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Abstract——Asubsetofpotassiumchannels is regulated
primarily by changes in the cytoplasmic concentration of
ions, including calcium, sodium, chloride, andprotons. The
eight members of this subfamily were originally all desig-
nated as calcium-activated channels. More recent studies
have clarified the gating mechanisms for these channels

andhavedocumented that not allmembers are sensitive to
calcium. This article describes themolecular relationships
between these channels and provides an introduction
to their functional properties. It also introduces a new
nomenclature that differentiates between calcium- and
sodium-activated potassium channels.

I. Introduction
The first evidence that elevations of intracellular Ca2+

can increase theK+ permeability of the plasmamembrane
was obtained by demonstrating that chelation of Ca2+

suppresses the flux of K+ out of red blood cells (Gardos,
1958). Intracellular injection of Ca2+ into neurons of both
invertebrates and vertebrates was subsequently found to
activate a K+ conductance (Krnjevi�c and Lisiewicz, 1972;

Meech, 1972). The discovery of a Drosophila mutant
termed slowpoke (slo) (Elkins et al., 1986), in which a
Ca2+-dependent component of K+ current is lacking in
indirect flight muscles, eventually led to the identification
of the first gene that encodes a Ca2+-activated K+ channel
(Atkinson et al., 1991; Adelman et al., 1992) and its
mammalian homolog (Butler et al., 1993). The properties
of this channel in heterologous expression systems
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corresponded very closely to a channel that had by then
been very well characterized in many types of tissues as
well as in lipid bilayers. This K+ channel is sensitive to
both Ca2+ and transmembrane voltage and had been
termed the BK or MaxiK channel because of its large
unitary conductance (Contreras et al., 2013). This pro-
totypical Ca2+-gated channel is termed KCa1.1 in the
standardized nomenclature that is used to classify K+

channels (Wei et al., 2005). Like all the other channels
discussed in this review, a functional K+ channel is
comprised of a tetramer of these pore-forming proteins.
Genes that encode other Ca2+-dependent K+ channels

were subsequently discovered by screening cDNA li-
braries for sequences resembling the ion-selective pore
of known K+ channels, and then testing the expressed
channels for sensitivity to changes in internal Ca2+

levels. After KCa1.1, the next two classes of channels to
be discovered were found to be gated by Ca2+ but, unlike
KCa1.1, to be insensitive to membrane voltage. These
are the KCa2 family, which consists of three members
(KCa2.1, KCa2.2, and KCa2.3) (Köhler et al., 1996) and
the KCa3 family, which contains only a single member
(KCa3.1) (Ishii et al., 1997b; Joiner et al., 1997). These
two families have also been termed SK and IK channels,
based on the fact that, when compared with KCa1.1
channels, their unitary conductance is either small
(KCa2 channels) or intermediate (KCa3.1) (Adelman
et al., 2012). In fact, we now know that KCa2 channels
are responsible for the current observed after injections
of Ca2+ into neurons and that KCa3.1 is the channel first
detected in red blood cells.
Three other genes were assigned to the family of

Ca2+-dependent K+ channels, based on predictions that
their structures resemble those of KCa1.1. Although
these were given the names KCa4.1, KCa4.2, and KCa5.1,
they have more commonly been referred to in the
literature by other names including those used in the
original publications; Slack or Slo2.2 (Joiner et al., 1998;
Yuan et al., 2003), Slick or Slo2.1 (Bhattacharjee et al.,
2003; Yuan et al., 2003), and SLO3 (Schreiber et al.,
1998), respectively. Figure 1 shows the phylogenetic
relations among these channels, as well as between the
smaller conductance channels. The Slack and Slick

channels form a subgroup that is distinct from KCa1.1
and KCa5.1. In the past 15 years, it has become evident
that these channels are not activated by intracellular
Ca2+ but that they are regulated by changes in cyto-
plasmic levels of Na+ as well as Cl2 (Bhattacharjee
et al., 2003; Yuan et al., 2003; Kaczmarek, 2013). This
review will cover the general properties of each of the
members of the Ca2+- and Na+- dependent K+ channels,
with a particular focus on the channels that have been
found to be activated by Na+. We also propose a new
nomenclature (KNa1.1, KNa1.2) for the two channels
that are activated by Na+ (see Fig. 1). This nomencla-
ture is more consistent with the fact that Na+-activated
K+ currents in native cells have generally been termed
KNa currents (Kameyama et al., 1984; Dryer, 1994;
Bhattacharjee and Kaczmarek, 2005). The new nomen-
clature has been implemented in the International
Union of Basic and Clinical Pharmacology (IUPHAR)
database (http://www.guidetopharmacology.org/GRAC/
FamilyDisplayForward?familyId=69) and in the re-
lated Concise Guide to Pharmacology for voltage-gated
ion channels (Alexander et al., 2015).

