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Abstract——For more than 60 years, dopamine (DA)
has been known as a critical modulatory neurotransmit-
ter regulating locomotion, reward-based motivation,
and endocrine functions. Disturbances in DA signaling
have been linked to an array of different neurologic and
psychiatric disorders, including Parkinson’s disease,
schizophrenia, and addiction, but the underlying
pathologic mechanisms have never been fully
elucidated. One major obstacle limiting interpretation
of standardpharmacologicaland transgenic interventions
is the complexity of the DA system, which only appears to
widen as research progresses. Nonetheless, development
of new genetic tools, such as chemogenetics, has led to
an entirely new era for functional studies of neuronal
signaling. By exploiting receptors that are engineered
to respond selectively to an otherwise inert ligand,
so-called Designer Receptors Exclusively Activated by

Designer Drugs (DREADDs), chemogenetics enables
pharmacological remote control of neuronal activity.
Here we review the recent, extensive application of this
technique to the DA field and how its use has advanced
the study of the DA system and contributed to our general
understanding of DA signaling and related behaviors.
Moreover, we discuss the challenges and pitfalls
associated with the chemogenetic technology, such
as the metabolism of the DREADD ligand clozapine
N-oxide (CNO) to the D2 receptor antagonist clozapine.
We conclude that despite the recent concerns
regarding CNO, the chemogenetic toolbox provides an
exceptional approach to study neuronal function.
The huge potential should promote continued
investigations and additional refinements to further
expound key mechanisms of DA signaling and
circuitries in normal as well as maladaptive behaviors.

I. Introduction

Pioneering studies showed more than 60 years ago
that dopamine (DA) is not just ametabolic intermediate
in the synthesis of norepinephrine but a neurotrans-
mitter in itself (Carlsson and Waldeck, 1958). The DA
system has since been the subject of numerous studies,
and it is now fully established that DA is an essential
and dominant neurotransmitter within the central
nervous system (CNS), modulating a wide array of
physiologic functions, such as motor control, reward-
based motivation, memory, learning, decision making,
and neuroendocrine secretion (Björklund and Dunnett,
2007; Berke, 2018). The DA field has been further
fostered by the realization that imbalances in DA
homeostasis are critical components of both neurologic

and psychiatric diseases such as Parkinson’s disease
(PD), schizophrenia, bipolar disorder, Tourette’s syndrome,
attention-deficit/hyperactivity disorder (ADHD), and ad-
diction (Hornykiewicz, 1966; Beaulieu andGainetdinov,
2011; Tritsch and Sabatini, 2012).

A major challenge has been to dissect the molecular
and cellular mechanisms underlying the ability of DA to
regulate a broad spectrum of brain circuits and thereby
influence multiple physiologic and pathophysiological
processes in the CNS. One main reason is the complex-
ity and heterogeneity of the DA system, which has
become even more apparent as research has progressed
over the years. As a consequence, multiple aspects of DA
function still appear remarkably poorly understood.
This situation has called for the implementation of

ABBREVIATIONS: AAV, adeno-associated virus; AC, adenylyl cyclase; ADHD, attention-deficit/hyperactivity disorder; BNST, bed nucleus
of the stria terminalis; CAV2, canine adenovirus type 2; CNO, clozapine N-oxide; CNS, central nervous system; CPP, conditioned place
preference; D1–5R, dopamine receptors 1–5; DA, dopamine; DAT, dopamine transporter; DIO, double-floxed inverse open reading frame;
dMSN, direct medium spiny neuron; DREADDs, designer receptors exclusively activated by designer drugs; ERK, extracellular signal-
regulated kinase; Flp, flippase; GIRK, G-protein coupled inward-rectifying potassium channels; Gi/q/s, regulatory G-protein subunit; GPCR, G
protein-coupled receptor; hM3Dq, Gq DREADD; hM4Di, Gi DREADD; 5-HT, 5-hydroxytryptamine; iMSN, indirect medium spiny neuron; KO,
knockout; KORD, kappa-opioid receptor-DREADD; L-DOPA, L-3,4-dihydroxyphenylalanine; MSN, medium spiny neuron; NAc, nucleus
accumbens; 6-OHDA, 6-hydroxy-dopamine; PD, Parkinson’s disease; PFC, prefrontal cortex; PKA, protein kinase A; rM3Darr, beta-arrestin
based DREADD; rM3Ds, Gs DREADD; SalB, salvinorin B; SN, substantia nigra; TH, tyrosine hydroxylase; VTA, ventral tegmental area; WT,
wild type.
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novel techniques in the field encompassing particular
tools that can harness specific manipulations of neuro-
nal circuits to elucidate mechanisms of homeostatic and
pathologic phenotypes. The advancements of transfor-
mative molecular-genetic manipulation technologies,
such as chemogenetics and optogenetics, are altering
the course of behavioral neuroscience with the potential
to unprecedentedly advance our knowledge about how
DAergic signaling and its complex organization medi-
ates behavior. It is therefore of no surprise that these
technologies already have been widely used as strate-
gies to study and dissect DA-related functions. Despite
their many obvious advantages, such techniques inev-
itably also embrace a substantial number of pitfalls and
limitations that must be considered when interpreting
experimental results.
In this review, we carry out a comprehensive review of

studies over the last few years of the DA system in which
chemogenetic approaches have been employed; that
is, studies, that have taken advantage of DREADDs
(“Designer Receptors Exclusively Activated by Designer
Drugs”) and thereby used the possibility of activating
discrete G protein-coupled signaling cascades in selected
target cells tomanipulate neuronal functions.We believe
that the technique possesses huge potential and can be
a powerful approach if used in the appropriate manner.
We will provide a short overview of the DA system before
introducing the chemogenetic approach and critically
reviewing areas of DA research in which chemogenetic
approaches have been applied. Next, we will specifically
describe pitfalls and limitations, as well as discuss future
directions for refining the technology.We hope thereby to
generate a detailed overview of what we have learned
from the use of chemogenetics and a framework for how
chemogenetics can fruitfully be applied to the DA
system to continue the exploration of this fascinating
neurotransmitter.

A. A Portrait of the Dopamine System

1. Dopamine Synthesis and Neurotransmission.
DA neurotransmission depends on DA synthesis that
takes place within a restricted set of neurons expressing
the enzymes involved in the biosynthetic pathway of
DA from dietary tyrosine sources. Tyrosine hydroxylase
(TH), the rate-limiting enzyme in DA production,
converts tyrosine to L-3,4-dihydroxyphenylalanine
(L-DOPA), which in turn is converted by aromatic amino
acids decarboxylase to DA. Cytosolic DA is sequestered
into synaptic vesicles by the action of the vesicular
monoamine transporter 2, acting as a proton antiporter
that takes advantage of the low intravesicular pH to
transport DA into the vesicles against a large concen-
tration gradient (German et al., 2015). After fusion of
these vesicles with the plasma membrane and release
from presynaptic terminals, DA exerts its actions via
five distinct, but highly homologous, G protein-coupled
receptors (GPCRs). The DA receptors are divided into

two subclasses based on their pharmacological profile
and coupling: the D1-like receptors (D1R and D5R) and
the D2-like receptors (D2R, D3R, and D4R) (Beaulieu
and Gainetdinov, 2011). The D2R exists in a short or
long variant (D2S and D2L) of which D2S constitutes
the primary presynaptic autoreceptor in the DAergic
neurons (Lindgren et al., 2003). D1-like receptors are
generally characterized by displaying one to two orders
of magnitude lower affinity to DA compared with the
D2-like receptors, meaning that the latter are much
more likely to be saturated with DA during tonic release
conditions (Richfield et al., 1987). The coupling of the
D1-like and D2-like receptors to intracellular signaling
pathways are distinct and generally oppositely directed.
D1-like receptors couple to Gas and Gaolf, leading to
stimulation of adenylyl cyclase (AC), which results in
increased levels of cAMP and activation of protein
kinase A (PKA). In contrast, D2-like receptors couple to
Gai and Gao, leading to inhibition of AC, lower cAMP
levels, and less PKA activation. Via the Gbg subunits of
the heterotrimeric G protein, the D2-like receptors can
also regulate ion channel function, including G protein-
coupled inward-rectifying potassium channels (GIRK)
(Kuzhikandathil et al., 1998; Lavine et al., 2002) and
voltage-gated Ca2+-channels (Yan et al., 1997). DA
receptors, and in particular D2-like receptors, also
signal through G protein-independent pathways. The
D2-like receptors can, for example, operate through
b-arrestin-dependent pathways involving activation of
Akt (also called protein kinase B) and glycogen synthase
kinase 3 (Beaulieu et al., 2004, 2005, 2007). For further
details on DA receptors, including a more in-depth
description of their functional coupling and distribution
in the brain, we kindly refer to other reviews (Neve
et al., 2004; Beaulieu and Gainetdinov, 2011; Tritsch
and Sabatini, 2012; Beaulieu et al., 2015).

To understand the complex regulation of DA signal-
ing, it is essential to highlight the DA transporter
(DAT). DAT is expressed in DA neurons and mediates
rapid reuptake of released DA. In doing so, DAT plays
an essential role in controlling extracellular levels of DA
and thereby DA signaling (Jones et al., 1998). DAT
belongs to the large family of neurotransmitter:sodium
symporters, and thus the transporter utilizes the trans-
membrane sodium gradient to translocate effectively
DA across the membrane against its concentration
gradient. Importantly, DAT is the prime target for the
stimulatory action of psychostimulants such as cocaine
and amphetamine. Whereas cocaine acts as a high-
affinity, competitive inhibitor, amphetamine is a sub-
strate that upon entry through the transporter promotes
the release of DA via DAT, a process known to involve
activation of protein kinases, such as Ca2+/calmodulin-
dependent protein kinase II and phosphorylation of the
transporter itself (Kristensen et al., 2011). DAT is also a
target for commonly usedmediation used against ADHD
such as methylphenidate and modafinil. For further
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details onDAT,we kindly refer to other excellent reviews
(Torres andAmara, 2007; Kristensen et al., 2011; Sulzer,
2011).
2. Dopamine Pathways and Circuits. The majority

of the brain’s DAergic transmission is organized into
four neural pathways that we now know partake in
distinct, but also sometimes seemingly overlapping
behaviors. 1) The nigrostriatal pathway projects from
the midbrain substantia nigra (SN) pars compacta to
the dorsal striatum and exerts both facilitatory and
inhibitory regulation of movements and is involved in
habitual and compulsive responses. 2) The mesolimbic
pathway projects from the ventral tegmental area
(VTA) to limbic brain regions, including the amygdala
and thenucleus accumbens (NAc) of the ventral striatum.
This pathway is involved in motivation, goal-directed
behaviors, attributing incentive values of reward-related
environmental stimuli and labeling pleasurable emo-
tions with motivational salience. 3) The mesocortical
pathway projects from the midbrain VTA to the prefron-
tal cortex (PFC) and chiefly mediates executive function
such as selective and sustained attention, flexibler-
esponding to stimuli, planning and goal-directed
behavior, and monitoring and inhibitory control. 4)
The tuberoinfundibular pathway projects from the
hypothalamus to the pituitary gland, where DA in-
hibits the secretion of the hormone prolactin (Volkow
et al., 2007; Arias-Carrión and P�oppel, 2007; Björklund
and Dunnett, 2007).
Although the separation of the DA system into the

above-mentioned pathways is still relevant, it is impor-
tant to emphasize that recent investigations have
led to a significantly more complicated picture of the
DAergic system with heterogeneous populations of neu-
rons that express and release DA via different mecha-
nisms in different brain regions (Morales and Margolis,
2017). For example, labeling studies have revealed a
complex heterogeneity of the midbrain DAergic system
in terms of projection patterns, firing and release prob-
ability, and intracellular molecular characteristics and
properties (Lammel et al., 2008, 2014; Apuschkin et al.,
2015; Poulin et al., 2018). Furthermore, it has been
demonstrated that some midbrain DA neurons are
capable of releasing other neurotransmitters, such
as 5-hydroxytryptamine (5-HT) (Zhou et al., 2005),
glutamate (Chuhma et al., 2004; Nair-Roberts et al.,
2008; Hnasko et al., 2010; Stuber et al., 2010), and
GABA (Tritsch et al., 2014; Kim et al., 2015; Berrios
et al., 2016). Finally, complex input networks projecting
onto DAergic neurons, as well as output target areas
(e.g., Beier et al., 2015; Poulin et al., 2018), emphasize a
major role of DA as a modulator rather than a regulator
of neuronal excitability in target areas. Once DA is
released in target areas, DA receptors expressed on
postsynaptic membranes convey and determine the
further processing of the DAergic signal, which is
dependent on the DA receptor profile. While target

areas such as the dorsal striatum, comprised mainly of
GABAergic medium spiny neurons (MSNs), have been
found to be rather ordered in terms of expressing either
D1- or D2-like receptors and with distinct projection
patterns, other target areas such as the NAc and PFC
lack such architecture or remain to be equally charac-
terized (Beaulieu and Gainetdinov, 2011; Kupchik
et al., 2015). Altogether, the DA system displays an
anatomic, as well as molecular, complexity, which pre-
cludes standard pharmacologic or genetic approaches
for deconstructing DA signaling in normal and malad-
aptive behavioral states. However, these obstacles can
be circumvented if DAergic pathways are precisely
defined and/or DAergic signaling can be both spatially
and temporally controlled. Furthermore, if maladaptive
DA states are reversible, a technique that would allow
for bidirectional regulation would be a huge advantage
for exploring new therapeutic avenues.

