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Abstract It is widely accepted that molecular re- informative pathology and drug-based analytics that

ductionist views of highly complex human physiologic
activity, e.g., the aging process, as well as therapeutic
drug efficacy are largely oversimplifications. Currently
some of the most effective appreciation of biologic
disease and drug response complexity is achieved
using high-dimensionality (H-D) data streams from
transcriptomic, proteomic, metabolomics, or epigenomic
pipelines. Multiple H-D data sets are now common and
freely accessible for complex diseases such as metabolic
syndrome, cardiovascular disease, and neurodegenerative
conditions such as Alzheimer’s disease. Over the last decade
our ability to interrogate these high-dimensionality data
streams has been profoundly enhanced through the
development and implementation of highly effective
bioinformatic platforms. Employing these computational
approaches to understand the complexity of age-related
diseases provides a facile mechanism to then synergize
this pathologic appreciation with a similar level of
understanding of therapeutic-mediated signaling. For

are able to generate meaningful therapeutic insight
across diverse data streams, novel informatics processes
such as latent semantic indexing and topological data
analyses will likely be important. Elucidation of H-D
molecular disease signatures from diverse data streams
will likely generate and refine new therapeutic strategies
that will be designed with a cognizance of a realistic
appreciation of the complexity of human age-related
disease and drug effects. We contend that informatic
platforms should be synergistic with more advanced
chemical/drug and phenotypic cellular/tissue-based
analytical predictive models to assist in either de
novo drug prioritization or effective repurposing for
the intervention of aging-related diseases.

Significance Statement——All diseases, as well as
pharmacological mechanisms, are far more complex
than previously thought a decade ago. With the advent
of commonplace access to technologies that produce
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large volumes of high-dimensionality data (e.g.,
transcriptomics, proteomics, metabolomics), it is now
imperative that effective tools to appreciate this highly
nuanced data are developed. Being able to appreciate
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the subtleties of high-dimensionality data will allow
molecular pharmacologists to develop the most effective
multidimensional therapeutics with effectively
engineered efficacy profiles.

I. Introduction

In recent years, pharmacological science has started
to embrace the concept of high-dimensionality (H-D)
data analysis as the most effective mechanism to
investigate disease/drug mechanisms (Yoon et al.,
2014; Brettman et al., 2015; Zhao and Bolouri, 2016;
Wu and Haw, 2017; Maudsley et al., 2018). The day-to-
day use of large volume H-D data has now engendered
the placing of such complex data into advanced thera-
peutic discovery pipelines, especially for age-related
disorders. While methodologies and technological pipe-
lines for the acquisition of H-D data pertaining to the
pharmacologically tractable molecular components of
disease have been extensively refined, the next wave of
advances in H-D research lie in the field of data
analytics. These developments are likely to be associ-
ated with the generation of intelligent, both human and
artificial, analyzers that are capable of generating
actionable output especially for effective therapeutic
development. Here we shall outline the potential infor-
matic applications and strategies that researchers can
employ to elucidate etiological mechanisms as well as
tractable drug target systems from H-D data streams.

Aging is perhaps the most complex and intercon-
nected biologic process studied and is characterized by
a progressive loss of physiologic integrity that leads to
impaired functionality and increased vulnerability to
morbidity and eventual mortality (Lopez-Otin et al.,
2013; van Gastel et al., 2018a). Aging also represents
one of the highest risk factors for many major human
disorders including multiple cancer types, cardiovascu-
lar diseases (CVDs), neurodegeneration (including AD),
and metabolic disorders such as type 2 diabetes mellitus
(T2DM) (Lopez-Otin et al., 2013). It is evident in this
context that effective therapeutic intervention in such
complex processes may seem daunting from a drug
development standpoint yet holds the unprecedented
promise of systemic multidimensional disease ame-
lioration (Janssens et al., 2014; De Winter, 2015;
Gladyshev and Gladyshev, 2016; Wyss-Coray, 2016;
Bakula et al., 2018). With the use of H-D data
extracted from pathophysiological scenarios, it is now

possible to generate a highly nuanced appreciation of
the interrelations between the pathologically disrupted
factors associated with perturbed biology in the disease-
positive patient compared with the healthy control. This
molecular disease signature could be considered to rep-
resent a disease landscape (Fig. 1) made up of differen-
tially expressed transcripts or proteins. Considering this
level of disease complexity, it is evident that the most
effective therapeutic intervention will be the one that can
essentially nullify and flatten this perturbed landscape
when applied to perturbed patient disease landscape at
as many points of intersection as possible (Fig. 1).

In the context of age-related pathophysiology, there
are three main processes involved in determining
organism survival ability and thus life span: 1) tissue/
cell damage control, 2) stress response, and 3) consis-
tent molecular remodeling and adaptation. It is the
progressive diminution of these somatic repair and
adaptation functionalities that defines the rate of the
aging process (Rattan, 2014; van Gastel et al., 2018a).
Each of these reactive and reparative processes requires
an effective energy metabolism system. In this context,
it has been demonstrated that optimal regulation of
energy use in both the central and the peripheral nervous
system facilitates healthy aging (Cai et al., 2012; de la
Monte, 2014; Janssens et al., 2014; de la Monte et al.,
2017; Duarte et al., 2018). Our work, as well as that of
others, has indicated that global control of aging systems
is likely mediated by the hypothalamus (Chadwick et al.,
2012a; Zhang et al., 2013). This small endocrine organ is
one of the key signaling centers in the body responsible
for maintaining an efficient interaction between energy
balance and neurologic activity. The hypothalamus is
therefore likely to regulate the whole somatic aging
process, and thus the extent of age-related disease
presentation, through its ability to form a functional
bridge between central and peripheral neuroendocrine
functions (Wang et al., 2010; Cong et al., 2012;
Stranahan et al., 2012; Zhang et al., 2013). Complex
physiologic systems, encompassing both nervous and
endocrinological modalities, are moderated by intricate
and interdependent networks of genes and proteins

ABBREVIATIONS: AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; ALS, amyotrophic lateral sclerosis; cmap,
connectivity map; CSF, cerebrospinal fluid; CVD, cardiovascular disease; DEG, differentially expressed genes; DTC, Drug Target Commons;
ECM, extracellular matrix; EMD, electronic medical data; FDA, Food and Drug Administration; GEO, Gene Expression Omnibus; GPCR, G
protein-coupled receptor; H-D, high-dimensionality; IBD, irritable bowel disease; IPA, ingenuity pathway analysis; LINCS, Library of In-
tegrated Network-Based Cellular Signatures; LOAD, late onset Alzheimer’s disease; LSA, latent semantic analysis; MALDI-MS, matrix-
assisted laser desorption/ionization mass spectrometric imaging; MCI, mild cognitive impairment; MRI, magnetic resonance imaging; NF,
neurofilament; NLP, natural language processing; PCA, principal component analysis; PET, positron-emission tomography; PhLeGrA,
Platform for Linked Graph Analytics in Pharmacology; PXPN, Pathway Crosstalk Perturbation Network; QMS, quantitative mass spec-
trometry; SVM, support vector machine; T2DM, type 2 diabetes mellitus; TDA, topological data analysis.
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Fig. 1. High-dimensionality data representation of the disease-drug
landscape interface. Both disease processes (A) and pharmacological drug
mechanisms (B) can be routinely inspected at a high-dimensionality level.
Given this current status, we contend that therapeutic development
should consider the potential ability to exploit rationally pluridimen-
sional efficacy profiles to ameliorate complex disease conditions such as
pathologic aging.

rather than just any single factor (Chadwick et al.,
2012a). This dimensional complexity can be practically
reduced to a smaller group of trophic regulatory factors
that likely facilitate network integrity and thus main-
tain the capacity of the network to dynamically adapt to
deleterious perturbations. Therefore, it is clear that the
most comprehensive appreciation of age-related disor-
ders requires an ability to investigate H-D data with
the capacity to reduce effectively these dimensions.
In this way, targetable therapeutic networks can be
developed that coordinate this intricate signaling super-
structure. While the aging process per se is not consid-
ered a disease, it does represent a status that facilitates
the occurrence of disease in many elderly persons
(Rattan, 2014) and can as such be considered a potent
ubiquitous risk factor for the development of cardiovas-
cular, metabolic, and neurologic disorders (Collier et al.,
2011; Niccoli and Partridge, 2012).

While the concept of pharmacologically controlling
the aging process appears unfeasible, if indeed only
single index efficacy profiles of therapeutics are consid-
ered, with an effective informatics deconvolution of
systems-levels signaling networks, the ability to iden-
tify and develop network-level pharmacotherapies is
augmented. The identification of the hypothalamus as
a potential master controller in this process then helps
target drug receptor and neurotransmitter signaling
systems that may engender true systemic therapeutic
effects (Phan et al.,, 2005; Amri and Pisani, 2016;
Scarpace et al., 2016; Steculorum et al., 2017; Kim
and Choe, 2019; Mravec et al., 2019). The major current
hindrance to the generation of rationally designed
network level therapeutics that can control such a com-
plex system is the need to inculcate the concept of
effectively engineered polypharmacology as a new route
for drug development and discovery (Demartis et al.,
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2018; Grisoni et al., 2019; Peoén et al., 2019). Given this,
it will also be vital to refine the drug refinement
and approval process (FDA and European Medicines
Agency) to acknowledge that with an H-D appreciation
of both disease drug response activities comes a need
to accept molecular complexity when approving new
agents for complex disorders.

II. High-dimensionality Data in
Pharmacological Paradigms

The routine use of H-D data in pharmacological
settings to facilitate appropriate matching of drug
mechanisms to disease signatures allows scientists to
begin to effectively exploit the multidimensional nature
of biologic factors (e.g., transcript, metabolite, and
especially protein) activity. The complex and dynamic
interactions between these multiple entities during
therapeutic interventions further increases the com-
plexity of drug efficacy profiles (Maudsley et al., 2015,
2016; Bradley and Tobin, 2016; Besserer-Offroy et al.,
2017; Wooller et al., 2017).

Considering the importance of pharmacologically
associated H-D data, it is important to define how we
consider the description of a data set as possessing high-
dimensionality. In the simplest of the terms, a data set
(of any specific size) that possesses a large number of
attributes or features is considered to possess a “high-
dimensionality” nature. In our current context, the use
of the word “dimension” indicates a “feature” of the data
set that can be visualized or annotated, for example,
a specific drug-regulated mRNA transcript or pro-
tein. The designation of high-dimensionality relates to
the relationship between data point number (n) (e.g.,
a specific protein) and extractable dataset features
(p). An H-D data set is defined as one that possesses
more features (p) than data points (n), i.e., p > n. This
simple dominance within the dataset of features over
data points is independent of the size of either p or n.
For example, a data set of only four data points that
possesses six features each represents a small, but
actionable, high-dimensional set.

In recent years the concept of inspecting drug signal-
ing functionality (Appleton et al., 2013; Gesty-Palmer
et al., 2013; Maudsley et al., 2015; Williams et al., 2016)
as well as disease signatures (Mattison et al., 2014;
Bakula et al., 2018; Melouane et al., 2018) has gained
traction as a vital component of therapeutic interven-
tion against aging-associated disease. With specific
reference to the enormous diversity of individual tran-
scripts and especially protein functionality at individ-
ual and multiprotein complex levels, it is evident how
even a very small data set can be considered as high-
dimensional, since a single protein can interact (in)
directly with between 20 and 100 other proteins. These
protein complexes then create essentially de novo
signaling entities of incredibly diverse compositional
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nature (Martin et al., 2009; Maudsley et al., 2012;
Westermarck et al., 2013; Alanis-Lobato et al., 2018).
For seemingly simple data sets, such as differential
drug effects on the magnitude of a single effector
response (e.g., intracellular calcium mobilization),
which may only involve one or two extracted features
per data point, simple linear separation techniques
can be effectively used to visualize the overall data
set. These factor discrimination techniques are easily
performed by humans within a scale setting of up to
a three-dimensional feature space. However, once the
number of dimensions increases, e.g., when the drug
response or disease profile is measured using tran-
scriptomic or proteomic profiling, it becomes more
difficult to simply apply linear separation. To assist
this, formalized data separation and/or machine-
learning approaches have been developed to contend
with higher dimensionality data. One of the earliest
adopted mechanisms for this was principal component
analysis (PCA). In a multidimensional data point space,
PCA is employed to identify the orthogonal principal
drivers, also known as eigenvectors, of the global data-
set in a feature classification (e.g., control vs. test) task.
From a machine-learning-based approach, linear sepa-
rations of H-D data sets are now widely refined using
algorithms such as support vector machines (SVMs)
that aim to identify discriminatory hyperplanes be-
tween differential groups of data points. Such processes
attempt to reduce the dimensionality of the data set,
resulting in the definition of specific subgroups without
destroying the “essential” discovery and discriminatory
information in the data. In addition to data separation,
impurity measures like entropy and information gain
are also used for dimensionality reduction (Sakhanenko
and Galas, 2015). In the following sections, we shall
address the diverse methodologies that are currently
being applied in pharmacological science to challenge
the issue of complex drug response and disease-based
data analysis.