II. KCa1.1—The Prototypical
Ca2+-Activated Channel

TheKCa1.1 channel, also known as the BK,Maxi K, or
Slo1 channel, has probably received more experimental
attention than all of the other channels in this family
combined, and its properties have been reviewed re-
cently (Contreras et al., 2013). One factor that has
contributed to the popularity of this channel is its very
large unitary conductance, 200 pS or more in symmet-
rical K+ concentrations (Marty, 1981). Because it is
expressed in a wide range of tissues, it is the easiest
channel to detect when patch clamping cells and it is
readily reconstituted into lipid bilayers (Pallotta et al.,
1981; Latorre et al., 1982). KCa1.1 channels become
activated by elevations of Ca2+ in the range of tens to
hundreds micromolar. These relatively high physiologic
concentrations are achieved close to plasma membrane
Ca2+ channels or at sites of Ca2+ release from intracel-
lular stores.

As described above, the gene for KCa1.1 was first
identified by genetic studies in Drosophila (Atkinson
et al., 1991; Adelman et al., 1992; Butler et al., 1993).
Structural studies of the channel protein have been
carried out both by X-ray crystallography and cryoelec-
tron microscopy (Wang and Sigworth, 2009; Yuan et al.,
2012; Wrighton et al., 2015). One feature that distin-
guishes KCa1.1 (and also KCa5.1, see below) from all
other K+ channels is that it has seven transmembrane
domains (Fig. 2). In addition to the canonical six trans-
membrane domains S1-S6 that are common to all of the
voltage-dependent KV family channels, there is an
additional domain termed S0, preceding S1 (Meera
et al., 1997). As a result, the N-termini of the KCa1.1

Fig. 1. Phylogenetic relations among members of the Ca2+- and Na+-
dependent K+ channel families.
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and KCa5.1 proteins are located on the outside rather
than the inside of a cell.
The open probability of KCa1.1 channels is sensitive to

membrane voltage, and this sensitivity is conferred by
charged residues in the S2, S3, and S4 domains (Stefani
et al., 1997; Horrigan and Aldrich, 1999, 2002; Ma et al.,
2006). These move in response to changes in trans-
membrane voltage even in the absence of internal Ca2+.
Activation by elevations of Ca2+ occurs by shifting the
voltage dependence of the channel to progressively
more negative potentials. Binding sites for Ca2+ ions
are located in two regions of the extended cytoplasmic
C-terminal termed the RCK1 and RCK2 domains (for
regulator of conductance for K+ ions) (Jiang et al., 2002;
Wu et al., 2010; Yuan et al., 2010). A region termed the
Ca2+ bowl located in RCK2 containsmultiple negatively
charged residues (Schreiber and Salkoff, 1997; Bao
et al., 2004). The eight RCK domains in each tetrameric
KCa1.1 channel together form a “gating ring” that opens
on binding of Ca2+. This conformational change is
coupled to the transmembrane regions through a
cytoplasmic linker region next to the activation gate in
the S6 segment. This allosteric mechanism leads to an
increase in open probability following Ca2+ binding

(Horrigan and Aldrich, 1999; Jiang et al., 2002; Wu
et al., 2010; Miranda et al., 2013).

The Ca2+-sensitivity of KCa1.1 channels, as well as
their kinetic behavior, sensitivity to pharmacological
agents, and response to activation of protein kinases,
varies considerably in different tissues (Contreras et al.,
2013). Although there is only one gene that encodes
these channels, such diversity is achieved by alternative
splicing ofmRNAs (Navaratnam et al., 1997; Rosenblatt
et al., 1997) and by the fact that the properties of
the channel are substantially modified by auxiliary
b-subunits. Alternative splicing not only determines
the response to Ca2+ but also the targeting of the
channel to the plasma membrane or to intracellular
organelles such as mitochondria (Lagrutta et al., 1994;
Xie and McCobb, 1998; Chen et al., 2005; Fodor and
Aldrich, 2009; Singh et al., 2012). Binding of the KCa1.1
a subunit to one of four different auxiliary subunits (b1,
b2, b3, and b4) alters voltage dependence, activation
rate, sensitivity to a wide range of drugs, and deter-
mines whether the channel inactivates during sus-
tained depolarization (Brenner et al., 2000; Uebele
et al., 2000; Xia et al., 2000; Contreras et al., 2012).
The properties of the channels can be further modified
by association with g-subunits, also known as leucine-
rich repeat proteins (Yan and Aldrich, 2012), and by
binding to heme, which may allow the channel to
respond to changes in redox state of the cell (Tang
et al., 2003).

Although KCa1.1 channels are expressed in many
different tissues, their activity is particularly prom-
inent in smooth muscle cells, including those of the
vascular endothelium (Contreras et al., 2013). Channel
activation, in response to synthesis of nitric oxide (NO)
and activation of cGMP-dependent protein kinase,
produces muscle relaxation, altering blood vessel di-
ameter and blood pressure. Other tissues in which
KCa1.1 channels have been studied include sensory hair
cells of the cochlea of lower vertebrates, where they
establish the tonotopic gradient that determines the
frequency of sound to which each cell responds (Roberts
et al., 1990; Bai et al., 2011). In neurons, as well as in
pancreatic b-cells, KCa1.1 channels regulate action
potential firing and secretion (Rajan et al., 1990;
Faber and Sah, 2003).