B. Chemogenetics—Pharmacological Remote Control
of Neuronal Activity

The DREADD technology was developed by Bryan
Roth and colleagues at the University of North Carolina
and was published for the first time in 2007 (Armbruster
et al., 2007). This methodological approach extends from
other chemogenetic platforms described in the field of
GPCRs, such as allele-specific activation of genetically
encoded receptors (Strader et al., 1991), receptors acti-
vated solely by synthetic ligands (Conklin et al., 2008)
and neoceptors (Jacobson et al., 2001). The development
of DREADDs enabled new study designs as it allowed
neuroscientists to bidirectionally manipulate intracellu-
lar G protein-coupled signaling of neuronal populations
of interest and at sufficient strength—acting like a device
for remote control of neuronal signaling. We will briefly
describe the rationale behind the DREADDs technique
and elaborate on its suitability for studying the DA
system. For more information on DREADDs develop-
ment and structures, see Roth (2016) and Armbruster
et al. (2007).

The original DREADDs are mutated muscarinic
acetylcholine receptors, which are insensitive to their
natural ligand, acetylcholine, and instead respond to an
otherwise inert compound, clozapine N-oxide (CNO), a
metabolite of the atypical antipsychotic clozapine
(Roth, 2016). The basic idea was to genetically introduce
and express the various DREADD variants within cells
of interest and thereby allow targeted manipulation of
specific intracellular signaling cascades through the
coupling of the distinct receptors to either excitatory
(Gs, Gq) or inhibitory (Gi) signaling cascades upon CNO
binding (see Fig. 1). Specifically, the Gq-coupled hM3Dq
DREADD leads to activation of the phospholipase C
cascade and increases intracellular calcium to promote
neuronal burst firing (Armbruster et al., 2007), while
the Gs-coupled rM3Ds DREADD increases cAMP-
mediated depolarization and thus mimics the signaling
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pathway activated by D1-like receptors (Farrell et al.,
2013). The Gi-coupled hM4Di DREADD causes mem-
brane hyperpolarization through activation of GIRK
and decreases cAMP signaling (Armbruster et al.,
2007) analogous to D2Rs. Like other GPCRs, activated
DREADDs may recruit arrestins, which are able to
convey delayed G protein-independent receptor signal-
ing (Roth, 2016). A beta-arrestin based DREADD
(rM3Darr) has been generated to explore the physio-
logic relevance of these arrestin-dependent signaling
pathways, but overall this receptor has been used
much less than the other aforementioned variants
(Nakajima and Wess, 2012; Roth, 2016). Finally, a
new DREADD variant, the kappa-opioid receptor
DREADD (KORD), constitutes a mutated kappa-
opioid receptor that exerts inhibitory actions via a
Gi-coupled signaling pathway. This receptor is acti-
vated by salvinorin B (SalB), an inert metabolite of
the psychotropic salvinorin A (Vardy et al., 2015).
This new variant can be used alone, as well as opening
up the possibility for combinatorial DREADD studies,
where KORD can be applied together with CNO-
sensitive DREADDs. Of further interest, the pharma-
cokinetics of KORD activation by SalB differs greatly
from that of CNO-sensitive DREADDs, as it possesses
a much more rapid onset of action and response
extinction timeframe within 1 hour in contrast to
several hours for the effects of CNO (Vardy et al.,
2015).

1. Specific Spatial Resolution of Designer Receptors
Exclusively Activated by Designer Drugs Activation.
A major advantage of chemogenetics, compared with
classic pharmacologicalmanipulations, is the specificity
by which activation of the receptors can be achieved.
The spatial resolution of DREADD-induced manipu-
lations is determined by the ectopic expression of
DREADDs in desired neurons, and this can in principle
be controlled by the researcher’s choice of approach:
either directly by placing the DREADD transgene
downstream of a specific promoter in transgenic ani-
mals or virus vectors (Farrell et al., 2013; Ferguson
et al., 2013) or indirectly through Cre-lox-mediated
recombination using double-floxed inverse open reading
frame (DIO) DREADD-encoding viruses in combination
with rodent Cre-driver lines or a second Cre-expressing
virus (Bock et al., 2013; Carter et al., 2013; Schwarz
et al., 2015). Figure 2 demonstrates how various viral-
transgenic approaches can be applied to target mid-
brain DA neurons and here exemplified how to obtain
gradually better selective expression toward only NAc-
projecting neurons. While viral delivery of a DREADD
transgene may limit expression to the target area e.g.,
VTA (Fig. 2A), the DREADD transgene could be intro-
duced downstream of promoters, regulating genes that
are selectively expressedwithin theDA system to obtain
more desirable expression. Such an approach has been
applied selectively to target DREADDs in dorsostriatal
MSNs belonging to either the striatonigral direct

Fig. 1. The chemogenetic toolbox contains a variety of engineered receptors (i.e., DREADDs and the KORD) that upon activation, via CNO or SalB,
initiate endogenous signaling cascades and regulate canonical signaling and excitability (Roth 2016; Armbruster et al., 2007; Vardy et al., 2015). Four
of the engineered receptors are scaffolded on the muscarinic acetylcholine receptor, respond to CNO, and couple to Gq (hM3Dq), Gs (rM3Ds), Gi
(hM4Di) or b-arrestin (rM3Darr). KORD is scaffolded on the kappa-opioid receptor and responds to SalB, but signal as hM4Di via the Gi-coupled
pathway. However, the kinetic profile of the KORD-SalB is different from hM4Di-CNO and provides a faster onset of action. While hM3Dq and rM3Ds
increase neuronal excitability by activating the PKC and PKA pathways, respectively, hM4Di and KORD decrease neuronal excitability by activating
GIRK channels and inhibiting the PKA pathway. The beta-arrestin biased rM3Darr initiates beta-arrestin signaling, which distinguishes the late-
stage signaling pathway from Gi-coupled receptors signaling via mitogen-activated protein kinase/ERK.
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Fig. 2. Viral approaches to obtain increased specificity of chemogenetic manipulations within the DA system. (A–D) Illustrates different viral-
transgenic approaches to obtain chemogenetic control of midbrain DA neurons with increasing specificity of DREADD expression toward NAc-
projecting neurons (shown for hM4Di-mCherry). (A) The viral approach that limits DREADD expression primarily toward the injection site; a viral
vector carrying the DREADD transgene is injected into the target area of a WT mouse. Increased selectivity can be obtained by placing the DREADD
transgene downstream of a neuron-specific promoter (e.g., Ferguson et al., 2011; Farrell et al., 2013; Ferguson et al., 2013). (B) The viral Cre-dependent
approach is by far the most commonly used to obtain chemogenetic control of a neuronal population of interest; a single Cre-dependent DREADD vector
is injected into the target area of a Cre-driver mouse and restricts the expression toward Cre-expressing neurons within the injection site (e.g.,
Lindeberg et al., 2004; Savitt et al., 2005; Bäckman et al., 2006; Runegaard et al., 2018). (C) The dual viral Cre-dependent approach has been applied to
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pathway (i.e., D1R expressing) or the striatopallidal in-
direct pathway (i.e., D2R expressing) by using herpes
simplex virus carrying dynorphin and enkephalin pro-
moters, respectively (Ferguson et al., 2011). Targeting of
midbrain DA neurons has been successful using a com-
binatorial approach, with the most commonly applied
approach taking advantage of transgenic Cre-driver lines
(Fig. 2B). More specifically, injection of a viral vector (e.g.,
AAV), carrying a DIO-DREADD (the expression of which
relies on the presence of Cre), into the target area (e.g.,
VTA) ofCre-driver lines exploiting classic geneticmarkers
of DA neurons, confines DREADD expression to putative
DA neurons in the midbrain. Classic markers include the
DA transporter (DAT) and tyrosine hydroxylase (TH), and
both DAT-Cre and TH-Cre driver lines have been used to
confine DREADD expression to midbrain DA neurons
(Lindeberg et al., 2004; Savitt et al., 2005; Bäckman et al.,
2006; Runegaard et al., 2018) (Fig. 2B). Alternatively, the
Cre-recombinase can be delivered by viral means in a
dual viral approach in wild-type (WT) mice (Fig. 2C), as
recently demonstrated by use of retrogradely transported
recombinant canine adenovirus (CAV2) (Hnasko et al.,
2006; Boender et al., 2014; Boekhoudt et al., 2016) or
retrograde adeno-associated virus (AAV2-retro) (Tervo
et al., 2016). The dual viral approach can even provide
extra target specificity toward individual DA projections
in Cre-driver lines. In such a setup, combinatorial viral
expression determined by a retrograde vector encoding
Cre-dependent recombinase flippase (Flp) and a second
viral vector encoding Flp-dependent DREADD can con-
fine the expression further (Fig. 2D) (Boender et al., 2014;
Runegaard et al., 2018). In addition, although less well
characterized for achieving high DA neuron specificity,
an AAV vector delivering Cre-recombinase under the con-
trol of a fragment of the TH promoter is another option
(Stauffer et al., 2016). With a new delivery platform
allowing for intravenous AAV delivery, it appears that
DA neurons can even be selectively targeted by systemic
application (Chan et al., 2017). These two latter viral
approaches are interesting, as they technically permit
DREADD targeting toward DA neurons in species other
than rodents (Stauffer et al., 2016). Taken together, the
molecular-genetic toolbox for chemogenetics is large and
ideally suited for targeting and studying the DA system
(Whissell et al., 2016). Since the signaling cascade of

DREADDs and DA receptors are conveyed through the
same downstream molecules, it is also noteworthy to
mention that activation of DREADDs possesses the
potential ability to mimic, mitigate, or override endog-
enous DA signaling.

