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Abstract——The calcium-sensing receptor (CaSR) is
a class C G protein–coupled receptor that responds to
multiple endogenous agonists and allosteric modulators,
including divalent and trivalent cations, L-amino acids,
g-glutamyl peptides, polyamines, polycationic peptides,
andprotons. TheCaSRplays a critical role in extracellular
calcium (Ca2+o ) homeostasis, as demonstrated by the many
naturally occurringmutations in the CaSR or its signaling
partners that cause Ca2+o homeostasis disorders. However,
CaSR tissue expression inmammals is broad and includes
tissues unrelated to Ca2+o homeostasis, in which it, for
example, regulates the secretion of digestive hormones,
airway constriction, cardiovascular effects, cellular
differentiation, and proliferation. Thus, although the
CaSR is targeted clinically by the positive allosteric
modulators (PAMs) cinacalcet, evocalcet, andetelcalcetide
in hyperparathyroidism, it is also a putative therapeutic
target in diabetes, asthma, cardiovascular disease, and
cancer. The CaSR is somewhat unique in possessing
multiple ligand binding sites, including at least five
putative sites for the “orthosteric” agonist Ca2+

o , an
allosteric site for endogenous L-amino acids, two

further allosteric sites for small molecules and the
peptide PAM, etelcalcetide, and additional sites for
other cations and anions. The CaSR is promiscuous in
its G protein–coupling preferences, and signals via
Gq/11, Gi/o, potentially G12/13, and even Gs in some cell
types. Not surprisingly, the CaSR is subject to biased
agonism, in which distinct ligands preferentially stimulate
a subset of the CaSR’s possible signaling responses, to the
exclusion of others. The CaSR thus serves as a model
receptor to study natural bias and allostery.

Significance Statement——The calcium-sensing
receptor (CaSR) is a complex G protein–coupled
receptor that possesses multiple orthosteric and
allosteric binding sites, is subject to biased signaling
via several different G proteins, and has numerous
(patho)physiological roles. Understanding the complexities
of CaSR structure, function, and biology will aid future
drug discovery efforts seeking to target this receptor for
a diversity of diseases. This review summarizes what is
known todate regardingkey structural, pharmacological,
and physiological features of the CaSR.

I. Introduction

A. Identification and Cloning of the Calcium-
Sensing Receptor

Ca2+ is an essential ion, both intracellularly and
extracellularly, in mammals. Intracellular Ca2+ (Ca2+i )
is maintained at approximately 100 nM but rises to low
micromolar concentrations upon membrane or endo-
plasmic reticulum Ca2+ channel opening, thus serving
as an important second messenger (Brini et al., 2013).
Ca2+ also functions as a key first messenger via activation
of the calcium-sensing receptor (CaSR) (Alexander, et al.,
2017; Bikle et al., 2019), which plays a pivotal role in
tightly regulating ionized (free) extracellular calcium
(Ca2+o ). In human plasma, total calcium (referred to herein
as calcium to signify ionized and nonionized calcium)
levels are maintained between 2.1 and 2.6 mM, of which
roughly half is in an ionized form (Brini et al., 2013).
In the mid 1980s, there was significant interest in the

mechanisms regulating parathyroid hormone (PTH)
release from the parathyroid glands. It was conse-
quently shown that elevated Ca2+o increased Ca2+i levels
and decreased PTH release (LeBoff et al., 1985; Nemeth
et al., 1986). In the following years, elevated Ca2+o was
demonstrated to increase inositol phosphate (IP) and
decrease cAMP levels, which led to the suggestion of
a cell surface calcium-sensing G protein–coupled re-
ceptor (GPCR) (Nemeth and Scarpa, 1986, 1987; Brown
et al., 1987a; Chen et al., 1989). Further evidence for the
receptor was provided via activation of Ca2+-sensitive
Cl2 channels in Xenopus oocytes injected with mRNA
isolated from bovine parathyroid cells (Racke et al.,
1993), which subsequently led to expression cloning of
the bovine CaSR (Brown et al., 1993). In isolated

parathyroid cells, the cloned bovine CaSR was activated
(in rank order of potency) by gadolinium (Gd3+) . neo-
mycin.Ca2+o .magnesium (Mg2+) and signaled through
elevation of Ca2+i , providing strong evidence of the cloned
receptor being the long-sought CaSR (Brown et al., 1993).

Analyses of the cloned receptor sequence revealed
a 1085 amino acid–long protein consisting of a large
amino-terminal extracellular domain (ECD) of 613
amino acids comprised of a “Venus flytrap” (VFT)
domain, which closes upon activation much like the VFT
plant, and a cysteine-rich domain, a 7-transmembrane
(7TM) domain of 250 amino acids and an intracellular
carboxy terminus of 222 amino acids (Brown et al., 1993).
The analyses also revealed that the CaSR was homolo-
gous to themetabotropic glutamate receptors, whichwere
later shown to form the class C GPCRs together with
GABAB, taste type 1; GPRC6A; and a handful of orphan
receptors (Wellendorph and Bräuner-Osborne, 2009). The
structurally conserved class C GPCR VFT domain is
homologous to bacterial periplasmic binding proteins,
and thus it has been predicted that class C GPCRs arose
from fusion of the GPCR 7TM with a periplasmic binding
protein (O’Hara et al., 1993). Nucleic acid hybridization
techniques quickly led to cloning of the human (Garrett
et al., 1995a), rat (Riccardi et al., 1995; Ruat et al., 1995),
rabbit (Butters et al., 1997), chicken (Diaz et al., 1997),
and shark (Nearing et al., 2002) CaSR orthologs, and
genome data base mining subsequently suggested that
the CaSR is evolutionarily conserved in flies and worms
(Bjarnadóttir et al., 2005).

