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Abstract——The most common approach to in vivo
pharmacokinetic and pharmacodynamic analyses
involves sequential analysis of the plasma concen-
tration- and response-time data, such that the
plasma kinetic model provides an independent func-
tion, driving the dynamics. However, in situations
when plasma sampling may jeopardize the effect
measurements or is scarce, nonexistent, or unlinked
to the effect (e.g., in intensive care units, pediatric
or frail elderly populations, or drug discovery),
focusing on the response-time course alone may be
an adequate alternative for pharmacodynamic analyses.
Response-timedata inherentlycontainuseful information
about the turnover characteristics of response (target
turnover rate, half-life of response), as well as the drug’s
biophase kinetics (biophase availability, absorption
half-life, and disposition half-life) pharmacodynamic
properties (potency,efficacy).Theuseofpharmacodynamic
time-response data circumvents the need for a

direct assay method for the drug and has the
additional advantage of being applicable to cases
of local drug administration close to its intended
targets in the immediate vicinity of target, or when
target precedes systemic plasma concentrations.
This review exemplifies the potential of biophase
functions in pharmacodynamic analyses in both
preclinical and clinical studies, with the purpose
of characterizing response data and optimizing
subsequent study protocols. This article illustrates
crucial determinants to the success of modeling
dose-response-time (DRT) data, such as the dose
selection, repeated dosing, and different input
rates and routes. Finally, a literature search was also
performed to gauge how frequently this technique has
been applied in preclinical and clinical studies. This
review highlights situations in which DRT should be
carefully scrutinized and discusses future perspectives
of the field.

I. Introduction

Pharmacological time-series data are typically rich in
information. However, response-time series are often
compared with plasma or blood exposure prior to any
analysis of the connection between dose, response, and
time data per se. Dose-response-time (DRT) data anal-
ysis is therefore an underexplored approach for quan-
tification of the onset, intensity, and duration of a

pharmacological response when information about the
drug concentration is scarce or even totally lacking
(Levy, 1971; Smolen, 1971a,b, 1976a,b, 1978; Smolen
et al., 1972; Smolen and Weigand, 1973). Usually,
plasma or tissue concentrations of drug are used as
the “driver” of the pharmacological response. However,
plasma concentrations may be of marginal value
in situations with difficult or unethical sampling (e.g.,
pediatric or frail elderly populations), when due to local

ABBREVIATIONS: ACTH, adrenocorticotropic hormone; AUC, area under the curve; BPRS, Brief Psychiatric Rating Scale; CTC,
circulating tumor cell; CV, coefficient of variation; DRT, dose-response-time; FFA, free fatty acid; ID50, 50% of the maximum drug-induced
inhibitory effect of the inhibitory drug mechanism function; K-PD, kinetic-dynamic model; NiAc, nicotinic acid; PTH, parathyroid hormone;
SD50, biophase amount at 50% of maximum drug-induced effect.
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administration exposure at the pharmacological target
precedes plasma concentrations (e.g., dermal or pulmo-
nary applications, iontophoretic techniques), or in the
case of extreme or unusual concentration-time profiles
(e.g., the presence of active or interactive metabolites,
mixture kinetics, or oligonucleotides). If the (pharma-
cological) biomarker response follows a time series, that
time series normally contains useful information about
target behavior [e.g., target turnover rates and half-
lives (t1/2)] and drug properties [e.g., ED50 values, rate
constants]. In some cases, the time course of drug
molecules in the biophase (i.e., immediately adjacent
to the target) may also reveal itself in the onset,
intensity, and duration of response when the input rate
to the biophase becomes the rate-limiting step. The
biophase kinetics frequently differ from the plasma
kinetics of a drug, particularly for peripherally placed
targets and for slowly developing responses. Ideally, the
in vivo drug response-time course is made up of three
fundamental components: 1) the time course of drug
molecules at the target (with plasma concentrations
often used as a proxy and driver of the “drug mecha-
nism” function), 2) the concentration-response relationship

that contains potency and efficacy of the drug, and 3) the
turnover of the target (or drug-target complex) as such.
Thus, the underlying assumption in DRT analysis is that
the time course of a drug at its target can be represented by
a biophase function—in the absence of actual biophase
concentrationsof thedrug. Is it thenpossible todeconvolute
the biophase time course based on information about dose,
rate, and route of administration coupled to the pharma-
codynamic response-time courses? Figure 1 schematically
shows the differences between the plasma concentration-
time (exposure)–driven pharmacological exploration and
an analysis using biophase-driven response-time courses.

The exact driver of a pharmacological response will
always be an approximation, independently of whether it
is the concentration in plasma, in a tissue, or in a hypothet-
ical biophase. However, it is important to remember that
upon repeated dosing, the concentrations in plasma, tissue,
and biophase are at equilibrium. This is not to say that the
concentrations in the various matrices have to be equal, but
their relative proportions are constant at equilibrium. To
facilitate analysis of DRT data, pivotal parts of the pharma-
cological time course are summarized and compared with
certain pharmacodynamic parameters in Table 1.

Fig. 1. Schematic illustration of exposure-driven response models (upper row) and biophase-driven response (bottom row). The plasma concentration
is typically the (proxy) driver of the pharmacological model in an exposure (C)–driven model, in contrast to the DRT model in which a biophase
compartment model serves as a surrogate for drug exposure. In DRT analyses, information about dose, route, and rate are pivotal for a stringent
analysis. The structure of the hypothetical biophase model is assumed to be extracted from the time course(s) of biologic response-time course as such.
The underlying assumption about pharmacological response-time data is that some kind of kinetic information is embedded into them, which then may
be approximated by the biophase model. In turn, this represents the potential time course (shape) of the total amount of drug in the body that is
expected to “drive” the measured pharmacological response. The gray shaded areas are inferred from experimental concentration-time data (upper
row) or dosing information (bottom row) coupled to response-time courses. The response-time courses in the DRT analysis provide the extra “kinetic”
information to the model that concentration-driven pharmacodynamic models do not need. PO, per oral; SC, subcutaneous.
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This review aims to introduce the basic concepts of
DRT analysis, anchor the concepts onto real-life case
studies highlighting typical data patterns and designs
of pharmacological studies in which DRT data analyses
have proven to be useful, and finally, compile relevant
literature about DRT data analysis.
The basic concepts of DRT analysis are introduced

and illustrated by eight previously published case
studies, each of which exemplifies different disease
areas. The raw data for case studies 1–7 are available
in a spreadsheet format (Gabrielsson and Weiner,
2010). The eighth case study is aimed at demonstrating
how data from several studies in a drug discovery
project can be merged and analyzed simultaneously
(Andersson et al., 2017). This latter meta-analysis
utilizes data from multiple dose provocations with
nicotinic acid (NiAc; dose, route, rate, and mode), as
well as two intertwined biomarkers (plasma fatty acids

and insulin) in a large population of control and disease
model rats. Finally, we searched the literature for
studies in which DRT data analyses have been success-
fully performed. The result of this exploration is
tabulated and collected in the list of references, which
may then serve as a repository of relevant DRT
literature.

II. Methods and Models

A. What Can Be Learned from Response-Time
Data Patterns?

What may be extracted from time-series assessments
of pharmacological responses? Figure 2 shows some
typical features to look out for when analyzing DRT data
after intravenous and subcutaneous dosing (Gabrielsson
and Hjorth, 2016). These features include the follow-
ing (to note, letters in parentheses refer to their

TABLE 1
Overview of in vivo drug response phases, features of data, parameters, and case studies

Phase Features in Data Parameter Case Study

A: baseline Stable, variable, oscillating, or drifting
(e.g., due to disease)

R0, kin, kout 1, 2–8

B: time delay Time delay between expected plasma peak
concentration and peak of response

kout, K, Ka 1–6

C: onset of action Concave or convex rise of response (onset of action);
overshoot during onset

kout, K, Ka, number of transit
compartments, ktol

1–7

D: peak shift Peak shift or not; a shift suggests a nonlinear
stimulation/inhibition of action

Smax/Imax, SD50/ID50, n 1–6, 8

E: response maximum
or minimum

May indicate a nonlinear drug action or physiologic
limit; the same with an inhibitory drug action

Smax/Imax, SD50/ID50, n,
physiologic limit

1–5, 7, 8

F: return to baseline Different dose routes may reveal absorption
rate–limited elimination of drug from biophase;
rebound during washout

kout, K, Ka, ktol 1–3, 5–8

Fig. 2. Typical response-time courses obtained after different doses and routes of administration (3 and 10 mg i.v., and 10, 50, and 100 mg s.c.). Letters
denote the following: A, baseline; B, time delay between expected peak concentration in plasma and observed peak response; C, concave onset of action;
D, peak shifts in the response-time courses with increasing doses; E, saturation at top doses; and F, decline of response is slower (absorption rate–
limited elimination from biophase) after subcutaneous dosingcompared with intravenously at equal doses. The black bar in the lower-left corner shows
the expected peak time of drug in plasma after an intravenous dose or oral solution. See also Table 1 for a suggestion of parameterizations. IV,
intraveonous; SC, subcutaneous.
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corresponding letters in Fig. 2): baseline level (A; made
up from the ratio of turnover rate to fractional turnover
rate of response; i.e., decay rate of response), time delay
between expected plasma concentration peak and peak
of response (B; may be due to indirect pharmacological
action), onset of action (C; delayed onset may indicate a
cascade of events upstream prior to biomarker compart-
ment), peak shifts with increasing doses (D; indication of
saturable stimulation), saturation of response (E; due to
nonlinear drug mechanism or physiologic limit), and
postpeak decline of response (F; the 10 mg intravenous
and subcutaneous time courses in Fig. 2 differ due to
absorption rate–limited elimination after subcutaneous
administration). Each portion and phase of the curves
has its own story to tell with respect to drug properties,
system properties, and biophase kinetics (Table 1).

B. How Is the Biophase Typically Defined?

A requirement for a robust description of the biophase
model is that dose, rate, route, and mode of adminis-
tration are known. The dose information combined with
response-time courses bracket the biophase structure
(Fig. 1, bottom row). If only response-time data are
known, the individual contribution of input from drug
administration and of biophase function cannot be
separated. The biophase is a replacement of any
possible time course of drug that “drives” the pharma-
cological effect and may be viewed as a first-generation
effect-compartment approach. The biophase function
represents the time course of drug in the body deconvo-
luted from response-time data necessary to drive the
onset, intensity, and duration of the pharmacological
response. The more remote and inaccessible the target
(e.g., nuclear receptors) or the slower the turnover of
response, often the slower the rate of its presentation
and loss and the longer the action of drug at the target
site. The transfer of the drug molecule to and from the
target as well as the affinity for the target are elements
(drug properties) separated from the turnover proper-
ties of the target as such and accompanying postrecep-
tor events (biologic properties). It should be noted that
drug and biologic properties jointly impact andmake up
the onset, intensity, and duration of a pharmacological
response. Since the pharmacological response is a
consequence of the two, it is reasonable to assume that
the time course of response also contains some kind of
kinetic information, which is governed by the biophase
compartment. The biophase compartments in Fig. 3 are
assumed to mimic that part of the pharmacological time
course. The biophase kinetics will, to a varying extent,
depend on the dose, the input rate (or rate of absorption
of drug), and the route of administration, let alone the
quality of response data.
The input/output of the biophase is assumed to make

up all absorption and disposition processes that a drug
may undergo until it hits the pharmacological target.
Even though a drug was given as a bolus dose into

plasma, the rise and fall of the pharmacological re-
sponse may reveal a deviating pattern if the target is
well separated from the plasma compartment and or the
biophase exposure or response develops slowly. The
biophase is meant to capture the rate-limiting step in
the absorption and disposition of drug causing the
necessary shape of exposure time at target.