2. Specific Temporal Resolution of Designer Receptors
Exclusively Activated by Designer Drugs Activation.
The temporal resolution of DREADDs activation repre-
sents another important variable. Indeed, asmentioned
above, the DREADD and KORD agonists, CNO and
SalB, respectively, display distinct temporal dynamics
(Roth, 2016). Furthermore, the route of administra-
tion can strongly influence the pharmacokinetics and
thereby the temporal dynamics of the manipulation.
Systemic administration of CNO by intraperitoneal
injection causes plasma levels to peak within 30 min
and decline over the subsequent 2 h (Guettier et al.,
2009). Although plasma levels of CNO decline quickly,
behavioral effects may be longer lasting for up to 6–10 h
(Alexander et al., 2009; Wang et al., 2013). It is likely
that this is linked to the recently reported possible
conversion of CNO to clozapine following in vivo admin-
istration in rodents (Maclaren et al., 2016; Gomez et al.,
2017). Strikingly, it appears that clozapine, but not
CNO, crosses the blood-brain barrier, and clozapine
binds to and activates DREADD receptors with higher
affinity and potency than CNO (Gomez et al., 2017). As
clozapine is a D2R antagonist, this underscores the
importance of including CNO-treated non-DREADD-
expressing animals as controls, particularly in studies
focusing on the DA system. Along these lines, it should
be mentioned that the resulting concentrations of
clozapine, however, are predicted to be too low to affect
D2R function at themost commonly used concentrations
of CNO in behavioral studies (Gomez et al., 2017;
Mahler and Aston-Jones, 2018). Nonetheless, these
findings support the use of subthreshold doses of
clozapine as the DREADD-activating agent instead of
high doses of CNO (Gomez et al., 2017). In contrast to
CNO, the pharmacokinetics of SalB have not been
equally well studied, but behavioral effects after intra-
peritoneal administration of SalB indicates a 10–15min
onset of action time and roughly 1 h duration depending
on the behavior investigated, thus providing both a

obtain selective expression within neurons projecting to a certain area. In WT mice, a Cre-dependent DREADD vector is injected in the area
containing the cell nuclei and a retrogradely transported vector, such as CAV2-Cre, is injected in the terminal area of the neurons of interest
(e.g., Hnasko et al., 2006; Boender et al., 2014; Boekhoudt et al., 2016; Tervo et al., 2016). One limitation here is that the DREADD may be
expressed in any neuron projecting from the target area (e.g., VTA) and traveling along or in proximity to the target area of the neurons of
interest where the retrograde vector is injected (e.g., NAc)—even if they do not terminate here. Such an approach does not discriminate between
various populations of neurons projecting here unless specified by the promotor driving either Cre or DREADD. (D) The dual viral Flp- and Cre-
dependent approach is a way to obtain chemogenetic control within a specific projection pathway of a neuronal population of interest (e.g.,
Boender et al., 2014; Runegaard et al., 2018; Stauffer et al., 2016). In a Cre-driver line, a Flp-dependent DREADD vector is injected in the area
containing the nuclei of the neurons of interest, and in addition, a retrogradely transported and Cre-dependent vector, such as CAV2-CMV-DIO-
Flp, is injected in the terminal area of the projection of interest. By this method, DREADD will be expressed only in Flp-transduced neurons,
which again depends on the neurons of interest, defined by the Cre-driver line as well as the projection area of interest where the CAV-2 vector
is injected.
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faster onset and elimination of its effect compared with
CNO (Vardy et al., 2015; Marchant, et al., 2016b).

II. Chemogenetic Approaches for Dissecting
Dopamine-Mediated Behaviors

In the following sections, we will review how the
DREADD technology has been applied to investigate
DA circuitries and signaling pathways in an array of
different behaviors and pathologic states, including
locomotion, PD, reward-motivated behaviors, addic-
tion, and mood disorders. Figure 3 shows an anatomic
overview of selected DA-related studies where the

DREADD technology has been employed and which
approaches those that have been used to target
selective regions, neurons, or projections of the DA
system. A more extensive and elaborate overview of
all DA-related chemogenetic studies published so far
(77 papers in total), covering the period from 2011 till
June 2018, is provided in Table 1, including informa-
tion regarding area of research, testmodel, chemogenetic
vector, target area/cell, strain, and major findings for
easy comparison between studies. Considering that
DREADDs have demonstrated their usefulness for
studying neurotransmitter systems other than DA, we
refer to excellent recent reviews covering a broader use

Fig. 3. Sagittal view of a rodent brain presenting an anatomic overview of selected DA-related studies where the DREADD technology has been
employed, illustrating which approaches that have been used to target selective regions, neurons, or projections of the DA system. Studies that have
revealed DAergic influence on behavior by chemogenetic manipulations within specified regions are indicated by a dashed link. Arrows indicate
increases (↑) or decreases (↓) in the respective behaviors. The key provides information on the application of DREADDs in the specific study, including
the DREADD variant (Gq, Gi, or Gs), how the expression is specified either directly or by means of a Cre-dependency (i.e., DIO), as well as injection site
of DREADDs (which is also indicated by the link to the schematic presentation of the rodent brain). CNO was administered intraperitoneally except in
one study (Mahler et al., 2014), where CNO was applied by local microinfusions into VTA, denoted by “#VTA.” For further information, see Table 1.
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of chemogenetics (Smith et al., 2016; Whissell et al.,
2016).

A. Locomotor Activity

1. Dopamine Activity Correlates with Locomotor
Activity—Proof-of-Concept Studies. Classic behavior-
al pharmacology experiments have indicated that loco-
motor hyperactivity can be attributed to increased
striatal DA levels (Pijnenburg et al., 1976). Therefore,
initial DREADD investigations were carefully applied
to behavioral neuroscience with conceptual proof-of-
concept studies inwhich researchers applied DREADDs
to confirm pharmacologic manipulation of general
neuronal populations with immediate effects on behav-
iors such as locomotor activity. A direct relationship
between the brain DA system and regulation of locomo-
tor activity in rodents was supported by expression of
hM3Dq within midbrain (VTA/SN) DAergic neurons of
DAT-Cre mice (Wang et al., 2013). CNO application
increased the firing frequency of DA neurons in mid-
brain slices, and this finding was paralleled by strong
dose-dependent hyperactivity in mice challenged with
CNO (Wang et al., 2013). Likewise, in DAT-Cre mice
also with hM3Dq expressed in DA midbrain neurons,
the active phase of locomotor day rhythmswas extended
following CNO administration. This result resembled
the same hyperdopaminergic phenotype that has been
observed following amphetamine administration or
modeled in the DAT-knockout (KO) mouse (Blum
et al., 2014). With the use of a dual viral strategy to
allow better spatial resolution of specific DA projec-
tions, analogous results were demonstrated in rats
(Boender et al., 2014). Here, projection-specific expres-
sion of hM3Dq in VTA-NAc neurons was obtained by
combined use of the retrogradely transported CAV2-Cre
virus injected into the NAc and an AAV-encoding Cre-
dependent DREADD vector injected into the VTA ofWT
rats. This study also showed long-lasting increases in
locomotor activity (3–7 h). These findings were subse-
quently substantiated by selective expression of viral
hM3Dq in TH-Cre rats, and engagement of TH-positive
(i.e., considered DAergic) neurons of the VTA, but not
the SN pars compacta, demonstrated similar long-
lasting hyperlocomotion (Boekhoudt et al., 2016). This
is consistent with older pharmacological data and
literature supporting a key role of VTA DA neurons in
the regulation of hyperactivity, while SN DA neurons
appear to be more involved in other aspects of locomo-
tion such as motor coordination (Delfs et al., 1990;
Barter et al., 2014). We also recently demonstrated
clear bidirectional regulation of locomotor activity
during habituation to a novel environment in TH-Cre
mice injected in VTA with Cre-dependent rM3Ds and
hM4Di (Runegaard et al., 2018). In this study, CNO
pretreatment increased and reduced locomotor activity
in rM3Ds- and hM4Di-expressing mice, respectively,
while CNO had no effects in WT animals (Fig. 4).

Exploratory locomotor activity has also been shown
to be reduced by SalB or CNO in WT rats expressing
KORD or hM4Di, respectively, in the midbrain
(Marchant et al., 2016b). Locomotor activity can be
indirectly manipulated by expressing KORD in mid-
brain GABAergic interneurons, which upon SalB ad-
ministration resulted in disinhibition of VTA DA
neurons and increased locomotor activity (Vardy et al.,
2015). Summarized, these studies substantiate already
compelling evidence that DA signaling directly regu-
lates locomotor activity and confirms well-established
pharmacological evidence that the mesolimbic path-
way, comprising VTA to NAc projecting DA neurons,
enforces this effect (Delfs et al., 1990; dela Peña et al.,
2015). Also, the studies support local circuits within
the VTA that act as central regulatory components of
locomotor activity.

2. The Relative Output-Activity from Direct Medium
Spiny Neurons and Indirect Medium Spiny Neurons
Determines Locomotor Activity. A simple direct rela-
tionship betweenDA and locomotor activity, as described
above, is, however, challenged by the hypofunctional
DA system seen in ADHD patients, although this has
been suggested to be explained by alterations in post-
synaptic DA receptor signaling (Volkow et al., 2009;
Napolitano et al., 2010). Accordingly, many chemo-
genetic studies have focused on mimicking and/or
manipulating DAergic receptor signaling directly in
striatal MSN subpopulations, encompassing Gs-coupled
D1R expressing striatonigral neurons (dMSNs), belong-
ing to the direct pathway, and Gi-coupled D2R express-
ing striatopallidal neurons (iMSNs), belonging to the
indirect pathway. In a transgenic mouse expressing
Gs-coupled rM3Ds throughout all iMSNs, exploratory
locomotor activity was strongly reduced upon CNO
administration (Farrell et al., 2013; Chu et al., 2017;
Bouabid and Zhou, 2018). This was recently linked to
inhibition of globus pallidus neuronal firing as a
consequence of rM3Ds-mediated increased excitation
of the iMSNs (Bouabid and Zhou, 2018). This suggests
that AC/cAMP signaling in MSNs plays a significant
role in regulating locomotor activity, which is in line
with a chemogenetic study demonstrating an important
role of Gi-coupled signaling in dMSNs in regulating
locomotion (Moehle et al., 2017). It was correspondingly
shown that hM4Di stimulation in iMSN of anatomi-
cally defined striatal areas, including the dorsomedial
striatum andNAc, increased locomotor activity (Carvalho
Poyraz et al., 2016). Moreover, acute CNO administra-
tion led to increased and decreased locomotor activity
in mice with dorsostriatal expression of hM3Dq in
dMSNs of D1R-Cre mice and in iMSNs of D2R-Cre or
A2a-Cre mice, respectively (Bellocchio et al., 2016;
Alcacer et al., 2017). Interestingly, dissection of accum-
bal efferents revealed a stronger influence of the in-
direct pathway on locomotor activity. While significant
bidirectional control of basal locomotor activity was
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demonstrated by NAc iMSNs with reduced and in-
creased activity following hM3Dq or hM4Di stimula-
tion, respectively, only slight increases in locomotion
were observed with hM3Dq activation of dMSNs in NAc
(Zhu et al., 2016). These observations collectively
support amajor influence of D2R activation in iMSNs on
the activity of dMSNs and thereby on locomotor activity.
Notably, this is consistent with a new theory of lateral
inhibition of iMSNs onto dMSNs (Dobbs et al., 2016)
and also with evidence from rodent KO studies, indi-
cating that MSN D1R and D2R interactions control
locomotor activity in a synergistic, balanced manner
(Welter et al., 2007). For a comprehensive review of DA
receptor KO mouse behaviors, see Holmes et al. (2004).
3. Locomotor Activity—A Simple Behavior with

Multiple Levels of Regulation. Midbrain DA neurons
receive and integrate inputs frommultiple brain regions,
as well as from local interneurons. DREADD-induced

manipulations of different midbrain DA-projection neu-
rons confirm the importance of these neurons for regu-
lating DA activity, release, and behaviors including
locomotion. As mentioned above, chemogenetic inhibi-
tion by KORD in VTA GABAergic interneurons in-
creased locomotor activity as a consequence of VTA DA
disinhibition (Vardy et al., 2015). GABAergic neurons
residing within the lateral hypothalamus were recently
found to alter locomotor activity via direct and indirect
regulation of the VTA, i.e., hM3Dq stimulation of both
VTA-projecting (i.e., GABA-expressing) neurons and
non-VTA-projecting (i.e., galanin-expressing) neurons
increased locomotor activity (Qualls-Creekmore et al.,
2017). Similarly, CNO-induced release of neurotensin
in the mouse VTA, with hM3Dq expression confined to
lateral hypothalamic neurons expressing neurotensin,
induced prolonged DA-dependent locomotor activity
and DA release in the NAc via neurotensin receptor