B. General Gene Structure

The human CASR gene has been mapped to chromo-
some 3q13.3-21 by fluorescence in situ hybridization
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(Janicic et al., 1995) and linkage analyses (Chou et al.,
1992). The human CaSR is encoded by seven exons, of
which exons 2-6 encode the ECD, and exon 7 encodes the
7TM and intracellular carboxy terminus (Pollak et al.,
1993; Pearce et al., 1995). Two different 59-untranslated
promoter regions, termed exon 1A and exon 1B, have
been identified in humans (Chikatsu et al., 2000), and
both splice with the same site in exon 2. As recently
reviewed (Hendy and Canaff, 2016), the promoters, and
thus CaSR expression, are regulated by cis-elements
responding to 1,25-dihydroxyvitamin D [1,25(OH)2D],
proinflammatory cytokines, and the transcription factor
glial cells missing-2 (GCM2s).
Tissue-specific splice variants lacking exon 3

(Bradbury et al., 1998) and exon 5 (Oda et al., 1998)
have been reported, but their function (if any) remains
elusive. The exon 5 splice variant is of particular
interest because it is functional in growth plate chon-
drocytes (Rodriguez et al., 2005) despite being non-
functional when recombinantly expressed in HEK293
and CHO cells. These latter findings led to an initial
underestimation of the role of the CaSR in bone de-
velopment because the original exon 5 knockout mouse
(Ho et al., 1995) displayed a mild bone phenotype
compared with a more severe phenotype in the exon 7
knockout mouse model (Chang et al., 2008).

C. Tissue Distribution

mRNA probes and antibodies have revealed that the
CaSR is widely expressed both in tissues directly
involved in controlling systemic Ca2+o homeostasis as
well as in tissueswith other functions. As detailed in the
section, V. (Patho)physiology of the Calcium-Sensing
Receptor and Its Ligands, the plasma calcium level is
mainly regulated via actions on the parathyroid gland
(PTH release), thyroid gland (calcitonin release, al-
though calcitonin in humans is less important than in
rodents), and kidney (production of 1,25(OH)2D3 and
regulation of ion excretion), but other tissues, such as
the bone (release of skeletal Ca2+o ) and small intestine
(Ca2+o absorption), also play a role both via direct CaSR
activation and via PTH, calcitonin, and 1,25(OH)2D3

(Brown and MacLeod, 2001; Brown, 2013; Lee et al.,
2019). In addition, the CaSR is expressed in a range of
tissues not involved in systemic Ca2+o homeostasis, such
as the keratinocytes of the skin (VE. Calcium-Sensing
Receptor in Keratinocytes), colon (VF. Calcium-Sensing
Receptor in the Gastrointestinal Tract), pancreas (VG.
Calcium-Sensing Receptor in the Pancreas), mammary
glands (VH. Calcium-Sensing Receptor in Mammary
Glands), airway smooth muscle and epithelium (VI.
Calcium-Sensing Receptor in Airway Smooth Muscle
and Epithelium), vascular smooth muscle and endothe-
lium (VJ. Calcium-Sensing Receptor in the Vascula-
ture), and the brain (VK. Calcium-Sensing Receptor in
the Brain and Nervous System), in which the CaSR
regulates a range of (patho)physiological functions.

D. Signal Transduction Pathways

The principal CaSR signaling pathways are shown in
Fig. 1. The CaSR primarily elicits its functions by
coupling to the Gi/o and Gq/11 families of heterotrimeric
G proteins to activate intracellular signaling pathways
that inhibit PTH synthesis and release from parathy-
roid cells (A. Calcium-Sensing Receptor in the Para-
thyroid Glands). CaSR activation of Gi/o proteins leads
to inhibition of the cAMP-synthesizing enzyme, adeny-
late cyclase, causing a decrease in intracellular cAMP
levels (Chang et al., 1998; Kifor et al., 2001). CaSR
coupling to Gq/11 is usually considered the primary
signaling pathway, which activates phospholipase C
(PLC)-b to hydrolyze phosphatidylinositol 4,5-bisphos-
phate to the second messengers, IP3 and diacylglycerol
(Brown et al., 1993; Chang et al., 1998). IP3 triggers
release of Ca2+i from intracellular stores, such as the
endoplasmic reticulum, and diacylglycerol alone or in
combination with Ca2+i activates protein kinase C
(PKC). Cytosolic phospholipase A2, which is the rate-
limiting enzyme in arachidonic acid metabolism, is also
activated by the CaSR-mediated Gq/11 pathway through
calmodulin and the Ca2+/calmodulin-dependent protein
kinase II (Handlogten et al., 2001).

The importance of the Gq/11 pathway in CaSR phys-
iology has been demonstrated by the similarities be-
tween selective parathyroid knockout of the genes
encoding Gaq (Gnaq) and Ga11 (Gna11) in mice, which
results in a phenotype with almost all the features of
Casr germline knockout mice (Wettschureck et al.,
2007). Similarly, human CASR and GNA11 loss- or
gain-of-function mutations cause familial hypocalciuric
hypercalcemia (FHH) types 1 (CASR) and 2 (GNA11) or
autosomal dominant hypocalcemia (ADH) types 1 (CASR)
or 2 (GNA11), respectively (Pollak et al., 1993, 1994;
Nesbit et al., 2013a) (VI. Calcium-Sensing Receptor–
Related Genetic Diseases and Therapeutic Interventions).