As described above, the pharmacological properties
of KCa1.1 channels depend on their association with
auxiliary subunits. The scorpion toxins charybdotoxin,
iberiotoxin, and slotoxin are effective pore blockers for
these channels (Kaczorowski et al., 1996; Garcia-Valdes
et al., 2001). Paxilline is also an effective blocker, widely
used in studies in the nervous system (Sanchez and
McManus, 1996). A variety of compounds that activate
KCa1.1 channels, such as NS1619, are also commonly
used experimental agents (Li et al., 2003). In addition,
KCa1.1 channels are very sensitive to relatively
low concentrations of ethanol, which potentiate their

Fig. 2. Schematic representations of the transmembrane topology of KCa
and KNa channels.
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activity (Treistman and Martin, 2009). Both the poten-
tiating effects of ethanol and development of subse-
quent tolerance to its actions depend on both direct
interactions with the KCa1.1 a-subunit, the presence of
the b4 subunit, and the lipid environment (Mulholland
et al., 2009).
Mutations in either the a- or b-subunits of KCa1.1

channels, as well as changes in expression levels
of these proteins, are linked to a variety of clinical
conditions including hypertension, diabetes, asthma,
and epilepsy (Fernández-Fernández et al., 2004; Du
et al., 2005; Seibold et al., 2008; Wang et al., 2012). For
example, a mutation of the a-subunit D434G in the
cytoplasmic linker that couples the gating ring to the
activation gate increases channel open probability,
resulting in epilepsy (Yang et al., 2010).

III. The KCa2 Family—Small Conductance
Channels Regulated by Calmodulin

This family consists of three members, KCa2.1,
KCa2.2, and KCa2.3 (commonly also termed SK1, SK2,
and SK3), each of which has a unitary conductance of
;10 pS when measured in symmetrical K+ solutions
(Köhler et al., 1996). Their properties and physiologic
functions have been reviewed (Stocker, 2004; Adelman
et al., 2012). In their transmembrane organization,
KCa2 channels resemble the voltage-dependent KV

family of channels with six alpha-helical transmem-
brane segments, S1-S6, and a consensus K+-selective
pore sequence between S5 and S6 (Fig. 2). Unlike the
voltage-dependent channels, however, there is only a
small number of positively charged residues in the
fourth transmembrane segment S4. Consistent with
the role of the S4 segment as a voltage sensor in KV

channels, the KCa2 family channels have linear current-
voltage relations and are insensitive to changes in
transmembrane voltage. With a KD for activation by
Ca2+ of only several hundred nanomolar, they are
substantially more sensitive to small changes in cyto-
plasmic Ca2+ levels than are the KCa1.1 channels
(Köhler et al., 1996). This sensitivity can be attributed
to the fact that the a-subunits of these channels form a
heteromeric complex with calmodulin and that it is the
binding of Ca2+ to this constitutively associated calmod-
ulin rather than to the a-subunit of the channel itself
that confers Ca2+ sensitivity (Xia et al., 1998).
In addition to calmodulin, KCa2.2 and KCa2.3 chan-

nels in their native state enter into a multiprotein
complex containing casein kinase 2 and protein phos-
phatase 2A (Bildl et al., 2004; Allen et al., 2007). Within
this complex, casein kinase phosphorylates a threonine
residue in calmodulin, reducing sensitivity of the channel
to Ca2+ and increasing the rate at which channels close
after transient elevation of cytoplasmic Ca2+ (Bildl et al.,
2004). When activated within the complex, protein
phosphatase 2A reverses this effect (Allen et al., 2007).

The physiologic role of KCa2 family channels has been
investigated most extensively in the nervous system,
where they are expressed at high levels in cerebellar
Purkinje cells and in pyramidal cells of the hippocam-
pus and cerebral cortex (Stocker and Pedarzani, 2000;
Sailer et al., 2002). KCa2.3 channels are also present in
nonneuronal tissues, including the vascular endothe-
lium, urinary bladder smooth muscle, and cardiac tissue
(Taylor et al., 2003; Chen et al., 2004; Rosenbaum et al.,
2012). In many types of neurons, a prominent action of
KCa2 channels is to generate a Ca2+-dependent after-
hyperpolarization (AHP) of the membrane that follows a
burst of action potentials. KCa2 channels thus regulate
neuronal firing frequency and spike frequency adapta-
tion (Adelman et al., 2012). There exist multiple compo-
nents of AHPs, eachwith a different time course after the
burst. Genetic deletion of the KCa2.2 subunit abolishes
themediumAHP, which decays over several hundreds of
millisecond after a train of action potentials, but does not
affect other components of the AHP (Bond et al., 2004).