III. Management of High-dimensionality
Experimental Data

On a daily basis, terabytes of biomedical data are
generated through the now widespread implementation
of mRNA transcriptomics, RNA-sequencing, quantita-
tive proteomics, and metabolomics. Each created data
set may indicate the quantitative variation of between
5,000 and 10,000 experimental indices (transcripts,
proteins, or metabolites), with perhaps 100s—1000s
of these being statistically significant. In this context
the ability of an individual scientist to appreciate the
connectivity between these factors, which likely repre-
sents the true biomedical and pharmacological meaning
of the data, is profoundly limited without the assistance
of machine-based clustering and annotation (Chen
et al., 2018; Dai et al., 2018; Lee et al., 2018; Lin et al.,
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2018; Lim and Xie, 2019). While the intrinsic depth of
such data streams is a tremendous analytical advance
for the study of complex drug activities, a major hurdle
for the clinical translation of such data are the pace
of advanced data management and investigational
platform development. Not only is the collection and
processing time for H-D data becoming problematic, it
is often difficult to rapidly and efficiently generate
a quantitative and therapeutically meaningful interro-
gation of such H-D data.

While computational methodologies for handling
complex multivariate data have reached a highly ad-
vanced level in computer science, a similar level of
advance in pharmacological science is still lacking. The
future goal for this expansion phase will likely center up
our ability to condense data vectors that exist beyond
the realm of physical space (i.e., nth dimensional) into
easily interpretable, aesthetic, and translationally rel-
evant forms (Gong et al., 2018; Sharma and Rani, 2018;
Vogt, 2018). In this regard, the creation of diverse
informatic platforms is vital for future biomedical
science and translational medicine, as these disciplines
are associated with distinct and disparate forms of
input data streams. Here we propose that an effective
“complexity science” approach (Kenakin, 2017; van
Gastel et al., 2018a) should be adopted to best appreci-
ate aging-related disorders. Such an approach neces-
sitates the generation of informatic systems that allow
cross-platform correlation between H-D data sets of
distinct types, e.g., transcriptomic, proteomic, and
metabolomics (Topol, 2014; Gojobori et al., 2016;
Satagopam et al., 2016; van Zimmeren et al., 2016).

H-D data analytics encompasses a broad computa-
tional space ranging from bottom-up dynamical systems
modeling to top-down probabilistic causal approaches
(Chang et al., 2015). Across many scientific fields,
modeling and simulation have come to complement
theory and experiment as a key component of the
scientific method (Geerts et al., 2016; Xie et al., 2017).
Therefore, a variety of methodological frameworks have
been developed for modeling and analyzing complex
multivariate data that can be adapted to the field of
therapeutic gerontology. Here we will specifically focus
on several new approaches, e.g., latent semantic ana-
lytics and topological data investigation, that have
shown great promise for the study of aging-associated
complex disease mechanisms.

IV. Classic Informatic Interrogation and
Combinatorial Integration

The most common mechanism to interrogate H-D
data involves literature searches from the primary data
upon the highest and lowest regulated factors (gene/
protein). This approach, while yielding actionable data,
is often criticized for ignoring the correlated biologic
relevance of the multiple factors in the rest of the data
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set that do not individually demonstrate either large or
significant differential regulation between test and
control samples (Mootha et al., 2003). If we consider
the posit that complete knowledge of all gene or protein
interactions currently does not exist (and is unlikely
to be ever realized), it is prudent to assume that all
gene and/or protein interactions could occur and may
exert important pharmacological effects (Boyle et al.,
2017; Wray et al., 2018). Hence at the present time, the
relationships between a given factor (gene/protein) and
the biologic/signaling property are considered to be
“one-to-many.” Given our ever-expanding global data
corpus, it is likely that in the near future we should
consider this to be a “one-to-all” relationship, i.e., no
drug-driven protein-protein interaction may be com-
pletely impossible or noncontributory to a highly com-
plex pathologic mechanism. In this context, the scientist
should only disregard analytical data for factors that
one can empirically identify as “non-meaningful.”

Currently employed functional gene/protein cluster-
ing structures only reflect the status quo of pharmaco-
logical signaling knowledge and therefore they must
be implemented as highly plastic entities. The next
generation of drug discovery tools should be designed
with a potentially nth degree level of dimensionality
so that prejudicial elimination of combinatorial low-
significance gene/protein effects does no longer occur.
In this context of potential nth dimensional functional-
ity of drug-driven gene/protein interactions coupled to
the fact that genomes/proteomes can be simply spanned
by just a small series of interacting connections, it is
clear to see how considerable patient pharmacological
variability could be engendered. The challenge for
future H-D analytics is to rationally cluster these
variable but specific molecular phenotypes into physi-
ologic/pharmacological strata that are effective for both
disease prognostication and/or remediation (Laifenfeld
et al., 2012; McMahon et al., 2016; Balbas-Martinez
et al., 2018). Considering that functional signaling cas-
cades or disease states are likely the resultant compos-
ite of multiple, linked gene-protein networks, an
effective gestalt appreciation of the entire data set is
needed to draw accurate inferences at a biomedical and
clinical level (Tabei et al., 2019).

Simple literature-based searches primarily enrich
data output for biologic similarities between multiple
components (genes/proteins) of an H-D data set. Bi-
ologic similarity, functional activity and predicted
downstream functional sequelae can then be explored
effectively with the use of informatic term annotation
clustering. This process can be simply performed using
a wide variety of “supervised” approaches, e.g., Gene
Ontology (GO), signal transduction pathway analysis
(KEGG pathways, Canonical Signaling Pathways (IPA),
Pathway Commons, WikiPathways, REACTOME path-
ways, biophysical parameters (Pfam, PIR_Superfami-
lies, SMART), interactomic profiles (BioGRID, BIND,
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MINT, STRING), and a functional overlap with exper-
imental molecular signatures (MSigDB-GSEA, L.1000CDS2)
(Maudsley et al., 2011). While individual applications of
such platforms can still generate actionable data,
a synergistic combination of such first-line tools under-
pins the future value of these canonical platforms
(Chadwick et al.,, 2012a). Li et al. (2015a) recently
demonstrated the utility of combinatorial informatics
in an integrated genomics framework to elucidate
pathologic AD mechanisms from large-scale H-D data
sets. This research team extracted differentially expressed
genes (DEGs) in published data sets comprising 450 late
onset AD (LOAD) brains and 212 controls. Employing
canonical signaling pathway analysis (IPA based),
GSEA, and protein-protein interaction investigation
via a protein-protein interaction network generated
from the HPRD (Human Protein Reference Database:
http://www.hprd.org/), the researchers created a large-
scale LOAD-related data set of 3124 DEGs. Pathway
analysis of this data identified several crucial LOAD-
driving processes including nitric oxide and reactive
oxygen species generation in macrophages, nuclear
factor-«B modulation, and mitochondrial dysfunction.
These predictive data outputs further align with our
existing knowledge concerning the converging nature
of the pathophysiologies between neurodegenerative,
cardiovascular disease (nitric oxide related), and
mitochondrially associated metabolic dysfunction
(Ninomiya, 2014; Desikan et al., 2015). Demonstrating
the efficacy of such combinatorial data extraction
processes, discrete melatonin-associated signaling net-
works associated with cardiovascular disease were re-
cently deconvoluted from publicly available H-D data
using weighted gene coexpression network analysis
coupled to differential gene expression analysis (Li
et al., 2019).

Functional integration of standard informatics
approaches using large-scale genomic data sets has also
demonstrated its utility in identifying potential new
remedial agents that reinforce the integrated nature of
major age-related pathophysiologies. For example, the
prioritization of the angiotensin receptor II antagonist
candesartan as a potential novel antineurodegenerative
therapeutic was demonstrated with the use of an
employed combination of KEGG, IPA, GSEA, and Gene
Expression Omnibus (GEO) data analytics (Elkahloun
et al., 2016). This analysis was performed using data
gathered from both wet and curated data sources, but
was still able to identify a molecular therapeutic target
that strongly reinforces the role of proaging cardio-
vascular mechanisms in neurodegenerative etiologies
(Maudsley and Mattson, 2006). It is clear from these
examples that while novel informatic pipelines can be
beneficial to H-D data analysis, there is still a strong
need for basic informatics analysis as this can often
create a highly standardized form of data interpreta-
tion. This standard interpretation can then be used to
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integrate diverse H-D data streams for further syner-
gistic exploratory analysis.

V. Metadata Extraction and Crowd-Sourced
Curation and Investigation

The effective exploitation of existing, yet relatively
cryptic H-D data repositories has been augmented
through the use of intelligent, user-based functional
clustering of publicly available metadata. H-D data
depositories are now becoming commonplace, e.g., Gene
Expression Omnibus (www.ncbi.nlm.nih.gov/geo/), Hu-
man Genome (www.genome.gov/) and Human Proteome
(https://hupo.org/human-proteome-project) Organiza-
tions, Human Cell Atlas (https:/www.humancellatlas.
org/), Broad Institute Connectivity Map (cmap) (https:/
www.broadinstitute.org/connectivity-map-cmap), Allen
Institute (https:/alleninstitute.org/), interactomic data
at BioGrid (https://thebiogrid.org), as well as the diverse
forms of data associated with the LINCS program
(http://www lincsproject.org/). Many of these data re-
positories are now in the process of developing and
refining advanced informatic platforms specifically
tailored to assist biomedical scientists in accessing
and efficiently analyzing the highly complex material
contained within.

The Gene Expression Omnibus (GEO), based at the
National Center for Biotechnology Information, repre-
sents a crucial data repository of validated transcrip-
tomic data. In addition to standard search options
available at GEO, the introduction of alternative search
mechanisms including GEOBLAST and GEO2R have
significantly improved advanced functional data re-
trieval (Barrett et al., 2013). In addition, multiple
external GEO-using platforms are now commonly in
use such as GEO2Enrichr, GEN3VA, and shinyGEO
(Gundersen et al., 2015, 2016; Dumas et al., 2016). As
the GEO database is constantly growing alternative
data, clustering/structuring strategies have been de-
veloped to continually exploit and interrogate this rich
resource. Demonstrating the utility of curated expres-
sion data-driven approaches, GEO, cmap, and the
LINCS1000 signature database were explored to dis-
cover novel therapeutic repurposing functionalities for
central nervous system antineoplastic interventions
(Zador et al., 2018). Specific GEO data set extraction
procedures also demonstrated the ability to facilitate
novel receptor target identification as well. For exam-
ple, the G protein-coupled receptor Gprl25 was identi-
fied as a potent determinant of the beneficial prognostic
outcomes of patients presenting with colorectal cancer
(Wu et al., 2018). In addition to the identification of
antineoplastic interventions, large-scale computational
biology initiatives using GEO interrogation have also
shown promise in prioritizing novel GPCR-targeting
therapeutic agents, e.g., glucagon-like peptide 2, relaxin
3, and follicle-stimulating hormone subunit beta, for the

Hendrickx et al.

effective treatment of diabetes-associated retinopathy
(Platania et al., 2018).