Studies of CaSR coupling toG12/13 are limited because
of a lack of inhibitors and suitable functional readouts.
However, the CaSR activates phospholipase D in
Madin-Darby canine kidney cells through a Gq/11- and
Gi/o-independent pathway involving activation of the
Rho family of small GTPases, most likely via G12/13

coupling (Huang et al., 2004). The G12/13 pathway is also
likely to be the Gq/11- and Gi/o-independent pathway
that activates the phosphatidylinositol 4-kinase responsi-
ble for the first step in inositol biosynthesis through Rho
(Huang et al., 2002).However, CaSR can activateRhoAby
a Gq/11 pathway in HEK293 cells (Pi et al., 2002) and
phospholipase D by a PKC-dependent mechanism likely
mediated by Gq/11 in HEK293 cells and parathyroid cells
(Kifor et al., 1997), so it remains unclear whether CaSR
also couples to G12/13 in these cells.

CaSR coupling to Gs and the consequent increase in
intracellular cAMP levels activates PKA and stimulates
PTH-related protein (PTHrP) release in immortalized
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and malignant breast cells and in the AtT-20 pituitary
tumor-derived cell line (Mamillapalli et al., 2008;
Mamillapalli and Wysolmerski, 2010) (VH. Calcium-
Sensing Receptor in Mammary Glands). Stimulation of
cAMP production is not observed in HEK293 cells
recombinantly expressing the CaSR (Thomsen et al.,
2012a), and the molecular mechanism for the switch in
G protein preference in breast cancer and AtT-20 cells
remains unknown.
The CaSR activates several mitogen-activated pro-

tein kinase (MAPK) cascades, including extracellular
signal-regulated kinase (ERK) 1/2, p38 MAPK, and
c-Jun N-terminal kinase to regulate PTHrP release,
proliferation, and other functions (MacLeod et al., 2003;
Tfelt-Hansen et al., 2003; Chattopadhyay et al., 2004).
ERK1/2 is activated by phosphorylation (pERK1/2)
through multiple CaSR-mediated pathways, including
parallel G protein–dependent pathways involving ei-
ther Gq/11 and PKC or Gi/o and epidermal growth factor
receptor transactivation (Kifor et al., 2001; MacLeod
et al., 2004; Thomsen et al., 2012a). Ras and phospha-
tidylinositol 3-kinase are also involved in ERK1/2
activation by the CaSR (Hobson et al., 2003), but it is
unclear whether this pathway overlaps with the Gq/11-
or Gi/o-dependent pathways. The CaSR can also activate
ERK1/2 through a b-arrestin–dependent and G
protein–independent pathway (Thomsen et al., 2012a).
Furthermore, an Arg6803.32Gly [numbering shown in
superscript after residue numbers throughout this
manuscript is based on Ballesteros-Weinstein number-
ing assigned in Ballesteros and Weinstein (1995) for
class A GPCRs and in Dore et al. (2014) for class C

GPCRs] CaSR mutation associated with ADH1 selec-
tively increases b-arrestin–dependent ERK1/2 activa-
tion, in which the mutation is predicted to disrupt an
extracellular salt bridge between Arg6803.32 and
Glu767 in the second extracellular loop (ECL) (Gorvin
et al., 2018a).

In some cell types, the CaSR stimulates opening of
L-type voltage-gated Ca2+ channels (Fajtova et al., 1991;
McGehee et al., 1997; Muff et al., 1988) and nonselective
cation channels, including transient receptor potential
cation channels (Ye et al., 1996;ElHiani et al., 2006;Meng
et al., 2014), although the pathways that couple the CaSR
to ion channels are poorly defined.

II. Agonists and Allosteric Modulators

A. Endogenous and Exogenous Agonists

1. Polyvalent Cations. The CaSR is nowwell-known
for its ability to sense fluctuations in Ca2+o . CaSR
radioligand-binding assays to quantify the affinity of
Ca2+o and other agonists have to date not been possible
because of low agonist affinity, a lack of suitable
radioligands, and complexities in quantifying agonist
binding to multiple binding sites. However, spectro-
scopic studies indicate Ca2+o binds to the VFT with an
affinity in the range of 3.0–5.0 mM (Zhang et al., 2014b).
These findings are supported by the use of an operational
model of agonism for receptors with multiple agonist
binding sites, in which Ca2+o affinity at the full-length
CaSR was 1.1–1.3 mM (Gregory et al., 2020). The low
millimolar Ca2+o affinity is consistent with Ca2+o potency in
healthy human subjects, in which Ca2+o suppresses PTH

Fig. 1. Key CaSR-signaling pathways. The CaSR primarily couples to Gq/11 and Gi/o proteins to mediate many of its physiological responses, including
PTH release. The CaSR may also couple to G12/13, but the physiological relevance of this is unknown; therefore, G12/13 is semitransparent in the figure.
AC, adenylate cyclase; ADIS, agonist-driven insertional signaling; Akt, protein kinase B; b-Arr, b-arrestin; CaM, calmodulin; DAG, diacylglycerol;
EGFR, epidermal growth factor receptor; ER, endoplasmic reticulum; PI3K, phosphatidylinositol 3-kinase; PI4K, phosphatidylinositol 4-kinase; PLA2,
phospholipase A2; PLD, phospholipase D.
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secretion with an approximate IC50 of 1.2 mM (which is
also the approximate free Ca2+o concentration in human
serum) (Brown, 1991; Ramirez et al., 1993), whereas in
cultured parathyroid cells, the Ca2+o IC50 for PTH release
is closer to 1 mM (Brown, 1983, 1991). The Ca2+o -PTH
relationship is characterized by a Hill coefficient greater
than unity (Brown, 1983, 1991; Ramirez et al., 1993). This
is because multiple Ca2+o ions bind to the CaSR in
a positively cooperative manner, allowing the CaSR to
respond to minute changes in Ca2+o concentrations that
span less than 100mM(Brown, 1983, 1991; Ramirez et al.,
1993). Thus, although Ca2+o is considered the primary
endogenous and therefore orthosteric agonist of theCaSR,
strictly speaking it is an allosteric modulator of its own
activity.
In addition to Ca2+o , the CaSR is activated by many