KCa2 channels may be closely coupled selectively with
L-type calcium channels to allow for activation by Ca2+

nanodomains formed by Ca2+ influx through the cal-
cium channels (Marrion and Tavalin, 1998). Neuro-
transmitter receptors that also elevate cytoplasmic Ca2+

levels, either by Ca2+ influx through the receptor as in
the case of NMDA receptors (Oliver et al., 2000; Faber
et al., 2005; Ngo-Anh et al., 2005), or by triggering
release of Ca2+ from intracellular stores (Power and
Sah, 2008; Klement et al., 2010), can also produce
neuronal hyperpolarization by activating KCa2 chan-
nels. The trafficking of KCa2.2 channel subunits into
and out of the spines on the dendrites of hippocampal
neurons determines the onset and amplitude of long-
term potentiation, a prolonged increase in excitatory
synaptic transmission that follows repetitive synaptic
stimulation of hippocampal pyramidal cells (Lin et al.,
2008; Allen et al., 2011). KCa2 channels thus seem to
play an important role in learning and memory
(Hammond et al., 2006).

The key pharmacological agent that has been used to
characterize the properties of this family of small
conductance Ca2+-activated K+ channels, both in native
neurons and expression systems, is the neurotoxin
apamin, a component of bee venom that appears to be
fully selective for this class of channel (Adelman et al.,
2012). Although effectively a pore blocker, the selectiv-
ity for KCa2 channels is determined by residues outside
of the pore region itself (Ishii et al., 1997a; Nolting et al.,
2007; Lamy et al., 2010). A variety of compounds that
positively modulate these channels by apparently in-
creasing their Ca2+ sensitivity have also been found
(Christophersen and Wulff, 2015). The first of these
to be characterized was 1-ethyl-2-benzimidazolinone
(Devor et al., 1996), a compound that binds at the
calmodulin-channel interface (Zhang et al., 2012a).
Another activator, NS309, has been shown by X-ray
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crystallography to bind to a short region of the channel
that links the cytoplasmic domain of KCa2.2 to the S6
segment (Zhang et al., 2013a). This is believed to
stabilize the open state of the channel and facilitate
gating in the presence of the channel activator.
Based on the physiologic role of KCa2 channels in

regulating neuronal excitability, KCa2 activators, which
can reduce neuronal firing, are being investigated for
the treatment of conditions characterized by hyperex-
citability, such epilepsy, ataxia, and alcohol dependence
(Lam et al., 2013). KCa2 channel inhibitors in contrast
have been suggested to improve learning and memory
(Lam et al., 2013) and are being investigated preclini-
cally for the treatment of atrial fibrillation based on the
role of KCa2 channels in modulating action potential
duration in the heart (Grunnet et al., 2012).

IV. KCa3.1—A Multifunctional Intermediate-
conductance Channel Regulated by Calmodulin

KCa3.1 channels are closely related to the KCa2 family
and were originally termed SK4 channels (Ishii et al.,
1997b; Joiner et al., 1997). Their unitary conductance is,
however, greater than that of KCa2 channels, giving rise
to the name IK (for intermediate conductance for K+),
which has also been used widely to denote these
channels. Like the KCa2 family channels, the sensi-
tivity of KCa3.1 to Ca2+ is determined by its associa-
tion with calmodulin (Fanger et al., 1999; Joiner et al.,
2001) (Fig. 2).
The properties of KCa3.1 closely match those of the

first described Ca2+-activated K+ conductance, the
“Gardos channel” in red blood cells, where it is
expressed at high levels and plays a role in volume
regulation (Vandorpe et al., 1998; Hoffman et al., 2003).
It is also the major Ca2+-activated K+ channel in human
T lymphocytes (Logsdon et al., 1997) and in other
immune cells such as B lymphocytes, mast cells,
macrophages, and microglia (Cahalan and Chandy,
2009; Feske et al., 2015). KCa3.1 further plays a
significant role in many other nonexcitable tissues such
as the vascular endothelium, fibroblasts, dedifferenti-
ated vascular smooth muscle cells, and secretory epi-
thelia (Wulff and Köhler, 2013). In all these tissues,
KCa3.1 regulates Ca2+ signaling and membrane poten-
tial. Although two recent studies indicated that KCa3.1
may be expressed in neurons and that it may contribute
to the slow afterhyperpolarization that follows a burst of
action potentials in neurons of the hippocampus (King
et al., 2015; Turner et al., 2015), another study presented
data that KCa3.1 does not contribute to this slow AHP
(Wang et al., 2016). The potential role of the channel in
neurons therefore currently remains unclear.
Many of the pharmacological agents that activate the