Perhaps the simplest but most effective method may
be the use of crowd-sourced data analytics. This anal-
ysis strategy is built upon the intelligent user-based
creation of biomedical domain-specific data clusters
curated from GEO, e.g., Crowd Extracted Expression
of Differential Signatures (CREEDS) (Wang et al.,
2016). These advanced platforms for crowd-sourced
H-D data analysis, i.e., CREEDS, GEN3VA, and others
[Gene Wiki (Good et al., 2012); BioGPS (Wu et al., 2013)]
have already demonstrated their efficacy with respect
to assisting biomedical research in multiple aspects of
neurodegenerative diseases (Fu and Fu, 2015; Allen
et al., 2016), cardiovascular disease (Gottlieb et al.,
2015; Scruggs et al., 2015; Rumsfeld et al., 2016), and
metabolic dysfunction disorders such as type 1 and type
2 diabetes mellitus (Lau et al., 2016; Fadini et al., 2017;
Mudie et al., 2017).

In addition to the employment of crowd-sourced
informatics based on GEO expression data, this alter-
native form of data curation and analysis has recently
been employed for drug-based investigations. Li et al.
(2016) developed a crowd-sourcing workflow for extract-
ing chemical-induced disease relations from publicly
available texts from PubMed. Crowd-sourced—based
analytics are also being employed for drug discovery
investigations (Talikka et al., 2017). Using a combina-
tion of large-scale crowd-based interpretation with
expert knowledge input will potentially expedite the
ability and accuracy of extracting actionable inference
from large H-D data sets. In this vein, Tang et al. (2018)
recently developed the Drug Target Commons (DTC).
The DTC possesses tools for crowd-sourced compound-
target bioactivity data annotation, standardization,
curation, and intraresource integration. The DTC
platform was demonstrated to possess the capacity
to significantly advance drug discovery and drug
repurposing applications. In addition to the use of
crowd-sourced data for repurposing, this novel
human-machine workflow has also been effectively
applied to natural product library screening to discover
novel pharmacological agents (Tang et al.,, 2018).
Kearney et al. (2018) recently developed the Canvass
platform that uses human-curated public H-D data to
assist in the computational evaluation of potential
pharmacologically active naturally occurring agents.
Using this database platform, this research group was
able to specifically identify the activity of (—)-2(S)-cathafo-
line, which was found to stabilize calcium levels in the
endoplasmic reticulum, both processes critical to the
development of neurodegeneration and age-related DNA
damage (Chan et al., 2002; Chadwick et al., 2010, 2012b;
Zhou et al., 2014; Kearney et al., 2018). The workflow
described here illustrates a pilot effort to broadly survey
the biologic potential of natural products by utilizing the
power of automation and high-throughput screening.
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While predicting drug based signaling mechanisms is
essential for therapeutic discovery, crowd-based infor-
matic approaches have furthermore shown tremendous
promise for revealing the potential safety issues of
prescription drug combination adverse effects (Zhao
et al., 2013). This research team demonstrated that
implementation of a crowd-sourced informatic approach
via drug response databases, such as FDA’s Adverse
Event Reporting System, can help to identify drugs
that could potentially be repurposed for mitigation of
serious adverse events. Crowd-based H-D analytics
have also shown utility with respect to assistance in
the effective patient selection and ultimate generation
of clinical drug trials (Leiter et al., 2014; Nayak et al.,
2018) as well as the pharmacovigilant monitoring of
postapproved drug effects on a population level (Tricco
et al., 2017). Integration of both clinical trial and clinical
use drug data using crowd-sourced H-D will also help
facilitate the generation of effective “reverse drug
translation” (Gibbs et al., 2018; Heatherington et al.,
2018).

Quantitative proteomic data currently represents
perhaps one of the most common and important forms
of H-D data for both disease and drug therapy
investigation (Yoshikawa and Kanazawa, 2013).
An important facet of large proteomic data sets is
the latent ability, through intelligent informatic in-
terrogation of such data sets, to reveal the true
ramifications of the pluridimensional signaling ca-
pacity of individual proteins through their myriad
interactions. Crowd-based interpretation has been
employed to refine signaling pathway analysis strat-
egies (Martin et al., 2013b), generate protein-protein
interaction data (Tastan et al., 2015), assist in the
more efficient planning of initial experimental design
(Barsnes and Martens, 2013), and interpret signal
transduction cascades across diverse species (Bilal
et al., 2015). Receptor-based signaling paradigms
likely mediate their effects through a series of inter-
actions between distinct multiprotein complexes.
Thus, specific signaling cascades can be “encrypted”
by the qualitative and quantitative stoichiometry of
proteins that are formed into discrete interactomes
(Martin et al., 2009). These functional protein com-
plexes can then be interconnected and coherently
regulate larger signaling networks (Martin et al.,
2009). These specific signaling networks may then
be simultaneously employed across different tissues,
generating a coherent somatic signal transduction
activity. Therefore, the acquisition and analogy of
complex signaling data from multiple tissues simul-
taneously will likely create a more comprehensive
view of systemic signaling paradigms. To this end,
crowd-based platforms were recently developed to
assist in network signaling prediction (Prill et al.,
2011) and systems biology interpretation (Guryanova
and Guryanova, 2017).
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VI. Latent Semantic Analysis-Based
Data Interpretation

Vast amounts of important and detailed information
concerning individual age-related disease genes/pro-
teins is incorporated in the text of published scientific
literature. One of the best-curated examples perhaps is
the Human Aging Genomic Resource [HAGR: http:/
genomics.senescence.info/ (Tacutu et al., 2018)]. The
development of novel informatic platforms to interro-
gate efficiently such literature has been significantly
augmented in recent years with the adoption of natural
language processing (NLP) techniques (Jensen et al.,
2006; Chen et al., 2013a; Plaza, 2014; Jimeno Yepes
et al., 2015; Duque et al., 2018). An important aspect of
large volume H-D data set interpretation is the trans-
formation of a multidimensional corpus into an inter-
pretable and manageable output. Bridging the gap
between biomedical domain-specific datasets and nat-
uralistic English language is crucial for a variety of
applications linked to aging-related research, including
the discovery of previously unknown biologic connec-
tions using the process of “Swanson Linking” (Swanson,
1988). NLP informatics also facilitates the identifica-
tion of potential research topics that connect disparate
tissues, visualization of biologic themes, and the effec-
tive discrimination between specific data sets and
validation of existing data in a clinically actionable
manner. To extract biomedically relevant information
from diverse public literature sources, the reproduc-
ible generation of a mathematical association between
scientific language and meaningful words or sentences
is imperative. Analysis platforms for the interpretation
of H-D data presently place a reliance on controlled-
languages, i.e., Gene Ontology (GO), Medical Subject
Headings (MeSH), BioCarta, or Kyoto Encyclopedia of
Genes and Genomes (KEGGQG) pathways. Moreover, most
platforms use standard Boolean and co-occurrence
models to identify enriched categories (Ashburner
et al., 2000; Coletti and Bleich, 2001; Kanehisa, 2002).
To contend with these issues, algorithmic interpreta-
tion mechanisms for natural language sources have
been developed. One such NLP data extraction process
is latent semantic analysis (LSA). In a short period of
time, this approach has now gained significant inter-
est in the field of biomedical science (Klie et al., 2008;
Xu et al., 2011; Roy et al., 2016). LSA employs singu-
lar value decomposition to elucidate patterns of corre-
lation between information terms/concepts (i.e., text
from PubMed Central Abstracts) and user-defined in-
put interrogator items (words or Gene Symbols) within
an unstructured collection of text (Han et al., 2011;
Chen et al., 2013a). This investigation technique relies
upon the elucidation of potentially meaningful associa-
tion of words/items within a body of text and thereafter
across multiple other texts. With the creation of a ma-
trix of scientific (e.g., PubMed abstracts) “text-to-word”
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associations, it is possible to identify and quantitate
even non-curated/experimentally derived links between
input concepts and a specific gene or protein (Chadwick
et al., 2010, 2011a; Xu et al., 2011). In recent years,
further improvement of existing web-based informatic
tools and novel platforms specialized for the machine-
based analysis of natural language corpora have been
developed, such as LigerCat (Sarkar et al., 2009),
AmiGO (Carbon et al., 2009), Textrous! (Chen et al.,
2013b), Genelndexer (Cashion et al., 2013), Textpresso
(Muller et al., 2004, 2008), and Genes2WordCloud
(Baroukh et al., 2011).

A. Latent Semantic Analysis-Based
Disease Appreciation

LSA-based informatics has also been developed to
assist age-related disease research direction. In this
vein, “HypothesisFinder,” an informatics system that
uses a pattern matching approach for the detection of
speculative statements in biomedical scientific text, was
created (Malhotra et al., 2013). This platform employs
a dictionary of speculative patterns to classify existing
biomedical sentences as “hypothetical.” With extracted
concepts, the subsequent exploration of this derived
hypothetical knowledge can then nurture the creation
of coherent and interconnected mechanistic hypothe-
ses supported by strong statistical bases and biologic
insights. The natural language processor “Textpresso”
(Muller et al., 2004), facilitates advanced data searching
through the use of a collection of full texts from scientific
articles split into individual sentences. This platform
then assembles categories of terms with which a data
base of articles and individual sentences can then be
searched. Textpresso was specifically tailored for fo-
cused investigations into AD and age-related neuro-
degeneration (Muller et al., 2008). Along with the ability
of Textpresso to interrogate full manuscript documents,
further platforms such as PubMed Sentence Extrac-
tor (Yoneya, 2005) and the Gene Ontology-based
GoPubMed (Doms and Schroeder, 2005) use semantic
data extraction techniques to provide augmented liter-
ature mining and functional H-D data classification.
Aside from these algorithm-assisted search platforms,
semantic-based exploration platforms have also been
effectively used to functionally annotate microarray/
gene expression data [MILANO (Rubinstein and Simon,
2005)] using both literature and Gene Expression
Omnibus (GEO) mining [GEM-TREND (Feng et al.,
2009)]. Machine-based semantic data corpus investiga-
tion has now begun to supplant standard Boolean
searches at the level of primary literature searches,
hence Google Scholar and the recently developed Se-
mantic Scholar platform (Xiong et al., 2017), from the
Allen Institute for Artificial Intelligence regularly out-
perform standard PubMed-National Center for Bio-
technology Information author and keyword searches
(Shariff et al., 2013; Wazny, 2017).

Hendrickx et al.

Chadwick et al. (2010) performed cross-interrogation
of transcriptomic data from neuronal cells habituated
with minimal oxidative stress (mimicking aging) using
Genelndexer and were able to delineate the proneur-
odegenerative effects of aging using multiple user-
defined age-related disease input terms. In addition,
in later work, the same research group employed
Textrous! to identify the metabolic signatures of novel
proaging mouse models from H-D hypothalamic tran-
scriptomic data (Martin et al.,, 2016). Furthermore,
several studies demonstrated that synergizing stan-
dard informatics clustering/annotation techniques with
novel methods is a highly effective strategy for research
into antiaging drug therapeutics (Chadwick et al.,
2012a; Maudsley et al., 2016). A recent striking example
of this in the field of dementia research has been the use
of termino-ontological resources for aging-related AD
research (Drame et al., 2014). Drame and co-workers
combined two approaches: ontology learning from texts
and the repurposing of existing terminological resour-
ces. This specific combinatorial approach involved four
steps: 1) term extraction from domain specific data
corpora using textual analysis tools, 2) clustering of
terms into concepts organized according to the UMLS
(Unified Medical Language System) Metathesaurus,
3) ontology enrichment through the alignment of terms
using parallel corpora with the integration of new
concepts, and finally 4) refinement and validation of
results by domain experts. Their results were formal-
ized into a domain ontology dedicated to AD and
related neurodegenerative syndromes, which is avail-
able online (http:/purl.bioontology.org/ontology/ONTOAD).

LSA-based approaches have also proven effective for
the identification of novel causative biomarker relation-
ships among age-related dementia patients in the ADNI
(Alzheimer’s Disease Neuroimaging Initiative) cohort
(Mo et al.,, 2013). Employing the Textrous! natural
language processing platform [https://textrous.irp.nia.
nih.gov/ (Chen et al., 2013b)] to interrogate human
proteomic data, a previously cryptic pathologic mecha-
nisms of frontotemporal dementia progression was
elucidated (Janssens et al., 2015). Through a classic
example of Swanson linking (Swanson, 1988), molecu-
lar alterations in the muscle protein filamin C were, for
the first time, informatically linked to frontotemporal
dementia, an aging-regulated neurodegenerative disor-
der (Niccoli et al., 2017).