The mathematical functions of the biophase amount
(Ab) can be expressed as integrated solutions (eq. 1; top,
bolus input; middle, first-order input/output; bottom,
zero-order rate input):8>>>>>><
>>>>>>:

Ab ¼ Div ×
�
e2K × t�

Ab ¼ Ka × F × Dev

ðKa 2KÞ
h
e2K × ðt2 tlagÞ2 e2Ka × ðt2 tlagÞi

Ab ¼ Rin

K

�
12 e2K × Tinf

�
× e2K × t9

ð1Þ

Div is the intravenous bolus dose,K is the elimination rate
constant, Ka is the absorption rate constant, F* is the
biophase availability, Dev is the extravascular dose, tlag is
the lag time, and Rin is the rate of infusion. The biophase
availability is the fraction of the dose that reaches the
biophase relative to an intravenous dose, as approximated
from pharmacological response data. This new parameter
is different from the bioavailability,which is the fraction of
the dose reaching the systemic circulation intact upon
extravascular dosing. The biophase availability may be
greater than unity (1) for a compound with pharmacolog-
ically active metabolites or saturable action.

The bolus, first-order input, and zero-order input can
also be given as solutions of differential equations of a
linear first-order system (eq. 2; second line from top,
bolus input; second line from bottom, first-order inpu-
t/output; and bottom, zero-order rate input):8>>>>>>>>>>>><

>>>>>>>>>>>>:

dAb

dt
¼ Input  rate2 output  rate

dAb

dt
¼ 2K × Ab                                                              

dAb

dt
¼ ka × F × Dev × e2Ka × t 2K × Ab

dAb

dt
¼ Input  rate2K × Ab                    

ð2Þ

For nonlinear elimination, the three input modes
(bolus, first-order input, and zero-order input) become
the following (eq. 3):8>>>>>>>><

>>>>>>>>:

   
dAb

dt
¼ 2

Vmax × Ab

Km þ Ab
                                                               

dAb

dt
¼ Ka × F × Dev × e2Ka × t 2

Vmax × Ab

Km þ Ab

dAb

dt
¼ Input2

Vmax × Ab

Km þ Ab
                                       

ð3Þ
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For saturable input and output, the differential equa-
tions become the following (eq. 4):8>>><

>>>:

dDev

dt
¼ 2

Ka;max × Dev

Ka;m þDev

dAb

dt
¼ F ×

Ka;max × Dev

Ka;m þDev
2

Vmax × Ab

Km þ Ab

ð4Þ

where Dev is the extravascular dose variable at the
application site, Ka,max is the maximum absorption rate,
Ka,m is theMichaelis–Menten constant (amount) at thehalf-
maximal absorption rate, and F* is the biophase availabil-
ity. Again, the biophase availability F* is the fraction of the
dose that reaches the biophase relative to intravenous
dosing and is derived from pharmacological response-time
data. Note that the biophase availability is not synonymous
with bioavailability obtained from intravenous and oral
dosingdata.Thebiophaseavailabilitymaybecontaminated
by active or interactive metabolites, antagonistic or syner-
gistic action, feedback, and so forth and is a parameter
derived from response-time data as such only.
Even though all of a bolus dose or a fraction (biophase

availability) of an extravascular dose reaches the

hypothetical biophase, only a small amount of drug is
typically likely to reach its biologic target. The re-
mainder will distribute nonspecifically to other body
regions. The shape of the hypothetical biophase func-
tion is deconvoluted from the response-time data. As a
result, it is not rational to assume that a hypothetical
plasma time course will result from dividing the time
course of the biophase by the volume of distribution. We
therefore discourage any transformation ofAb to plasma
concentration-time courses by means of the volume of
distribution (Vd). However, converting the biophase
amount at 50% of maximum drug induced effect
(SD50) or 50% of the maximum drug-induced inhibitory
effect of the inhibitory drug mechanism function (ID50)
to EC50 or IC50 with volume is still feasible when
operating under equilibrium conditions. The biophase
still represents the body, but the shape of the function
mimics the target site.

C. The Drug “Mechanism” Function

The interface between the biophase kinetics and the
pharmacological model is the drugmechanism function.
The biophase kinetics drives a linear (eq. 5) or nonlinear

Fig. 3. Schematic illustration of different biophase models used for DRT analysis. Numbers indicate the following: (1) Biophase approximated by bolus
administration and first-order elimination. (2) First-order input/output of the biophase. (3) Constant (zero-order) rate input followed by washout. (4)
Bolus plus Michaelis–Menten (saturable) elimination. (5) Saturable absorption coupled to first-order elimination (note the peak shift). (6) Saturable
absorption-elimination from biophase. (7) Bolus on top of endogenous ligand production. Baseline shows endogenous ligand concentration. (8) Step-
down input to biophase simulating longer half-lives for rapidly eliminated compounds (e.g., NiAc). (9) Biphasic decline in the biophase after a bolus
dose. TRN, turnover.
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(eq. 6) drug mechanism function either as a stimulatory
process [parameterized with the proportionality con-
stant in the linear drug mechanism function (a) or the
efficacy parameter of the drug mechanism function
(Smax), the SD50 value, and the Hill exponent (nH)] or
as an inhibitory process [parameterized with the pro-
portionality constant in the linear (inhibitory) drug
mechanism function (b) or the Imax, ID50, and nH].�

SðAbÞ ¼ 1þ a × Ab
IðAbÞ ¼ 12 b × Ab

ð5Þ

The nonlinear stimulatory and inhibitory drug mecha-
nism functions are as follows:8>>><

>>>:
SðAbÞ ¼ 1þ Smax × A

nH
b

SDnH
50 þ AnH

b

IðAbÞ ¼ 12
Imax × A

nH
b

IDnH
50 þ AnH

b

ð6Þ

Logarithmic and exponential drug mechanism func-
tions may also be applied, provided that data support
such an approach. The pharmacological response is
driven by the drug mechanism function, which converts
drug input (typically concentration or amount) to a
pharmacological action.

D. Structure of the Pharmacodynamic Model

When the equilibrium between the biophase and the
observed pharmacological response is rapid, the bio-
phase function can be used to directly drive an analyt-
ical function of the response E. Equation 7 shows a
stimulatory (upper row) and an inhibitory (bottom row)
efficacy parameter of the Hill equation (Emax) model
driven by the biophase amount Ab.8>>><

>>>:
E ¼ E0 þ

Emax × A
nH
b

EDnH
50 þ AnH

b

E ¼ E0 2
Imax × A

nH
b

IDnH
50 þ AnH

b

ð7Þ

The model structure includes a baseline value E0, the
maximum effect Emax or Imax, the dose at half-maximal
effect ED50 or ID50, and the sigmoidicity factor nH. In
this case, the pharmacological response model is some-
what similar to the previously presented drug mecha-
nism function mentioned above.
When a drug acts on factors responsible for the

buildup or loss of a pharmacological response, the
kind of turnover model shown in Fig. 4 is typically
applied. The drug either stimulates or inhibits the
production of response [zero-order turnover rate (kin)]
or the loss term of response [first-order fractional
turnover rate (kout)]. The drug directly impacts factors
controlling the responseR such as kin and kout. The drug

indirectly, via kin and kout, affects the pharmacological
response R as such.

The drug mechanism function [S(Ab) or I(Ab)] is then
incorporated into one of the response production or loss
systems (see, Fig. 4) as follows:8>>>>>>>>>>>><

>>>>>>>>>>>>:

dR
dt

¼ kin × SðAbÞ2 kout × R

dR
dt

¼ kin 2 kout × SðAbÞ × R
dR
dt

¼ kin × IðAbÞ2 kout × R

dR
dt

¼ kin 2 kout × IðAbÞ × R

ð8Þ

Equation 8 shows the four basic turnover systems with
stimulation or inhibition of either turnover rate kin, or
on the fractional turnover rate kout. These models may
be adjusted depending on the particular pharmacolog-
ical target and system studied. The onset of response
may reflect a series of transduction compartments to
capture a concave buildup of response. Other systems
display oscillating time courses and may also require
diurnal variations in turnover rate. A third may involve
one or more amplification steps (Gabrielsson et al.,
2000; Gabrielsson and Weiner, 2010). A more detailed
account of biophase structure, drug mechanism, and
turnover systems will be given for each case study.

E. Response-Time Patterns Impact Model Structure

We previously described “pattern recognition” as a
graphical tool for delineating the structure of a phar-
macological model (Gabrielsson and Hjorth, 2016).
That article also discussed practical experimental de-
sign to highlight some pivotal guidelines. In brief,
information on the baseline is central to model build-
ing. Significant information is also contained in the
overall shape of the curve: potential time delays be-
tween plasma exposure and a pharmacological re-
sponse, peak shifts in the response-time course with
increasing doses (indicative of whether there is a linear
or nonlinear drug mechanism function at play), and
saturation at the maximum or minimum of response,
which in combination with peak shifts is a strong
indicator of the nonlinear nature of the drugmechanism
function. This generic approach is likewise applicable

Fig. 4. Conceptual diagram of the turnover model (indirect response
model) where drug either impacts the production of response kin or the
loss of response kout. The drug acts on factors controlling the level of
response R. The red arrows show the rise or decrease in response as a
consequence of drug action.
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to the DRT analysis we describe here. Figure 5 shows
four common patterns in response-time curves and their
tentative models (and case studies).

III. Case Studies

Eight case studies of previously published data are
compiled and presented here to demonstrate the pros
and cons of DRT analysis. This analysis contains eight
case study datasets that were in part originally pub-
lished in Pharmacokinetic and Pharmacodynamic
Data Analysis: Concepts and Applications (first to
fifth editions) by Gabrielsson and Weiner (2010, 2016)
in 1994–2016 or in Gabrielsson et al. (2000) but have
not been easily accessible to a larger audience; they
are therefore included due to their availability and
functionality. The experimental data of case studies 1–7
are available electronically as models, command files,
and project files via https://dipublish.com/pkpd/. Data
on cortisol–adrenocorticotropic hormone (ACTH) dy-
namics (Urquhart and Li, 1968), locomotor activity
(van Rossum and van Koppen, 1968), and Brief Psychi-
atric Rating Scale (BPRS) scores (Lewander et al., 1990)
were scanned from the literature. Case study 8 is a
summary of Kroon et al. (2017). Some of the figures and
datasets have been used for teaching and at various
conferences. The datasets were selected to illustrate
response-time pattern and design feature points of
view, rather than to compare models and drugs within

specific therapeutic classes. Table 2 gives an overview of
the background on each case study.

A. Case Study 1: Dose-Response-Time Analysis of
Nociceptive Response

1. Background. This case study comprises phar-
macological data obtained using two different routes
of administration (intravenous and subcutaneous)
to model and estimate pertinent screening parame-
ters such as SD50, biophase availability, and turn-
over characteristics of the (analgetic) response, such
as half-life. The underlying assumption is that the
pharmacodynamic data convey information about the
kinetics of the drug in the biophase (rate constants,
biophase availability), which can be obtained simul-
taneously from DRT data. Since both intravenous
and subcutaneous administration modes were ap-
plied, a new parameter (biophase availability) could
be estimated.

A potential analgesic test compound was given at two
dose levels (3 and 10 mg) via the intravenous route and
at three dose levels (10, 50, and 100 mg) subcutaneously.
The time (in seconds) to respond to a noxious stimulus
(laser beam challenge in the tail-flick test) was de-
termined at different times after dosing. Response-time
data were obtained from each dose level after an acute
dose (Fig. 6).