KCa2 channels are also positive modulators of KCa3.1
(Wulff and Christophersen, 2015) and are being investi-
gated as novel endothelial-targeted antihypertensives

because of the role of KCa3.1 and KCa2.3 in the
endothelium-derived hyperpolarization vasodilator re-
sponse (Brähler et al., 2009). The pharmacology of agents
that suppress KCa3.1 current, however, differs from that
of the KCa2 family. For example, KCa3.1 is insensitive to
apamin, but can be blocked by charybdotoxin and the
small molecule TRAM-34 (Wulff et al., 2000). Genetic
deletion and/or pharmacological treatment with TRAM-
34 have been used to demonstrate that KCa3.1 poten-
tially constitutes a novel target for immunosuppression
in autoimmune diseases and stroke as well as for
fibroproliferative disorders, asthma, and atherosclerosis
(Wulff and Castle, 2010). However, the only clinical
application of KCa3.1 blockers has so far been for the
treatment of sickle cell anemia, where senicapoc failed in
Phase-3 clinical trials despite engaging its target as
demonstrated by the observed improvements in hemat-
ocrit and erythrocyte hydration in the treated patients
(Ataga et al., 2011).

V. The KNa1 Family—Channels Regulated by
Intracellular Na+ and Cl2

A. KNa1.1

The channel for which we now propose the name
KNa1.1 in the official IUPHAR nomenclature was found
to be inhibited rather than activated by cytoplasmic Ca2+

in the original study that expressed this channel in
oocytes andmammalian cells (Joiner et al., 1998; Budelli
et al., 2016). It was named Slack for “Sequence Like A
Calcium-Activated K channel” because its unitary con-
ductance (;65 pS in physiologic solutions, ;180 pS in
symmetric K+ solutions) is intermediate between that of
KCa1.1 channels and that of most other K+ channels. It
has also been termed Slo2.2 and, in the earlier IUPHAR
nomenclature, KCa4.1, based on the premise that it was
likely to resemble KCa1.1 in its properties. It is, however,
only 7% identical to KCa1.1, and subsequent work estab-
lished that it is gated primarily by changes inNa+ andCl2

concentrations (Bhattacharjee et al., 2003; Yuan et al.,
2003; Yan et al., 2012). Its properties and physiologic
functions have been reviewed recently (Kaczmarek,
2013).

KNa1.1 also differs from KCa1.1 in that it lacks an S0
transmembrane domain and therefore resembles KV

family and KCa2 family channels in its transmembrane
topology (Fig. 2). Although KNa1.1 currents are voltage
dependent, the protein lacks the motif of repeated basic
amino acids in the S4 segment that is characteristic of
voltage-dependent channels and KCa1.1. The complete
structure of KNa1.1 in its closed state has been de-
termined by cryoelectron microscopy (Hite et al., 2015)
and that of the cytoplasmic C-terminal domain, under
conditions that are likely to correspond to the open
state, by X-ray crystallography (Yuan et al., 2010). As
in KCa1.1, there are two RCK domains in the extended
C terminus of each KNa1.1 subunit in a tetrameric
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channel, and these form a cytoplasmic gating ring that,
when it is constricted, closes the ion conduction pore. A
potential binding site for Na+ ions, which resembles a
site conferring Na+ dependence on Kir3 family channels
(Sui et al., 1996), has been located in RCK2 and
mutations at this site substantially lower Na+ sensitiv-
ity (Zhang et al., 2010). Confirmation of the site(s) at
whichNa+ bindswill, however, require determination of
the complete structure in the presence of Na+.
Several isoforms of KNa1.1 that differ in their kinetics

of activation are produced by alternative splicing of
RNA encoding this channel (Brown et al., 2008). One of
these, which has been termed Slack-B (KNa1.1B) and
has the longest cytoplasmic N-terminal domain of the
known isoforms, can form heteromers with KNa1.2
(Slick), whose properties are elaborated in the next
section (Chen et al., 2009). The original studies of
KNa1.1 expressed in Xenopus oocytes found that coex-
pression of Slack-B with KCa1.1 gave rise to channels
that had properties distinct from either channel alone,
suggesting that the two subunits may interact (Joiner
et al., 1998). Studies of its regional distribution, how-
ever, indicate that this is unlikely to be a major role for
KNa1.1 subunits. Unlike the ubiquitous KCa1.1, KNa1.1
is primarily expressed in central and peripheral neu-
rons, with little expression in other tissues except for
the testes and kidney (Joiner et al., 1998; Bhattacharjee
et al., 2002; Paulais et al., 2006; Brown et al., 2008;
Nuwer et al., 2010; Rizzi et al., 2016).
Phosphorylation by protein kinase C of a serine