With respect to the application of NLP-associated
investigation of CVDs, Huang et al. (2016) recently
demonstrated an enhanced ability, using Latent Dirich-
let Allocation (Girolami and Kabdn, 2003) to derive
effective personalized therapeutic strategies from a data
corpus of 48,024 patients with CVDs. In addition to this
semantic-based approach, text mining was also recently
applied (Liem et al., 2018) to the investigation of the
pathologic roles of extracellular matrix (ECM) proteins
in cardiovascular disease. This research team applied
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their novel text-mining pipeline, Context-Aware Seman-
tic Online Analytical Processing, to investigate the nature
and strength of the textual relationships between over
700 ECM proteins and multiple CVDs (ischemic heart
disease, cardiomyopathies, cerebrovascular accident, con-
genital heart disease, arrhythmias, valve diseases) across
more than one million curated biomedical abstracts
curated from PubMed Central. Their analysis was able
to identify and classify specific and novel correlations
between distinct groups of ECM protein and specific
CVDs. Such a level of pathologic definition will likely
advance the creation of precision therapeutics for these
diverse CVDs. Linked to this goal of effective patient-drug
matching, latent semantic analyses has been applied
previously in combination with fc-means data clustering
to provide a clinical drug recommendation scheme for the
use of antiarrhythmic drugs (Park et al., 2016).

B. Latent Systemic Analysis-Based Cell
Signaling Appreciation

The synergistic and rational combination of H-D data
collection and signaling pathway analysis will likely
revolutionize cell signaling research and therapeutic
development for aging-related diseases over the next
decade. With respect to the deconvolution of drug
signaling pathways, recent techniques employing LSA
have proven to be highly effective. In recent work, Chen
and et al. (2017) applied LSA to assist in the prediction
of drugs and target signaling pathways. LSA was
applied to perform dimension reduction by combining
positive-unlabeled learning and k nearest neighbors
methods. Using such an approach, this research group
was able to both prioritize and validate novel drug-
signaling pathway interactions (Chen et al., 2017).

The Textrous! platform allows researchers to gener-
ate highly nuanced functional interpretations of H-D
data by creating “sentence-like” outputs using the noun-
phrase chunking technique (Kang et al., 2011; Zhang
and Elhadad, 2013). In this way, Textrous!/ has been
effectively used to elucidate specific and diverse forms
of signal transduction emanating from GPCRs (Chen
et al., 2013b) in response to rationally designed “biased”
signaling GPCR regulators capable of treating age-
related disorders such as osteoporosis (Gesty-Palmer
and Luttrell, 2011a; Chen et al., 2013b; Maudsley et al.,
2015, 2016). The initial theoretical conceptualizations
of GPCR signaling assumed that receptors activate
remedial signaling mechanisms through their ability
to trigger downstream G protein-dependent responses.
These receptors have since been demonstrated to sig-
nal through both G protein and non-G protein effectors
such as the multifunctional adaptor B-arrestin among
others (Luttrell et al., 1999, 2001; DeFea et al., 2000;
McDonald et al., 2000; Perry et al., 2002). While second
messengers generated via G protein-dependent activa-
tion accounts for most of the classic short-term con-
sequences of GPCR stimulation, B-arrestin-mediated
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signals appear to modulate numerous additional long-
term homeostatic cellular functions. These functions
include regulating cytoskeletal dynamics, controlling
vesicle trafficking, exocytosis and cell migration, and
the promotion of cell survival, growth, and hyperplasia
(Luttrell and Gesty-Palmer, 2010; Gesty-Palmer et al.,
2013; Maudsley et al., 2015). In assessing these novel
and potentially therapeutically important GPCR sig-
naling events, the implementation of classic path-
way analytics is problematic, as no well-curated data
sets currently exist describing these pathways. Us-
ing both Textrous! and Genelndexer, Maudsley et al.
(2016) created novel “theoretical” cell signaling data
sets that would be likely controlled by a prototypic
B-arrestin-biased GPCR signaling ligand. This hypo-
thetical H-D data set was then compared with empiri-
cal transcriptomic data from experimental mice that
were chronically exposed to either a G protein-biased or
a B-arrestin-biased GPCR activating ligand [targeting
the Type 1 parathyroid hormone receptor (Maudsley
et al., 2015, 2016)]. Comparison of these empirical high-
dimensional transcriptomic data gathered from re-
sponse data across multiple tissues (bone, aorta, heart,
kidney, liver, lung), only revealed a significant overlap
with the “theoretical” LSA-constructed B-arrestin cell
signaling data set. The ability to measure relative
signaling biases of these important therapeutic platforms
may be critical to the improvement of drug efficacy
profiles, i.e., maximization of neuroprotective, provascu-
lar, and antidiabetic activities while minimizing any
potentially deleterious signaling actions (Luttrell et al.,
2015). In this context, LSA-based informatics applied
to quantitative ex vivo tissue proteomic H-D data has
been shown to be effective in the investigation of multi-
dimensional proteomic efficacy profiles of anti-aging
therapeutics (e.g., resveratrol) that can potentially con-
trol the pathologic connection between vascular stiffness
and dementia (Mattison et al., 2014).

Demonstrating the flexibility and utility of LSA
approaches in the pharmacological data realm, several
other diverse applications of LSA have been demon-
strated. Drug safety label data extraction and simplifi-
cation has also been refined and supported through
the application of LSA approaches (Bisgin et al., 2011).
Modified NLP techniques, such as hybrid semantic
analysis, has also been applied to the monitoring of
adverse drug reactions using social media posts associ-
ated with medical terminologies (Emadzadeh et al.,
2017). Through intense MEDLINE analysis, it has also
been demonstrated that LSA-based approaches can also
uncover cryptic drug-disease associations linked to
specific signaling networks (Cohen, 2008).

VII. Electronic Medical Data File Analytics

Meaningful exploitation of well-curated empirical
H-D data describing murine phenotype-genotype
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connectivity, e.g., from Jackson Laboratories Mouse
Genome Informatics (http:/www.informatics.jax.org/),
has significantly supported the understanding of how
simple genomic perturbations are physically connected
to whole-organism phenotypes. With the future transi-
tion from paper-based patient medical data files to
electronic medical data (EMD) files, it will be likely
that a similar connectivity of biomedical/drug his-
tory data to complex human phenotypic analysis will
be possible. EMD health records and their interroga-
tion with machine-learning/deep learning platforms
are currently being used to develop both augmented
diagnostic aids as well as assisting in the discovery of
novel “off-target” therapeutic effects or contraindica-
tions of prescription agents (Zhao et al., 2013; Chen
et al., 2015).

However, the efficacy of these approaches is cur-
rently limited by data quality, quantity, and computa-
tional structure. Existing patient-based diagnostic
aids commonly use machine-learning methods that
employ data presented in a low-dimensional vector
space. Current algorithms often exclude unstructured
human-generated data, such as text, which can how-
ever contain critical predictive information (Perry
et al., 2014). Clinical written data, generated from the
patient-physician interaction is critical to assess the
pathology and to recommend appropriate pharmaco-
logical interventions. An effective exploitation of this
textual data is vital to improve the effectiveness of
machine-learning-based diagnostic and potential drug
discovery aids. Machine-based semantic examination
of EMD data may facilitate novel clinical decision
support (Prokosch and Ganslandt, 2009), conduct bio-
medical association studies (Tusch et al., 2000; Lyman
et al., 2008; Melamed et al.,, 2014), and assess the
cost effectiveness of pharmacotherapeutic treatments
(Muranaga et al., 2007). While EMD analytics poten-
tially represent a huge breakthrough in connecting
medicinal compound effects to complex human pheno-
typic responses, there are significant future challenges
to these goals. These potential pitfalls include a lack of
common standards to merge clinical data and translate
clinical concepts between disparate healthcare systems
(Weiskopf and Weng, 2013). Furthermore, it will be
critical to develop scalable methods to learn clinical
concepts that can be translated across disparate health-
care systems. Extraction of actionable EMD insights
has already been demonstrated for neurologic disor-
ders, such as psychoses and severe mental illness
(Kadra et al., 2015) as well as diabetic (McAdam-Marx
et al., 2011) and cardiovascular (Tanaskovic et al., 2018)
pathologies, all of which possess potential aging pathol-
ogy causes (Kennedy et al., 2014; Franceschi et al., 2018;
van Gastel et al., 2018a).

Along with these EMD analytics, automated domain-
specific knowledge condensation for clinicians is cur-
rently a productive field of informatic development. The
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ever-increasing body of freely accessible biomedical
data, while containing vital information, is becoming
increasingly difficult to interpret for clinicians. To
alleviate this issue, a platform for clinicians containing
an automatic generation of AD-specific knowledge sum-
maries has been developed, composed of relevant sen-
tences extracted from Medline citations (Jonnalagadda
et al., 2013). Their applied methodology combined in-
formation retrieval and semantic information extrac-
tion techniques to identify relevant sentences from
Medline abstracts. In this given example of the Alz-
heimer’s domain, over 90% of the semantically retrieved
sentences demonstrated a strong pertinence for clinical
importance. Similar ventures have been made for
cardiovascular disease knowledge (Torii et al., 2015;
Sharafoddini et al., 2017; Hemingway et al., 2018). In
this manner, over 2000 patient records were recently
used from a large single-center pediatric cardiology
practice to devise algorithms to predict if patients could
be automatically diagnosed with cardiac disease (Perry
et al., 2014). This research group then employed a super-
vised method using Laplacian Eigenmaps to enable
existing machine-learning methods to estimate low-
dimensional representations of textual data and at
the same time accurate predictors based on these
low-dimensional representations. This methodology
allowed existing machine-learning predictors to effec-
tively and efficiently capture the potential of textual
predictors for cardiac disease, especially those based on
short texts. Unsurprisingly, given the global incidence
of glycometabolic disorders, the application of EMD
analytics to diabetes diagnosis and treatment now
represents a major computational tool in the endocri-
nological field (Chen et al., 2016; Zheng et al., 2016;
Capobianco, 2017). The implementation of multiple
forms of informatic interrogation (e.g., artificial neural
networks, semantic analyses and machine learning)
of EMD sources was shown recently to enhance pheno-
type description (Anderson et al., 2016; Gabert et al.,
2016; Hall et al., 2018), disease trajectory progression
(Jensen et al., 2014; Oh et al., 2016), diabetic comorbid-
ities (Petrasek, 2008; Sancho-Mestre et al., 2016; Li
et al., 2018), and eventual therapeutic efficacies (Ozery-
Flato et al., 2016; Vashisht et al., 2016; Kang, 2018).
Given the expanding body of interrogable EMD files
it is now becoming easier to assess postexposure drug
response idiosyncracies in patients themselves. Given
the considerable volume of typical EMD data, it is not
surprising that machine-learning approaches have
helped in this process. For example, machine-based
analysis of depression treatment efficacy across patient
EMD files at a meta-analysis level was recently used
(Lee et al., 2018). EMD analysis has also recently been
deployed to assist in the dose-response modeling of high-
dimensionality drug interaction effects upon myopathies
(Zhang et al., 2015). Intelligent EMD-based analytics
have proven crucial for the creation of phenome-wide
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associations between pathologic gene variants and con-
ditions such as obesity that can drive multiple age-
related pathologies (Cronin et al., 2014). Furthermore,
such EMD-based phenome-wide association networks
have also proven effective for the development of pre-
cision medicine applications (Denny et al., 2016) as well
as rational drug repurposing (Pulley et al., 2017).

As patient data gathered on a longitudinal basis
provides an optimal internal data control it is not
surprising that highly nuanced and actionable pharma-
cological data can be elucidated using EMD analytics.
For example, the efficacy profiles of multitherapy data
sets was recently simultaneously measured for a broad
range of chronic age-related diseases (Khotimah et al.,
2018). Perhaps one of the costliest age-related condi-
tions, from a public health pharmacological intervention
standpoint, is T2DM. While effective pharmacotherapies
currently exist, their optimal implementation at a pop-
ulation level will be significantly improved with EMD
analytical capacity. Advanced EMD analytical pipelines
were implemented recently to monitor treatment quality
measurements associated with treatment intensifica-
tion (Arnold et al., 2018). In a similar vein, EMD
analytic patient stratification, based on insulin efficacy
measurements of glycated hemoglobin, has allowed the
identification of distinctly responding subgroups of
patients (Sidorenkov et al., 2018). In addition to mon-
itoring insulin-based therapy profiles, EMD analysis of
gestational diabetic states has also shown an ability to
uncover the potential use of calcium channel blocking
agents (nifedipine) as candidate repurposed agents extracted
rationally from a broad panel of test agents for this
poorly understood and important condition (Goldstein
et al., 2018) that is actually linked to multiple aging-
related conditions (Pinheiro et al., 2019).