2. Models, Equations, and Exploratory Analysis.
The underlying biophase-coupled turnover model is
shown in Fig. 6 (right). The biophase behaves as a

Fig. 5. Commonly encountered response-time courses and their corresponding potential turnover models. (A) Standard convex onset of action after
stimulation of turnover rate kin after two doses (see also case study 1). (B) Concave onset of effect as a consequence of an early upstream stimulation of
turnover rate at two doses followed by one or more transduction processes prior to the final response-generating compartment (see case study 2 on
locomotor activity). (C) Diurnal variation in the turnover rate, resulting in an oscillating (baseline and) response-time course. The dashed oscillatory
curve shows response after inhibitory drug intervention. (D) Feedback-regulated response. A period of drug-induced stimulation of response is followed
by rebound (response-time course below the predose baseline level). The red horizontal bar in plot (D) shows the drug exposure period. The small red
bars in the upper row plots show the expected peak time of drug in plasma (see also case studies 1–3 and 6).
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one-compartment bolus model for intravenous data
(eq. 9, top row) and as a first-order input-output model
for subcutaneous dosing (eq. 9, bottom row). The
biophase model then drives the stimulatory drug
mechanism function (eq. 10), acting on a series of
transit compartments that capture the slight concave
onset of response in both intravenous and subcutea-
nous data (eq. 11). Drug action occurs via stimulation
of the production of response (i.e., analgesia, resulting
in a delayed reaction time to noxious stimuli). A zero-
order input and first-order input/output model governs
the turnover of the response.
The amount of drug in the biophase compartment

after intravenous and subcutaneous dosing is modeled
with first-order kinetics assuming the volume is unity
(eq. 9):8><

>:
Ab ¼ Div ×

�
e2K × t�

Ab ¼ Ka × F × Dsc

ðKa 2KÞ
h
e2K × ðt2 tlagÞ2 e2Ka × ðt2 tlagÞi ð9Þ

Div and Dsc denote the intravenous and subcutaneous
doses, K is the elimination rate constant, Ka is the
absorption rate constant, and F* and tlag are the
biophase availability and lag time, respectively. Note
that there are no volume terms in eq. 10 for the biophase
amount expressions. The stimulatory drug mechanism
function driver is as follows:

SðAbÞ ¼ 1þ Smax × A
nH
b

SDnH
50 þ AnH

b
ð10Þ

Smax, SD50, and nH denote the maximum drug-induced
effect of the drug mechanism function, the dose gener-
ating 50% of maximum drug-induced response, and the
sigmoidicity parameter, respectively. The turnover
function of the pharmacological response with stimula-
tion of turnover rate kin of R1 is written as a series of
transit compartments, which capture the concave onset
of response.8>>>>>>><

>>>>>>>:

dR1

dt
¼ kin × SðAbÞ2Kout × R1

dR2

dt
¼ kout × R1 2Kout × R2

dRobs

dt
¼ kout × R2 2Kout × Robs

ð11Þ

kin and kout are the turnover rate and the fractional
turnover rate constants, respectively. The maximum
drug-induced change D is obtained from eq. 12:�

D ¼ Rss 2R0 ¼ R0 × ð1þ EmaxÞ2R0 ¼ R0 × Emax
10 ¼ R0 × Emax ¼ 5 × 2                                                                                                   

ð12Þ

where D is derived from the absolute difference be-
tween baseline R0 and Rmax. An approximate estimate
of biophase availability F* can be obtained by area
under the curve AUCEsc/AUCEiv for the 10 mg intrave-
nous and subcutaneous doses, which gives approxi-
mately 100%. To note, when noncompartmental
assessment of the biophase availability is used, the
areas under the baseline have to be subtracted from
each total AUCE.

Fig. 6. (Left) Observed (symbols) and model-predicted (lines) response (tail flick) vs. time of drug X after different doses given by the intravenous (red)
and subcutaneous (blue) routes. The subcutaneous doses were 10, 50, and 100 mg, and the intravenous doses were 3 and 10 mg. Note the slow terminal
decline of the 10 mg subcutaneous dose compared with the 10 mg intravenous dose, suggesting absorption rate–limited elimination. (Right) Schematic
illustration of the biophase (top) and the turnover response (bottom) models. The drug in the biophase stimulates the production of the antinociceptive
response. Also note that we have added a transit compartment to mimic the concave buildup of response. Ka denotes the first-order input rate constant,
Ab is the biophase amount, k is the first-order elimination rate constant, S(Ab) is the stimulatory “drug mechanism” function, kin is the turnover rate,
R is the measured (biomarker) response, and kout is the fractional turnover rate. IV, intraveonous; SC, subcutaneous.
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Initial estimates of the kout parameter (0.3 h21) were
derived from the initial slope of the upswing of the
response-time curve after the largest dose. The initial
estimate of the kin parameter was derived from kout and
the corresponding ratio of kin/kout. ID50 was obtained by
simulating the model with a number of realistic values
of SD50 within the 0–10 mg range.
3. Results and Conclusions with Respect to Dose-

Response-Time Analysis. A high correlation between
observed and estimated response-time data (Fig. 6), as
well as well defined parameters with good precision
(Table 3), is obtained by simultaneously fitting eqs. 9–
11 to all five response-time courses.
Comparison of the intravenous and subcutaneous

10 mg DRT data suggested absorption rate–limited
elimination via the subcutaneous route. Thus, in spite
of a higher initial response of the 10 mg intravenous
dose, the time course declined faster than the corre-
sponding response-time course of a 10 mg subcutaneous
dose. The biophase availability was 86%. The simulated
biophase (dose) response relationship is shown in Fig. 7.
4. Pharmacodynamic Interpretation and Comments.

Depending on the drug target involved, analgetic drug
actions may involve central (spinal, supraspinal) as
well as peripheral components (e.g., Sawynok and
Liu, 2014). For the particular case described above, it
is assumed that one of these compartments is the
dominant antinociceptive biophase for compound X.
The tail-flick response represents a classic model of
acute thermal pain sensitivity considered to involve
central (spinal/supraspinal) pathways. It might be
suggested that in this case (regardless of whether the
biophase target sites are fully occupied, and in the
absence of further information on test compound prop-
erties), maximal analgesia via this particular target by
compound X is attained. Moreover, the observed time
course may represent a buildup of biophase exposure to
reach this level and/or contributions from the actual
biologic mechanism underlying the analgetic response
monitored. In this regard, the protracted response curve
seen with subcutaneous versus intravenous adminis-
tration may suggest that compound X has properties
that may limit absorption and potentially also penetra-
tion across blood-brain/spinal fluid barriers, thus influ-
encing the biophase levels. This case thus illustrates the
value of the integrated use of dose, response, and time

data to arrive at biophase estimates with plausible
precision.

B. Case Study 2: Dose-Response-Time Analysis of
Locomotor Stimulation

1. Background. Response-time data on rat loco-
motor activity after intraperitoneal administration of
dexamphetamine at two dose levels were obtained
and digitized from van Rossum and van Koppen
(1968). These data suit the purpose of DRT modeling,
since the resolution is high, with adequate granular-
ity in both the rise and decline in response, a clear
peak shift with dose, and more than one dose level
(assuming first-order input) used. A slight concavity
was observed in the onset of response, followed by an
apparently linear rise during the first 30 minutes
after dosing. The initial rise in locomotor response
superimposed for both doses and was followed by an
abrupt change from rise to decline. The response to
the higher dose peaked later than the response to the
lower dose. The slope of the postpeak linear decline of
response was independent of dose (3.12 and 5.62
mg/kg) or route of administration (intraperitoneal or
intramuscular application; see van Rossum and van
Koppen, 1968) (Fig. 8).

2. Models, Equations, and Exploratory Analysis.
Figure 8 (right) shows the suggested biophase compart-
mentmodels of this analysis. They also demonstrate the
“duality of models” when two competing models are
equally good representatives of the pharmacology. Note
that the drug stimulatory action is assumed to act on
the production of response.

Two biophase models were fitted: one approximating
the input to the biophase as a bolus, and the other
applying a first-order input (eq. 13), resulting in the
functions where Ab denotes the biophase amount after
subcutaneous dosing. The biophase availability F* was
set equal to unity since no comparative data from
intravenous dosing were available.

Fig. 7. Simulated response (tail flick) vs. biophase amount (dose) of
compound X. The baseline (vehicle treatment) response is about 5 seconds
and the maximum drug-induced response is 10 seconds, resulting in a
15-second response maximum in these settings.

TABLE 3
Initial and final parameter estimates and their corresponding

precision (CV%)

Parameter Initial Estimate Final Estimate CV%

Ka (min21) 0.01 0.018 8
K (min21) 0.05 0.063 19
F* 1 0.86 11
kout (min21) 0.3 0.13 8
nH 2 2.0 14
SD50 (mg) 1–10 1.8 22
Smax 2 2.0 5
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(
AbðtÞ ¼ D × e2K 9 × t

AbðtÞ ¼ Fp × D × K 9 × t × e2K :9t ð13Þ

The stimulatory drug mechanism function is shown in
eq. 14:

8>>>>>>>>>><
>>>>>>>>>>:

SðAbÞ ¼
Smax × A

nH
b

SDnH
50 þ AnH

b

SðAbð0ÞÞ ¼ 0

SðAbÞ ¼ 1þ Smax × A
nH
b

SDnH
50 þ AnH

b

SðAbð0ÞÞ ¼ 1

ð14Þ

where Smax, SD50, and nH correspond to the maximum
drug-induced efficacy, potency, and Hill exponent, re-
spectively. Note that the drug mechanism function (eq.
14, upper two rows) lacks the constant term (1) typically
found in these functions (eq. 14, bottom two rows) when
no baseline information is available. This is because the
locomotor activity is zero or negligible in the absence of
drug in this experiment.
The drug mechanism function is then incorporated

into the systems equation describing the pharmacolog-
ical response (eq. 15):

dR
dt

¼ SðAbÞ2 koutðRÞ × R ð15Þ

where kin has been removed since the baseline value of
locomotor activity is zero. In light of the linear decay of
response (Fig. 8), the loss of response will be modeled as

a saturable term kout(R) with a fractional turnover rate
kout as a function of R (eq. 16):

koutðRÞ ¼ kout;max ×
1

kM þ R
ð16Þ

The terminal slope of the response-time course when
R . . kM is then written as shown in eq. 17:

dR
dt

¼ 2 kout;max  �  30U=min ð17Þ

where kout,max is approximately 30 response units per
minute. Similarly, the slope of the rise in response
equals the following (eq. 18):

dR
dt

¼ Smax 2 kout;max  �  90U=min ð18Þ

where Smax can be approximated as 90 + 30 =
120 U/min, provided both processes are saturated. The
pharmacological response will reach an equilibrium
state if the rate of production is less than the maximal
rate of loss; that is, when the first term in eq. 15 is
smaller than the maximal upper bound of the second
term [i.e., if S(Ab), kout,max]. The equilibrium biophase
amount versus response relationship becomes the fol-
lowing (eq. 19):

RSSðAbÞ ¼ kM ×
SðAbÞ

kout;max 2SðAbÞ ð19Þ

The data are rich since they contain high-resolution
response-time courses at two dose levels. It appears that
the dexamphetamine-locomotor activity scores are a

Fig. 8. (Left) Rat locomotor activity score (counts per minute) time data after dexamphetamine is given intravenously at 3.12 (blue symbols) or 5.62
mg/kg doses (red symbols) (van Rossum and van Koppen, 1968). Note the apparently linear and parallel decline in response over time independently of
dose and the peak shift to the right with increasing dose. A slight concave onset of action may also be discernible, particularly with the lower of the two
doses. No saturation manifested as a plateau (flat horizontal) response-time region can be seen with the highest dose. Dashed lines represent the bolus
input biophase model, and the solid lines represent the first-order input/output model. (Right) Conceptual schematic model of the DRT data. K’ denotes
the first-order input/output biophase rate constant and Smax, SD50, and n are the pharmacodynamic parameters of maximum efficacy, biophase amount
at 50% of maximum efficacy, and the Hill-parameter, respectively. The constant term (1) in the definition of S(Ab) in eq. 14 could be eliminated because
no baseline activity was observed in the data. Note the saturable loss of response given by the fractional turnover rate, kout(R) = kout,max/(kM + R). Gray
solid lines represent simulated plasma time courses of dexamphetamine at the two doses given.
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linear relation of the time postpeak independent of dose.
Equation 16 is therefore suggested as a reasonable
approximation of the zero-order decline of response-
time data. The model is simultaneously fit to both
response-time courses only changing the dose between
the two datasets. Dose-normalized areas increased with
dose, which indicates some kind of saturation in the loss
of response and/or saturable stimulation function such
as eq. 16. This is also supported by the peak shift in the
response-time courses.
3. Results and Conclusions with Respect to Dose-

Response-Time Analysis. The regression lines of the
two biophase models (eq. 13) coupled to the pharmaco-
logical model (eqs. 14 and 15) of the data are shown in
Fig. 8. The final parameter estimates are listed in
Table 4, together with their precision [coefficient of
variation (CV%)].
4. Pharmacodynamic Interpretation and Comments.