residue in the cytoplasmic linker region between the
RCK domains and the S6 transmembrane domain of
KNa1.1 increases current amplitude (Santi et al., 2006;
Barcia et al., 2012). The activity of KNa1.1 channels can
be also regulated by their interaction with other cellular
proteins. These include the transmembrane protein
TMEM16C (Huang et al., 2013) and the Fragile X
Mental Retardation protein (Brown et al., 2010; Zhang
et al., 2012b), both of which enhance KNa1.1 channel
activity. Interactions with several other cellular com-
ponents, including the postsynaptic density protein
PSD-95, have also been reported but their functional
effects are not yet known (Uchino et al., 2003; Rizzi
et al., 2015). Specific residues in the RCK domains have
been identified that allow KNa1.1 channels to be
activated by the membrane lipid phosphatidylinositol
4.5-bisphosphate (de los Angeles Tejada et al., 2012a)
and by nicotinamide adenine dinucleotide (Tamsett
et al., 2009). The open probability of KNa1.1 channels
has also been reported to be enhanced by 17 b-estradiol
(Zhang et al., 2005) and by increases in pH (Ruffin et al.,
2008).
Suppression of KNa1.1 expression using RNAi tech-

niques indicates that this subunit accounts for a sub-
stantial component of sustained K+ current in several
types of neurons, including cortical pyramidal cell,
medium spiny neuron of the striatum and mitral cell

of the olfactory bulb (Budelli et al., 2009; Lu et al., 2010).
The channel is also expressed at high levels in noci-
ceptive neurons within the dorsal root ganglion, and
suppression of current using several approaches, in-
cluding deletion of the gene for KNa1.1, enhances
neuronal excitability and produces hypersensitivity of
animals to several pain-inducing stimuli (Gao et al.,
2008; Tamsett et al., 2009; Nuwer et al., 2010; Huang
et al., 2013; Lu et al., 2015; Martinez-Espinosa et al.,
2015). Deletion of the gene in mice also has a variety of
more wide-ranging effects on behavior, including an
inability to reverse a previously learned behavior
(Bausch et al., 2015).

Human mutations in KNa1.1 result in a variety of
early onset epilepsies associated with very severe in-
tellectual disability (Kim and Kaczmarek, 2014). These
include malignant migrating partial seizures in infancy
(Barcia et al., 2012; Ishii et al., 2013; McTague et al.,
2013; Rizzo et al., 2016), autosomal dominant frontal
lobe epilepsy (Heron et al., 2012; Kim et al., 2014),
Ohtahara syndrome (Martin et al., 2014), and other
epilepsies (Juang et al., 2014; Vanderver et al., 2014).
Mutations in the gene for KNa1.1 have also been
documented in autism (Iossifov et al., 2014). When
expressed in Xenopus oocytes, the disease-causing
mutations in KNa1.1 generate currents that are 3- to
22-fold greater than those of wild-type channels, with no
change in levels of channel protein or mRNA (Barcia
et al., 2012; Martin et al., 2014; Milligan et al., 2014).
For a subset of these mutations, changes in voltage
dependence or Na+ sensitivity contribute to the in-
crease in current (Kim et al., 2014; Tang et al., 2016).
Nevertheless, these factors may be insufficient to
account quantitatively for the increase in macroscopic
current. In single channel recordings, the probability of
opening of a Slack channel is increased if it is present in
a cluster with neighboring Slack channels, and such
cooperativity is greatly enhanced in the disease-causing
mutations (Kim et al., 2014), suggesting that interchan-
nel interactions as well as intrinsic changes in gating
account for the observed gain-in-function in the
mutants.

No pharmacological agents that act on KNa1.1 selec-
tively have yet been discovered. Quinidine is a very
effective blocker of these channels in both expression
systems and neurons (Bhattacharjee et al., 2003; Yang
et al., 2006, 2007; Milligan et al., 2014; Rizzo et al.,
2016). It has been reported that quinidine ameliorated
the symptoms of a patient with malignant migrating
partial seizures in infancy, but because this agent
blocks a wide variety of other channels, the mechanism
is not known (Bearden et al., 2014). Other nonspecific
blockers that suppress KNa1.1 channels include bepre-
dil, clofilium, and barium ions (Bhattacharjee et al.,
2003; Yang et al., 2006; de Los Angeles Tejada et al.,
2012b). These channels can also be activated by several
pharmacological agents including bithionol, loxapine,
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and niclosamide (Yang et al., 2006; Biton et al., 2012).
Although bithionol also activates KCa1.1 (Li et al.,
2003), loxapine appears to be specific for KNa channels
over KCa1.1 (Biton et al., 2012).