Fig. 4. Bidirectional effects on locomotor habituation by hM4Di and rM3Ds stimulation in VTA [modified and adapted from Runegaard et al. (2018)].
(A) AAV carrying hM4Di or rM3Ds was injected into the VTA of TH-Cre or WT mice. (B) Experimental timeline to assess habituation of novelty-
induced locomotor activity. CNO was injected intraperitoneally in the home cage 30 min prior to placement into the center of an open field where
locomotor activity was recorded and tracked for 90 min. (C) Time course of the 90-min habituation of novelty-induced locomotor activity in an open field
30 min after CNO injections in control (black), hM4Di-(magenta), or rM3Ds-(blue) expressing mice. Control mice injected with vehicle were included
and compared with CNO-treated control mice to assess the effect of CNO alone, as shown by a dashed gray line. CNO demonstrated bidirectional
control of novelty-induced exploratory activity during habituation in hM4Di and rM3Ds mice while leaving WT mice unaffected (****P , 0.0001;
***P , 0.001; **P , 0.01; *P , 0.05 relative to control). (D) Representative tracks and graphs of total distance traveled during the habituation.
Analysis of the total distance traveled showed significant reduction and increase in novelty-induced exploration following CNO in hM4Di and rM3Ds
mice, respectively, compared with WT controls (*P , 0.05; **P , 0.01 relative to CNO control, N: 15 hM4Di CNO, 12 rM3Ds CNO, 13 control CNO).
Data are shown as means + S.E.M.
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1 expressed on VTA DA neurons (Patterson et al., 2015).
Furthermore,morphine-inducedhyperlocomotionwas reg-
ulated by DREADD-mediated modulation of rostromedial
tegmental nucleus GABA interneurons targeting NAc-
projecting DA neurons (Wasserman et al., 2016). While
there was no effect of either DREADDs on basal locomotor
activity, hM4Di and hM3Dq prevented morphine-induced
hyperlocomotion, possibly by changing the firing thresh-
olds for GABA interneurons and thereby altering their
inhibitory effect on NAc-projecting DA neurons
(Wasserman et al., 2016). Note that chemogenetic
interventions of locomotor response to other drugs
such as cocaine and amphetamine are addressed in
section II.C.1.
4. Dysfunctional Motor Control in Parkinson’s

Disease. In contrast to locomotor activity, which ap-
pears to be regulated predominantly by midbrain DA
neurons projecting to ventral parts of the striatum,
motor control and initiation of movement are more
dependent on dorsal striatal DA neurotransmission.
This is particularly evident in PD, where major symp-
toms include bradykinesia, akinesia, tremors, and
movement rigidity (Vazey and Aston-Jones, 2013).
These motor disabilities are associated with major loss
of DAergic neurons within the SN, resulting in progres-
sive loss of dorsostriatal DA input. A classic and
commonly used rodent/primate model of PD is unilat-
eral 6-hydroxydopamine (6-OHDA)-induced lesion of
striatal terminal neurons that is believed to recapitu-
late key changes in basal ganglia circuitry and phar-
macology observed in patients with PD (Ungerstedt and
Arbuthnott, 1970). The resulting hemi-parkinsonian
rodents exhibit severe behavioral imbalances that can
be restored by L-3, 4-dihydroxyphenylalanine (L-DOPA),
the DA precursor applied for therapeutic use in PD
patients. In nonlesioned control mice, unilateral ex-
pression and stimulation of hM3Dq in dMSNs or iMSNs
of the dorsal striatum induced contra- and ipsilateral
rotations, respectively (Alcacer et al., 2017). In lesioned
hemi-parkinsonian mice, unilateral stimulation of
dMSN in the DA-denervated striatum mimicked the
therapeutic effect of L-DOPA on contralateral forelimb
use, as assessed in a cylinder test, while stimulation of
iMSN prevented L-DOPA’s effect in these mice (Alcacer
et al., 2017). The findings are noteworthy, and perhaps
relevant for future clinical intervention, as prolonged
L-DOPA treatment is associated with dyskinesia, a
debilitating and treatment-limiting condition affecting
up to 80% of PD patients within 10 years (Manson et al.,
2012). In the Alcacer et al. (2017) study, it was also
shown that L-DOPA-induced dyskinesia or involuntary
movements in hemi-parkinsonian mice were reduced
by hM3Dq expressed in iMSNs on the denervated
striatal site. However, stimulation of rM3Ds or hM3Dq
in dMSNs of the denervated striatal site induced
abnormal involuntary movements, with the most
severe effect seen upon rM3Ds stimulation that

resulted in L-DOPA-like induced dyskinesia (Alcacer
et al., 2017). This result fully complements recent
findings using a C-fos drivermouse line and optogenetics
to probe the origin of L-DOPA-induced dyskinesia
(Girasole et al., 2018).

Fetal DA neuron transplantation trials in PD pa-
tients suggest that motor disturbances can be normal-
ized in some patients where L-DOPA treatment is
inefficient or associated with dyskinesia. The efficiency
of the neuronal transplantation, however, is highly
variable (Barker et al., 2013). Chemogenetics were
recently employed in rodent models to investigate
whether the therapeutic efficacy can be improved by
activating the excitatory hM3Dq within engrafted
neurons. Strikingly, such manipulations did lead to
increased excitability and DA release within induced or
neuroblastic DA neurons transplanted into the dorsal
striatum of 6-OHDA-lesioned mice. Moreover, the ma-
nipulations rescued motor deficits in mice (Chen et al.,
2016) and rats (Dell’Anno et al., 2014; Aldrin-Kirk et al.,
2016). Aldrin-Kirk et al. (2016) even went on to simulta-
neously express and activate hM3Dq and rM3Ds in the
grafted cells. With this, they induced dyskinesia simi-
lar to what develops as a side-effect in some patients
following transplantation of DAergic neurons. They
suggested a mechanism for graft-induced dyskinesia
that involves 5-HT6 receptors causing dysplastic DA
release from transplants by activating Gs-signaling that
in turn counteracts autoinhibitory control by D2Rs
(Aldrin-Kirk et al., 2016).

A recent chemogenetic study adds further support to
the hypothesis that parkinsonian-related motor deficits
are caused by maladaptive, relative regulation of the
direct and indirect pathways of basal ganglia circuitry,
rather than by reduced absoluteDA levels (Parker et al.,
2016). The severity of motor deficits observed in
6-OHDA-lesioned mice was correlated with a reversed
relative strength of excitatory thalamic drive onto direct
and indirect pathway MSNs with a bias toward the
indirect pathway. Inhibition of this thalamostriatal in-
put, which drives maladaptive asymmetric activation
of basal ganglia by activating hM4Di in thalamostriatal
terminals, restored motor function in DA-depleted mice
(Parker et al., 2016). Likewise, in 6-OHDA-lesioned
rats, stimulation of cholinergic interneurons in the
striatum via hM3Dq/rM3Ds potentiated the therapeu-
tic effects of low-dose L-DOPA (i.e., 1 mg/kg) and facil-
itated L-DOPA-induced abnormal involuntary movement
after moderate and high doses (i.e., 3 and 9 mg/kg) of
L-DOPA—effects that appeared to be driven primarily
through the iMSN pathway since the same effect
was induced by the D2 agonist quinpirole (Aldrin-Kirk
et al., 2018). Further support for maladaptive regula-
tion between the direct and indirect pathways was
achieved in a study in which bradykinesia was modeled
in a genetic mouse model with selective deletion of
the D2R in iMSNs (Lemos et al., 2016). The degree of
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bradykinesia correlated with the enhanced GABAergic
transmission downstream of iMSNs, and GABAergic
tone and locomotor control were restored through
stimulation of Gi-signaling in iMSNs by activating
hM4Di expressed in iMSNs of the dorsal striatum and
NAc tomimic D2R function (Lemos et al., 2016). Lastly, a
chemogenetic approach has been applied to investigate
the role of striatal striosome and matrix compart-
ments in procedural learning and use of motor skill.
The study supported that there is no synaptic connectiv-
ity between these two compartments. Nevertheless, by
selective transduction of matrix neurons only with
hM4Di, evidence was obtained for a role of dorsolateral
striatal matrix neurons in forepaw use (Lopez-Huerta
et al., 2016).

B. Motivation and Reward-Guided Behaviors

DAergic-mediated regulation of motivation and
reward-guided behaviors has garnered much attention
not least due to its importance in pathologic states
such as addiction and obesity (Baik, 2013). The below
mentioned DREADD studies have assessed DA behav-
ioral regulation in rodent test models in both homeo-
static and maladaptive reward-related states that take
advantage of an organism’s desire to survive (Salamone
et al., 2012). As such, operant conditioning and learning
tasks involve reward reinforcement and punishment
processes that lead to behavioral acquisition, which
regulates the probability, proximity and availability of
relevant stimuli in rodent tasks such as progressive
ratio scheduling (Richardson and Roberts, 1996), oper-
ant learning (Todd et al., 2014), and cue/sign-tracking
(Salamone et al., 2012).
1. Substantiating Dopamine as a Key Regulator of

Motivation. Motivation deficits represent a key fea-
ture of psychiatric disorders with DA being a critical
neural substrate (Baik, 2013). Through the use of
progressive ratio scheduling to assess motivational
behaviors, Boender et al. (2014) demonstrated that
hM3Dq-mediated activation of the mesolimbic DAergic
pathway, as targeted through use of a Cre-recombinase
expressing CAV2 vector, increased progressive ratio
performance, and hence effort exertion. The same re-
search group refined their methodological approach to
show that this enhanced motivation was specifically
due to increased action response initiation and not due
to other forms of motivational behaviors (Boekhoudt
et al., 2018).
2. The Role of Direct Medium Spiny Neurons and

Indirect Medium Spiny Neurons in Regulating Reward-
Motivated Behaviors. Given its importance in mediat-
ing DAergic neurotransmission, the dorsal striatum is
known to play a critical role in reward-guided decision
making, but the precise circuits involved have not
been fully elucidated. In one study by Ferguson and
Neumaier (2012), it was observed that transient hM4Di
activation of dMSNs within the rat dorsal striatum

impaired acquisition of an operant learning task assess-
ing reward reinforcement learning, as supported by
significantly lower lever pressing rates for a reward. In
another study, the same group further investigated the
role of the dorsomedial striatum in action-outcome
learning using a high-versus-low reward discrimination
task (Ferguson et al., 2013). Rats learned to associate
lever presses with one daily alternating lever for a
high-reward outcome and the other for a low-reward
outcome. Upon chemogenetic modulation of dMSN
signaling via activation of hM4Di or rM3Ds during
training sessions, no effect was seen on task acquisition
or subsequent performance, i.e., 24 h after the last
training session. However, hM4Di activation during
training sessions significantly impaired stable reten-
tion of task information, as these rats demonstrated a
reduced preference for the high-reward lever and
needed more trials to reach criterion, that being the
choice of the high-reward lever 75% of all trials, 1 week
after the last training session. Activation of rM3Ds in
dMSNs produced the opposite effects and improved
stable retention of this decision-making strategy 1-week
posttraining. These findings provided strong evidence
that activation of dMSNs in the dorsomedial striatum is
essential for retaining test-specific information regard-
ing reward-guided behaviors. Moreover, the fact that
these chemogenetic manipulations of dMSNs affected
behaviors 1 week post-CNO administration suggested
that significant neuronal plasticity changes took place
within these neurons during acquisition of this task
(Ferguson et al., 2013).