other polyvalent cations, including Mg2+, zinc, manga-
nese, ferrous iron, strontium (Sr2+), barium, cadmium,
cobalt, nickel, lead, terbium, Gd3+, europium, and
yttrium (Brown et al., 1990; Ruat et al., 1996;
Handlogten et al., 2000). Trivalent cations are generally
more potent than divalent cations, of which Ca2+o and
Mg2+ are the most physiologically relevant. The role of
non-Ca2+o cations in CaSR-mediated (patho)physiology
is unknown. Agonists that mimic the actions of Ca2+o at
the CaSR have traditionally been called type I
calcimimetics.
Although much larger and structurally more complex

than the small cations described above, polyamines are
CaSR agonists. Polyamines are found in all eukaryotes,
with spermine, spermidine, and their diamine precur-
sor putrescine the most abundant in mammals. Poly-
amines are synthesized ubiquitously in the body and
are also ingested in the diet and secreted by intestinal
bacteria. Although polyamines activate the CaSR in the
absence of Ca2+o , there is some evidence they also
potentiate the potency of Ca2+o (Quinn et al., 1997).
Spermine is the most potent CaSR agonist, followed by
spermidine and then putrescine (Quinn et al., 1997).
Spermine IC50 for suppression of PTH release from
cultured bovine parathyroid cells is ;200 mM (Quinn
et al., 1997). Blood polyamine concentrations in healthy
humans are ;5–10 mM (Casti et al., 1982; Soda et al.,
2009), concentrations that are likely sufficient to acti-
vate the CaSR in tissues where receptor density is high.
In the lung, polyamines and other polycations stimulate
CaSR-mediated airway contraction (Yarova et al., 2015)
(described in VI. Calcium-Sensing Receptor in Airway
Smooth Muscle and Epithelium). Intriguingly, other
overlapping functions of the CaSR and polyamines
exist, including promotion of osteoblast, keratinocyte,
vascular smooth muscle cell, and gastrointestinal epi-
thelial cell differentiation and proliferation (Riccardi
and Kemp, 2012; Leach et al., 2014; Miller-Fleming
et al., 2015). Thus, polyamines may contribute to
multiple (patho)physiological processes mediated by
the CaSR.

Not surprisingly, additional positively charged mole-
cules activate the CaSR, including poly-L-arginine,
protamine, and aminoglycoside antibiotics, including
neomycin, tobramycin, and gentamicin (McLarnon and
Riccardi, 2002). Poly-L-arginine is a mimetic of eosino-
phil major basic protein released to activate mast cells,
neutrophils, basophils, andmacrophages in asthma and
other allergic diseases. Ca2+i mobilization in CaSR-
HEK293 cells stimulated by the related eosinophil
cationic protein was completely absent in untransfected
HEK293 cells and was blocked by structurally distinct
CaSR inhibitors, demonstrating a CaSR-dependent
signaling mechanism (Yarova et al., 2015).

B. Endogenous and Exogenous Allosteric Modulators

Allosteric modulators bind to sites that are topo-
graphically distinct from the orthosteric binding site
and act to either potentiate [positive allosteric modu-
lators (PAMs)], inhibit [negative allosteric modulators
(NAMs)], or have no effect on (neutral allosteric ligands)
the binding or efficacy of the orthosteric agonist.
Allosteric modulators may also be agonists (or inverse
agonists) in the absence of orthosteric agonists and can
simultaneously act as agonists and PAMs (PAM-ago-
nists). CaSR PAMs have been termed type II calcimi-
metics and CaSR NAMs calcilytics.

1. L-Amino Acids. L-amino acids are endogenous
CaSR activators that are generally recognized as PAMs.
Thus, L-amino acids have no activity in the absence of
Ca2+o or another cationic activator, such as Gd3+ or
spermine, but potentiate CaSR-mediated responses in
the presence of submaximal concentrations of cationic
activators (Conigrave et al., 2000). In a Ca2+i mobiliza-
tion assay performed in CaSR-HEK293 cells, the
magnitude of Ca2+o potentiationmediated by 10mMamino
acids followed the rank order L-Phe, L-Trp, L-histidine .
L-alanine . L-serine, L-proline, L-glutamic acid .
L-aspartic acid (but not L-lysine, L-arginine, L-leucine,
and L-isoleucine) (Conigrave et al., 2000). Similarly, in
human parathyroid cells in culture, aromatic amino
acids, such as L-Trp and L-Phe, were the most potent
L-amino acid CaSR activators in Ca2+i mobilization
assays (Conigrave et al., 2004). Thus, the CaSR, like
a number of other class C GPCRs, is a promiscuous
sensor of L-amino acids (Conigrave and Hampson,
2006, 2010; Smajilovic et al., 2014).

As would be expected for a positive binding interac-
tion, L-amino acids and Ca2+o markedly enhance the
CaSR’s sensitivity to one another in a reciprocal man-
ner (Conigrave et al., 2000). Based on observations of
Ca2+i mobilization and PTH secretion assays in vitro,
amino acids support normal physiological Ca2+o sensi-
tivity and thus underpin the physiological Ca2+o concen-
tration set point for the parathyroid at around
1.1–1.2 mM (Conigrave et al., 2004).