Normally, locomotor activity in rodents is dependent on
several factors, including novelty of the environment
versus habituation and phase of the day-light cycle
(rodents being nocturnal). In the locomotor stimulation
case described above, the rats are likely to have been
preadapted to the mobility meter boxes in the light
phase of the 24-hour cycle to minimize exploratory
activity. From the modeling perspective, this simplifies
analysis of the data because baseline may be set to zero,
both prior to and after the period of drug challenge. The
turnover rate kin was therefore eliminated from eq. 15,
and the drugmechanism function could be condensed. A
clear peak shift (time shift in tmax values) was observed
in response-time data with increasing doses of dexam-
phetamine. The linear decay of the locomotor response
toward baselinemay be contingent on the elimination of
dexamphetamine from the biophase, but it may addi-
tionally involve desensitization of central dopamine
neuronal and/or receptor mechanisms. It is clear from
the simulated predicted plasma concentration-time
courses (superimposed solid gray lines on experimental
and model-predicted response-time courses in Fig. 8)
that a biophase compartment is needed to capture time-
course differences between plasma exposure and loco-
motor activity after intraperitoneal dosing. Evidently,

plasma concentrations do not directly drive the phar-
macological response, and access to brain target levels
aligned to the plasma time course of dexamphetamine
would have been a useful addition to the locomotor
activity data to verify the biophase structure. Note that
the model-predicted kM value is very low (0.001 re-
sponse units), which therefore makes the decline of
locomotor activity a zero-order process at the present
dose levels, whereas the plasma concentrations follow a
first-order disappearance with a drug half-life of about
90 minutes. Information about the shape of the drug
time course in the biophase in relation to plasma and
locomotor activity levels could therefore potentially give
clues to underlying contributory mechanisms and
events. Although it is beyond the scope of this review,
it would also be interesting to see what further insights
on pharmacodynamic similarities and differences of
drugs able to stimulate motor activity (e.g., amphet-
amine, cocaine, ethanol, caffeine, etc.) might be gained
from a crosscomparison DRT analysis based onmultiple
dose levels, high-resolution behavioral responses, and
corresponding plasma (or, ideally, biophase) data of
such agents. This said, it should be recalled that several
of the aforementioned agents possess dose- (concentra-
tion-) and time-dependent psychostimulant as well as
depressant properties and therefore may be challeng-
ing to compare or rank by means of a DRT approach
(see Fig. 9). Drugs with well known biphasic exposure-
response relationships include ethanol, caffeine, and
morphine (see Dafters and Taggart, 1992; Calabrese,
2008), where the extent of excitatory and depres-
sant actions depend on the drug in question, dose, and
time after administration. DRT analysis may also be
of limited value for the assessment of safety margins,
where establishing systemic exposure to unbound
drug concentrations should instead be the method of
choice (Gabrielsson andHjorth, 2012, 2018; Gabrielsson
et al., 2018).

Fig. 9. (Left) Schematic illustration of the principles of a biphasic dose-
response relationship. (Right) Example showing the complexity of
comparing two compounds with a slight shift between their dose-response
relationships. Even though both have similar shapes, one compound may
demonstrate an excitatory (stimulant) response at the same dose as the
other compound demonstrates an inhibitory (depressant) response. In
this particular situation, DRT analysis may fail to characterize their
pharmacodynamic properties. Exposure-response analysis would there-
fore be feasible option and is a better alternative.

TABLE 4
Final parameter estimates of first-order and bolus models, their relative

S.D. (CV%), and their objective function value (WSSR)

Parameter

First-Order
Biophase Model

Bolus Biophase
Model

Estimate CV% Estimate CV%

Smax 249 1 190 7
K’ (first-order) (h21) K (bolus) (h21) 5.96 4 2.54 6
SD50 (mg) 1.02 4 1.43 8
nH 1.63 5 2.05 18
kout, max (h21) 30.1 4 32.9 4
kM (h21) 0.001 9 0.001 1
WSSR 768 640

WSSR, weighted sum of squared residuals.
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C. Case Study 3: Dose-Response-Time Analysis of
Functional Adaptation

1. Background. This case study is aimed at
demonstrating DRT analysis containing functional
adaptation (Isaksson et al., 2009) of a metabolic
response to drug (NiAc) treatment. The biophase
kinetics, ke, will be estimated simultaneously with
system parameters (kout and ktol) and drug param-
eters (ID50 and n). The mechanism of action is
via inhibition of the turnover rate [I(Ab) · kin]. Full
inhibition of response is assumed with a sufficiently
high dose. Data are obtained after six consecutive
intravenous infusions of NiAc (plasma half-life
of 1 to 2 minutes) followed by washout (Fig. 10).
The plasma concentration-time course of NiAc will
therefore have the shape of a square wave due to the
short half-life.
The proposed model is shown in Fig. 10 (right). The

model contains two parallel turnover models con-
nected via ktol · R and kin · R0/M serving as input to
the moderator compartment (M) and R, respectively.
The ratio of ktol to kout, also called k, gives an idea
about the speed of tolerance development and the
possibility of observing rebound. This system is
shown to be applicable to many diverse situations
with drug tolerance and rebound (Gabrielsson and
Peletier, 2008).
2. Models, Equations, and Exploratory Analysis.

The multiple zero-order input steps and first-order loss
of the biophase compartment are expressed as a
differential equation (eq. 20):

dAb

dt
¼ Input  rate2K × Ab ð20Þ

Input rate, K, and Ab are the escalating zero-order
infusion rates of NiAc, the elimination rate constant,
and the biophase amount, respectively. The biophase
function is then driving the drug mechanism function
via an inhibitory process (Imax, ID50, and nH), where the
Imax parameter is set to a constant value of 0.95 (eq. 21).

IðAbÞ ¼ 12
Imax × A

nH
b

IDnH
50 þ AnH

b
ð21Þ

The biophase and drug mechanism functions are then
incorporated into one of the turnover systems of a
response model slightly different from the one pre-
sented in Isaksson et al. (2009), as shown in eq. 22:

dR
dt

¼ kin × IðAbÞ × R0

M
2 kout × R ð22Þ

where kin is the turnover rate, M is the moderator
compartment, kout is the fractional turnover rate, and
I(A) is the drug inhibitory function. The action ofM on
Rwas assumed to occur via inhibition of production of
R, rather than via stimulation of loss of R, as the
former is more attractive from both amechanistic and
an energy-conserving point of view. The R0/M ratio
denotes the baseline-normalized feedback of the
moderator M. The turnover of the moderator M is
shown in eq. 23:

dM
dt

¼ ktol × R2 ktol × M ð23Þ

Imax is assumed to be 1, which means 100% inhibition
for a very high dose. Input is then governed by the
multiple consecutive intravenous infusion regimens.

Fig. 10. (Left) Observed (filled symbols) and model-predicted (solid line) response vs. time data after a multiple intravenous infusion regimen of NiAc,
followed by washout (Isaksson et al., 2009). The infusion pump stopped for a brief period at about 90 minutes until the next syringe had been loaded.
During this event, there is a rapid return of response toward and past the baseline. The six yellow bars represent six different infusion rates (0.008,
0.016, 0.032, 0.064, 0.128, and 0.256 U/min). (Right) Schematic illustration of the proposed feedback model. Solid lines denote flows and dashed lines
denote control steps. Ab and ke denote the biophase amount and elimination rate constant out of the biophase, respectively. kin denotes the turnover
rate, I(Ab) is the drug mechanism function, R0 is the baseline response, M is the moderator compartment, and kout and ktol are the fractional turnover
rate and fractional turnover rate of the moderator compartment, respectively. FFA is the free fatty acid response biomarker R. The moderator
compartment M represents all lumped feedback mechanisms in fatty acid regulation (e.g., insulin).
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The model parameters of eqs. 20–23 are the baseline
value R0, the fractional turnover rate of response kout,
the rate constant of tolerance development ktol, and the
biophase kinetic rate constant ke. ID50 is the amount in
the system resulting in 50% of Rmax. The n parameter
allows more flexibility in the inhibitory function. The
baseline parameterR0 can be approximated to 0.6 units.
The ktol parameter governs the rebound between

200 minutes (at the end of infusion) and 240 minutes
(return of response to baseline). If we assume that four
half-lives of ktol (t1/2, ktol) have elapsed during the period
from 240 to 200minutes (i.e., 40minutes), then the half-
life is about 10 minutes. The first-order ktol parameter
then becomes ln(2)/10, which is about 0.07 min21.
The overall goal is to explain the complex behavior of

the biomarker R as a simple biophase amount-response
relationship. At pharmacodynamic steady state and
with inhibition of kout, the response becomes the
following (eq. 24):

RSS ¼
(

R0 × I
�
Ab;SS

�
R0 ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I
�
Ab;SS

�q ð24Þ

3. Results and Conclusions with Respect to Dose-
Response-Time Analysis. High consistency was found
between the observed and model-predicted data (Fig.
10, left). Table 5 contains initial and final parameter
estimates and their corresponding CV% values. Note
that ktol (0.058 min21) is 10 times smaller than kout
(0.59 min21). The k parameter is defined as ktol/kout,
which suggests that it takes 10 times longer to develop
the tolerance equilibrium than the response equilib-
rium. The size of k (,1) also suggests a substantial
rebound effect, provided that the kinetics of the test
compound does not confound the rebound development.
Figure 11 shows two simulations of eq. 24, represent-

ing a tolerant and nontolerant system, respectively, at
equilibrium. We have by means of a modeling approach
(eqs. 20–23; Fig. 10) condensed the complexity into a
relatively simple dose-response relationship, displayed
in Fig. 11. A tolerant system requires more drug to give
the same response at equilibrium. In this case example,
the tolerant system also shows a reduced ability to
suppress fatty acids to the same low level (0.05 mM) as
seen in the nontolerant condition. This is revealed by
the upward shift of the red dose-response curve.

Data showed a baseline value prior to test compound
administration. An almost complete inhibition of re-
sponse was seen with the highest dose, which suggests
that more extensive blockage of response is possible in a
nontolerant system. Data also demonstrated adapta-
tion with rebound and a limited ability to suppress the
level of free fatty acids (FFAs) in this condition (Fig. 11).

4. Pharmacodynamic Interpretation and Comment.
Adaptational phenomena in physiology and pharmacol-
ogy are commonplace and need to be accounted for in all
drug treatment contexts involving repeated dosing
(chronic indications). Needless to say, the degree of
adaptational and compensatory alterations varies
broadly across physiologic response, disease, target,
and drug class conditions. In the case example described
above, the nontolerant system responded to NiAc with a
marked shutdown of the FFA response. That said, it
should be noted that FFA concentrations were not
totally suppressed; this suggests that at least for the
type of rapid-acting drug target intervention repre-
sented by NiAc, other physiologic mechanisms will
sustain a minimum FFA concentration limit. In turn,
the upward shift of this minimum seen in the tolerant
systemmay indicate adjustment in the sensitivity of the
primary NiAc target sites in its intended biophase
and/or recruitment of other buffering/compensatory
mechanisms to ascertain upholding of “safe”FFA levels.