DREADD approaches, together with an operant
lever-pressing task with progressive ratio schedules,
were used to assess the influence of iMSNs in NAc and
dorsomedial striatum on motivational processes. Acti-
vation of hM4Di expressed in iMSNs of either the
dorsomedial striatum or NAc reversed motivational
deficits in mice genetically manipulated to overexpress
D2Rs and also in WT controls. These effects were due to
enhanced response initiation without goal-guided effi-
ciency,motivational vigor, or sensitivities relating to up-
or down-valuation of reward being affected (Carvalho
Poyraz et al., 2016). Hence, Gi-signaling in iMSNs
appeared to increase motivation to work for reward,
probably as a result of reducedGABAergic tone in target
areas or directly onto neighboring dMSNs causing dis-
inhibition (Dobbs et al., 2016). This is further supported
by a study by Gallo et al substantiating a role of the
ventral pallidum. It was shown in this study that
activation of hM4Di expressed in NAc iMSNs projecting
to the ventral pallidum increased motivation to work
for a salient reward in a lever-pressing task with
progressive ratio schedule (Gallo et al., 2018). Of addi-
tional interest, selective hM3Dq-stimulation of NAc
interneurons expressing nitric oxide synthase was dem-
onstrated to increase sucrose seeking after extinction
and cue-induced reinstatement (Bobadilla et al., 2017).
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Together, these studies suggest that DA-dependent,
reward-motivated behaviors are regulated by multiple
pathways that depend on the output of both dorsal
striatal and NAc MSNs. Importantly, while the chemo-
genetic manipulations of MSN activity described above
tend to be considered a direct reflection of DA trans-
mission with the Gi- and Gs-coupled DREADDs directly
modulating DA receptor signaling, it should be noted
that these neurons express multiple different GPCRs
that signal through similar cascades. Accordingly, the
behaviors studied are not regulated solely by DA trans-
mission but also by other transmitter systems acting
through different sets of GPCRs.
3. Feeding. Food activates neural circuits associated

with reward and DAergic signaling, particularly in the
NAc, midbrain, and amygdala. It is widely believed that
the DA mesolimbic pathway facilitates associative
learning between food-related rewards and feeding-
related environments, with food or food-related cues
initiating phasic mesolimbic DAergic firing and behav-
iors associatedwith acquiring food (Baik, 2013). Boekhoudt
et al. (2017a) investigated whether chemogenetic activa-
tion of midbrain DAergic neurons promoted or reduced
feeding to establish a causal relationship between
DAergic activity and food intake. They measured
home-cage feeding patterns while concurrently stim-
ulating hM3Dq in the SN pars compacta or selective
VTA subpopulation projections toward the NAc, amyg-
dala, or PFC. They found that general stimulation of
hM3Dq in VTA reduced meal size, while at the same
time increasing locomotor activity. Specific mesolimbic
pathway DA activation disrupted feeding patterns by
reducingmeanmeal size and duration but increased the
frequency of meal initiations (Boekhoudt et al., 2017a).
Although, the mesolimbic DA pathway seemed to both
promote and reduce food intake in that study by
facilitating feeding initiation and cessation behaviors
(Boekhoudt et al., 2017a), chemogenetic stimulation in
the same mesolimbic pathway in another study pre-
vented anorexic weight loss in an activity-based rat
model of anorexia (Foldi et al., 2017). When rats were
given time-limited daily access to food, hM3Dq stimu-
lation of VTA DAergic neurons projecting to the NAc
increased food intake and food anticipatory activity and
blocked anhedonia-associated weight loss and subse-
quent death (Foldi et al., 2017).
Specific chemogenetic activation of dMSNs or iMSNs

within the NAc was done to assess food intake under
both low and high-energy expenditure (i.e., a running
wheel was placed in the home cage) conditions. The data
showed that hM3Dq and hM4Di activation of NAc
dMSNs enhanced and diminished food intake, respec-
tively, in high-expenditure conditions when the running
wheelwas placed in the animals’home cages for 14 days.
Interestingly, the same study found that NAc dMSN
hM3Dq-stimulation reduced overall food intake in low
expenditure conditions (i.e., open field test) over the

course of 24 h (Zhu et al., 2016). These studies support
and complement the hypothesis that DAergic pathways,
particularly the mesolimbic, regulate homeostatic en-
ergy expenditure and feeding patterns. In addition,
altered DAergic signaling patterns, induced by
chemogenetic manipulations, were consistently found
to disrupt feeding patterns, indicating that tightly
controlled and optimal DA neurotransmission exists to
regulate feeding.

As outlined below, there is strong evidence suggesting
that serotonin directly acts on VTA DA neurons to
reduce food intake, linking the two transmitters to-
gether in regulation of feeding behaviors. As well as
finding that stimulation of hM3Dq expressed in VTA
DA neurons inhibited binge-like eating in mice on a
high-fat diet, Xu et al. (2017) demonstrated that the
5-HT2C receptor agonist lorcaserin, which has been
approved for obesity treatment (Martin et al., 2011),
and the 5-HT-releasing agent fenfluramine inhibited
these eating patterns via 5-HT2C receptor activation.
This effect was directly linked to an increase in VTA
DAergic signaling and further supported by the finding
that VTA DA hM4Di activation prevented fenfluramine
from suppressing binge-like eating patterns (Xu et al.,
2017). The same group subsequently demonstrated that
hM3Dq-mediated activation of VTA 5-HT2C receptor-
expressing neurons reduced ad libitum food intake, as
well as lowered progressive ratio responding for sugar
pellets and incentive value for food (Valencia-Torres
et al., 2017). The studies substantiate that 5-HT2C

agonism inhibits food-related motivational processes
at least in part via direct effects on midbrain DAergic
transmission.

Application of chemogenetics has also shown that
neurons within the nucleus tractus solitarius in the
brain stem can regulate food intake by affecting VTA
DA neuronal activity. Activation of hM3Dq in these
neurons suppressed high-fat chow diet intake by dimin-
ishing signaling of VTA DAergic neuron projecting to
the NAc shell (Wang et al., 2015). Notably, it was found
that this likely was the result of increased release of
glucagon-like-peptide 1 acting through GLP-1 receptors
on DA VTA neurons, leading to reduced excitatory
synaptic strength (Wang et al., 2015). Likewise, hM3Dq-
mediatedactivationof the lateralhypothalamicGABAergic
neurons caused an overall increase in chow diet con-
sumption as a consequence of direct VTA innervation
(Qualls-Creekmore et al., 2017). These studies highlight
how different brain regions and neurochemical systems
can modulate DA-dependent signaling and behaviors
and how chemogenetics can aid elucidation of previ-
ously unknown pathways.

4. Mating. During sexual behaviors, VTA m-opioid
receptor-expressing neurons are activated and DA is
released into NAc and striatum (Damsma et al., 1992;
Bassareo and Di Chiara, 1999; Balfour et al., 2004).
In rodents, sexual behavior is normally assessed by
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pairing and allowing a male to mate with a female
subject. The latency and number of investigations,
intromissions, and ejaculations allow for measurement
of sexual motivation, performance, memory, and reward.
In rats with hM4Di expression confined to TH-positive
neurons in the VTA, CNO did not affect, however, such
sexual behavior (Beloate et al., 2016). Moreover, al-
though CNO prevented VTA DA neuron activation and
C-fos induction in these neurons in response to sexual
behaviors, CNO had no effect on mating-induced C-fos
expression in VTA projection areas, including NAc, PFC,
and basolateral amygdala. CNO was nonetheless found
to impair sexual experience-induced cross-sensitization
of amphetamine conditioned place preference (CPP).
Thus, activation of VTA DA neurons appears not to be
critical for initiation or expression of sexual behavior.
Rather such activation, and thereby mesolimbic DA,
increases the sensitivity to addictive drugs upon loss
of the natural reward via mesolimbic plasticity estab-
lished during the natural reward experience. Together,
the study substantiates how DAergic VTA neurons
can regulate the cross-sensitization of natural (i.e.,
sexual experience) and drug-related rewards (Beloate
et al., 2016).
In another study, the importance during sexual

behavior of dorsostriatal dMSN and iMSN activity
was assessed by using genetically encoded, fluorescence
resonance energy transfer-based PKA and ERK sensors
together with DREADDs. The sensors were expressed
in dMSNs and iMSNs, and it was found that PKA and
ERK activities in these neurons rapidly switched
when the male mice shifted between active and inactive
phases of mating reactions. To investigate the mecha-
nism underlying this rapid change, hM4Di or rM3Ds
DREADDs were expressed in striatal dMSNs and
iMSNs together with the PKA biosensor. In hM4Di-
expressing dMSNs or iMSNs, CNO reduced PKA
activity and concomitantly caused suppression or aug-
mentation of positive mating reactions, respectively. In
rM3Ds-expressing dMSNs or iMSNs, CNO increased
PKA activity concomitantly with enhancement or sup-
pression of positive mating reactions, respectively.
Hence, the dMSNs and iMSNs of the dorsal striatum
appear to differentially control mating reactions in
male mice by directly regulating PKA activity (Goto
et al., 2015).
5. Sleep-Wake Patterns and Arousal. Activation of

VTA DAergic neurons by hM3Dq was shown to increase
wakefulness periods while reducing sleep-associated
behaviors, such as nest building, in both stages of the
light/dark cycle in a D2R-dependentmanner (Oishi et al.,
2017a; Sun et al., 2017). Further investigations revealed
that NAc D1R- and NAc core adenosine A2a receptor-
expressing neurons also regulated these sleep-wake
patterns (Oishi et al., 2017b; Luo et al., 2018). Activation
of D1R expressing neurons in the NAc by hM3Dq-
stimulation prolonged wakefulness and concurrently

reduced food intake, while stimulation of the inhibitory
hM4Di suppressed arousal and induced sleep behaviors
(Luo et al., 2018). Another approach, albeit with the
same chemogenetic tools, demonstrated that adenosine
A2a receptor-expressing indirect pathway neurons in
the NAc core can regulate slow-wave sleep, as hM3Dq
or hM4Di stimulation of these neurons either induced
or prevented slow-wave sleep, respectively (Oishi et al.,
2017b). The studies highlight the importance of mid-
brain DA neuronal circuits for regulating arousal,
both discovering new DA-dependent neural circuits
critical for the induction and maintenance of wakeful-
ness, projecting to the lateral hypothalamus (Luo et al.,
2018) and ventral pallidum (Oishi et al., 2017b),
respectively.

It was furthermore observed that acute hM3Dq-
activation in dorsostriatal dMSNs increased wakeful-
ness while reducing the time spent in the slow-wave and
rapid eye movement sleep stages. Acute hM3Dq-
activation of iMSNs, however, increased slow-wave
phase sleep while chronic activation resulted in en-
hanced wakefulness (Bellocchio et al., 2016). Expect-
edly, one’s arousal state affects motivation with the
above studies revealing a direct effect of DA activity on
wakefulness and sleep-wake patterns. More direct
evidence for DA as a substrate integrating reward-
based motivation and arousal was obtained from data
indicating that DA is critical for maintaining wakeful-
ness even in the presence of relevant salient stimuli
(Eban-Rothschild et al., 2016; Cho et al., 2017).

By using fiber photometry to measure calcium activ-
ity and polysomnographic recordings to assess wake-
fulness, it was observed that hM4Di-mediated
inhibition of DAergic neurons in the VTA and dorsal
raphe nuclei decreased wakefulness and increased
sleep-related behaviors and length of sleep. This de-
crease in arousal occurred even when stimuli, such as
accessible palatable food, a female mouse, or predator
odors, were present in the same or in a neighboring cage
(Eban-Rothschild et al., 2016; Cho et al., 2017). The data
emphasize a plausible role governed by the DAergic
system in regulating the interaction between sleep-wake
patterns and reward-based motivation.

6. Immunity. When VTA neurons were acutely
activated via stimulation of hM3Dq receptors expressed
in these neurons 24 h before an Escherichia coli im-
mune challenge, enhanced innate and adaptive immune
responses were exhibited 3- and 7-days postchallenge.
In addition to increased host defense capabilities,
the same VTA DA neuronal activation resulted in
enhanced CPP toward the conditioned chamber. These
findings indicate that VTA DAergic neurons balance
their control of reward-guided behaviors with immu-
nity or, at least, that there might be a causal relation-
ship between enhanced VTA activity and the host’s
immune response to a bacterial infection (Ben-Shaanan
et al., 2016).
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C. Addiction

Drugs of abuse, including the psychostimulants co-
caine and amphetamine that act directly on the DA
system, induce substantial synaptic modifications that
hijack the natural reward system and cause the tran-
sition to substance addiction (Baik, 2013). Increased DA
levels within the NAc have been linked to hyperlocomotion
aswell as to an initial perception of reward and subsequent
reward prediction error guiding goal-directed behaviors
(Schultz, 2007). Although the elevations in accumbal DA
levels are related to both psychostimulant-induced
hyperactivity (acute as well as sensitized) and general
reward perception (which in rodents can be assessed
indirectly by CPP or self-administration paradigms),
these behaviors are likely segregated because not all
addictive drugs induce hyperactivity. It has been hy-
pothesized, however, that psychostimulant-induced lo-
comotor hyperactivity in rodents reflects the perception
of reward and could be reflective of addiction vulnera-
bility (Deminiere et al., 1989; Piazza et al., 1989).
Consistent with this hypothesis, a greater acute loco-
motor response to psychostimulants was found to
be predictive of psychostimulant self-administration
(Piazza et al., 1989) and high drug intake (Piazza et al.,
2000). The rewarding effect/addictive properties of
drugs of abuse and their influence on subsequent
drug-related behaviors, including drug-seeking and re-
instatement, are commonly assessed by CPP and self-
administration paradigms. In addition to assessing
relapse following withdrawal (induced by either a cue
or a prime-injection of the rewarding stimuli), the self-
administration paradigm may assess compulsive drug
intake (continued self-administration despite negative
consequences, such as foot shock), which is considered a
major hallmark of addiction. Of further interest, we
recently published a single exposure place preference
protocol that allows assessment of the initial perception
of reward in rodents and thereby represents an attrac-
tive model for further investigating initial drug effects
and dissect reward and locomotor-enhancing responses
various drugs (Runegaard et al., 2017a). Chemogenetics
has been used widely in various experimental set-ups to
further dissect and shed light on behaviors and under-
lying changes to neural networks related to addiction
including acute locomotor response, behavioral sensiti-
zation, CPP, and self-administration.