Recent crystal structures of the CaSR’s VFT (Zhang
et al., 2016) and entire extracellular (Geng et al., 2016)
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domains as well as mutational studies suggest that
L-amino acids and analogs might be better viewed as
coagonists of the receptor rather than PAMs (see III.
Receptor Structure). As detailed later, L-amino acids
display pronounced biased signaling properties (IIC.
Biased Agonism and Biased Allosteric Modulation), and
L-amino acid signaling appears to be attenuated by
PKC-mediated phosphorylation of Thr888 in the
C-terminal tail of CaSR (IVA. Phosphorylation and
Dephosphorylation).
2. g-Glutamyl Peptides. Wang et al. (2006) demon-

strated that the g-glutamyl peptide, glutathione, is
a potent activator of the CaSR and of another class C
GPCR, the fish 5.24 receptor. Subsequently, various
natural and synthetic analogs of glutathione were
found to activate the CaSR in the presence of threshold
Ca2+o concentrations in a similar manner to L-amino
acids. A receptor doublemutant (Thr145Ala + Ser170Thr)
exhibits similar impairments of function when exposed to
either L-amino acids (Mun et al., 2005) or the glutathione
analog, S-methylglutathione (Broadhead et al., 2011),
suggesting overlapping binding sites. Interestingly,
g-glutamyl peptides active at the CaSR are also potent
activators of kokumi taste (Ohsu et al., 2010; Amino et al.,
2016).
3. pH. Large supraphysiological changes in buffer

pH alter the potencies of Ca2+o and Mg2+ at the CaSR
(Quinn et al., 2004). In the blood, pH rarely varies by
more than 0.2 U; however, this represents a change in
H+ concentration of ;58%. Such acidosis can occur in
advanced chronic kidney disease (CKD), which has
relevance to the CaSR (see V. (Patho)physiology of the
Calcium-Sensing Receptor and Its Ligands). Interest-
ingly, altering buffer pH from 7.4 to just 7.2 or 7.6 elicits
significant attenuation or enhancement of CaSR sig-
naling, respectively, as observed in both HEK293 cells
and bovine parathyroid cells (Campion et al., 2015). The
site of H+ action is unknown, although it is not
apparently mediated via the CaSR’s extracellular his-
tidine residues (Campion et al., 2015). Crucially, path-
ophysiological changes in pH elicit significant changes
in PTH secretion from isolated human parathyroid cells
(Campion et al., 2015). This indicates the potential
clinical relevance of altered acid or base balance in
CaSR-modulated mineral metabolism.
4. Phosphate. Crystallization of the CaSR ECD has

revealed up to four anion binding sites (Geng et al.,
2016) (see III. Receptor Structure), and a recent study
has revealed that phosphate inhibits the CaSR directly
and in a noncompetitive manner (Centeno et al., 2019).
This phosphate effect is more substantial than can be
explained by buffering of free Ca2+o ions, andmutation of
Arg62 inhibits the phosphate action. Exposure of
human and murine parathyroid cells to pathophysio-
logical phosphate concentrations induces rapid and
reversible PTH secretion indicative of a receptor-
mediated action (Centeno et al., 2019). Similarly, other

anions, such as sulfate (SO4
22), act as inhibitors of the

CaSR (Geng et al., 2016) potentially also acting via
Arg62 (Centeno et al., 2019).

5. Osmolarity. High sodium chloride (NaCl) concen-
trations are inhibitory for the CaSR, such that concomi-
tant Ca2+o concentration-response curves are right-shifted,
whereas lowering the NaCl concentration raises the
potency of Ca2+o for the CaSR (Quinn et al., 1998).
Accordingly, in dispersed bovine parathyroid cells,
raising extracellular osmolarity with either NaCl or
sucrose elicits rapid (within minutes) and substantial
PTH secretion, an effect that cannot be suppressed by
raising Ca2+o concentrations (Chen et al., 1987). Al-
though this means that the CaSR could represent an
ionic strength sensor where it is expressed in, for
example, the renal tubules or the subfornical organ of
the brain, there is little evidence to date that the CaSR
is a substantive contributor to mammalian osmoregu-
lation. Indeed, Na+ is a well-known negative allosteric
modulator of multiple class A GPCRs, in which it binds
in a conserved 7TM domain pocket. Therefore, alloste-
ric modulation of GPCRs, at least by Na+, is likely
a general phenomenon. Nonetheless, some severe
gain-of-function clinical CaSR mutations (see VI.
Calcium-Sensing Receptor–Related Genetic Diseases
and Therapeutic Interventions) can elicit a Bartter-
like salt-wasting syndrome, whereas loss-of-function
CaSR mutations can enhance the natriuretic response
to loop diuretics indicative of mild Na+ retention
(Huang and Miller, 2010; Tyler Miller, 2013).

6. Small-Molecule Allosteric Modulators. A detailed
review on the discovery and development of CaSR
small-molecule drugs has recently been published
(Nemeth et al., 2018). Therefore, for the purposes of
this review, the focus will be on small molecules for
which detailed pharmacological or clinical data are
available. To date, all CaSR small-molecule binding
sites have been localized to the 7TM domain and/or
ECLs (Petrel et al., 2003, 2004; Miedlich et al., 2004; Bu
et al., 2008; Leach et al., 2016). These sites are distinct
from the predominant Ca2+o -, L-amino acid, or
g-glutamyl binding sites in the ECD (see III. Receptor
Structure), and thus all small-molecule CaSR drugs
identified so far are allosteric.

