IC50 of 0.12 nM (Silvestre
et al., 2004, Liu and Zhu, 2010). Rat UII also attenuates
insulin secretion elicited by various secretagogues that
act on pancreatic b-cells through diverse signaling path-
ways (Silvestre et al., 2004, 2009). Thus, UII inhibits
the insulin response to the cholinergic agonist carbachol

that activates polyphosphoinositide turnover (Gilon and
Henquin, 2001), glucagon-like peptide-1 that stimulates
the adenylyl cyclase/cyclic AMP pathway (Delmeire
et al., 2003), the dihydropyridine BAY K 8644 that
induces Ca2+ influx through L-type Ca2+ channels (Hess
et al., 1984), and the sulfonylurea tolbutamide that
closes ATP-dependent K+ channels (Henquin et al.,
1992). Consistent with these observations, it was pre-
viously reported that the insulinostatic effect of somato-
statin could be ascribed both to decreased formation of
cyclic adenosine monophosphate (Sharp, 1996) and
inhibition of the intracellular Ca2+ response to various
insulin secretagogues (Nilsson et al., 1989). The in-
hibitory effect of UII on glucose-induced insulin secre-
tion is blocked by the UT antagonists palosuran and
urantide but not by a somatostatin antagonist (Marco
et al., 2008). Reciprocally, palosuran does not reverse
the insulinostatic effect of somatostatin (Marco et al.,
2008). Interestingly, both palosuran and urantide potenti-
ate glucose-evoked insulin release, indicating that endoge-
nous UII exerts a tonic inhibitory action upon b-cell
secretory activity (Marco et al., 2008).

Elevated UII levels have been detected in the plasma
of diabetic patients (Totsune et al., 2003, 2004; Krum
and Gilbert, 2003; Suguro et al., 2008), particularly in
individuals presenting with metabolic syndrome (Ong
et al., 2008; Oguri et al., 2009; Gruson et al., 2010b).
In addition, overexpression of UII and UT has been
reported in the kidney of diabetic patients (Langham
et al., 2004). The UII and UT genes are upregulated in
both the aorta and kidney of nonobese diabetic rats
(Tian et al., 2008; Xie and Liu, 2009). Genetic studies
have shown that single nucleotide polymorphisms
(SNPs) in the UII gene are associated with type 2
diabetes mellitus (T2DM) in the Northern Chinese (Sun
et al., 2002, Zhu et al., 2002; Tan et al., 2006), Hong
Kong Chinese (Ong et al., 2006), Japanese (Wenyi et al.,
2003; Suzuki et al., 2004), Turkish (Okumus et al.,
2012), and Spanish populations (Sáez et al., 2011). In
particular, the SNP 3836C→T (S89N) found in the
Japanese and Hong Kong populations has been associ-
ated with elevated plasma UII level, higher plasma
insulin, insulin resistance, and susceptibility of de-
veloping T2DM (Wenyi et al., 2003; Suzuki et al., 2004;
Ong et al., 2006). SNPs have also been reported in the
UT promoter in the Japanese population, but no
significant association with T2DM was found (Suzuki
et al., 2004). In bovine, 5 SNPs have been identified for
the UII gene and 14 SNPs for the UT gene, and
a significant association with fat deposition and fatty
acid composition was reported (Jiang et al., 2008). In the
coho salmonOncorhynchus kisutch, UII enhances glucose
mobilization, increases liver glucose-G-phosphatase ac-
tivity, and stimulates glycogene synthetase activity
(Sheridan et al., 1987).