1. Locomotor Sensitization. Locomotor sensitization
is a lasting, increased locomotor response observed
following repeated, noncontingent administration of
psychostimulants. This is believed to reflect the synap-
tic adaptive changes that occur with repeated drug
intake and to be associated with the transition from
initial drug use to addiction (Hooks et al., 1991a,b;
Piazza et al., 1991; Belin and Deroche-Gamonet, 2012).
Not surprisingly, DREADDs have been applied to the
DA system to examine the influence of dMSNs and

iMSNs during repeated drug administrations and after
drug-induced behavioral sensitization. The results con-
firmed previous pharmacological and transgenic pieces
of evidence on the opposing roles of the indirect and
direct MSN pathways (Lobo and Nestler, 2011). Indeed,
activation of hM4Di in iMSNs or dMSNs enhanced or
attenuated, respectively, behavioral sensitization to
amphetamine (Ferguson et al., 2011). Similarly, behav-
ioral sensitization was prevented when Gi-induced
signaling was opposed by activating rM3Ds in iMSNs
(Farrell et al., 2013).

The findings support that iMSN activity is a driving
force underlying behavioral sensitization (Farrell et al.,
2013), that is, the experiments indicate that locomotor
sensitization, similarly to general locomotor activity
(see section II.A.2) depends on a relative output signal
from striatal MSNs following repeated drug adminis-
tration. Interestingly, acute and sensitized responses to
psychostimulants seem to be affected differently by the
same DREADD manipulations. Activation of hM4Di in
VTA neurons strongly inhibited the acute response to
cocaine, but this neither prevented the development nor
the expression of a sensitized response (Runegaard
et al., 2018). On the contrary, hM4Di activation in
iMSNs during amphetamine sensitization had no effect
on the acute response or during initiation, but prevented
expression of behavioral sensitization during a challenge
dose 1 week later (Ferguson et al., 2011). This suggests
that the responses are driven by separate and to some
extent independent mechanisms, possibly segregated by
pre- and postsynaptic effects. Moreover, the potential
influence and role of coreleased neurotransmitters from
heterogeneous populations of midbrain DA neurons
must be taken into consideration to understand fully
the mechanisms underlying the segregation of these
behaviors (Poulin et al., 2018).

2. Reward Perception, Drug-Cue Associations, and
Relapse Behaviors. The perception of reward is linked
to increases in DA levels, and such increases are
considered the common mechanism responsible for
the addictive properties of drugs of abuse (Wise and
Bozarth, 1985; Di Chiara and Imperato, 1988; Koob and
Le Moal, 1997). How the initial increase in DA conveys
into adaptive changes that only in a subpopulation
of subjects induce the transition from recreational use
to addiction is still poorly understood. Based on the fact
that females tend to transition faster to addiction and
experience greater difficulties remaining abstinent
(Becker and Koob, 2016), Calipari et al. (2017) investi-
gated the influence of the estradiol-cycle on VTA
signaling and cocaine reward using the CPP paradigm.
Their results revealed an estradiol-mediated increase
in the activity of VTA DAergic neurons that promoted
phosphorylation of DAT, which in turn was proposed
to increase the ability of cocaine to inhibit its function.
By use of chemogenetics, they moreover obtained
data indicating a possible mechanistic link between the
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increased activity of VTA DA neurons, via hM3Dq
activation, and the enhanced affinity of cocaine for
DAT, subsequent reward processing, and increased
CPP (Calipari et al., 2017). In an earlier study, the
same research group linked chronic cocaine exposure to
dysregulated dMSNs signaling, impaired extinction,
and facilitated cocaine-primed reinstatement. Specifi-
cally, it was found that hM4Di-mediated inhibition of
dMSNs attenuated the strength of drug association and
prevented relapse (Calipari et al., 2016).
The bed nucleus of the stria terminalis (BNST) has

been implicated in cue-induced cocaine-seeking behav-
iors, and hM4Di-mediated inhibition of this region
suggested that it is involved in ethanol-seeking behaviors
(Pina et al., 2015). By using a dual viral chemogenetic
approach, it was demonstrated that BNST neurons
projecting to the VTA are involved in cue-induced
ethanol-seeking behavior, as hM4Di activation in these
neurons prevented alcohol CPP (Pina andCunningham,
2017). Although ethanol has a different pharma-
cological profile compared with psychostimulants
(Vengeliene et al., 2008; Kumar et al., 2009), the influ-
ence of DA in mediating the transition to addiction
appears similar (Soderpalm and Ericson, 2011; Sulzer,
2011). Interestingly, Cheng et al. (2017) demonstrated
an alcohol-induced enhancement of glutamatergic and
GABAergic transmission onto dMSNs and iMSNs, re-
spectively. That is, in vivo chemogenetic manipulation
of dMSN or iMSN via hM3Dq or hM4Di, mimicking
glutamatergic or GABAergic enhancement, respec-
tively, affected alcohol consumption with hM3Dq acti-
vation in dMSNs or hM4Di activation in iMSNs
promoting alcohol consumption, and oppositely reduc-
ing consumption through hM3Dq activation in iMSNs
or hM4Di in dMSNs (Cheng et al., 2017). Anatomically
distinct functions of the NAc core and shell in alcohol
consumption were revealed in a limited access mouse
model where alcohol consumption was reduced or in-
creased following hM3Dq or hM4Di stimulation, re-
spectively, of the NAc core but not accumbal shell
(Purohit et al., 2018). It has also been observed that
activation of KORD in neurons projecting to the NAc
from the ventral subiculum decreased context-induced
relapse of alcohol self-administration (Marchant et al.,
2016a). While the mechanism of action of inhalant
drugs of abuse has lagged behind, one recent chemo-
genetic study revealed an important role of infralimbic
cortical projections to the NAc (Wayman and Wood-
ward, 2018). The study described a toluene-induced
(i.e., glue sniffing) reduction of excitability in rat
infralimbic cortical neurons projecting to the NAc shell
and inhibition of toluene-induced place preference after
stimulating hM4Dq in this pathway (Wayman and
Woodward, 2018).
Chemogenetics has further been employed to obtain

evidence that astrocytes modulate the sensitivity and
behavioral responses to reinforcing stimuli. Activating

hM3Dq specifically in the astrocytes of the NAc core
increased intracranial self-stimulation, as well as re-
duced motivation to self-administer ethanol after
3 weeks abstinence (Bull et al., 2014). Similar chemo-
genetic activation of astrocytes expressing hM3Dq was
shown to inhibit cue-induced reinstatement of cocaine
seeking (Scofield et al., 2015). By the use of glutamate
biosensors, Scofield et al. (2015) found that hM3Dq
activation in the NAc astrocytes elevated glutamate
levels as well as they obtained evidence that this
glutamatergic gliotransmission inhibited cue-induced
reinstatement of cocaine seeking as a result of activat-
ing neurotransmitter release-regulating metabotropic
glutamate 2/3 autoreceptors.

The relative output from dMSNs and iMSNs, resid-
ing within the NAc, is likely directly to influence
relapse since both rM3Ds-mediated stimulation of
dMSN and hM4Di-mediated inhibition of iMSNs led
to an increase in cue-induced reinstatement of cocaine
self-administration (Heinsbroek et al., 2017). This effect
was reversed with simultaneous hM4Di-mediated
inhibition of ventral pallidum neurons (Heinsbroek
et al., 2017). Consistent with these findings, ventral
pallidum neurons have been associated with reward-
cue pairing and reinstatement, and chemogenetic in-
hibition of ventral pallidum neurons impaired the
ability of rats to acquire sign-tracking behaviors in
response to a learned natural reward-associated cue
(Chang et al., 2015). Interestingly, different areas of the
ventral pallidum seem to regulate different forms of
reinstatement. Local application of CNO in VTA of mice
expressing hM4Di in either the rostral or caudal ventral
pallidum revealed that only cue-induced reinstatement
was suppressed when inhibiting rostral ventral
pallidum-VTA projecting neurons, whereas caudal ven-
tral pallidum-VTA inhibition had no effect on reinstate-
ment. Conversely, systemic CNO was found to block
primed reinstatement in caudal ventral pallidum-
hM4Di rats, indicating that although caudal ventral
pallidum is necessary for cocaine-primed reinstate-
ment, its VTA targets are not essential for this action
(Mahler et al., 2014). This suggests a complex contribu-
tion of specific subnuclei projections and circuits involv-
ing the NAc and ventral pallidum in drug-seeking
behaviors. In addition, application of chemogenetics
has also pointed to a role of midline thalamic nuclei
neurons in drug-seeking behaviors. Interestingly, re-
ducing activity of midline thalamic nuclei neurons by
hM4Di stimulation inhibited both cue-induced and
cocaine-primed reinstatement, whereas chemogenetic
inhibition specifically of efferent projections from the
anterior portion of midline thalamic nuclei to the NAc
only blocked cocaine-primed reinstatement and en-
hanced cue-induced reinstatement (Wunsch et al.,
2017). Similar to lesions of the NAc, suppressing the
activity of accumbal neurons with hM4Di reduced eth-
anol consumption in a limited access model. In contrast,
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increasing NAc activity with hM3Dq had no effect on
ethanol intake (Cassataro et al., 2014). In an alcohol
self-administration paradigm, the ventral pallidumwas
again demonstrated to influence reinstatement with
hM4Di or rM3Ds stimulation, resulting in reduced or
increased context-induced, as well as prime-induced,
reinstatement of extinguished alcohol seeking, respec-
tively (Prasad and McNally, 2016).
Lastly, the medial PFC is an area implicated in

compulsive behaviors and has also been associated with
relapse behaviors (Kalivas, 2008). Functional dissection
of the ventro- and dorsomedial PFC areas has shown
anatomically distinct influences on relapse behaviors.
For example, the dorsomedial PFC region promoted
relapse, while the ventromedial PFC region regulated
extinction-like reductions in cocaine seeking (Peters
et al., 2009; Moorman et al., 2015). In cocaine self-
administering rats, hM4Di activation of medial PFC
afferents to the NAc had no effect on motivation for
taking cocaine during progressive ratio scheduling but
increased subsequent drug-seeking behavior during
extinction. Furthermore, primed reinstatement was
significantly higher in rats that had been treated with
CNO during progressive ratio scheduling. Strikingly,
CNO treatment prior to a priming injection attenuated
this response (Kerstetter et al., 2016). The authors
suggested that this indicated a strengthening of
the associative processes that linked cocaine with
surrounding stimuli, which may seem counterintuitive
when dampening medial PFC afferent activity to the
NAc. However, the authors further speculated that late-
stage beta-arrestin-mediated recruitment of mitogen-
activated protein kinase/extracellular signal-regulated
kinase (ERK) signaling modulated long-term alter-
ations in neuronal plasticity and memory formation
(Kerstetter et al., 2016). The specific role of the ventro-
medial PFC in extinction behaviors was confirmed
through a chemogenetic approach aiming at activating
ventromedial PFC neurons in a self-administration
reinstatement model (Augur et al., 2016). By activating
hM3Dq in ventromedial PFC neurons projecting to the
NAc shell, Augur et al. (2016) demonstrated that these
neurons played a role following cue-extinction learn-
ing, as they observed that cue-, but not prime-induced,
reinstatement of cocaine seeking was reduced
postextinction. Furthermore, they observed no effect
following abstinence where the rats had not been
through the “de-learning” phase of the cue-drug pairing
(Augur et al., 2016). Altogether, neuronal adaptations
seem to occur during extinction, which involves an
active process in terms of context extinction memory,
making drug-seeking behaviors dependent on ventro-
medial PFC activity.
3. Compulsive Drug Taking. The resistance to

punishment after the acquisition of drug self-stimulation
was recently found to be associated with enhanced
neural activity in the orbitofrontal cortex. Chemogenetic

inhibition of this region reduced this form of compulsiv-
ity and prevented persevered self-stimulation despite
punishment (Pascoli et al., 2015). Previously, cocaine-
induced perseverative behaviors in mice were associated
with altered synaptic plasticity in accumbal iMSNs.
A potentiation of glutamatergic input to iMSNs was,
contrary to potentiation of dMSNs, observed only inmice
that showed resilience toward compulsive cocaine seek-
ing. Chemogenetic inhibition of NAc iMSNs enhanced
this motivation to obtain cocaine without affecting drug
intake (Bock et al., 2013). The data provide a possible
input-output link of a natural protective mechanism
against compulsive drug intake, with cocaine inducing
an enhanced activity of orbitofrontal cortex circuits
synapsing onto iMSNs within the NAc.