For the majority of small-molecule PAMs and NAMs,
pharmacological characterization has been based on
their ability to potentiate or inhibit a single concentra-
tion of Ca2+o , usually in a Ca2+i mobilization or IP
accumulation assay (see Table 1). This approach pro-
vides a measure of modulator potency, which is a com-
posite value of affinity, cooperativity (the magnitude
and direction of modulator potentiation or inhibition of
the orthosteric agonist), and efficacy (i.e., agonism or
inverse agonism). Although potency measurements
facilitate drug comparisons in a series when in vitro
assays are performed under identical conditions, they
can be misleading when different assay conditions are
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employed (e.g., different orthosteric agonist concentra-
tions, different signaling outputs) (Gregory et al., 2018).
Therefore, more recent work has quantified PAM and
NAM affinity, cooperativity, and efficacy values as
separate parameters using an operational model of
allosterism or an allosteric ternary complex model
(Davey et al., 2012; Leach et al., 2013, 2016; Cook
et al., 2015; Diepenhorst et al., 2018; Gregory et al.,
2018, 2020).
7. Small-Molecule Positive Allosteric Modulators.

The structural and chemical diversity of small-molecule
CaSR PAMs is relatively limited, with few distinct
series discovered. Two chemically and structurally re-
lated small-molecule PAMs, cinacalcet and evocalcet
(Table 1), are clinically approved. Cinacalcet is FDA-
approved for the treatment of primary hyperparathy-
roidism in patients who cannot undergo parathyroidec-
tomy, and for hypercalcemia in adults with parathyroid
carcinoma. Cinacalcet is also FDA-approved for second-
ary hyperparathyroidism in patients on renal replace-
ment therapy, and has been used off-label to treat
naturally occurring loss-of-function mutations in the
CaSR or its signaling partners that cause disorders of
Ca2+o and PTH homeostasis (described in VI. Calcium-
Sensing Receptor–Related Genetic Diseases and Thera-
peutic Interventions). Cinacalcet was the first GPCR
allosteric modulator to be approved for clinical use in
2004. Evocalcet was approved in Japan in 2018 for the
treatment of secondary hyperparathyroidism in
patients on dialysis. Cinacalcet and evocalcet potentiate
Ca2+o activity at the CaSR, thus left-shifting the
Ca2+o -PTH concentration-response relationship in the
body. This means lower Ca2+o concentrations are re-
quired to suppress PTH release, thus normalizing
elevated serum PTH levels. However, both cinacalcet
and evocalcet carry a risk of hypocalcemia in patients
that limits their clinical utility (Fukagawa et al., 2018),
presumably in part from potentiation of the CaSR in the
kidney and enhanced CaSR-mediated calcitonin secre-
tion from thyroid parafollicular C cells (see V. (Patho)
physiology of the Calcium-Sensing Receptor and Its
Ligands). Furthermore, cinacalcet and evocalcet are
associated with adverse gastrointestinal side effects,
including nausea and vomiting, whichmay occur via the
CaSR expressed in the gastrointestinal tract. In rats
and humans, however, evocalcet appears to have re-
duced actions in the gastrointestinal tract in compari-
son with cinacalcet (Fukagawa et al., 2018; Kawata
et al., 2018).
Cinacalcet and evocalcet belong to the arylalkylamine

family of PAMs derived from the nonselective calcium
channel blocker, fendiline. A number of structurally
related arylalkylamine PAMs have been identified,
including NPS R-467 and NPS R-568 (the precursors
to the discovery of cinacalcet), calindol, and calcimi-
metic B (Table 1). The activity of these PAMs is highly
dependent upon their stereoselectivity, in which the

R-configuration of the methyl between the aromatic
and secondary nitrogen is more active than the
S-configuration (Nemeth et al., 2018). Although NPS
R-568, cinacalcet, and calindol exhibit similar affinity and
cooperativity values when measured in a Ca2+i mobiliza-
tion assay (Davey et al., 2012; Cook et al., 2015; Leach
et al., 2016; Diepenhorst et al., 2018; Keller et al., 2018),
R,R-calcimimetic B has a roughly 10-fold higher affinity
but comparable cooperativity (Cook et al., 2015). Although
concentrations of cinacalcet that exceed 1 mM weakly
activate the CaSR in the absence of divalent cations
(Nemeth et al., 2018), suggesting it is a “PAM agonist,”
arylalkylamine PAMs demonstrate negligible agonism at
concentrations that robustly potentiate CaSR activity
(Cook et al., 2015; Keller et al., 2018). In contrast, R,R-
calcimimetic B is a PAM and a partial agonist at
micromolar concentrations (Cook et al., 2015). Arylalkyl-
aminePAMsalso exhibit pronouncedpositive interactions
with L-amino acids (Zhang et al., 2002a) and glutathione
(Broadhead et al., 2011).

A benzothiazole series of CaSR PAMs that is struc-
turally and chemically distinct from the arylalkyl-
amines has been discovered. These PAMs include the
small benzothiazole, AC265347 (Table 1), which has
been characterized in detail. AC265347 has comparable
affinity and cooperativity to cinacalcet when measured
in a Ca2+i mobilization assay (Cook et al., 2015; Leach
et al., 2016; Diepenhorst et al., 2018), and similar to the
arylalkylamine PAMs, AC265347 is a PAM agonist,
although AC265347 is more potent and efficacious as an
agonist than the arylalkylamines (Cook et al., 2015).
Although AC265347 has not been tested in humans, in
healthy rats, AC265347 suppressed serum PTH levels
with greater potency than cinacalcet and demonstrated
a lower propensity to cause hypocalcemia (Ma et al.,
2011).

Trisubstituted urea compounds have been identified
as another potent class of CaSR PAMs (Temal et al.,
2013) (Table 1). Benzothiazole trisubstituted urea
(BTU) compound 13 (Deprez et al., 2013) is the best
characterized of this series. BTU compound 13 has
similar affinity and cooperativity to cinacalcet at the
CaSR in a Ca2+i mobilization assay (Cook et al., 2015;
Diepenhorst et al., 2018). Much like AC265347, BTU
compound 13 suppressed PTH levels in a rat model of
CKD while avoiding significant hypocalcemia (Deprez
et al., 2013).