D. Case Study 4: Dose-Response-Time Analysis of
Antipsychotic Effects (Brief Psychiatric Rating
Scale Scores)

1. Background. This case study highlights the as-
sessment of the antipsychotic action of remoxipride in
patients with schizophrenia (Lewander et al., 1990).
The antipsychotic efficacy of the dopamine receptor–
blocking agent remoxipride was established in a series
of clinical studies, and analysis suggested three impor-
tant aspects of its effects in acute-phase schizophrenia.
First, 25%–30% of patients did not respond. Second, the
remoxipride treatment response appeared to affect both

Fig. 11. Response vs. NiAc concentration (Ab,ss/Vss) relationship at
equilibrium. Curves are normalized to the same baseline value. The gray
curve shows a system without feedback, and the red curve shows a system
with feedback. The same dose results in less effect in a tolerant system at
equilibrium as compared to a nontolerant system.

TABLE 5
Initial and final model parameter estimates and their corresponding

precision (CV%)

Parameter Initial Estimate Final Estimate CV%

R0 (mM) 0.6 0.58 3
kout (min21) 0.1 0.59 36
ktol (min21) 0.07 0.058 25
nH 1 1.40 7
ID50 (mmol) 0.1 0.13 26
K (min21) 0.2 0.22 13
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positive and negative symptoms of the disorder to a
similar degree. Third, the onset of antipsychotic action
in responders seemed to be unusually rapid (i.e., within
1 to 2 weeks). Patients with schizophrenia in an acute
phase of the illness received remoxipride (dose range,
120–600 mg/d) and were repeatedly scored for symptom
severity across a time period of at least 6 weeks. The
observed mean BPRS time courses in four treatment
response categories are shown in Fig. 12.
The patients were divided into four categories. Non-

responders were defined as having a ,25% reduction,
low responders as a 25%–49% reduction, medium
responders as a 50%–74% reduction, and high re-
sponders as a .75% reduction in total BPRS scores
from baseline to the last available rating.
The turnover model of the antipsychotic response-

time data is given in eq. 25. This is therefore an example
of evaluating the effect of a drug via usage of a disease
model, with a decrease in BPRS score being indicative of
a reduction in disease severity. Drug exposure and
responder category are embedded in the Imax parameter
for each responder category.
2. Models, Equations, and Exploratory Analysis.

Exposure to remoxipride was assumed to be constant
across the whole period of BPRS score measurements.
The half-life of remoxipride is about 4 to 5 hours in
plasma, compared with the half-life of BPRS score (in
weeks). The analysis focused on modeling BPRS re-
sponder category (Fig. 12) as a function of time. The
actual mean doses of the drug used in the studies in the
last 4- to 6-week period ranged from 226 to 556 mg/day
(typically approximately 400 mg/day; Lewander et al.,
1990), but “dose” was not used as a covariate for
separating the responder categories.
The rate of change of response dR/dt (Fig. 12, right)

can be described by eq. 25:

8>><
>>:

dR
dt

¼ kin × IðAbÞ2Kout × R

dR
dt

¼ kout × ðR0 × IðAbÞ2RÞ
ð25Þ

where kin, kout, R0, and I(Ab) are the turnover rate,
fractional turnover rate, baseline biophase response,
and inhibitory drug mechanism function (eq. 26), re-
spectively. Equation 25 will, under constant drug
exposure, describe the drug action in Fig. 12. The time
to dynamic steady state, assuming a constant biophase
exposure to remoxipride, Abss, will be governed by kout.
It is reasonable to assume that the exposure can be held
constant across two consecutive dosing intervals. Evi-
dently, the time course of the response (half-life of 1 to
2 weeks) is not directly correlated to the plasma half-life
of the drug, which is much shorter (4 to 5 hours). It was
therefore decided to model the inhibitory effect of drug
according to the following expression:

IðAbÞ ¼ 12 Imax ð26Þ

where Imax is the rating category of responders (nonre-
sponders and low,medium, and high responders). In the
absence of drug, I(Ab) = 1 and the baseline level of
response becomes (eq. 27)

R0 ¼ kin
kout

ð27Þ

In the presence of drug, the level of response becomes
(eq. 28)

RSS ¼ kin
kout

× ð12 ImaxÞ ¼ R0 × ð12 ImaxÞ ð28Þ

where Rss is the minimum steady-state response. The
lower the value of Rss, the better the drug effect. If we

Fig. 12. (Left) Observed (symbols) response (BPRS score, medians) vs. time in four treatment response categories defined according to the percentage
change at the last available rating (Lewander et al., 1990). Data were digitized and slightly adapted, in that the last available rating data point was set
to 12 weeks in our analysis. The experimental data are connected by straight lines. (Right) The conceptual model with its parameters turnover rate kin,
fractional turnover rate kout, and drug mechanism function I(Ab). R denotes the BPRS score.
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had full response in that Imax equaled unity (1), thenRss

would equal 0. The difference betweenRss (Rmin) andR0

is given by eq. 29.8>>><
>>>:

DR ¼ R0 2RSS ¼ kin
kout

2
kin
kout

× ð12 ImaxÞ ¼

kin
kout

× Imax ¼ R0 × Imax

ð29Þ

From the intercept of the response-time curve with the
effect axis (Fig. 12), the baseline value R0 (36.5 units)
can be obtained. R0 is the ratio of kin/kout, if we assume
eq. 27 to be an appropriate description of the drug-free
state. The kout parameter is obtained from the log-linear
slope of the downswing of the highest responder (.75%)
curve (eq. 30):

Kout ¼ lnð36:5Þ2 lnð10:3Þ
02 3

 �  0:42wk2 1 ð30Þ

The kin parameter can then be calculated (15.4 U/wk)
from the baseline value (36.5 units) and kout (0.42wk21).
Imax was estimated according to eq. 26 to be 0.8 for the
highest responder (.75%) group. That value was used
as the starting value for Imax in all groups.

3. Results and Conclusions with Respect to Dose-
Response-Time Analysis. Figure 13 displays observed
data together with model-predicted curves of the turn-
over model. Table 6 gives the final parameter esti-
mates of the four patient categories together with the
parameter precision. Note that the parameter pre-
cision was high in general, except for the nonre-
sponder category. The half-life of response ranged
between 1.1 weeks (25%–49% and .75% responder
categories) and 1.7 weeks (50%–75% responder cate-
gory). The Imax values were 0.41, 0.65, and 0.87 for the
25%–49%, 50%–74%, and.75% responder categories,
respectively (Table 6).

The quantitative category-response-time analysis
approach enabled us to assess the actual responder
values (Imax) as well as the half-life of response for each
category. Since the half-life of response was about a
week, we know that 90% response should have been
established within 3 to 4 weeks (i.e., three to four
half-lives). The half-life of response [ln(2)/kout] clearly
demonstrates the adjustment of the dopaminergic
system to drug intervention. It follows in this case that
whether a patient responds to the remoxipride therapy
may be possible to establish within 1 to 2 weeks from

Fig. 13. Observed (symbols) and model-predicted (lines) response (BPRS score) vs. time in four treatment response categories defined according to the
percentage change at the last available rating (Lewander et al., 1990). Dotted lines represent the dynamic half-life (BPRS scores) in the .75%
responder category: approximately 1 week.

TABLE 6
Final parameter estimates of the four patient categories

Data are presented as the estimate 6 CV%.

Parameter Nonresponders
(,25% Reduction)

Responders

25%–49% Reduction 50%–74% Reduction .75% Reduction

Imax 0.13 6 19 0.41 6 2 0.65 6 4 0.87 6 2
kin (scores/wk) 45 6 60 22 6 7 15 6 20 24 6 9
kout (wk21) 1.2 6 60 0.61 6 6 0.40 6 10 0.66 6 8
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the start of drug treatment. Therefore, the modeling
lesson to be learned from this case study is that frequent
(two or three times daily) dosing may not necessarily be
needed for a response such as an antipsychotic effect
when the half-life of the response is much greater than
the plasma half-life of the drug, unless there are safety
issues related to drug intake. The time to dynamic
steady state is unaffected by dose and/or dose frequency.
In other words, pharmacokinetic reasoning cannot
stand alone but has to be integrated with dynamics in
the decision-making process.
4. Pharmacodynamic Interpretation and Comments.

Ideally, we would have liked to see a return to baseline
after the cessation of drug treatment, as this may have
given an indication of possible rebound or adaptation.
Although withdrawal of a drug and therefore reduction
(and possibly obliteration) of the response may be
information rich in terms of determining the potency
of the drug (EC50/IC50), drug-free periods may jeopar-
dize patient health and should therefore be avoided
(certainly in difficult psychiatric afflictions). Although
such a design may thus be considered when developing
a new drug for schizophrenia, its application is compli-
cated by the typical chronic and progressing nature of
this illness, along with the fact that a significant
number of patients may have developed supersensitive
dopamine (and possibly other) target mechanisms as a
sequel to having been previously exposed long term to
one ormore antipsychotic drugs. Careful selection of the
de novo patients may be envisaged as a potential means
to circumvent said complications, and thereby gather
more complete DRT (coupled to plasma drug exposure
data) information from clinical studies to the benefit of
future antipsychotic drug development. From a strictly
therapeutic point of view, the data also underline the
marked heterogeneity encountered among patients di-
agnosed with schizophrenia. Identification of underly-
ing reasons for this may pave the way for better, more
individualized treatments. Incidentally, the analysis of
this case study suggests the intriguing possibility that it
might be possible to identify responders and nonre-
sponders already in the treatment initiation phase.
Further attesting to this prospect, comparable data
were found with haloperidol in the same study
(Lewander et al., 1990) as well as with other agents in
a number of other literature reports (e.g., Levine and
Leucht, 2010; Marques et al., 2011; Stauffer et al.,
2011), all of which display very similar patterns with
respect to antipsychotic drug treatment onset and
response trajectories in patient subgroups. DRT mod-
eling across these studies indicates that responders
(including “high,” “medium,” and “low” responders)
display a half-life of 1 to 2 weeks for symptom improve-
ment and 4–6 weeks to pharmacodynamic steady state,
and it also suggests early spotting of patients with
poor or no response to (antidopaminergic) treatment.
That said, any comparisons of efficacies, potencies,

and/or safety-related issues between compounds, spe-
cies, or studies must be based on plasma exposure
rather than dose, as pharmacokinetic properties such as
bioavailability, clearance, and half-life also need to be
factored in. Further stratified DRT analyses of re-
sponses to other psychiatric drug treatment classes
would be of great interest toward future individualized
pharmacotherapy approaches and strategies.

E. Case Study 5: Dose-Response-Time Analysis of
Bacterial Count

1. Background. This case study highlights some
complexities in DRT modeling of bacterial growth/kill
data. Antibacterial compound X was being developed
(Gabrielsson and Weiner, 2010). To establish its po-
tency in a resistant bacterial strain, a 10,000-U dose of
bacteria was injected into the bloodstream of five groups
of Wistar rats. A dose of 0 (vehicle control), 1.5, 2, 4, or
6 mg of the antibiotic was given to each of the groups.
Blood was drawn at selected time points for bacterial
count (Fig. 14).