Summarized, the studies described above on the role
of the DA system in addiction reveal how certain
neuronal populations and regions already associated
with the DA reward circuitry system can influence
addictive behaviors. Although several findings are not
surprising as they support previous hypotheses, they
provide a novel and unique spatial-selective map. Since
regions and specific neuronal populations can be linked
together, this combination reveals an immensely com-
plex reward system, with pathways projecting from
multiple brain regions that either directly or indirectly
regulate prime regions of DA transmission including
the VTA and NAc.

D. Mood, Nociception, and Cognition

Anxiety and depression are among the most common
neuropsychiatric disorders, but the underlying neuro-
biology is poorly understood. Although 5-HT dysfunc-
tion is classically associated with mood disorders, the
possible contribution of DAergic neurons in mood reg-
ulation has been examined using DREADDs. Zhong
et al. (2014) induced an anxiogenic-like and depressive-
like phenotype by selectively deleting expression of
Cdk5, a kinase involved in the phosphorylation of TH,
in the VTA of mice. This deletion caused reduced TH
phosphorylation and VTA cAMP levels and NAc DA
release. Selective rM3Ds activation of VTA DA neurons
in this genetically modified mouse strain restored TH
phosphorylation and DA levels, as well as rescued the
behavioral deficits induced by deletion of the kinase
(Zhong et al., 2014). DAergic neurons were also impli-
cated in depressive-like behaviors under systemic in-
flammation conditions. When discomfort associated
with a systemically induced inflammation state was
investigated in the CPP paradigm, mice demonstrated
an aversion to the inflammation-paired chamber and
preferred the neutral chamber (Fritz et al., 2016).
Chemogenetic activation of hM3Dq-expressing mice in
midbrain DAergic neurons abolished this systemic
inflammation place aversion, suggesting that this aver-
sion is mediated via or at least integrated into midbrain
DAergic neurotransmission.
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Other studies have focused on the regulation of
DAergic neurons under pain conditions. Chemogenetic
suppression of VTA DAergic activity offset the phenom-
enon of exercise-induced hypoalgesia in partially sciatic
nerve-ligated mice (Wakaizumi et al., 2016). Further-
more, specific hM3Dq activation of DAergic neurons in
the ventral periaqueductal gray/dorsal raphe neurons
was found to induce an anti-nociceptive effect in the
hotplate, but not the tail flick assay, proposing that DA
released from the periaqueductal gray/dorsal raphe is
associated with supraspinal, but not spinal, nociception
(Li et al., 2016).
DA was also shown to play a crucial role in fear

learning, and therefore anxiety disorders and posttrau-
matic stress disorder (Lee et al., 2016; Bouchet et al.,
2018; Mayer et al., 2018). Yet how DAergic neurons
modulate these processes is unclear. Chemogenetic
tools have facilitated investigations into this subject
area, with hM4Di-mediated inhibition of a specific part
of the mesolimbic system, projecting from the posterior
medial VTA to the NAc shell, blocking relief learning
following an aversive electrical stimulus cue (Mayer
et al., 2018). There is ever growing data implicating the
nigrostriatal pathway in this form of emotion since
hM3Dq-mediated activation of SN DAergic neurons
improved fear extinction memories and prevented
future fear renewals (Bouchet et al., 2018). These early
data propose an important role of DAergic pathways in
the processing of signals predicting fear and relief, and
therefore may represent a potential target for improv-
ing extinction-based therapies in anxiety and trauma-
related disorders (Lee et al., 2016).
DA is known to play key roles in PFC-mediated

cognition with system deficits apparent in ADHD and
schizophrenia (Arnsten and Pliszka, 2011). To elucidate
the cellular mechanisms governing D2R-mediated en-
hancement of PFC pyramidal neuron excitability, each
CNO-sensitive DREADD was probed in an in vitro
electrophysiological set up. Strikingly, the results showed
that only Gs-DREADD stimulation of the medial PFC
mimicked this phenomenon implicated in schizophrenia
(Robinson and Sohal, 2017). It is not only the higher
cortical areas where DREADDs have been applied to
study DA-regulated cognition. The importance of D1Rs
located in the lateral nucleus of the cerebellum was
demonstrated using hM4Di-mediated cerebellar stimula-
tion in D1R-Cre mice to induce deficits on working
memory and prepulse inhibition of the acoustic startle
response (Locke et al., 2018).
The five-choice serial reaction time task assesses

attentional, impulsive, and motivational control in
rodents, and it is well-known that the DAergic system is
centrally implicated in regulating all these behaviors,
as also previously reviewed (Robbins, 2002; Jørgensen
et al., 2017). In short, food-restricted subjects must wait
and attend to a brief light stimulus in one of five
apertures to receive a reward. The number of premature

responses, before the light appears, represents a mea-
sure of impulsivity, while incorrect or omitted responses
are considered a measure of attention impairments.
Interestingly, activation of hM3Dq in the rat VTA and
SN pars compacta was shown to cause an increase in
omitted responses, while only SN pars compacta acti-
vation decreased the number of correctly responded
trials and mean correct latency (Boekhoudt et al.,
2017b). As no effect on premature responses was ob-
served, the authors suggested that increased midbrain
DA neuronal activity caused attentional, but not impul-
sive, deficits.

III. Discussion and Future Directions

Summarized, it seems very clear that use of
DREADDs in the area of DA research has advanced
substantially our understanding of the DA system and
led to many new discoveries. Indeed, the DAergic
system is complex, consisting of a heterogeneous
population of DA neurons and output cells that are
intermingled and difficult to target in behavioral stud-
ies. By providing the spatial specificity that standard
pharmacologic interventions lack, the chemogenetic
toolbox has shown its potential to dissect the DA system
and enlighten its influence on behavior. The DREADDs
technique allows for relatively noninvasive regulation
of neuronal signaling and depends largely on the in-
trinsic ability of neurons to regulate their own activity,
as DREADDs work through endogenous intracellular
signaling mechanisms. Once a chemogenetic receptor is
expressed in neuronal populations/projections of inter-
est, systemic administration of the inert ligand, CNO/-
clozapine or SalB, permits transient and repeated
perturbations of neural activity. This can even be
accomplished bilaterally in large or elongated brain
structures, which can be extremely difficult with micro-
injections of pharmacologic compounds or other
molecular-genetic approaches such as optogenetics
(Smith et al., 2016).

Despite its far-reaching usefulness and potential, the
DREADDs technology is still in its infancy, and we are
only beginning to realize the true nature of this toolbox’s
contents. However, as any other technique, chemogenetic
interventions are not without limitations and chal-
lenges, and a lot of effort should be put into understand-
ing the actual effects of injecting, expressing, and
activating the various DREADDs, as well as possi-
ble adaptive changes occurring due to repeated
activation.

A. Designer Receptors Exclusively Activated By
Designer Drugs Effects in Theory and in Reality

1. Designer Receptors Exclusively Activated By De-
signer Drugs Expression—The Meaning of Inertness.
The chemogenetic toolbox contains mutated GPCRs
that are inert until application of their agonist (see
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Fig. 1). Supposing that the DREADD agonists CNO and
SalB are also inert and do not target endogenous
receptors, their use provides the neuroscience field
with, in theory, an ideal system for pharmacological
remote control of any neuronal population of interest.
However, there are no guarantees that this inertness
applies in reality, and, as mentioned in the introduction
(section I.2), recent evidence has emerged, indicating
that at least under some circumstances in certain
systems, extra caution should beexertedwhen interpreting
chemogenetic experimental data (Maclaren et al., 2016;
Gomez et al., 2017; Padovan-Hernandez and Knackstedt,
2018). CNO was previously reported to back-metabolize to
clozapine in humans, nonhuman primates, and guinea
pigs, but has generally been considered inert in rats and
mice (Jann et al., 1994; Chang et al., 1998; Guettier
et al., 2009; Loffler et al., 2012). More recently, however,
MacLaren et al. (2016) described multiple dose-
dependent effects in vivo in rats as a consequence of
the back-metabolism of CNO to its bioactive parent
compounds clozapine and N-desmethylclozapine. Still,
at CNO doses most commonly applied (1 to 2 mg/kg),
there were no measurable effects on basal locomotion,
nor amphetamine-induced DA release or hyperactivity.
The acoustic startle reflex was the only tested measure
that was affected by 1 or 2 mg/kg CNO (Maclaren et al.,
2016). In the last decade, DREADDs have been applied
in hundreds of laboratories to study various different
neuronal circuits reporting no effects of CNO in non-
DREADD-expressing mice. Accordingly, the concerns
regarding the use of DREADDs to functional studies
in vivo seem to be replaced with prudent caution and
refinement (Mahler and Aston-Jones, 2018). To what
extent SalB is inert remains to be determined. As a
general recommendation, researchers should include
and carefully plan control studies to exclude potential
undesirable effects caused by DREADD ligands
themselves.
So far, there have been no reports of constitutive

activity of DREADDs expressed within neurons. None-
theless, logically such activity should correlate with not
just the number of DREADDs but also the endogenous
signal transduction machinery, which varies between
different populations of cells and neurons. Some consti-
tutive activity of the rM3Ds DREADD in transfected
cells has been reported and possibly explains the
modest basal phenotype described in pancreatic beta
cells (Guettier et al., 2009). Hence, chemogenetic recep-
tors may not have profound basal activity in neuronal
systems tested, but it cannot be ruled out that they can
present with constitutive activity in certain cells of the
CNS or when expressed by certain approaches. Low
levels of constitutive activity might not cause a detect-
able phenotype right away but instead induce subtle
alterations in homeostasis and long-term behaviors.
Another important issue is potential concerns relat-

ing to the method used to introduce DREADDs into

neurons and how this might differentially affect the
function of the cells. It has, for example, been shown in
optogenetic studies that the route of administration
of the exact same opsin using identical AAV vector
backbone, but encapsulated with various capsids (i.e.,
serotypes 1, 5, 8, 9), affected the efficacy of neuronal
activity differently (Jackman et al., 2014). If this also
applies to DREADDs, then even the choice of AAV
serotype can determine how neurons respond to
DREADD ligands. While such administration-related
phenomena might not be a concern for interpreting one
single DREADD study, it could impede comparisons
between studies across the same scientific objectives in
which the expression of DREADDs in identical cells
were obtained by different viral serotypes and/or trans-
genic animals.