VIII. Graph Theory Implementation for Signaling
Network Deconvolution

Age-related disorders comprise a daunting number of
molecular alterations due to a complex interplay be-
tween genetic, proteomic, and environmental factors.
In a similar manner, the advent of commonplace tran-
scriptomic/proteomic data analysis of drug signaling
functions coupled to an appreciation of receptor signal-
ing complexity (Martin et al., 2009; Maudsley et al.,
2012, 2015, 2016; Luttrell et al., 2018) also significantly
enhances the intricacy of drug signaling networks.
Classic reductionist approaches to disease and its re-
mediation previously have focused on a limited number
of involved functional elements. This classic approach
provides only a narrow overview of both the etiopatho-
genic complexity of multifactorial diseases (Hay et al.,
2014; Topol, 2014; Boyle et al., 2017) and the subtlety of
therapeutic signaling systems. This status has led to
a severe hindrance for ultimate therapeutic develop-
ment, e.g., in the realms of age-related central nervous
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system degenerative disorders (Alzheimer’s disease),
CVDs, major psychiatric conditions, and cancer (Schadt
et al., 2014; Kesselheim et al., 2015; Papassotiropoulos
and de Quervain, 2015; Ramsay et al., 2018; Teneggi
et al., 2018; van Gastel et al., 2019a). However, H-D
data investigations into disease pathomechanisms/
drug signaling allow for the simultaneous evaluation
of multiple components of these biologic systems and
their behaviors. While these data are vital to fully
appreciate such intricate signaling systems, it repre-
sents a significant barrier for data presentation and
connection-based investigation. To contend with this,
the employment of network “graphs” has proven to be
an effective mechanism for efficient data inference from
H-D data sets (Cirillo et al., 2018; Hampel et al., 2018;
Ning et al., 2018; Pirkle et al., 2018; Pita-Juarez et al.,
2018). Network-based graphs are mathematical struc-
tures used to model pairwise/multiple relations between
objects. Graphs in this context are made up of nodes,
also called vertices, which are connected by edges.
Graphs can be “undirected,” meaning that there is no
distinction between the two vertices associated with
each edge, or it may be “directed” from one node to
another, i.e., a functional effect of one node on another
can be shown.

Graph theory-based investigations have proven to
be especially effective in enhancing the appreciation of
the hypercomplex nature of both age-related dysglyce-
mic (Barreda-Pérez et al., 2013; Khan et al., 2018) and
cardiovascular (Huang et al., 2016) pathologies. Graph
theory-based investigations are also especially perti-
nent to neurodegenerative diseases such as AD, as the
connectivity between neuronal circuits in the central
nervous system represents a biologic transposition of
the “connectomic” relationships between graph/network
components. Noninvasive magnetic resonance imaging
(MRI) of brain functional connectivity has played a fun-
damental role in cognitive neuroscience. MRI-based
imaging techniques possess the capacity to map neuro-
nal activity/cerebral perfusion to the intricate connec-
tive structure of the brain. Independent component
analysis, closely related to the classic PCA technique,
allows for a network-based functional exploration of the
brain when combined with applied graph theory (de
Haan et al., 2009; Sanz-Arigita et al., 2010; Xie and
He, 2012; Dipasquale and Cercignani, 2016). Graph-
based analysis of CNS structure-function relationships
has revealed multiple subtleties of the disruption of
brain-wide communication issues in age-related neuro-
degenerative disease (Tijms et al., 2013; John et al.,
2017). Recently, structural networks were constructed
out of 87 brain regions, using data from 135 healthy
elders and 100 early-onset AD patients selected from
the Open Access Series of Imaging Studies (OASIS)
data base (John et al., 2017), demonstrating the impor-
tance of access to shared H-D data. It is likely that
neurodegenerative processes take place at different
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rates in different brain areas due to discontinuities in
local age-related cellular damage events. Hence in this
context, simply focusing analyses upon singular subnet-
works may leave global interconnected molecular changes
undetected. This graph-network—based investigation
therefore suggests that neurodegenerative processes im-
pact volumetric networks in a non-global fashion. Thus
reinforcing the future importance of a more integrative-
based approach to “connectomics” in diseased tissue
analysis (Rubinov and Sporns, 2010; LaPlante et al.,
2014). Resting state MRI has demonstrated that brain
networks degrade during symptomatic AD. Recently,
the graph theory metrics of functional integration
(path length), functional segregation (clustering coef-
ficient), and functional distinctness (modularity) were
investigated as a function of AD severity (Brier et al.,
2014). Clustering coefficient and modularity, but not
path length, were reduced in AD. Cognitively normal
participants who harbored AD biomarker pathology
also showed reduced values in these graph measures,
demonstrating brain changes similar to, but smaller
than, symptomatic AD. It was furthermore demon-
strated that AD has a particular effect on “hub”-like
regions in the brain, underlining the ability of connec-
tivity analysis via graph theory to unravel the complex-
ity of disease mechanisms across the human brain
(Brier et al., 2014).

While not considered a discrete “disease” process
itself, the age-related presence of chronic inflammation
(now codified as “inflammaging”) is a major driver of
multiple severe pathologies and, in itself, causes signif-
icant collateral tissue damage both in the gut and lungs.
The use of networks has already been greatly exploited
to investigate the molecular interactome of irritable
bowel disease (IBD) (Moco et al., 2014), which has been
useful in the identification of specific master regulator
proteins, termed “keystone” or “hub” proteins (Palmieri
et al., 2016). Hence classification through drug indica-
tions (Suzuki et al., 2012) has suggested the presence of
distinct disease states, i.e., mild and severe. In this
manner, these two extracted data sets lie at the basis of
a molecular fingerprint of IBD. Multiomics use involv-
ing genomics (Franke et al., 2010; D’Addabbo et al.,
2011), transcriptomics (Fisher and Lin, 2015; Kalla et al.,
2015), proteomic (Alex et al., 2009; Gazouli et al., 2013;
Bennike et al., 2014), metabolomic (Bjerrum et al., 2015;
De Preter, 2015), and epigenomic (Harris et al., 2012;
Karatzas et al., 2014) variations together with environ-
mental contributions, underpin an impaired immune
system in patients with IBD, which is now one of the
most investigated common complex human disorders.
H-D data-based research into the molecular nature of this
disorder, now described as the “IBD integrome,” is a strong
example of the importance of “omic” integration between
data platforms (Fiocchi, 2015; Palmieri et al., 2016).

The ability accurately to appreciate and predict
a global somatic impact of pharmacological signaling

Hendrickx et al.

will likely create a greater understanding of disease
etiology and eventual network-level precision drug-
based disease remediation (Prill et al., 2011; Hasan
et al., 2012; Janssens et al., 2014; Muhammad et al.,
2018). The appreciation of a network hypothesis for
biologic activity presents many important new avenues
for pharmacological research, especially in the aspect
of prioritizing the most crucial factors/tissues within
a hypercomplex signaling system. For example, the
ability to identify molecular “keystone” or “hub” factors
that exert the most profound actions upon the state of
a given pathologic network may facilitate the creation of
collateral efficacy pharmacological strategies (Gesty-
Palmer and Luttrell, 2011b; Chadwick et al., 2012a;
Maudsley et al., 2012). Combinatorial bioinformatic
platforms are currently being developed to assist and
expedite the discovery of novel network regulating
factors that use advanced machine-based retrieval pro-
cesses such as LSA-based Genelndexer (Cashion et al.,
2013) or Textrous! (Chen et al., 2013b). Such network-
regulating factors may represent the most efficient
means by which complex biologic processes can be
controlled therapeutically. As a specific example, the
G protein-coupled receptor (GPCR) kinase interact-
ing protein 2 was identified as a molecular “hub” or
“keystone” in the physiologic aging process using a co-
herent combination of standard data annotation (Gene
Ontology/KEGG pathway analysis) followed by a suc-
cessive application of “cross-pathway” gene/protein
prioritization using the LSA-based Genelndexer plat-
form (Chadwick et al., 2012a). The potential keystone
nature of kinase interacting protein 2 in the aging
process has subsequently been reinforced by findings
that this protein appears to regulate the intercommu-
nication between metabolic function pathways and
those responsible for protecting DNA integrity (Lu
et al., 2015; Martin et al., 2016; Leysen et al., 2018).
This level of pathologic connectivity is crucial to control
the extent of age-related damage incurred during times
of age-dependent stress in the brain and in periph-
eral metabolic tissues. Extending this aging network
controlling locus to therapeutic exploitation, it was
demonstrated recently that indeed LSA-based H-D in-
terrogation can help elucidate and prioritize receptor-
based targets for anti-aging therapies (van Gastel et al.,
2016, 2018a,b, 2019b).

In addition to the application of data deconvolution to
identify key factors within complex networks, graph-
based pipelines have been used to define drug-signaling
pathway association analytics. For example, Dai et al.
(2018) defined a computational process, integrative
graph regularized matrix factorization, to enhance the
drug-induced signaling cascade classification and pri-
oritization. Integrative graph regularized matrix fac-
torization employs graph regularization to encode data
geometrical information and prevent possible overfit-
ting in the prediction of the association of specific
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therapeutic agents with the strongest associated sig-
naling paradigm. Given the ability of drugs to affect
multiple cellular transduction cascades, it is vital to
demonstrate that graph/network dynamic analysis can
actually generate therapeutically relevant information
regarding in vivo drug activities. Recently de Anda-
Jauregui et al. (2019) demonstrated their ability to
elucidate the nuanced effects of pioglitazone in the
context of diabetic neuropathies using advanced path-
way analytics. This research team generated the graph-
theory—based pathway crosstalk perturbation network
(PXPN) model. This model was created to aggregate
H-D data using a pathway-based approach to associate
molecular results with complex functional features
related to the studied disorder/signaling system. Within
a disease or drug response process, transduction path-
ways communicate with one another through the cross-
talk phenomenon, forming large networks of interacting
processes. With the PXPN model, changes in activity
and communication between signaling pathways, ob-
served in transitions between physiologic states, were
represented as networks. Such graph-based models
possess an agnostic nature with regard to the type of
biologic data and pathway definition employed and can
thus be implemented to analyze any type of high-
throughput perturbation experiments. To demonstrate
the efficacy of such an approach, de Anda-Jauregui et al.
(2019) analyzed the interactions between transcrip-
tomic data from experiments in a BKS-db/db mouse
model of T2DM-associated neuropathy and the effects of
the thiazolidinedione class agent, pioglitazone, in this
paradigm. Using their PXPN network approach, this
group was able to identify changes in the specific
connectivity of perturbed signaling pathways associ-
ated to each biologic transition, such as reorganizations
between extracellular matrix, neuronal system, and
GPCR signaling pathways (de Anda-Jauregui et al.,
2019).