B. KNa1.2—A Widely Distributed Channel Sensitive to
Na+ and Cl2

The channel for which we now propose the name
KNa1.2 in the IUPHAR nomenclature is very closely
related to KNa1.1, being ;74% identical in protein
sequence, with the greatest divergence from KNa1.1 at
the distal C terminus (Bhattacharjee et al., 2003).
Because of its similarity in sequence to KNa1.1 (Slack)
it was named Slick for “Sequence Like an Intermediate
Conductance K channel.” It is also referred to as Slo2.1
and, in the earlier IUPHAR nomenclature, KCa4.2. As
with KNa1.1, however, it has been found to be gated
predominantly by Na+ and Cl2 (Bhattacharjee et al.,
2003; Kaczmarek, 2013).
Although there have been no structural studies of

KNa1.2 as yet, insights have been provided by muta-
genesis (Garg et al., 2013), and its mechanisms of gating
are likely to resemble those of KNa1.1. The unitary
conductance of KNa1.2 in symmetrical K+ solutions is
;140 pS, and it is slightly less sensitive to changes in
Na+ and more sensitive to alterations in Cl2 than is
KNa1.1 (Bhattacharjee et al., 2003). As in KNa1.1, there
is a Na+ coordination motif in RCK2 that determines
sensitivity to Na+ (Thomson et al., 2015), and channel
activity is regulated by binding to phosphatidylinositol
4.5-bisphosphate (de los Angeles Tejada et al., 2012a).
Unlike KNa1.1, however, there exists a consensus ATP
binding site after the second RCK domain of KNa1.2.
The function of this site in cells is, however, not yet
clear. Experiments using excised patches demonstrate
that application of 5mMATP or a nonhydrolyzable ATP
analog reduced currents by ;80% and that mutation
of this consensus site abolished the effect of ATP
(Bhattacharjee et al., 2003). Moreover, ATP and a
nonhydrolyzable analog were both found to suppress
Na+- and Cl2-activated K+ channels in excised patches
from auditory brain stem neurons that express KNa1.2
(Yang et al., 2007). In contrast, experiments with a
KNa1.2-GFP fusion construct expressed in HEK cells
failed to find an effect of addingATP to patch pipettes on
current amplitude (Berg et al., 2007). ATP was also
found not to affect the increase in KNa1.2 currents
produced by niflumic acid, a pharmacological activator
of these channels (Garg and Sanguinetti, 2014). Thus
the conditions under which ATP regulates these chan-
nels have yet to be completely established.
Coimmunoprecipitation and single channel studies

have established that KNa1.2 coassembles with B iso-
form of KNa1.1 (KNa1.1B, Slack-B) to form heteromeric
channels with properties distinct from those of either
subunit alone (Chen et al., 2009). The formation of such
heteromers requires the specific N-terminal domain of

Slack-B and apparently does not occur with the shorter
N-terminal splice variant KNa1.1A (Slack-A). In con-
trast to KNa1.1, KNa1.2 currents, as well as those of
heteromeric KNa1.2/KNa1.2 channels are suppressed by
activation of protein kinase C (Santi et al., 2006; Chen
et al., 2009).

KNa1.2 channels are widely distributed throughout
the nervous system and are also expressed in a
variety of nonneuronal cells including cardiac cells
(Bhattacharjee et al., 2003,2005; Yuan et al., 2003;
Rizzi et al., 2015). A recent report suggests an important
role for KNa1.2 (KCNT2) in controlling the migratory
capacity of medulloblastoma cell lines, acting synergis-
tically with KV10.2 (EAG2) potassium channels (Huang
et al., 2015). In the nervous system, coexpression with
KNa1.1 can be detected in some but not all types of
neurons (Santi et al., 2006; Berg et al., 2007). Based on
pharmacological experiments, a proposal has been
made that a KNa channel, most likely KNa1.2, regulates
K+ flux across the inner membrane of mouse heart
mitochondria and that channel activation is cardiopro-
tective (Wojtovich et al., 2011).

One major feature that distinguishes KNa1.2 from the
closely-related KNa1.1 channel is its sensitivity to small
changes in cell volume. When expressed in oocytes,
KNa1.2 currents are strongly stimulated by cell swelling
and inhibited by a decrease in cell volume (Tejada et al.,
2014). There are as yet no reported humanmutations in
KCNT2, the gene encoding KNa1.2 channels, that could
shed light on potential physiologic roles of KNa1.2.
Nevertheless, several observations suggest that it
serves a protective function during ischemia or tissue
injury, the function proposed by the very first publica-
tion describing Na+-activated K+ currents (Kameyama
et al., 1984). In neurons, the promoter for the gene is
regulated by nuclear factor-kB,which is activated under
conditions of hypoxia or injury (Tomasello et al., 2015).
In the nematode Caenorhabditis elegans, deletion of the
gene for SLO-2, the ortholog to mammalian KNa chan-
nels, alters the sensitivity of the animals to hypoxia,
although reports differ in the direction of the change in
sensitivity (Yuan et al., 2003; Zhang et al., 2013b).
Moreover, extrapolation of these findings to mammals
is problematic, because, unlike the mammalian KNa

channels, nematode SLO-2 is activated by Ca+ rather
than Na+, an effect that can be attributed to specific
glutamic acid residues in RCK1of the nematode channel
(Yuan et al., 2000; Zhang et al., 2013b). The RCK2
domain of SLO-2more closely resembles those of KNa1.1
and KNa1.2 channels in that the domain corresponding
to the Ca2+ bowl of KCa1.1 contains repeated positively
charged residues rather than the negative charges in
KCa1.1.