2. Interpretation of Activating Designer Receptors
Exclusively Activated By Designer Drugs with
Clozapine N-Oxide. Interpretation of chemogenetic
manipulations affecting behavior is often condensed to
activation or silencing of a specific neuron population/-
projection by hM3Dq/rM3Ds and/or hM4Di/KORD, re-
spectively, but this is possibly an extreme simplification
of what CNO actually does to neurons expressing
DREADDs. Firstly, the effect of activating a certain
DREADD may differ between neurons and even sub-
populations of neurons, depending on the intracellular
signalmachinery, asmentioned above. Hence, the effect
of activating hM4Di in different populations of neurons
or even within the same neurons at different times
can be quite different. For example, the activation of
neurons by hM4Di inhibits presynaptic firing by
hyperpolarizing neurons via GIRK (Roth, 2016), but
some neuronsmay possess low expression of GIRK, and,
consequently, the effect of CNO in these neuronsmay be
negligible or dominated by other downstream media-
tors. In addition, GIRK levels may change because of
previous drug exposure. Both cocaine andmethamphet-
amine have been reported to inhibit midbrain GIRK-
mediated currents in DAergic brain neurons for up
to 2 weeks post-psychostimulant administration
(Kobayashi et al., 2007; Padgett et al., 2012; Sharpe
et al., 2014). This psychostimulant-related effect on
GIRK is important to consider when utilizing
chemogenetic tools, especially hM4Di, in DA-based
research, given how psychostimulants alter DAergic
neural circuitry and contribute to locomotion and
reward-related processes. Recently, we demonstrated
that following withdrawal of repeated cocaine, hM4Di-
stimulation of VTA DA neurons no longer influenced
cocaine-induced locomotion (Runegaard et al., 2018)
Therefore, it will be important to investigate further
whether and to what degree various drugs, includ-
ing cocaine and amphetamine, affect the efficacy of
chemogenetic modulation on neuronal activity and
behavior, including how DREADD expression affects
ligand-receptor binding interactions.
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3. Considerations for Repeated Activation of Designer
Receptors Exclusively Activated By Designer Drugs.
CNO-induced activation of DREADDs depends on en-
dogenous GPCR signaling cascades, and although these
designer receptors are always available and should not
desensitize, downstream effectors may limit the neuro-
nal effect upon repeated activation (e.g., GIRK desensi-
tization) (Roth, 2016). Due to the high expression levels
of chemogenetic receptors, and the subsequent amount
of receptor reserve, substantial desensitization by CNO
or SalB causing a blunted or absent effect is obviously
less likely. However, this is an issue that has yet not
been satisfactorily addressed (Roman et al., 2016; Roth,
2016). So far, it has been shown that mice expressing
hM4Di in the dorsomedial striatum or NAc developed a
tolerance toward CNO following 2 weeks of chronic
administration. However, that tolerance disappeared
48 h after chronic administration stopped (Carvalho
Poyraz et al., 2016). Bellocchio et al. (2016) also found
that chronic activation of hM3Dq with a high CNO dose
of 10 mg/kg altered behavioral responses and induced
cell death in vivo, possibly due to the unnatural, intense
signal cascades activated by CNO, which caused neu-
ronal damage. They discovered that chronic hM3Dq
activation in iMSN caused enhanced locomotor activity
and neuronal death via the c-Jun N-terminal kinase
pathway (Bellocchio et al., 2016). Accordingly, it is
important when designing long-lasting DREADD ex-
periments to exclude possible adaptations caused by
repeated administration of DREADD ligands.
4. Can Selective Dopamine Expression Be Achieved?

As previously mentioned, one major advantage of
DREADDs, but not limited to this specific technology,
is the spatial selectivity by which the manipulation can
be performed. Although the theoretical foundation of
selective DREADD expression by Cre-dependency
and/or promoter-regulated expression appears solid,
practical issues such as leaky expression of Cre and
concerns regarding promoter specificity may hamper
the actual specificity and confound interpretations.
In addition, the transgenic Cre-driver lines applied
to specify DREADDs expression have not all been
validated, which could also confound interpretation
of DREADDs data. Thus, it seems important that
researchers validate their transgenic Cre-driver line
before proceeding with chemogenetic manipulations—
in particular when WT littermates (non-DREADD
expressing) are included as a control for CNO’s own
effects. Importantly, we recently characterized the
commonly used TH-Cre driver mouse line (Savitt
et al., 2005) and found neither alterations in DA
system-related function nor in behavior (Runegaard
et al., 2017b).
Recent studies have revealed a higher degree of

structural, as well as functional heterogeneity, in the
DA system than previously assumed. This calls for
increased anatomic specificity when manipulating

specific DA neurons and projections to provide reliable
and accurate interpretations. Indeed, concerns have
been raised regarding the use of a single gene marker to
define the DAergic phenotype (Björklund and Dunnett,
2007; Apuschkin et al., 2015; Lammel et al., 2015;
Stuber et al., 2015), and the DAT- and TH-Cre driver
lines used to specify expression to DAergic neurons may
target different but overlapping populations of DAergic
neurons. Furthermore, recent evidence suggests that
effector gene expression in transgenic TH-Cre mice is
not limited to DAergic neurons but also seen ectopi-
cally such as in TH-transcript positive GABAergic VTA
neurons projecting to the lateral habenula (Lammel
et al., 2015; Stuber et al., 2015). This knowledge
emphasizes the need for an updated characterization
of the DA phenotype, or rather a dissection of the
different phenotypes of this heterogeneous population
of neurons. Specifically, it might be necessary to rede-
fine the hallmarks of a DAergic neuron, considering
whether it is defined by its synthesis, release, and/or
reuptake mechanisms (Berke, 2018). It is, moreover,
essential to achieve a better understanding of the
DAergic subpopulations coreleasing other neurotrans-
mitters such as glutamate (Morales and Root, 2014)
and GABA (Barker et al., 2016) to guide us in our
understanding of DAergic neuronal and projection
patterns.

5. Can Designer Receptors Exclusively Activated
By Designer Drugs Help Dissect the Dopaminergic
Pathways? As emphasized above, a fair interpretation
of the chemogenetic manipulations relies on the thor-
ough validation of targeted neurons, projections, and an
understanding of their characteristics. Independent of
the definition of DAergic neurons, refinements of the
chemogenetic technique are also important. These in-
clude improvements in projection-specific expression by
the use of retrogradely transported viral vectors (e.g.,
CAV-2-Cre) (Boender et al., 2014), recombinant AAVs
carrying tissue- or cell-specific promoters (Gompf et al.,
2015), or by double-recombination approaches through
the introduction of an additional recombinase, such as
Flp (Stamatakis et al., 2013). This latter approach
could be even more sophisticated if introduced under
an activity-dependent promoter, e.g., mediated by C-fos
activation (Garner et al., 2012; Kawashima et al., 2014;
Roy et al., 2016). Additionally, the temporal and spatial
resolution can be improved further via photo-caging
DREADDs or creating DREADD antagonists, which
could become highly useful and emphasize the contin-
uous development and refinement of the DREADD
technology (Roth, 2016). Of further interest, refinement
of viral genetic tracing techniques has recently allowed
systematic mapping of the input-output circuitry of
neuronal nuclei (Beier et al., 2015; Schwarz et al.,
2015; Cardozo Pinto and Lammel, 2018). Beier et al.
(2015) demonstrated that VTA DA neurons projecting
to different forebrain regions exhibited specific biases in
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their input selection, and VTADA neurons projecting to
the lateral and medial NAc innervated largely non-
overlapping striatal targets, with the latter also sending
extrastriatal axon collaterals.

B. Have Chemogenetic Studies Advanced Our
Understanding of Dopamine-Related Behaviors?

While the chemogenetic toolbox has facilitated stud-
ies previously not possible, it is evident that some of
the results obtained by application of chemogenetics do
not provide true novel insights but rather confirm what
has previously been shown by lesion studies and by
use of transgenic or pharmacologic approaches. How-
ever, as described in this review, the improved specific-
ity of the chemogenetic manipulations has in many
cases enabled much more refined conclusions in terms
of spatial and specific influences of distinct neuronal
populations on behavioral outputs. We believe accord-
ingly that future chemogenetic studies have the poten-
tial to significantly further advance our understanding
of the complex role of DA in regulating the multiple
behaviors discussed here. Indeed, the wide use of
chemogenetics in laboratories all over the world directly
reflects the vast potential of the technology to progress
our understanding of neuronal signaling and behavior.
Nonetheless, when interpreting chemogenetic data
with a wish to conclude about DA-related behaviors, it
is highly important to consider the immense heteroge-
neity of the DA system. Not least, the still poorly
understood importance of coreleased neurotransmit-
ters, such as GABA and glutamate, must be taken into
account (Poulin et al., 2018). Moreover, and as also
mentioned earlier, it has to be considered that when
chemogenetically manipulating, e.g., MSNs, the out-
come might not necessarily solely reflect DA trans-
mission, because neurons receive metabotropic input
from multiple GPCRs and not only G protein-coupled
DRs. In context of these challenges, it will be highly
important to combine the specificity by which DREADDs
can be expressed and activated with advanced tech-
niques assessing neurotransmitter release, activity,
and dynamics, such as the recently published DA
biosensors (Patriarchi et al., 2018; Sun et al., 2018) or
two-photon excitation microscopy technologies (Svoboda
and Yasuda, 2006). Such approaches should indeed
enable better comprehension of the multifaceted action
governed by DA and its circuitry in the near future.

C. Future Directions

Besides the use of DREADDs in biologic and disease
research, this technique possesses tremendous poten-
tial in translational research and clinical therapies
(Roth, 2016). As well as developing multiple designer
receptors and agonists, the fast-paced DREADDs field
has dissected the mesocorticolimbic network with pos-
itron emission tomography (Michaelides et al., 2013)
and functional magnetic resonance imaging (Roelofs

et al., 2017) and has already been used in nonhuman
primates (Eldridge et al., 2016; Grayson et al., 2016).
While the idea of gene therapy and thereby expressing
DREADDs in humansmay not be a major issue, it is the
ligand CNO that arouses most worry because of the
back-metabolization of CNO to clozapine in several
species, potentially limiting its use in patients. How-
ever, the newer KORD variant is activated by a different
ligand, SalB,which has not yet been associatedwith such
issues (Vardy et al., 2015). In addition, structure-activity
relationship studies were applied to develop alternative
ligands for activating DREADDs, leading to the identi-
fication of a new potent hM3Dq agonist that is neither
back-metabolized nor activating endogenous receptors
(Chen et al., 2015). Development of more sophisticated
DREADD variants will thereby probably allow for the
use of DREADDs in humans in the future (Urban and
Roth, 2015; Smith et al., 2016).

IV. Conclusion

A plethora of novel techniques has become available
within the field of neuroscience in recent years. To-
gether these have revolutionized neuroscience and
dramatically improved our understanding of complex
processes taking place in the brain and how such
processes might change during disease states. One
technique of particular interest is chemogenetics that,
by allowing pharmacological remote control of neuronal
activity, have opened up for entirely new possibilities
for dissecting neuronal circuits and deciphering the role
of diverse neuronal populations. Chemogenetics has
already been extensively used for studying the DA
system, and, as reviewed here, multiple different
components of the DA system, including DA-releasing
neurons, striatal postsynapticMSNs conveyingDAergic
signals, and other neural regions/substances synapsing
onto the DA neurons, have been targeted by DREADDs
to investigate regulation of discrete and multiple be-
havioral functions. One important lesson is that we
should learn and appreciate that behavior is not simply
driven by just one single neuronal population or projec-
tion pattern, but rather determined by a tightly regu-
lated integration of multiple neuronal inputs. Indeed,
behavior is complex and should not be simplified to a
binary constituent taking place in response to “activa-
tion” or “inhibition” of specific neurons.

The major advancement of chemogenetics, compared
with traditional pharmacological interventions, has
been the increased anatomic specificity by which the
manipulations can be undertaken and thereby dissect
not just a biologic heterogeneous population of DA
neurons, but also an anatomically important complex
projection system. There are no doubts that the poten-
tial of chemogenetics is huge, but as with any other
technique, there are concerns, some of which need to
be further addressed. These include how to target a
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heterogeneous DAergic population, the dependency of
DREADDs-related effects on endogenous GPCR signal-
ing machinery (which may differ between different
neuronal subpopulations), expression-induced adapta-
tions, as well as possible alterations in DREADDs
expression and/or adaptive cellular responses with re-
peated or chronic CNO administration. It should none-
theless be appreciated that the chemogenetic technique
is still at a relatively early stage, and there is no reason
to believe that many of these obstacles cannot be
addressed and the technique further developed. With
the progress of the CRISPR technology (Wang et al.,
2016), one might even consider that DREADDs-like
manipulations of any endogenous receptor/transporter
of interests soon might become part of the commonly
used methodological repertoire. In relation to direct
translational application of the DREADD technology,
searches for new ligands (Chen et al., 2015; Roth, 2016)
and development of new designer receptor variants
activated by other ligands (e.g., KORD) (Vardy et al.,
2015), may overcome the problem of extensive metab-
olism of the activating ligand CNO in primates, and
thus, chemogenetic therapy to treat neurologic and
psychiatric disorders may not be an unrealistic or
distant goal.
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