Graph-based analytics can also be used effectively to
coordinate meta-level HD data to define linkages
between molecular drug signatures and patient-based
sequence analysis. Recently Musa et al. (2017) outlined
how advanced cmap (connectivity map: https:/www.
broadinstitute.org/connectivity-map-cmap) analytics,
combined with an integration of signature data from
LINCS (Library of Integrated Network-based Cellular
Signatures: http://www.lincsproject.org/) could be aligned
with the latest pharmacogenomics data. This approach
will likely enhance and refine drug repurposing/discovery
for a wide variety of aging-associated conditions (Musa
et al., 2017). While graph-based analytic workflows are
effective for molecular deconvolution of complex disease/
drug-based data, this approach is also now proving its
worth with respect to the prediction of adverse drug-drug
interactions (Kamdar and Musen, 2017). To most
effectively mine the current data concerning long-term
patient drug-drug interactions integration and analysis
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of patient biomedical data as well as inferred knowl-
edge from diverse and distinct sources with varying
schemas, entity notations and formats is required. To
contend with this, the Semantic Web community re-
cently published and linked several datasets in the Life
Sciences Linked Open Data (LSLOD: http:/srvgal78.
deri.ie/roadmapViz/) cloud using established W3C
standards. While informative in themselves, such com-
plex graph structures require a nuanced interrogation
tool to most efficiently extract pertinent pharmacolog-
ical data rapidly, hence Kamdar and Musen (2017)
developed the PhLeGrA (Linked Graph Analytics in
Pharmacology) platform. Using advanced query feder-
ation, this research team was able to effectively gener-
ate functional drug-reaction networks from integrated
sources within the LSLOD cloud data base. This drug
response graph could then be represented as a hidden
conditional random field (HCRF), a discriminative la-
tent variable model that is used for structured output
predictions. Using this, Kamdar and Musen (2017) were
able to calculate the underlying probability distribu-
tions in the drug-reaction hidden conditional random
field, using the data sets from the FDA Adverse Event
Reporting System. The PhLeGrA platform was also able
to incorporate other sources published using Semantic
Web technologies, also enabling it to facilitate the
discovery other types of pharmacological associations.

IX. Data Visualization and Topological Methods

Given the prodigious size of many disease/drug re-
sponse H-D data sets, the use of advanced mathematical
modes of data management investigation is becoming
increasingly commonplace. One such approach is the
use of topological data analysis (TDA), which aims to
interpret complex data through the identification/
classification of its essential, scale-independent “shape.”
TDA analyses data sets by the use of techniques drawn
from classic surface topology investigations typically
applied to geometrical morphology fields. H-D biomed-
ical data sets present several difficulties with respect to
TDA-based applications, i.e., they are often 1) generated
using diverse experimental platforms, 2) relatively
incomplete, and 3) “noisy.” Data “noise” has two main
sources, implicit errors introduced by measurement
variation, such as different types of apparatus and
random errors introduced by batch processes or experts
when the data are gathered. In the field of aging-related
diseases such as AD, metabolic syndrome, and ad-
vanced CVDs, real patient data in high dimensions
are nearly always sparse (incomplete as a translational
set across diverse patients) but still tend to have
relevant low dimensional features, i.e., accurate and
predictive individual biometric data such as pulse-wave
velocity or glycated hemoglobin levels. TDA provides
a versatile framework to analyze such data in a manner
that is insensitive to the particular metric and provides
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dimensional reduction while also being robust to “noise.”
This analysis approach has combined algebraic topology
and other pure mathematical tools to give a mathemat-
ically rigorous and quantitative study of data “shape.”

The primary effective facet of TDA-based structure
classification is the elucidation of “persistent homology”
patterns within the data. This process seeks to reveal
consistently connected components of the data irrespec-
tive of any attached numerical scale. In general, the
assumption is that features, e.g., drug-induced signal-
ing protein expression, that persist for a wide range of
scale parameters are “true” features. Features persist-
ing for only a short period are presumed to be noise.
Recently, a TDA-inspired platform [Plurigon (Martin
et al., 2013a)] was developed to facilitate nth-dimensional
analysis “data texturization,” i.e., creation of near-
limitless levels of “feature” extraction from mass ana-
lytical data in a simple visual/textural format that is
readily appreciable to users. This open access platform
has already been used to identify and classify neurode-
generative aging mechanisms, experimental animal
model phenotypes, and context-specific proneurotrophic
drug efficacy signatures from complex H-D data (Martin
et al., 2013a). Analysis of transcriptomic data using
Plurigon revealed specific texturized data features that
were responsible for the maintenance of the proneuro-
trophic/procognitive activity of amitriptyline (Chadwick
et al., 2011b; Janssens et al., 2017) even in the presence
of age-related cellular stressors. The future application
of Plurigon data texturization may also help identify
key molecular features in data sets that could reveal
causative molecular interactions from quantitative
plasma proteomic data that allow more accurate patient
grouping for hypercomplex syndromic disorders such as
AD (Fig. 2).

Topological analysis of paired pathophysiological
gene expression networks (extracted from the ArrayEx-
press data base) was applied recently to hippocampal
data from AD patients (Yue et al., 2016). Yue and
coworkers identified 144 DEGs across multiple studies.
Five groups of coexpression gene pairs and five gene
networks were identified and constructed using four
existing bioinformatic methods: 1) weighted gene coex-
pression network analysis; 2) empirical Bayesian (EB)
analysis; 3) differentially coexpressed genes and links
(DCGL), a search tool for the retrieval of interacting
genes/proteins data base; and 4) a novel rank-based
algorithm with combined score. Using this combinato-
rial approach Yue et al. (2016) found that the resultant
co-expression network was scale-free (an important
feature of TDA) and had the tendency to exhibit small-
world characteristics (Watts and Strogatz, 1998), i.e.,
possessing a variety of nodes possessing a diverse
range of degree scores. This small-world form of
network suggests that it is likely that signaling net-
works are coordinated by so-called keystone factors
(Chadwick et al., 2012a).

Hendrickx et al.

Furthermore, advanced data topology investigations
recently demonstrated their efficacy with respect to
molecular patient stratification in the field of age-
related diabetes. For example, Li et al. (2015b) aimed
to investigate patient diversity in the scope of T2DM.
This research group employed EMD files coupled to
genotype data from over 11,000 individuals. In this
manner Li et al. (2015b) were able to identify three
distinct diabetic molecular subtypes using Ayasdi—Iris
(Lum et al., 2013) based topological data classification
from this large cohort of patients. These three topolog-
ically separate diabetic types were typified by their
comorbidity linkages to 1) nephropathy and retinopa-
thy (subtype 1); 2) cancer and CVDs (subtype 2); and
3) neurologic disorders, allergic responses, and CVDs
(subtype 3). Coupling this structural approach with the
highly nuanced TDA, (Li et al., 2015b) were then able
to correlate specific gene single nucleotide polymor-
phisms with these diverse T2DM subtypes and there-
fore generate considerable functional insights with
respect to the generation of specific disease pathome-
chanisms. In addition to the work of Li et al. (2015b),
imaged informed precision medicine analysis of T2DM
EMD files recently was performed by Perer et al. (2015).
This research group employed the Care Pathway Work-
bench (Yu et al., 2014) to stratify over 11,000 diabetic
patients into therapeutically informative subtypes based
on distinct data visualization patterns (Perer et al., 2015).

With respect to drug discovery workflows, drug target
interactions can be predicted based on observed topo-
logical features of a semantic network across a chemical
and biologic space using TDA-based approaches. In
a semantic network, the types of nodes and links are
different. To take the heterogeneity of the semantic
network into account, metapath-based topological
patterns can be investigated for link prediction. Fu
et al. (2016) recently constructed supervised machine-
learning models based on meta-path topological fea-
tures of an enriched semantic network derived from
Chem2Bio2RDF. This structure was then further built
upon by adding compound and protein similarity neigh-
boring links obtained from the PubChem data bases
(Fu et al., 2016). The additional semantic links signif-
icantly improved the predictive performance of the
supervised learning models. Topological drug-discovery
approaches, with respect to signal transduction moni-
toring, were applied recently to one of the more recently
developed HD data pipelines, i.e., single cell transcrip-
tomic data (Gong et al., 2018). In addition to this
topological appreciation of complex drug-induced sig-
naling “landscapes” (Vogt, 2018) as well as simpler data
set structures [columns within multirelational data sets
(Partl et al., 2014)], TDA has also demonstrated promise
with respect to effective definition of novel therapeutic
agents (Vogt, 2018).

In addition to TDA implementation for drug target
interactions, H-D data topological studies have also
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Data input Plurigon generation Orientation axes COM vector

VRML output

Feature output

Fig. 2. Plurigon-based mechanism for three-dimensional data “texturization.” (A) The input of a simple .txt file allows the creation of a highly nuanced
and interrogatable three-dimensional structure overlaid onto a spherical base (1 and 2). The three-dimensional rendering can be freely rotated (3);
increased or decreased in viewer screen (4); rendered in red/cyan three-dimensional viewing mode (5); coordinated with applied fixed axes (6);
interrogated for center of mass (COM) calculation (7); interrogated for general structural features (8). (B) Implementation of Plurigon to detect gestalt
signature distinction between quantitative differential expression plasma proteomic datasets from human patients either with clinically diagnosed
Alzheimer’s disease (AD), with a genomically predicted low risk of generating AD (LR) or with a genomically predicted high risk of generating AD (HR)
(unpublished data). Patients classified as either LR or HR were not diagnosed with AD. Differential plasma proteomic expression data sets (created
using isobaric mass-tag labeling) were created using either AD: LR (1) or HR:LR ratiometric comparisons (2). For these differential protein expression
data set comparisons (1 and 2), the resultant Plurigon representations were oriented in an identical fashion with the yellow z-axis extending from the
page to the reader in a perpendicular manner. Analogous structural components found in both data set comparisons are indicated by the orange arrays
in both Plurigon display modes. It is evident from these simple representations that functional commonalities are observable between fully diagnosed
AD patients and those that are disease-free but possess a high genomic risk score.

shown promise with respect to a capacity for prediction
and/or discovery of novel and potentially deleterious
drug-drug interactions. Recently topological community
cluster generation, from an initial crude drug-drug
interaction network using ForceAtlas2 (Jacomy et al.,
2014; Udrescu et al., 2016), was used to help inform
druginteraction investigation. These clusters were then
combined with inferences gained from modularity-based
detected communities within the initial drug-drug net-
work to create a color-coded community-based drug-drug
interaction network. By using this community drug

network approach, this research group was not only
capable of identifying potentially deleterious drug-drug
interactions, but they suggested that with such a nuanced
network-based view of drug functionality these H-D data
structures could also assist in effective drug repurposing.