The genetic association between SNPs in the UII gene
and T2DM suggests that UT antagonists may have
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beneficial effects for the treatment of diabetes and
metabolic syndrome. As a matter of fact, treatment of
streptozotocin-induced diabetic rats with palosuran
(Clozel et al., 2004) improves survival, increases serum
insulin concentration, reduces glycemia, attenuates
albuminuria, and prevents renal tubular degeneration
(Clozel et al., 2006). However, clinical trials led to
divergent results (Desai et al., 2008; Tsoukas et al.,
2011). One study indicates that, in hypertensive T2DM
patients affected by nephropathy, palosuran (125 mg
twice daily) reduces albuminuria, suggesting that block-
age of UT could be a therapeutic approach for the
treatment of diabetic nephropathy (Sidharta et al.,
2006). However, the authors subsequently found that
palosuran does not improve insulin secretion, insulin
sensitivity, and glycemia in T2DM (Sidharta et al.,
2009). In addition, Clozel et al. (2006) conducted a
series of three clinical proof-of-concept studies in
diabetic nephropathy patients that did not reveal
major efficacy of palosuran at a relatively high dose
(300 mg/kg per day). The lack of effect of palosuran on
albuminuria, blood pressure, glomerular filtration rate,
and renal plasma flow in patients with T2DM nephrop-
athy was recently confirmed by the PROLONG study
group (Vogt et al., 2010).

F. Effect of Urotensin II/Urotensin II–Related Peptide
on the Liver

The liver is a documented site of UII and URP
production in human (Coulouarn et al., 1998; Sugo
et al., 2003) and sheep (Charles et al., 2005). In
cirrhotic bile duct–ligated rats, increased expression
of UII and UT is observed in hepatic tissue and portal
veins (Trebicka et al., 2008). In cirrhotic patients,
plasma UII concentration is elevated in the hepatic
vein compared with the hepatic portal vein (Heller
et al., 2002). Patients with chronic liver disease exhibit
high serum UII levels that are associated with the
severity of the disease and the extent of portal hyperten-
sion (Kemp et al., 2007). The expression of UT mRNA and
UT protein is also significantly increased in the liver of
patients with cirrhosis and portal hypertension (Liu
et al., 2010a). Taken together, these observations in-
dicate that the liver is a source of UII production, par-
ticularly in pathophysiological conditions, and that the
urotensinergic system may play a role in cirrhosis and
portal hypertension.

G. Effect of Urotensin II/Urotensin II–Related Peptide
on the Adrenal Gland

Intracerebroventricular injection of UII significantly
increases plasma levels of adrenaline, ACTH, and cortisol
in unanesthetized sheep (Watson et al., 2003) and
corticosterone in rat (Watson et al., 2008). Expression of
UII mRNA, but not URP mRNA, has been observed in
the mouse and rat adrenal gland (Sugo et al., 2003;
Dubessy et al., 2008) and in human adrenocortical and

adrenomedullary tissues (Takahashi et al., 2003; Zeng
et al., 2006; Giuliani et al., 2009). Genome-wide micro-
array experiments have shown that the UII gene is
downregulated in the adrenal gland of SHR, stroke-prone
SHR, and malignant stroke-prone SHR (Ashenagar et al.,
2010). Expression of UT mRNA has also been reported in
the mouse and monkey adrenal gland (Elshourbagy et al.,
2002) and in human adrenal tissue (Takahashi et al.,
2003; Zeng et al., 2006; Giuliani et al., 2009). Immuno-
histochemical experiments have also shown the presence
of the UII peptide in the human adrenal medulla
(Morimoto et al., 2008). UII and UT mRNAs are both
present in freshly dispersed and cultured rat adrenocor-
tical cells (Albertin et al., 2006). These observations
suggest that UII may act as a paracrine factor, produced
either by the adrenal cortex or the adrenal medulla,
regulating corticosteroid secretion. In agreement with
this hypothesis, UII induces a concentration-dependent
inhibition of basal corticosterone secretion from cultured
rat adrenocortical cells but does not affect ACTH-evoked
corticosterone secretion (Albertin et al., 2006).