In common with KNa1.1, there are no known phar-
macological agents that selectively target KNa1.2 chan-
nels. They are inhibited by quinidine, clofilium, and
isoflurane (Bhattacharjee et al., 2003; Berg et al., 2007;
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de Los Angeles Tejada et al., 2012b). They are strongly
activated by niflumic acid and other fenamates, al-
though with low potency (Dai et al., 2010; Garg and
Sanguinetti, 2012). These agents uncouple the channels
from modulation by either Na+ or transmembrane volt-
age and greatly increase current even in the absence of
internal Na+ ions. The action of fenamates, which is
nonspecific in that they also affect many other channels
including KCa1.1 (Gribkoff et al., 1996), is biphasic,
suggesting they bind to two distinct sites within KNa1.2
(Garg and Sanguinetti, 2012).

VI. KCa5.1—A Channel Specific to Sperm Cells

The KCa5.1 channel, which is encoded by the KCNU1
gene, is more commonly referred to as SLO3. It was
discovered through its homology to KCa1.1 (Schreiber
et al., 1998), and, of all the channels reviewed here,
KCa5.1 is most closely related to KCa1.1 in sequence and
structure, as determined by X-ray crystallography
(Leonetti et al., 2012). Like KCa1.1, KCa5.1 has seven
transmembrane segments with an S0 segment before
S1 and an extracellular N terminus (Fig. 2). When
expressed in oocytes, the mouse channel is voltage
dependent and sensitive to pH, being activated
by alkalinization and suppressed by acidification
(Schreiber et al., 1998; Zhang et al., 2006a,b).
KCa5.1 is expressed selectively in sperm cells, and its

properties are regulated by LRRC52, a testis-specific
accessory subunit (Schreiber et al., 1998; Leonetti et al.,
2012; Zeng et al., 2015). Evidence strongly suggests that
it corresponds to the large-conductance potassium
channel that can be recorded from mature sperm. This
native channel is activated by both voltage and internal
alkalinization and has been termed KSper (Navarro
et al., 2007). As sperm encounter the alkaline environ-
ment near the ovum in the female reproductive tract,
the activation of KSper is believed to produce the
membrane hyperpolarization that is observed during
the process of sperm capacitation. Normal capacitation
is required for sperm to become fully competent for
fertilization.
The identification of KCa5.1 with the sperm KSper

channel has been well established in mice (Santi et al.,
2010; Zeng et al., 2011, 2013). For human sperm,
however, one report suggested that the native KSper
channels is actually KCa1.1 (Mannowetz et al., 2013).
This conclusion was based on recordings of native
currents from human sperm, which showed that the
human channels have a Ca2+ dependence and pharma-
cological properties similar to those of KCa1.1. Never-
theless, a more recent study indicated that, as in mice,
the human KSper-like current is in fact encoded by
human KCa5.1 (Brenker et al., 2014). The explanation
for the apparent contradiction offered by this study is
that human KCa5.1 channels are functionally different
from the mouse channels. In particular, despite their

strong sequence similarity, human KCa5.1 channels are
significantly more sensitive to activation by internal
Ca2+ and less pH sensitive than the mouse channels,
which makes them functionally similar to typical
KCa1.1 channels.

No pharmacological agents that selectively act on
KCa5.1 channels have been found, but they can be
blocked by quinidine (Tang et al., 2010; Sánchez-
Carranza et al., 2015) as well as by Ba2+ ions and quinine
(Wrighton et al., 2015). As the specific factors that
regulate the gating of KCa5.1 in different species become
established, it may become appropriate to rename this
channel.

VII. Summary

Research in the past 15 years has clarified the
structural and functional relationships among K+ chan-
nels that are gated by changes in intracellular concentra-
tions of Ca2+, Na+, and protons, as well as their biologic
roles in different cell types. These are now considered to
fall into three distinct groups. The first group contains the
ubiquitous large-conductance Ca2+-activated KCa1.1
(BK) channel as well as the sperm-specific KCa5.1
channel, which have seven transmembrane segments
in each subunit and an extracellular N terminus. Gating
of these channels is controlled by the ion binding directly
to two RCK domains located in their extended cytoplas-
mic C termini. The second group is comprised of two
channels activated by internal Na+ and Cl2 ions, for
which we propose the names KNa1.1 and KNa1.2. These
resemble the first group in that they have cytoplasmic
C-terminal RCK domains that control gating and have
large unitary conductances, but they have only six
transmembrane segments in each subunit and their N
termini are located intracellularly. The third group of
channels is comprised of the small conductance channels,
KCa2.1, KCa2.2, and KCa2.3, and the intermediate con-
ductance channel KCa3.1. In contrast to the other
channels, these are voltage independent and activation
byCa2+ occurs through the binding ofCa2+ to calmodulin,
an integral component of the channel complex, rather
than through direct binding of Ca2+ to the a-subunits.
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