2. Models, Equations, and Exploratory Analysis.
The bacterial growth/kill model is shown in Fig. 14
(right). The vehicle dose was included to explore the
natural bacterial growth, kg, in the absence of antibiotic.
The model was extended to incorporate an upper
growth-limiting factor, 1 – N/Nmax (eq. 31):

dN
dt

¼ kg × N ×
�
12

N
Nmax

	
2 kk × f ðAbÞ × N ð31Þ

whereNmax is themaximum value of the bacterial count
in the system (defined by the bacterial growth endpoint
in the vehicle-treated group). When the number of
bacteria N approaches the steady-state level Nmax, the
factor 1 –N/Nmax approaches zero and bacterial growth
is temporarily stopped. During the early cell kill phase,
the decline in bacterial count becomes

dN
dt

¼ 2 kk × f ðAbÞ × N ð32Þ

Figure 15 shows the results from fitting the extended
growth/kill model to the bacterial count versus time
dataset. Note that the starting values at time 0 were not
equal for the different groups of animals (see Table 7,
N01–05). From the growth of bacteria in the vehicle
group, the steady-state value of growth/kill can be
estimated to about 25–30,000 bacteria.

3. Results and Conclusions with Respect to Dose-
Response-Time Analysis. The proposed DRT model
nicely fits the five (0, 1.5, 2, 4, and 6 mg) colony-
forming unit time courses in Fig. 14, and Table 7 shows
the final parameter estimates and their CV%. DRT
analysis lent itself to assessment of the growth and kill
parameters. This model may now be used for optimizing
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the next study on repeated dosing with an alternative
dosing regimen.
4. Pharmacodynamic Interpretation and Comments.

Bacterial antibiotic resistance development is a well
known, global problem in need of novel drugs and
solutions. Analysis of the DRT data in the study
described in this case example gave robust parameter
estimates to assess growth and kill rates upon exposure
to the antibacterial agent X. The data in Fig. 14 suggest
that bacterial (re)growth was kept at bay for approxi-
mately 6 hours after administration of the drug, after
which growth exceeded the kill rate. Thus, from a
treatment perspective, it could be suggested that a
second dose of antibiotic given within the 6-hour time
frame should be considered tomore effectively eradicate
the infection. The data derived from the DRTmodel and
analysis therefore had significant impact on the onward
design of drug treatment protocols, and potentially also
for the optimization of pharmaceutical formulations for
therapeutic use.

F. Case Study 6: Dose-Response-Time Analysis of
Cortisol–Adrenocorticotropic Hormone Action

1. Background. Data were scanned from an article
by Urquhart and Li (1968), who studied the dynamics of
cortisol secretion of the perfused canine adrenal gland
in situ upon stimulation by ACTH. The dogs were
acutely hypophysectomized to eliminate endogenous
ACTH. The cortisol secretion rate (response) was
expressed as the product of the venous blood flow and
the concentration of cortisol in adrenal venous blood
(Fig. 16). The proposed model captures feedback regu-
lation at constant drug exposure. This dataset therefore
violates the previous assumption about time invariant
systems.
2. Models, Equations, and Exploratory Analysis.

The proposed feedbackmodel is shown in Fig. 16 (right).
Let us assume that the rise and fall of the cortisol

responseR shown in Fig. 16 (left) can be modeled by the
following simple feedback model (eq. 33):

dR
dt

¼ SðAbÞ × kin 2 kout × M ð33Þ

S(Ab), which represents the ACTH drug mechanism
function, stimulates the production of R, which is
then counterbalanced by means of the endogenous
modulator that we denote as M. Note that the loss of
R is indirectly governed by means of M. M is in turn
governed by R and the rate constant for development
of tolerance ktol, which can be written as shown in
eq. 34:

dM
dt

¼ ktol × R2 ktol × M ð34Þ

The ktol parameter was selected to govern both pro-
duction and elimination ofM in this particular example.
However, this may not always be the case where data
contain more information about the different rate
processes. When R increases, the production of modu-
lator M is stimulated and then increases. The increase
in M counterbalances R by increasing the rate of loss of
R. It is assumed that the rates in and out of M are
governed by the first-order rate constant for tolerance
ktol.

The ACTH drug mechanism function S(Ab) is written
as follows (eq. 35):

SðAbÞ ¼ ½Ab�n ð35Þ

where the ACTH concentration is either 1mU/ml (unity)
or 2 mU/ml, and n is an amplification parameter
allowing a disproportional rise in S(Ab) with a doubling
of ACTH.

3. Results and Conclusions with Respect to Dose-
Response-Time Analysis. The regression of eqs. 33–35
is compatible with data as shown in Fig. 16. The model

Fig. 14. (Left) Observed (symbols) and predicted (lines) response (bacterial count, CFU) vs. time after administration of 1.5, 2, 4, and 6 mg of a new
antibiotic. Note the large range of counts (more than three orders of magnitude). (Right) First-order bacterial growth coupled to the second-order
bacterial kill model. The first-order growth kg × N × (1 2 N/Nmax) is saturable by means of the (1 2 N/Nmax) term, where kg, N, and Nmax denote
the first-order growth rate constant, the number of bacteria, and the maximum bacterial count, respectively. The bacterial kill process is approximated
by –kk f(Ab) × N, where kk, N, and Ab denote the first-order kill rate constant, the number of bacteria, and the plasma concentration of drug. CFU,
colony-forming unit.
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is made up of two parallel turnover models that are
interconnected, in that the response compartment
drives the buildup of the moderator and the change of
the moderator is fed back to the response compartment
via the loss term of the latter. This mechanism makes
up the feedback process that governs the intertwined
cortisol-ACTH system. Data show the predose baseline,
the initial rapid rise resulting in an overshoot in cortisol
release when the ACTH level rises, pharmacodynamic
steady-state and the post-exposure rebound. Cortisol
levels then decline to a new steady state, which upon
lowering of the ACTH exposure plunges to a level below
(rebound) the original baseline at about 2. The rebound
then oscillates back to baseline at the end of the
experimental period. The kout and ktol parameters are
of the same magnitude (0.16–0.18 min21), which corre-
sponds to a half-life of cortisol release of about 3minutes
(Table 8).
The biophase exposure to cortisol was assumed,

but not confirmed, to be 1 mU/ml at baseline, approx-
imately doubled during the experiment, and then
returned back to baseline exposure during washout.
This experimental setup allowed us to use a square-
wave biophase function for driving the pharmacody-
namic response. Data contained information about the
model rate constants kin, kout, and ktol and the ampli-
fication factor n. All parameters were estimated with
high precision.
4. Pharmacodynamic Interpretation and Comments.

The interdependent ACTH-cortisol secretion system is
an important and integral part of the hypothalamic-
pituitary-adrenal axis, responding to stressful condi-
tions and challenges. The studies of Urquhart and Li
(1968) used hypophysectomized dogs to maintain con-
trol of the ACTH exposure in their perfusion experi-
ments. Interestingly, the overshoot observed in this
case study appeared dependent both on dose (exposure)
and rate of ACTH rise in the arterial blood during

perfusion (Urquhart and Li, 1968). The underlying
mechanism(s) was suggested to involve changes in
cortisol hydroxylation, and/or other unknown actions
of ACTH on steroidogenesis, which is also related to the
moderator M in our analysis. We attempted to rean-
alyze data with either an extended model (according to
Ahlström et al., 2011) or an alternative tolerance model
(Urquhart and Li, 1968; used in the original analysis).
However, neither of these approaches was successful in
fully capturing the oscillations. It appears that addi-
tional discrete individual data are required to estimate
accurate and precise parameters that may account for
oscillatory behavior (and tolerance development) in this
case.

G. Case Study 7: Dose-Response-Time Analysis of
Miotic Effects

1. Background. Miotic response-time data are an
example of the use of DRT analysis when there are no
supportive drug concentrations. When we use local
applications (e.g., eye drops for drug action in glau-
coma), plasma exposure to drug is “downstream” of
the biophase containing the pharmacological target
and thus cannot serve as a driver of the pharmaco-
logical response. This case study therefore illustrates
the feasibility of using DRT data in an early pre-
clinical setting in the absence of systemic exposure
data.

The miotic response in the cat eye after application of
latanoprost (Gabrielsson et al., 2000; Gabrielsson and
Weiner, 2016), an ester prodrug analog of prostaglandin
F2a, is assumed tomirror an interaction with prostenoid
F receptors in the smooth muscle of the iris. Thus, in a
screening program to find drugs for the treatment of
glaucoma, the miotic response in the cat eye was one of
the models used to evaluate potential drug candidates.
Domestic cats were specially trained to receive eye
drops and to allow measurement of the pupillary re-
sponse. Six animals were used in each of three dose
groups. The horizontal diameter of the pupil was
measured. The precision of the measurements of the
pupil diameter was 1 mm (10%). Figure 17 shows the
observed response-time data, and eq. 36 is the biophase
model fit to the data.

TABLE 7
Initial and final parameter estimates and their CV%

k values are given in h21, and N values are given in colony-forming units.

Parameter Initial Estimate Final Estimate CV%

kg (h21) 0.10 2
Ke (h

21) 1.0 0.77 2
kk (h21) 1.0 2
Nmax 37,000 6
N01 11,000 3
N02 11,000 3
N03 12,000 4
N04 13,000 5
N05 11,000 3

Fig. 15. Semilogarithmic plot of observed (symbols) and model-predicted
(lines) response-time data on how to estimate the growth kg and kill-rate
kk parameters.
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2. Models, Equations, and Exploratory Analysis.
The kinetics of latanoprost in the biophase was as-
sumed to be described by a first-order input/output
model, including a lag-time:

Ab ¼ Ka × F × Dev

ðKa 2KÞ
h
e2K × ðt2 tlagÞ2 e2Ka × ðt2 tlagÞi ð36Þ

Ab is the drug amount in the biophase, Dev is the actual
extravascular dose applied on the cornea,Ka is the first-
order input rate constant, K is the first-order elimina-
tion rate constant (assuming Ka . . K), and tlag is the
lag time during the input of drug into the effect
compartment. We also assume that the biophase avail-
ability and volume of the biophase compartment are set
equal to unity. The biophase function (eq. 36) is then
directly driving the response (eq. 37):

E ¼ E0 2
Imax × A

nH
b

IDnH
50 þ AnH

b
ð37Þ

including the baseline value of the contralateral control
eye E0, the maximum effect Imax, the dose at half-
maximal effect ID50, and the sigmoidicity factor nH. Ka,
K, tlag, Imax, ID50, and nH were then estimated by
simultaneously fitting eqs. 36 and 37 to the mean
values of the observed effect-time data obtained from
each dose (Fig. 18).
3. Results and Conclusions with Respect to Dose-

Response-Time Analysis. The treatment data presented
here exemplify the use of a biomarker (response)
when there are no drug concentration data for kinetic/
dynamic analyses. We assumed a first-order input/output

kinetic model that drives the dynamics. The kinetic and
dynamic models were then fit simultaneously to the
data to estimate Ka, K, tlag, Imax, ID50, and n (Table 9).
The simulated biophase amount versus miotic response
is shown in Fig. 18.

4. Pharmacodynamic Interpretation and Comments.
This analysis example shows that a well designed
experiment that includes only response-time data may
nonetheless lend itself to estimation of the underlying
kinetic processes without any additional concentration-
time measurements. It also shows that absorption does
not have to be instantaneous to enable estimation of
biophase kinetics and dynamics. It has been suggested
that the cornea acts like a slow-release depot to the
anterior segment when latanoprost is topically admin-
istered into the eye (Russo et al., 2008), possibly adding
to the lag-time effect introduced by the ester conversion
of latanoprost to its active species in the eye. The results
from a DRT exercise could be used for more refined
recommendations regarding dose, dosing interval, and
concentration-response sampling times in future (pre)-
clinical studies. In this particular case and based on
human data (Sjöquist and Stjernschantz, 2002), once
the drug reaches the systemic circulation, its break-
down is very rapid (t1/2 of 17 minutes); thus, this further

TABLE 8
Final parameter estimates

Data are presented as the estimate 6 CV%.