The UII and UT genes are expressed in cortisol-
producing adenoma, aldosterone-producing adenoma,
carcinoma, and pheochromocytoma (Takahashi et al.,
2001, 2003; Zeng et al., 2006). UII and UT mRNAs are
also expressed in PC12 rat pheochromocytoma cells
(Aita et al., 2010). The presence of the UII peptide
and UT protein has been confirmed in human adre-
nocortical and adrenomedullary tumors by immuno-
blot analysis and immunohistochemistry (Takahashi
et al., 2001; Morimoto et al., 2008; Giuliani et al.,
2009). Consistent with these data, UII stimulates
proliferation of human adrenocortical carcinoma cells
(Takahashi et al., 2003) and pheochromocytoma cells
(Zeng et al., 2006; Aita et al., 2010) in a concentration-
dependent manner.

In the frog Pelophylax ridibundus, UII has no effect
on corticosterone and aldosterone secretion from peri-
fused interrenal tissue. In addition, UII does not modify
ACTH- and angiotensin II–induced corticosteroid secre-
tion (Feuilloley et al., 1994). In rainbow trout and
European flounder, UII stimulates cortisol secretion
in vitro by perifused interrenal tissue derived from
seawater-adapted fish but does not affect cortisol
secretion in tissue derived from freshwater-adapted
fish (Arnold-Reed and Balment, 1994; Kelsall and
Balment, 1998). In vivo, intra-arterial infusion of UII
in seawater-adapted flounder causes a dose-dependent
increase in plasma cortisol levels (Kelsall and Balment,
1998).

V. Conclusions and Perspectives

Since the discovery 15 years ago of the potent
vasoconstrictor and biologic effects of UII, substantial
research has been performed to understand the role of
UII in human physiology and pathophysiology. Toward
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this goal, high affinity and selective peptidic and
nonpeptidic receptor agonists and antagonists have
been developed to further elucidate the pharmacology
and biology of UII. Clearly, because of their physi-
ochemical and pharmacokinetic properties, nonpepti-
dic UII antagonists are attractive alternatives to
peptidic antagonists, and they offer the opportunity
to evaluate the role of UII in chronic disorders. These
pharmacological tools have been employed to explore
the role of endogenous UII in pathophysiology. The
most studied clinical indications include hypertension,
heart failure, renal disease, atherosclerosis, asthma,
pulmonary hypertension, and diabetes. Although these
compounds have been studied in a variety of preclinical
animal models with encouraging results, UT antago-
nists have yet to be systematically and comprehensively
studied in human diseases (Gilbert et al., 2004). There
is still a paucity of human investigation with UT
antagonists, and the clinical studies that have been
conducted have not fully clarified the understanding
of the role of UII in human pathophysiology.
For example, a clinical study by Vogt et al. (2010)

examined the effects of the UT antagonist palosuran
in hypertensive patients with diabetic nephropathy.
Contrary to preclinical data, a 4-week treatment of
subjects with palosuran did not affect blood pressure,
glomerular filtration rate, renal hemodynamics, or
albuminuria. Hence, these results do not support a role
of UII in the control of blood pressure or renal function
in patients with diabetic nephropathy. Also, the UT
antagonist GSK1440115 was tested recently in a phase
1B clinical study in asthma patients. Again, contrary
to preclinical data, acute UT antagonism did not in-
duce bronchodilation or protect against methacholine-
induced bronchospasm (Portnoy et al., 2013). This
clinical study suggested that antagonism of UII is not
likely to provide benefit as an acute bronchodilator in
asthmatic patients. In addition, there are contradictory
results in the literature on effects of exogenously
administered UII on cardiovascular function, as well
as regional differences in the vasoconstrictor response
to UII. Moreover, vasopressor effects of UII may have
differential cardiovascular consequences depending on
the disease state. Clearly, more work needs to be per-
formed, because clinical research has not revealed an
unambiguous role of UII in human disease.
Despite UII being recognized as the most potent

vasoconstrictor identified so far, a definitive role for
UII in cardiovascular disease is still under investi-
gation. The major challenge for the future will be
clinical demonstration of efficacy of receptor antago-
nists in human pathophysiology, and then UT may
emerge as an important therapeutic target. Phar-
macological intervention through the now currently
orally active UT antagonists will help provide a ra-
tional approach to understanding the role of UII in
pathophysiology.
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