8. Peptide Positive Allosteric Modulator, Etelcalcetide.
In 2017, a novel CaSR PAM, etelcalcetide (chemical
name N-acetyl-D-cysteinyl-D-alanyl-D-arginyl-D-arginyl-
D-arginyl-D-alanyl-D-argininamidedisulfidewithL-cysteine
hydrochloride), was FDA-approved for the treatment of
secondary hyperparathyroidism in patientswithCKD on
dialysis. Etelcalcetide is administered intravenously at
the end of dialysis. Similar to cinacalcet and evocalcet,
etelcalcetide is associated with adverse gastrointestinal
side effects and hypocalcemia (Hamano et al., 2017).
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TABLE 1
Representative CaSR agonists or endogenous and small-molecule allosteric modulators and their pharmacological properties

Ligand Structure (Cell Type or
Model, Assay)

Potencya
or

Affinityb
Cooperativityc

with Ca2+o
References

Agonists
Ca2+o Ca2+ Human, PTH

release
pEC50
2.9

NA Brown, 1983, 1991;
Ramirez et al., 1993;
Quinn et al., 1997;
Gregory et al., 2018,
2020

Parathyroid
cell, PTH
release

pEC50
3.0

NA

HEK293, Ca2+i pEC50
2.5–3.5

NA

HEK293, Ca2+i pKB 3.0 NA

Spermine HEK293, Ca2+i pEC50
3.3–4.4

NA Quinn et al., 1997;
Gregory et al., 2018

Neomycin HEK293, Ca2+i pEC50
4.4

NA McLarnon et al., 2002

PAMs

L-Trp HEK293, Ca2+i pEC50
2.6

ND Conigrave et al., 2000

Cinacalcet HEK293, Ca2+i pKB
5.9–6.7

2.6–4.7 Davey et al., 2012;
Leach et al., 2013,
2016; Cook et al.,
2015; Diepenhorst
et al., 2018

HEK293, IP1 pKB 6.1 2.6–4.8
HEK293,
pERK1/2

pKB
5.9–6.5

1.3–2.9

HEK293,
membrane
ruffling

pKB 8.1 2.6

HEK293, SRF-
RE lucd

pKB 7.1 4.5

NPS R-568 HEK293, Ca2+i pKB
6.0–6.6

3.0–3.9 Lu et al., 2009; Davey
et al., 2012; Cook
et al., 2015; Gregory
et al., 2018; Keller
et al., 2018

CHO, aequorin pKB 6.2 2.7
CHO/HEK293,

IP1

pKB
6.2–6.8

4.3–4.5

HEK293,
pERK1/2

pKB
5.6–6.6

2.0–5.1

HEK293,
membrane
ruffling

pKB 9.4 1.7

Calindol HEK293, Ca2+i pKB 6.3 5.4 Cook et al., 2015
HEK293, IP1 pKB 6.4 4.7
HEK293,
pERK1/2

pKB 5.2 8.1

Evocalcet HEK293, Ca2+i pEC50
7.0

ND Kawata et al., 2018

R,R-
calcimimetic
B

HEK293, Ca2+i pKB 7.2 1.9 Cook et al., 2015
HEK293, IP1 pKB 7.0 3.2
HEK293,
pERK1/2

pKB 7.1 3.0

AC265347 HEK293, Ca2+i pKB
6.2–6.4

2.5–4.3 Cook et al., 2015; Leach
et al., 2016;
Diepenhorst et al.,
2018

HEK293, IP1 pKB
7.3–8.0

4.0–4.7

HEK293,
pERK1/2

pKB
6.1–6.7

4.5–10

HEK293, SRF-
RE luc

pKB 6.2 13

(continued )
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TABLE 1—Continued

Ligand Structure (Cell Type or
Model, Assay)

Potencya
or

Affinityb
Cooperativityc

with Ca2+o
References

BTU compound
13

HEK293, Ca2+i pKB 6.7 3.2 Diepenhorst et al., 2018
HEK293, IP1 pKB 7.2 2.9
HEK293,
pERK1/2

pKB 6.2 1.2

HEK293, SRF-
RE luc

pKB 6.5 17

Etelcalcetide HEK293, IP1 pEC50
4.6

ND Walter et al., 2013

NAMs

NPS 2143 HEK293, Ca2+i pKB
6.2–6.7

0.3–0.5 Davey et al., 2012;
Leach et al., 2016

HEK293,
pERK1/2

pKB
6.2–6.6

0.3–0.6

HEK293,
membrane
ruffling

pKB 7.8 0.3

NPSP795 HEK293,
assay not
disclosed

pIC50 7.1 ND Kumar et al., 2010

Ronacaleret HEK293, Ca2+i pKB 6.4 0.03 Josephs et al., 2019

JTT-305/MK-
5442

PC12h, zif luce pIC50 7.9 ND Shinagawa et al., 2011

ATF936 HEK293, Ca2+i pKB 7.6 0.005 Josephs et al., 2019

BMS compound
1

HEK293, Ca2+i pKB 7.0 0.03 Josephs et al., 2019

3H-pyrimidine-
4-one
compound (R)-
2h

HEK293, Ca2+i pKB 7.8 0.009 Josephs et al., 2019

(continued )
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Etelcalcetide is comprised of seven D-amino acids
linked via a disulfide bond to L-cysteine. Not surpris-
ingly, given it is the only peptide CaSR PAM identified,
etelcalcetide has a unique mode of PAM action in
comparison to small-molecule PAMs that involves
binding to the CaSR via disulfide bond formation
(Alexander et al., 2015) (see III. Receptor Structure).
Although etelcalcetide has been classified as a PAM
agonist, assays used to discern agonism contained
0.5 mM MgCl2; therefore, it is currently uncertain
whether observed etelcalcetide efficacy for stimulation
of IP1 accumulation in the absence of Ca2+o is true
agonism or potentiation of Mg2+ (Walter et al., 2013).
The affinity and cooperativity of etelcalcetide at the
CaSR has not been quantified, but its potency for
potentiation of 1.2 mM Ca2+o in an HEK293 IP1 accu-
mulation assay was 25 mM (Walter et al., 2013).
9. Small-Molecule Negative Allosteric Modulators.