Parameter kin kout ktol n

concentration/min min21 min21

Estimate 0.32 6 6 0.16 6 5 0.18 6 14 0.78 6 6

Fig. 16. (Left) Cortisol release rate vs. time in the perfused canine adrenal gland in situ upon stimulation by ACTH (gray bar). Experimental data
(solid circles) and the model-predicted curve (solid line) after a doubling of cortisol exposure. The drug provocation is modeled by means of a square-
wave function that changes from 1 mU/ml (20–60 minutes) to 2 mU/ml (60–122 minutes), and then back to 1 mU/ml at 122 minutes. (Right) Schematic
presentation of the conceptual model used for fitting experimental data of cortisol release rate as a function of ACTH exposure. R denotes the cortisol
release rate, M is the moderator, kin is the turnover rate constant, kout is the fractional turnover rate constant, and ktol is the fractional turnover rate
constant of the moderator compartment. The stimulatory drug mechanism function is given as a square-wave function with a jump of ACTH exposure
from 1 to 2 mU/ml at 60 minutes and then an equally abrupt change back to 1 mU/ml at 122 minutes. PD, pharmacodynamic.

Dose-Response-Time Data Analysis 109

at A
SPE

T
 Journals on A

pril 9, 2024
pharm

rev.aspetjournals.org 
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org


complicates concentration-time–only approaches to
modeling. Notably, as the application of latanoprost is
in the immediate vicinity of the target biophase, plasma
exposure is downstream of the miotic response and
therefore not the driver in this situation. Moreover, the
fact that the effect precedes (rather than follows) the
appearance of drug in the circulation, combined with a
prolonged response duration versus a very short plasma
half-life of the drug, would make any attempt to
correlate the miosis readout to plasma concentration
extremely difficult.

H. Case Study 8: Meta-Analysis of Dose-Response-
Time Data

1. Background. The standard pharmacological ap-
proach of activating a target around the clock often fails
because of time-dependent loss of drug efficacy and
postdosing rebound above predose baseline levels. This
case study presents data that originally explored the
idea that a more comprehensive understanding of the
relationship between plasma exposure and a pharma-
cological response combined with knowledge of the
physiologic regulation of metabolism (i.e., simulta-
neously analyzed considering the effect of key bio-
markers) can be used to mitigate these barriers,
allowing the invention of new pharmacostrategies

(Andersson et al., 2017; Kroon et al., 2017). The meta-
analysis aimed at investigating in what way our in-
ference about the system is changed when all drug
exposure data are removed. Is it still possible to derive
information about pivotal target (FFAs) properties by
conducting a DRT data analysis? If not, in what way do
the results fail to give insight about system behavior?

This DRT analysis contained the following informa-
tion: 1) multiple response-time courses of two different
biomarkers (FFA and insulin) under acute and semi-
chronic NiAc treatments, conducted in both lean
Sprague-Dawley and obese Zucker rats; 2) time delays
(between known plasma exposure and biomarker re-
sponse), feedback patterns (e.g., overshoot and re-
bound), and two distinct patterns of systemic
adaptation prevail (one as a result of insulin control in
lean animals, and another pattern due to drug re-
sistance in obese animals); and 3) utilization of a prior
exposure-driven analysis, which provided a good oppor-
tunity for comparisons between DRT- and exposure-
driven analyses. Table 10 contains information about
the experimental setup, animals used, administration
routes, and study duration, which were all part of the
meta-analysis.

2. Results and Conclusions with Respect to Dose-
Response-Time Analysis. The meta-analysis of the
NiAc-FFA-insulin data challenges several of the pre-
viously established constraints to DRT analysis:
namely, linear dynamics, stationary system (toleran-
ce/adaptation not allowed), instantaneous equilibrium
between plasma and biophase (response), linear plasma
kinetics, and so forth. The analysis may also provide a

Fig. 17. (Top) Observed (symbols) and model-predicted (lines) response-
time data for latanoprost at the 0.1, 1.0, and 10 mg dose levels in the cat
eye. (Bottom) Simulated corresponding biophase time courses using final
parameter estimates from the regression of the pharmacodynamic model
to response-time data in the top panel. The thick dashed red line
schematically shows the time course of test compound after intravenous
and topical (tmax 10 minutes) dosing onto the cornea, with a plasma half-
life of ,10 minutes in rabbits and cynomolgus monkeys (Sjöquist et al.,
1999).

Fig. 18. Observed (symbols) and predicted (solid lines, eq. 37) miotic
effect (in millimeters) vs. biophase amount after three different doses of
latanoprost (filled red circles, 0.1 mg; blue squares, 1.0 mg; and gray
circles, 10 mg). The observed effects are mean values with a coefficient of
variation of approximately 30% for each observation.

TABLE 9
Final parameter estimates

Data are presented as the estimate 6 CV%. Half-lives of Ka and K are given.

Parameter t1/2Ka t1/2K tlag Imax ID50 N

min mm mg min

Estimate 35 6 30 140 6 7 26 6 5 7.2 6 2 0.17 6 10 1.3 6 7
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framework to conduct meta-analyses of both preclinical
and clinical studies when exposure data are scarce or
lacking. To our knowledge, multiple mutually interde-
pendent biomarkers confounded by dynamic feedback
(e.g., with FFA and insulin, in this case) have not yet
been analyzed by means of a DRT approach.
The results were generally well defined system

parameters, except for an unacceptably low precision
for some of them. By and large, the traditional exposure
response and the DRT approaches, however, gave
similar results (Table 11). It is also interesting to note
that parameter estimates of a very wide numerical
range were obtained in the analysis, which probably
made the differential equation system rigid. The half-
lives ranged from a few seconds to more than 100 hours,
which is not surprising in a highly regulated metabolic
system such as the FFA-insulin interplay. The outcome
may help optimize the next study design to increase
precision in pivotal parameters. We are aware of the
fact that the DRT analysis resulted in some poorly
defined parameters (high CV%), which makes sense
in light of particulars of the dataset. Specifically,
targeted time ranges will be of greater importance in
the design of subsequent studies. However, note the
great discrepancy between the half-lives of exposure-
driven tolerance versus DRT-driven tolerance in the
lean Sprague-Dawley group. The former suggests a long
half-life of almost 70 hours, whereas the latter analysis
showed a half-life of slightly less than an hour.
3. Pharmacodynamic Interpretation and Comments.

The results illustrate the value of applying a quantita-
tive approach to accompany comprehensive physiologic
and kinetic-dynamic understanding. A well defined
dosing regimen, rate, extent, and timing of drug in-
tervention were designed sequentially across several
studies. This resulted in suppression of tolerance and
rebound and, most importantly, in profound improve-
ments of the metabolic profile of a preclinical disease
model (Andersson et al., 2017; Kroon et al., 2017). In
turn, this information may provide vital input to
projects aimed at discovery and development of novel
drugs for metabolic disorder. As noted by Kroon et al.

(2017), the possibility remains to be investigated whether
the response patterns observed with different NiAc
administration protocols are exclusive to this agent or
may be avoided using other drugs also targeting the
HM74/GPR109A receptor. Whether antilipolysis via
other targets would display similar response properties
to the NiAc HM74/GPR109A receptor interaction is also
clearly a worthwhile task for future study. Regardless,
this case study is an example of the importance of
optimal design of dosing regimens in the treatment of
metabolic disorder. Furthermore, the data also empha-
size the importance of drug testing in a disease model
(obese Zucker rats) compared with control conditions
(lean Sprague-Dawley rats), as illustrated not least by
the marked difference in tolerance half-life outcome.

I. Overall Conclusions of the Case Studies

The eight selected case studies were chosen for their
specific data patternswith respect to the onset, intensity,
and duration of response, rather than representations of
therapeutic class. Whereas case studies 1–7 are repre-
sentative single-case studies of the aforementioned, case
study 8 is an example of applying an extendedmodel and
mixed-effects modeling to meta-analysis of several sour-
ces of data.

Time series are necessary for a correct assessment
of biomarker response data, particularly with time
delays between the plasma concentration of test com-
pound and the biomarker response. Since different

TABLE 11
Final estimates of system parameter half-lives from the meta-analysis

(biophase- vs. exposure-driven input)
Data are the CV% and corresponding S.D. for the different parameters.

Parameter,
t1/2 (h)

Lean Sprague-Dawley Rats Obese Zucker Rats

DRT Driven Exposure Driven DRT Study Exposure Driven

koutI 0.03 (16) 0.11 (14) 0.04 (45) 0.06 (17)
ktolI 0.78 (30) 64. (28) 4.3 (6.0) 5.8 (48)
koutRI 0.02 (16) 0.01 (17) 28. (54) 11. (27)
kNI — — 5.0 (170) 29. (35)
koutF 0.001 (1) 0.002 (140) 0.002 (150) 0.004 (120)
ktolF 0.36 (1000) 0.57 (67) 1.2 (4.3) 1.1 (24)
koutRF 0.08 (300) 0.71 (29) 77 (58) 41 (38)
kNF 140 (330) 110 (65) 190 (24) 18 (14)

TABLE 10
Information about study length, washout profile, dose schedule, route, and nutritional conditions

Number of saline control animals appears within parentheses.

Treatment Study Protocol Route Lean Rats Obese Rats

Acute On-off 1 h 1 h infusion i.v. 4 (3) 5 (3)
On-off 5 h 5 h infusion s.c. 7 (2) 7 (5)
On-off 12 h 12 h infusion s.c. 5 (2) 4 (2)
Step-down 1 h 1 h infusion plus 3.5 h of

step-down infusion
i.v. 5 (2) 5 (2)

Step-down 12 h 12 h infusion plus 3.5 h of
step-down infusion

s.c. 5 (3) 4 (3)

Semichronic Continuous 120 h 120 h pretreatment infusion
plus 5 h infusion

s.c. 6 (2) 8 (2)

Intermittent 120 h 120 h pretreatment intermittent
infusion (12 h infusion plus
12 h washout) plus 5 h infusion

s.c. 6 (2) 8 (3)
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model parameters contribute to varying extents at
specific phases (onset, intensity, and duration) of a
pharmacological response, close scrutiny of the experi-
mental protocol becomes an integral part of design. A
full characterization of determinants behind the onset,
intensity, and duration of response often requires
multiple routes, rates, and extents of dosing regimens.
DRT analyses typically use more parameters (e.g.,

biophase availability, biophase rate constant) than
plasma concentration-driven models, since the driver
(biophase) of pharmacological response has to be pre-
dicted as such. Plasma half-lives are also typicallymuch
shorter than are pharmacodynamic responses (e.g.,
shown in case studies 3 and 8). Finally, DRT models
are generally compound, biomarker, and species de-
pendent and are therefore difficult to generalize within
and across therapeutic classes. Table 12 lists charac-
teristics, mechanisms, and features, along with some
suggestions for improvements to experimental design,
applied to the case studies discussed in this article.

IV. Discussion

A. Background

This review focuses on DRT data analysis when
knowledge on test compound (drug) exposure is scarce
or entirely lacking. We start by dissecting the different
phases of a pharmacodynamic response-time course
(Fig. 2), and we propose what parameters may be
related. We then move on to exemplify structures of
biophase functions from the literature (Fig. 3). These
range from a simple bolus input coupled to monoexpo-
nential decline and first-order and saturable input/out-
put rates to parallel exogenous and endogenous input
functions. We provide a brief mathematical description
of biophase, drug mechanism, and commonly applied
turnover functions. We also discuss alternative rate
models and put them into a biologic perspective. This
review contains eight case studies. These case studies
were selected to demonstrate how to tackle baseline/no
baseline, time delays, peak shifts, saturation, cell
growth/kill data, functional adaptation, rebound, mul-
tiple sources of drug provocations and biomarkers, and
rapid exposure-response data (Table 2).
Isaksson et al. (2009) and Andersson et al. (2016, 2017)

successfully performed meta-analyses on preclinical data
on NiAc (nonlinear absorption and elimination)–induced
fatty acid lowering, with accurate and precise param-
eter estimates. The kinetic nonlinearities were well
separated from the pharmacodynamic nonlinearities.
Pharmacological data of two intertwined biomarkers
and of multiple doses, rates, routes, and schedules
were simultaneously regressed. This attests to the
view that the success of a DRT analysis is a matter of
good experimental design (Gabrielsson and Weiner,
2010, 2016; Andersson et al., 2016) rather than the

number of observations, as was recently suggested
(González-Sales et al., 2017).