X. Machine Learning and Pattern Recognition
A. Disease Biomarker Analyses

Effective molecular diagnosis of pathophysiological
aging, with the subsequent application of antiaging
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therapeutics, represents a promising mechanism to
delay the onset of chronic long-term disorders, such as
CVDs, chronic kidney disease, and dementia. Novel
molecular technological platforms and machine-
learning methods have already yielded diagnostics that
help guide cancer treatment and cardiovascular proce-
dures. Discovery of valid and clinically informative
diagnostics of human biologic age (combined with
disease-specific biomarkers) has the potential to alter
current drug-discovery strategies, aid clinical trial re-
cruitment, and maximize healthy aging (Timmons,
2017). Research into modeling the progression of age-
related disorders, e.g., the interrelated phenomena of
diabetes, dementias, and cardiovascular disorders, has
made considerable progress in identifying proteomic
biomarkers to identify the presence/severity of these
conditions at a preclinical stage. With respect to classic
concepts of AD progression, a cascade of events starts
with the buildup of amyloid plaque, followed by tau-
mediated neuronal injury and memory loss and even-
tually a clinical AD diagnosis (Jack et al., 2010). Prestia
et al. (2013) generated clinical data indicating that the
core biomarker patterns are consistent with this
amyloid-based model. Specifically, the model predicts
that tracer retention on amyloid PET imaging and low
AB 1-42 (a cytotoxic cleavage product of the beta
amyloid peptide) concentrations in the cerebral spinal
fluid (CSF) should become abnormal earlier in the
disease course, followed by cortical hypometabolism
on F¥.FDG-PET (fluorodeoxyglucose positron emis-
sion tomography), and finally brain atrophy in struc-
tural MRI (Prestia et al., 2013). Although biomarkers
obtained through invasive collection of cerebrospinal
fluid (CSF) and expensive PET imaging are considered
to be consistent and reliable, markers that instead could
be collected in a cost-effective and minimally invasive
manner would facilitate less patient resistance to re-
peated sampling and thus assist in longitudinal analy-
sis and disease trajectory assessment (Williams, 2011).
The international ADNI consortium has already col-
lected data on 190 plasma analytes from individuals
diagnosed with AD as well subjects with mild cognitive
impairment (MCI) and cognitively normal controls.
Given this tremendous online resource, multiple inves-
tigators have reported progress in identifying plasma-
based proteomic biomarkers and their effectiveness in
predicting AD and MCI. Research conducted by Ray
and co-workers (2007) identified 18 signaling proteins
in blood plasma that could be used to classify blinded
samples from MCI subjects who progressed to AD
within 2-6 years later. This study incorporated both
unsupervised and supervised machine-learning meth-
odologies (Ray et al., 2007). However, the latter data set
of Ray et al. (2007) was reanalyzed with equivalent
results of smaller 6-protein and 5-protein signatures
using standard classification algorithms (Gomez Ravetti
and Moscato, 2008). In addition to these approaches,
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multivariate linear regressions correlating plasma and
CSF biomarkers were investigated directly by Hu et al.
(2012) using ADNI data. Among these analyses, per-
turbations in apolipoprotein E, brain natriuretic pep-
tide, C-reactive peptide, and pancreatic polypeptide
levels were also associated with AD diagnosis and CSF
AD biomarkers, with apolipoprotein E being considered
to be the most predictive biomarker (Hu et al., 2012;
Johnstone et al., 2012). Moreover, Hu et al. (2012)
identified a limited set of paired biomarkers via univar-
iate entropy (Abdel Samee et al., 2012) filtering and
the a-B-k feature selection process and subsequently
achieved a predictive accuracy in excess of 85%. Addi-
tional investigators have also modeled the longitudinal
progression of clinical AD assessments. For example,
mixed effects regression modeling was performed to
predict longitudinal performance on standard clinical
measures of AD (Doody et al., 2010). Furthermore,
a sigmoidal model of the longitudinal changes in the
AD assessment cognitive sub-scale (ADAScog) has been
developed (Samtani et al., 2012). Mo et al. (2013) recently
demonstrated a novel integrative approach to AD-
associated biomarker analysis. Their research investi-
gated methods for improving classification performance
via the application of an ensemble of different classifica-
tion algorithms and the efficacy of various feature
augmentations on the various classifier topology
schemes. Ensembles of classifiers reduce the potential
of over-fitting that exists with high-dimensional data
and a limited number of samples (Yang et al., 2010). Mo
et al. (2013) constructed an ensemble consisting of five
conventional classification algorithms: 1ibSVM (Chang
and Lin, 2011) with linear kernel, binary decision tree,
naive Bayes, logistic regression, and perceptron. The
topology of the ensemble includes an aggregating
libSVM classifier. The feature space of the aggregating
classifier consisted of the votes of the five first-layer
classifiers. The aggregating classifier was trained on
the same labels as the first-later classifier. Benchmark
testing on the individual classifiers, as well the ensem-
ble results, were performed using ADNI data. Mo et al.
(2013) also applied multiple feature clustering and
dimensionality reduction methodologies, i.e., latent pro-
cess decomposition (Rogers et al., 2005), Gaussian
model clustering (Bishop, 2006), self-organizing feature
mapping (Kohonen, 1982), PCA (Abdi and Williams,
2010), that were tested against the task of cross-
validating the individual classifiers as well as the
complete ensemble. Using this ensemble approach, Mo
et al. (2013) were able to improve both accuracy and
specificity of AD diagnosis based on the biomarker data
compared with 1ibSVM. They demonstrated that clas-
sifier performance can be enhanced by an augmentation
of a selective biomarker feature space with principal
components obtained from the entire set of biomarkers.

With respect to biomarker analytics for CVDs, ana-
lytical pipelines have been created from the relatively
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simple, e.g., Gene Expression Omnibus (Barrett et al.,
2013) (GEO)-based biomarker identification for venous
thromboembolism (Wang et al., 2018) or coronary
atherosclerosis (Tan et al., 2017), to “prescriptome”
analytics of patient EMD files for cardiovascular factors
associated with psychiatric disorders (Shameer et al.,
2018) and coexpression network analysis of primary
features associated with mitochondrial gene activity in
atherosclerotic lesion formation (Vilne et al., 2017). In
addition to CVDs, integrated informatic analyses have
been employed to deconvolute the intricate associations
between multiple components of metabolic syndrome
(Zhang et al., 2017). In this study, Zhang et al. (2017)
attempted to identify multidimensional biomarkers
for metabolic syndrome, dementia, and diabetes using
the DisGeNET discovery platform (Pinero et al., 2015,
2017). While classic biomarkers of relatively static
disease states (healthy vs. diseased) have long been
sought after in complex diseases, recent data suggest
that a subtle temporal variation of biomarker predictive
strength can be found in acute transitional periods
between presymptomatic and symptomatic phases of
the disease (Chen et al., 2012; Liu et al., 2014). In this
context, a computational approach based on an unsu-
pervised hidden Markov model was recently developed
to automatically detect the early warning signal of the
tipping/critical point during complex disease progres-
sion (Chen et al., 2017). This novel biomarker approach
is potentially important for multifactorial diseases such
as metabolic syndrome. Using their hidden Markov
model process, Chen et al. (2017) were able to elucidate
biomarker networks that describe the underlying mech-
anism(s) of the dynamical progression when a biologic
system is near the “tipping point” between predisease
and disease states. The ability to detect the nature of
the molecules describing this imminent critical transi-
tion will likely enable the generation of intervention
strategies capable to prevent this deleterious network
transition (Scheffer et al., 2009; Liu et al., 2014).

B. Proteomic and Mass Spectrometric Analysis

Over the past decade, the parallel quantitative mass
spectrometric (QMS) measurement of multiple protein
species has become one of the primary mechanisms to
understand complex signaling processes such as age-
related metabolic, cardiovascular, and neurodegenera-
tive conditions. QMS possesses the capacity to easily
create biomedically relevant insights into pathome-
chanistic cell signaling events using material from
nearly every type of somatic tissue, even from archived
cross-linked tissues stored for hospital-based histology.
While standard pathway analytical techniques have
been employed effectively to interpret physiologic sig-
naling data from QMS data, it is vital that the de-
velopment of novel data extraction techniques should
now be a critical task. In this regard, proteomic data
analysts have been some of the earliest adopters of
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machine-learning methodologies (Nielsen et al., 1999;
Anderson et al., 2003; Elias et al., 2004). Machine
learning can take various forms but can be essentially
encompassed within two broad domains, i.e., supervised
versus unsupervised analytical approaches. Supervised
machine learning involves training of a model based
on data samples associated with known class labels
(e.g., diabetes positive or control patient). Unsupervised
classification, where no samples have associated class
labels, attempts to group samples with similar multi-
dimensional attribute profiles together. Supervised
machine learning, in which a model is built from
curated and labeled training data, can be applied for
classification of distinct sample population classes.
Thereafter, the model is used to determine the class of
each sample in a data set, which has no such labels,
known as the test set (Larranaga et al., 2006). Classes
may be different phenotypes, e.g., disease groups or
remedial intervention groups. The attributes of the
data set can be the peak mass-to-charge ratio values
or identified proteins. Classification can be used, for
example, in diagnosing diseases as the model should
determine between healthy and diseased samples. It
is also possible to consider the specific attributes as
biomarkers for the specific classes (Abeel et al., 2010).
With respect to supervised applications of machine
learning to MS analysis, there is a broad spectrum of
techniques currently employed, e.g., decision trees (Ge
and Wong, 2008), random forest (Montano-Gutierrez
et al., 2017), rule-based learners (Swan et al., 2015),
support vector machines (Webb-Robertson, 2009), and
artificial neural networks (Lancashire et al., 2009). In
contrast to the widely appreciated use of supervised
methods, the application of unsupervised approaches is
surprisingly narrow considering the potential benefits
for the discovery of cryptic mechanisms disease for
sporadic neurodegenerative conditions (Alessio and
Cannistraci, 2016) and diabetic comorbidity condi-
tions (Vitova et al., 2017).

Perhaps the most interesting recent development
for machine-learning-based interpretation of H-D data
lies within the realm of neural-network based “deep
learning” (LeCun et al., 2015; Zhou et al., 2017; Cao
et al., 2018; Ghosh et al., 2018). Deep learning allows
computational models, composed of multiple process-
ing layers, to learn representations of data with multi-
ple levels of abstraction. In this way, deep learning
discovers intricate structures within large data sets
by using a backpropagation algorithm (Trischler and
D’Eleuterio, 2016) to indicate how a machine should
modulate its internal parameters that are used to com-
pute the representation in each layer from the represen-
tation in the previous layer. Deep learning-based
algorithmic processes have demonstrated superiority
over most other techniques in diverse biomedical fields
such as image recognition (Krizhevsky et al., 2012),
EMD file analytics (Pham et al., 2017), the predicting
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mutation effects in non-coding DNA upon gene expres-
sion and disease (Xiong et al., 2015), prediction of drug
molecules activity (Ma et al., 2015), mass spectrometry-
based proteomics (Cerqueira et al., 2016), reconstruc-
tion of functional brain circuits (Helmstaedter et al.,
2013), and modeling of diabetic complications of vascu-
lar disorders (Biswas et al., 2019).

In addition to classic machine-learning approaches
for MS data, these platforms can also be synergized with
semantics-based text analysis (Collobert et al., 2011;
Sutskever et al., 2014; Jean et al., 2015) or even network
graph-based workflows. For example, Villmann et al.
(2008) developed classification algorithms for the anal-
ysis of mass-spectrometric (MS) data—the supervised
“neural gas” and the “fuzzy-labeled self-organizing
map” (Villmann et al., 2008). Both of these algorithms
are inherently regularizing (Meyer et al., 2017), which
is an important processing property because MS-
derived spectral data possess both H-D and consider-
able sparseness for most experimental paradigms.
Villmann et al. (2008) found that the use of a fuzzy-
labeled self-organizing map was effective with respect
to the ability to process uncertainty in data. Indeed,
classification results are often obtained as fuzzy deci-
sions, i.e., indicating a propensity for one answer
compared with another. Such fuzzy classifications,
together with the property of topographic mapping,
offer the possibility of improved class similarity de-
tection, which can be used for enhanced patient class
visualization and discrimination (Villmann et al., 2008).

Considerable efforts have been made with respect to
the application of deep learning to MRI/PET image
analysis so far. Interestingly, recent advances in high-
throughput matrix-assisted laser desorption/ionization
mass spectrometric imaging (MALDI-MSI) may form an
ideal template to further apply neural network-based
deep learning approaches to MS-based pipelines
(Behrmann et al., 2018). The capacity to localize or
track changes in organisms at the molecular level by
imaging protein distributions of specific tissues is of
prime importance to elucidate intricate disease path-
ways across heterogeneous tissues (e.g., vascular tis-
sues or central nervous regions) or the quantitative
efficacy assessment of new remedial agents. MRI/PET
approaches are limited in that they need exogenous
molecular probes to report the presence of the analytes
of interest, thus preventing simultaneous exploration
of different biomolecules. MALDI-MSI combines the
high sensitivity of mass spectrometry with the ability
to simultaneously detect a wide range of compounds,
almost regardless from their nature and mass. To
perform MALDI-MSI, sections of biologic tissues are
introduced in a MALDI-MS instrument, where the
ultraviolet-pulsed laser of the MALDI source is used
to raster over a selected area while acquiring mass
spectra of the ablated ions at every image point. From
this array of spectra, hundreds of analyte-specific
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images can be generated based on the selected masses.
MALDI-MSI can be used to track biomarkers such as
peptides or proteins but also to map drug/tissue inter-
actions. MALD-MSI has been used successfully to study
amyloid peptide deposition in AD (Rohner et al., 2005),
metabolism-controlling pancreatic islet ultrastructure
(Yin et al., 2018), as well as the high-resolution molecular
pathologies of infarcted heart tissue (Lefcoski et al.,
2018). The images produced by such platforms, when
operated in a high-throughput manner, will in time
create an unprecedented issue for informatics analysis.
These images, potentially at a pixel resolution across
amurine or human brain of 5 um, may contain hundreds
or even thousands of individual peptide spectral dimen-
sions across the image. In this aspect, the application of
artificial intelligence-based neural networks and deep
learning platforms (Ortiz et al., 2016; Mei et al., 2017,
Commandeur et al., 2018) will be vital in generating
a multidimensional appreciation of coordinated protein
expression changes in complex gerontological diseases.