The applicability of DRT analyses in both preclinical
and clinical situations is illustrated in Table 13, which
compiles more than 60 examples found in a thorough
search of the literature. We also list some situations in
which DRT analyses may be potentially useful but may
be challenging (Table 14).

To this end, references listed in Table 13 represent a
compilation of reports published up to and including
2017. References to abstracts and oral communications
have intentionally been excluded from this review.
These studies cover a large range of therapeutic and
experimental areas. Some of the preclinical studies use
two or more modes of administration and are more
experimental in nature (Schoenwald and Smolen, 1971;
Smolen, 1971a,b, 1976a,b, 1978; Smolen et al., 1972;
Smolen and Weigand, 1973; Isaksson et al., 2009;
Andersson et al., 2017). Other studies are performed
in critically ill patients (Salem et al., 2016), in neonates
(Trefz et al., 2015), under disease progression
(Musuamba et al., 2015), for postoperative pain man-
agement (Abou Hammoud et al., 2009), in drug in-
teraction studies (Gruwez et al., 2005, 2007), and in
metabolic systems (Fasanmade and Jusko, 1995;
Hamberg et al., 2010; Ternant et al., 2014; Saffian
et al., 2016), to mention just a few.

B. What Do Different Doses, Routes, and Rates of
Input Add?

When different doses (see case study 1) are given
in vivo, the process of onset of action, potential response
peak shifts with increasing doses, saturation of re-
sponse at higher doses, and functional adaptation of
duration of action may be observed in the pharmaco-
logical response-time courses. When different routes of
administration (e.g., intravenous and subcutaneous; see
case study 1) are applied, the biophase availability may
be estimated separately from the other kinetic and
dynamic parameters. Nonlinearities in biophase kinet-
ics may also be revealed (case study 8).

When different doses and routes are tested simulta-
neously, information about saturation of either the
absorption or disposition of drug or both processes
may be discerned from saturable pharmacodynamic
processes (Andersson et al., 2017). Functional adapta-
tion may be observed and quantified when repeated
dosing is done (case study 2; Andersson et al., 2016,
2017). The two routes of administration in case study
2 also revealed absorption-rate–limited elimination in
the pharmacodynamic data.

Neither the pharmacokinetics nor the pharmacody-
namics need to be linear first order, time invariant, or
instantaneous or display a constant baseline. A meta-
analysis of complex response-time data of fatty acids
(FFAs) and insulin turnover in plasma after multiple
provocations of NiAc clearly demonstrated the full
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capacity of the DRT approach (Isaksson et al., 2009;
Andersson et al., 2017). Not only were the estimated
system parameters (kout, ktol, etc.) similar to those
obtained from a full exposure-driven analysis, but the
interaction between FFAs and insulin was also correctly
captured. Simultaneous sampling of multiple interact-
ing biomarkers (e.g., FFAs and insulin) offers an
opportunity to take the analysis to an even higher level
and deconvolute interaction patterns between the bio-
markers, but still keep the assessment focus on both
drug properties (e.g., ED50) and target properties (e.g.,
kin and kout) (Andersson et al., 2017). The use ofmultiple
sources of biomarker data obtained from diverse pat-
terns of drug (NiAc) intervention allowed accurate and
precise parameter estimates. The mechanistic model
may therefore have a higher translational potential.
Some of the preclinical studies use two or more modes

of administration and are more experimental in nature
(Schoenwald and Smolen, 1971; Smolen, 1971a,b,
1976a,b, 1978; Smolen et al., 1972; Smolen and Wei-
gand, 1973; Isaksson et al., 2009; Gabrielsson et al.,
2015; Andersson et al., 2017). Smolen (1971a, 1976b)
described a model for bioavailability and biokinetic
behavior of a mydriatic drug. He extended the analysis
to application of DRT data for bioequivalence testing.
Others have applied a systems analysis approach
(Veng-Pedersen and Modi, 1993). Fasanmade and
Jusko (1995) developed a kinetic/dynamic model using
a hypothetical reactive metabolite to explain formation
of methemoglobin. These studies clearly demonstrate
the potential of DRT analyses in a preclinical setting
and their applications to drug discovery data. There are
several clinical examples of how DRT modeling is
applied to analyze (sparse) human data (see Table 13).
The statistical methodology of DRT modeling is ele-
gantly illustrated with data from clinical studies of
therapeutic biologics in autoimmune disease (Lange
and Schmidli, 2014, 2015), and Salem et al. (2016)
applied a DRT approach to critically ill patients where
traditional exposure-driven approaches are difficult
and/or unethical. The drug mechanism function was
driven by the biophase amount rather than the rate.
Trefz et al. (2015) developed a pharmacodynamic DRT
model to improve the description of individual sensitiv-
ity to tetrahydrobiopterin responsiveness in neonates
with hyperphenylalaninemia. Abou Hammoud et al.
(2009) demonstrated how a DRT model, which charac-
terizes the time course of morphine-induced analgesia
in the immediate postoperative period, could be used for
pain management. Wilbaux et al. (2015) successfully
applied a DRT approach for the assessment of treat-
ment efficacy in metastatic castration-resistant pros-
tate cancer, using the count of circulating tumor cells
(CTCs) as a promising surrogate marker. The model is
the first to quantify the dynamics of prostate-specific
antigen and CTC count during treatment in patients
with metastatic castration-resistant prostate cancer.

It has great potential as a general framework for showing
the combination effects of chemotherapy in other cancer
types to compare the properties of CTCs.

Gruwez et al. (2005, 2007) developed a DRT-
interaction model between selective serotonin reuptake
inhibitors and pindolol for the assessment of clinical
treatment of depression (Montgomery–Åsberg Depres-
sion Rating Scale score). They concluded that the DRT
model of Montgomery–Åsberg Depression Rating Scale
score kinetics was able to capture individual data of a
clinical trial and to yield estimates of the typical values
and the interindividual variability of the parameters. A
clinical trial simulation based on the model illustrated
how it might be used as a tool for clinical trial planning
in the field of research on antidepressants and adjunc-
tive treatments.

Ahn et al. (2014) used a semimechanistic approach to
characterize the Ca2+-parathyroid hormone (PTH) sys-
tem after intake of thermal spring water containing
calcium or calcium carbonate tablets. Without notice-
able differences in plasma Ca2+ levels, the changes in
PTH responses were used as a surrogate marker for
calcium absorption. With a more enhanced study de-
sign, it is believed that their approach can be applied to
evaluate calcium absorption, as determined by PTH-
time responses.

A recent review on challenge tests of reaction induced
by Sephadex, interleukin 1b, collagen, lipopolysaccha-
ride, and glucose and changes caused in eosinophil count,
interleukin 6, paw-swelling, tumor necrosis factor a, and
blood glucose, respectively, applied the DRT approach as
a substitute to mimic time courses of the challenging
agents (Sephadex, collagen, lipopolysaccharide, and glu-
cose) when exposure to these challengers was lacking
(Gabrielsson et al., 2015). Table 14 shows some de-
manding experimental situations that identify problems
related to DRT analyses, with literature references to
potential solutions.

C. Drug Delivery by Means of Iontophoresis

Drug administration through the skin has been
investigated for several decades, and many delivery
techniques have been explored to facilitate drug per-
meation across this outer bodily barrier. Among these,
iontophoresis is a novel promising drug delivery system,
which enhances skin penetration and the release rate of
a number of drugs that are otherwise poorly permeable
through the skin (for a review, see Iredahl et al., 2015).
DRT analyses may play an important role in iontopho-
retic systems due to their time- and concentration-wise
detachment from systemic exposure, although informa-
tion that fully characterizes the rate and extent of drug
input is still a key factor that needs to be sorted out prior
to proposing a biophase structure. However, promising
results were recently collected during histamine ionto-
phoresis with laser Doppler monitoring (Liu et al.,
2016). This approach allowed a fixed dose of histamine
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to be delivered and an objective, continuous, and
dynamic measurement of histamine epicutaneous re-
sponse to be recorded in children and adults. The
reduced data set was then analyzed by means of a
DRT model of the local histamine response.

D. Permutations of Smolen’s Model: The Kinetic-
dynamic K-PD Rate of Change Model

DRT analyses were pioneered by Smolen and Levy in
the 1960s and 1970s with a series of classic papers
paving some of the theoretical ground (Levy, 1971;
Schoenwald and Smolen, 1971; Smolen, 1971a,b;
Smolen et al., 1972; Smolen and Weigand, 1973). A
different permutation, denoted kinetic-dynamic K-PD,
was more recently suggested (Jacqmin et al., 2007). The
latter bolus model suggests that the elimination rate
from the biophase k × Ab drives the pharmacological
response rather than the biophase amount (Ab or
exposure) per se (eq. 38).8>>>>>>><

>>>>>>>:

dAb

dt
¼ 2 k × Ab

Sðk × AbÞ ¼ 1þ Smax × ðk × AbÞ
SD50 þ ðk × AbÞ

dR
dt

¼ kin × Sðk × AbÞ2 kout × R

ð38Þ

The SD50 is the rate of change of drug in the biophase
that results in half-maximal drug-induced response,
which makes this parameter difficult to interpret and
compare across species. There are few examples in the
pharmacological literature where the rate of change in
biophase amount rather than the biophase amount per
se, is the “driver” of the pharmacological response. The
division of SD50 by k in eq. 38 (middle line) may then
cause a parameter identifiability problem.
In contrast to the biophase bolus model in K-PD,

there are numerous examples in the literature (Table 1)
and case studies 1–3, 7, and 8 that demonstrate more
elaborate structures. Several authors refer to the K-PD
(k × Ab) approach but have in fact applied the classic
Smolen biophase kinetics (Ab) for driving the pharma-
codynamic model (Table 13; see footnoted references).

E. General Conclusions

This review aims to raise cross–research and devel-
opment discipline awareness about DRT data analyses
to explore and improve interpretation of data. Although
the DRT methodology is not new, it is still compara-
tively rare in experimental and clinical pharmacology.
This review examines how the time course of a phar-
macological response can be dissected to gain further
insight. It emphasizes the significance of time courses,
illustrates the importance of multiple dose information,
and addresses issues in the examination of time-
response relationships. Furthermore, this review shows

how quantitative pharmacology adds significant value
to target turnover information and why ignoring this
may cause misleading results and conclusions. In
conclusion, access to robust and discrete baseline data
(absolute numbers rather than differences or other
conversions) from multiple doses, routes, rates, and
administration modes will provide the best prerequisite
for fruitful DRT analysis.

Smolen et al. (1972) stated that

The use of pharmacological data for pharmacokinetic
systems analysis would be obviously limited if re-
sponses were restricted to only those effects that can
be directly observed and utilized without further, or
only minimal, treatment. When an assay for a drug in
biological media does not exist or is difficult to perform,
it can be considered that the development of a pharma-
cological method could instead provide the most expe-
ditious means of accomplishing a pharmacokinetic
analysis of the drug’s behavior.

He also suggested that “the use of pharmacological
data for bioavailability studies should be considered
irrespective of whether an assay method for the drug
exists. The decision to use either or both types of data
should depend on the relative sensitivity precision,
convenience, and economy” Smolen (1976b). It is our
hope that our account will further underscore his
sentiments, and that the examples and suggested
solutions in this article will inspire (and renew interest
in) DRT analysis of pharmacodynamic responses.
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