C. Drug Discovery and Development

It is well known and has been expertly demonstrated
that drug discovery and eventual refinement into
a marketable healthcare product is extremely time
consuming (10-15 years at a minimum) and prohibi-
tively expensive [$1.4 billion (Mullard, 2014)]. These
time and financial constraints therefore are a major
hindrance to the delivery of effective therapeutics;
therefore multiple researchers have looked toward the
realm of computational biology either to expedite or
circumvent this impasse. So called “in silico” drug
discovery (Loging et al., 2007; Kirchmair et al., 2015)
has grown and been refined steadily over the past
decade. Computational drug discovery potentially
allows for a cost-effective and rapid mechanism to
circumvent traditional drug discovery workflows. Many
of these in silico processes rely heavily on the intelligent
informatics investigation of H-D data. Modern in silico
drug discovery pipelines typically include the rational
integration of data mining, structure modeling (homol-
ogy modeling), traditional machine-learning (Schirle
and Jenkins, 2016), and its biologically inspired branch
technique, deep learning (LeCun et al., 2015). Tradi-
tional machine-learning approaches, e.g., using SVM
hyperplane estimation, have achieved significant levels
of classification accuracy, but at the price of manually
selected and tuned features. The application of rela-
tively simplistic SVM-like approaches is now being
superseded by the using artificial neural network-
based applications. Feature engineering within high
volume H-D data are the dominating research compo-
nent in practical applications of machine learning. In
contrast, however, neural network approaches avoid
this via automatic feature learning from massive data
sets. This process expedites classic manual and labori-
ous feature engineering but also allows for the ability
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to apply learning task-optimal features. Deep learning
applications involve modeling high-level representa-
tions of H-D data using so-called deep neural networks
(Aliper et al., 2016). Deep neural networks are flexible
systems of connected and interacting artificial “neu-
rons” that perform nonlinear data transformations.
They possess several hidden layers of neurons, of which
number variation allows to adjust the level of data
abstraction. The success of deep learning approaches to
biomedical science has now allowed them to play
a dominant role in the areas of physics, speech, signal,
image, video and text mining, and recognition. These
advances have thus improved the state of the art
performance levels by more than 30%, where the prior
decade struggled to obtain 1% to 2% improvements
(Schmidhuber, 2015). The ability of deep learning
techniques to interrogate H-D data at higher levels of
dimensional abstraction has made this approach
a promising and effective tool for working with hyper-
complex biomedical and chemoinformatic data (Mamoshina
et al, 2016). Deep learning algorithmic architecture
creates an investigational platform to deal with sparse
and complex data, a combined situation that often
hinders effective discovery of drug efficacy using gene/
protein expression data (Hira and Gillies, 2015). Cur-
rently, deep learning and artificial neural network
approaches have proven effective with respect to novel
drug development (Lusci et al., 2013), prediction of drug-
target interactions (Wang et al., 2014), model molecular
reaction properties (Hughes et al., 2015), drug toxicity
predictions (Xu et al., 2015), and transcriptomics-based
drug repurposing (Aliper et al., 2016). Machine-learning-
based transcriptomics analyses were recently used to
identify the molecular intervention point of heat shock
protein 90 (Hsp90) to be an effective antiaging thera-
peutic strategy (Janssens et al., 2019). Prior to this,
Hsp90 was recently identified as an important and effective
target for senolytic agents (Fuhrmann-Stroissnigg
et al., 2017). Janssens et al. (2019) employed an in-
telligent machine learning H-D data screening process
of so-called “geroprotectors” for agents capable of con-
trolling the activity of Hsp90. To validate their drug
identification process, they tested the effects of two
predicted Hsp90 inhibitors, monorden and tanespimy-
cin, and found that in nematode models a general health
augmentation and life span extension capacity was
found. Given the access to tissue biopsies during the
aging process, it is likely that specific tailored thera-
peutic strategies may be found using machine-learning
development approaches in a tissue-specific manner.
For instance, Mamoshina et al. (2018) recently presented
methodologies to understand the drug-accessibility of
muscle aging paradigms. This research team employed
public H-D gene expression data profiles of young and
old tissue from healthy donors. Differential gene ex-
pression and signaling pathway analysis were per-
formed to compare the molecular signatures of young
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and old muscle tissue using multiple machine-learning
algorithms. Neural network-based interrogation of
these data generated predictive aged/non-aged capacity
with a 0.91 Pearson correlation with respect to the
actual age values of the muscle tissue samples. By using
the novel aging biomarkers found with this process,
novel molecular targets for tissue-specific antiaging
therapies were revealed, e.g., carbonic anhydrase 4
[CA4 (Wetzel et al., 2002; Tricarico et al., 2004; Eguchi
et al., 2006) While discovering novel antiaging com-
pounds is clearly a crucial current task for machine-
learning approaches, an important pragmatic approach
to discover further antiaging agents was recently
demonstrated. Hence machine-based H-D data inter-
rogation has been employed for the elucidation of
molecular mimetic of currently used “geroprotector”
(Moskalev et al., 2017) compounds such as metformin
or rapamycin (Aliper et al., 2017). Aliper and colleagues
were able to extract “mimetic” signatures from the
LINCS data base system for either metformin or
rapamycin drug responses. These compounds included
the following novel therapeutic leads, allantoin, ginse-
noside, and withaferin A.

XI. Conclusions

The presence of high quality and informative H-D
datasets related to age-related disease research is
now a widespread and commonly employed aspect of
biomedical research. Advances in molecular profil-
ing technologies and the development of sophisticated
computational approaches for analyzing these data are
providing a new systems-oriented approach toward
drug discovery, e.g., quantitative systems pharmacol-
ogy (McQuade et al., 2017; Maudsley et al., 2018),
personalized diagnoses, and patient stratification
(Topol, 2014). Multiple H-D data acquisition and in-
terrogation (Fig. 3) mechanisms have now been firmly
placed into the realms of disease stratification and
pharmacologically targeted H-D drug signaling defini-
tion. Systems-oriented approaches to drug discovery
effectively use the parallelism and H-D of molecular
data to construct more inclusive molecular models
that aim to enhance our appreciation of pathophysio-
logical and pharmacological mechanistic systems. This
H-D data model of molecular biology offers a means
to explore complex molecular states (e.g., age-related
disease) where thousands to millions of molecular enti-
ties comprising multiple molecular data types (e.g.,
proteomics and transcriptomics) can be evaluated simul-
taneously as components of a coherent network.

Interconnected age-related disorders are likely caused
by a subtle blend of genetic, environmental, and in-
dividualized lifestyle factors. This makes it highly
challenging for specific differential diagnoses and
thus effective “precision” therapeutic design. However,
as already indicated in this review, by integrating
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Fig. 3. Diverse platforms for effective acquisition and analysis of high-dimensionality data. (A) There is currently a wide array of efficient, high-
throughput mechanisms by which to acquire high-dimensionality (H-D) biologic data. These data can be derived from cell, tissue, experimental animal,
or even from direct human electronic medical records (EMR). Nucleotide sequencing platforms can easily generate data pertaining to genomic or
transcriptomic activities. Protein-based analysis can generate highly nuanced data from either classic tissue-based quantitative proteomics or from
affinity purification mass spectrometry (AP-MS)-based interactomics. The use of additional diverse forms of mass spectrometric analyses can also
generate in-depth metabolomic data as well. (B) Once the H-D data has been acquired, efficiently stored, and curated using expert domain knowledge,
multiple forms of analytics can be applied to extract the most meaningful interpretation of these hypercomplex data sets.

different “omics” approaches and through H-D data
analysis, this therapeutic goal may actually be achiev-
able. While this field is still under construction, certain
studies have already been performed to facilitate di-
agnosis, biomarker discovery, elucidation disease pro-
gression, and design of targeted therapeutics, driving
a new era of precision medicine. Several studies have
concentrated on the expression alterations of biochem-
ical pathways as opposed to single markers of disease.
This whole network approach underpins the causation

of several multicausal disorders. Here the use of pro-
tein chips could be future tools for better analysis of
proteomic disease signatures or networks (Palmieri
et al., 2016; Hellstrom et al., 2017).

Here we present the potential diverse interrogation
platforms that can be used by researchers to investigate
the intricate relationship between H-D disease pheno-
types and a similarly detailed H-D pharmacological
signature. This multidimensional investigation ap-
proach can represent an effective model for a gestalt
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appreciation and remediation of age-related conditions.
An interesting example of this H-D data system in-
tegration lies in the deconvolution and potential treat-
ment of amyotrophic lateral sclerosis (ALS). ALS is
a rare but potentially fatal heterogeneous neurodegen-
erative disorder that is strongly linked to the condition
of frontotemporal dementia. Interestingly, both of these
conditions are now strongly considered to be age-related
diseases (Niccoli et al.,, 2017). This age-associated
nature of ALS or frontotemporal dementia is strongly
linked to the presence of profound oxidative stress
mechanisms linked to alterations of superoxide dismu-
tase in these conditions. Two forms of ALS are known,
familial (5%—10% of cases) and sporadic, which accounts
for the rest. The use of H-D data analysis has already
been shown to allow progress in the identification of
possible biomarkers for ALS; however, as emphasized
before, the integration of the different H-D data acqui-
sition modalities is necessary (Mitropoulos et al., 2018).
From classic genomics, which have been the recent
staple of ALS research, it appears that a transition to
amultiomics approach has been increasingly suggested.
Through single omics approaches, several biomarkers
have already been identified; e.g., superoxide dismutase
1 through transcriptomics (Freischmidt et al., 2015),
TDP43 through proteomics (Sreedharan et al., 2008),
and neurofilament proteins (NF), especially phosphor-
ylated neurofilament heavy chain, also through proteo-
mics (McCombe et al., 2015). However, we hypothesize
that one single protein will not be enough to adequately
design a therapeutic and that by combining the sepa-
rate omics, a possible network of drug target proteins
can be discovered that could be much more efficacious
(Mitropoulos et al., 2018).

Many issues regarding the acquisition and storage of
H-D data have been perfected. However, the generation
of simple yet intelligent data interpretation systems is
still a future challenge. The usefulness of a specific
platform depends on the nature of questions to be
addressed, i.e., identifying actionable risk factors for
disease prevention, is a very different problem from
identifying new targets for drug discovery that is
furthermore different from predicting who will benefit
from a specific therapeutic intervention or what might
be prognostic markers for disease progression. Simplic-
ity and mechanistic diversity of new bioinformatic
platforms is needed. The ultimate goal of the integrative
creation of a coherent analytical pipeline for geronto-
logical research represents a vital goal for novel drug
development.

We envisage that an effective quantitative system
would first possess the ability to identify molecular
causes of disease (at both pre- and postsymptomatic
phases) using advanced patient molecular stratification
(e.g., with topological data analysis and EMD semantic
analytics). Secondly, this ideal informatics system
would enable and inform the prediction of the signaling

211

patterns entrained by these alterations, e.g., using classic
pathway analysis and natural language processing-based
de novo pathway construction and theoretical data set
comparisons for biased receptor-based signaling defini-
tion (Maudsley et al., 2016). Thirdly, such an effective
pipeline should facilitate the generation of whole so-
matic appreciation of systemic pathologies entrained by
the age-related disease. This appreciation could be
constructed using complex deep learning machine
analytics applied to standard biomedical images, as
well as “connectomic” and proteomics-based “disea-
seome” maps (Lau et al., 2018). Fourthly and finally,
this intelligent informatics system should engender the
ability to inform and eventually test the efficacy of
investigational new therapeutics. For example, machine-
learning assisted TDA as well as semantically created
theoretical data set comparisons for biased signaling
specificity may help to develop therapeutic agents with
enhanced specific efficacies and minimized side-effects/
contraindications.

The number of research groups applying H-D data
analytics to complex gerontological therapeutic para-
digms is only likely to increase due to the reduction in
unit costs of assays and further advances in multi-
plexing genomic, transcriptomic, and proteomic tech-
nologies. It is therefore imperative to continue the
rational development of advanced algorithms and ana-
lytical platforms to rapidly and meaningfully extract
therapeutically actionable data from this ever expand-
ing data corpora. It is likely that in the future, the
development of novel data generating (hardware sys-
tems such as mass spectrometers) and analytical plat-
forms will eventually feed into each other’s development
to provide synergistic data gathering and processing
units. The generation of more nuanced and intuitive
informatic systems will potentially accelerate novel
drug development and simultaneously aid rational drug
repurposing for age-related disease conditions.
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