Due to the role of the CaSR in regulation of PTH
secretion, there was significant interest in the develop-
ment of CaSR NAMs that could stimulate PTH release.
Intermittent and transient increases in serum PTH
levels enhance the formation of new bone via the
differentiation and proliferation of bone-forming osteo-
blasts. This is evidenced by clinical use of recombinant
PTH1-34 injections to promote bone formation in
osteoporosis. However, if PTH levels remain elevated,
PTH stimulates the differentiation and proliferation of
bone-resorbing osteoclasts, resulting in bone break-
down (Dobnig and Turner, 1997).
Although several pharmaceutical companies have

embarked on CaSR NAM discovery programs, similar
to CaSR PAMs, there is fairly limited structural and
chemical diversity in the NAM scaffolds identified to
date. NPS 2143 (Table 1) was one of the first CaSR
NAMs to be discovered (Gowen et al., 2000) and is
structurally and chemically related to cinacalcet and

other arylalkylamines. Like CaSR PAMs, NAMs have
generally been evaluated for their potency to inhibit
a single Ca2+o (usually EC80) concentration. Neverthe-
less, more recent studies have employed an operational
model of allosterism to quantify NPS 2143 activity and
have indicated that NPS 2143 binds at the CaSR with
micromolar to submicromolar affinity depending on the
assay (Table 1) (Davey et al., 2012; Leach et al., 2013,
2016; Gregory et al., 2020). Importantly, NPS 2143 is
a partial NAM at the CaSR, meaning that it does not
fully inhibit Ca2+o -mediated signaling (Cook et al., 2015;
Leach et al., 2016; Gregory et al., 2018).

In rats, NPS 2143 stimulated the release of PTH,
resulting in an increase in bone turnovermarkers, but it
did not promote the formation of new bone (Gowen et al.,
2000). The lack of new bone formationwas hypothesized
to be due to the prolonged, rather than transient, PTH
release in response to NPS 2143, resulting in both bone
formation and resorption. Efforts to develop shorter-
acting CaSR NAMs based on the structure of NPS 2143
led to the discovery of ronacaleret (Fitzpatrick et al.,
2011a,b, 2012) and JTT-305/MK-5442 (Shinagawa
et al., 2011) (Table 1). However, in rats, JTT-305/MK-
5442 did not increase bone mass and density (Fisher
et al., 2012), whereas in human clinical trials, both
ronacaleret and JTT-305/MK-5442 lacked efficacy in
treating postmenopausal osteoporosis (Fitzpatrick
et al., 2011a,b, 2012; Halse et al., 2014).

Further efforts to identify additional CaSR NAMs
that may prove successful in treating osteoporosis led
to the discovery of four chemically distinct NAM
series exemplified by the quinazolinones ATF936 and
AXT914 (Gerspacher et al., 2010), the pyridine Bristol
Myers Squibb (BMS) compound 1 (Arey et al., 2005), a
series of 3H-quinazoline-4-ones and 3H-pyrimidine-4-ones
(Shcherbakova et al., 2005; Didiuk et al., 2009), and
benzimidazoles (Gerspacher et al., 2010). A recent study

TABLE 1—Continued

Ligand Structure (Cell Type or
Model, Assay)

Potencya
or

Affinityb
Cooperativityc

with Ca2+o
References

Benzimidazole
compound 40

Hamster
fibroblasts,

Ca2+i

pIC50 8.4 ND Gerspacher et al., 2010

Mixed PAM/NAM
Calhex 231 HEK293, Ca2+i pKB 6.5 ND Gregory et al., 2018

luc, luciferase; NA, not applicable; ND, not determined; SRF-RE, serum response factor–response element; zif, zinc finger.
apEC50 or pIC50 is the negative logarithm of ligand concentration that mediates a 50% response determined in a functional assay. For a PAM or NAM, the pEC50 or pIC50 is

the modulator’s ability to half maximally potentiate or inhibit a single Ca2+o concentration (usually EC80 or EC20, respectively).
bpKB is the negative logarithm of the ligand concentration that achieves 50% receptor occupancy (the equilibrium dissociation constant) determined in a functional assay in

which the interaction between an agonist (usually Ca2+o ) and the PAM or NAM was fitted to an operational model of allosterism or an allosteric ternary complex model.
cab values between the allosteric modulator and Ca2+o , in which a is the binding cooperativity, and b is a scaling factor that describes the effect of the modulator on agonist

efficacy. Because of a lack of commercially available CaSR radioligands, cooperativity was estimated as a composite ab value in functional assays.
dSerum response factor–response element luciferase reporter gene assay.
eZif promoter luciferase reporter gene assay.
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revealed that the affinity of ATF936 was 17-fold higher
than that of ronacaleret, and ATF936 also demon-
strated higher negative cooperativity (Josephs et al.,
2019) (Table 1). However, despite findings that the
quinazolinone NAMs may be superior to ronacaleret in
terms of desirable drug properties, when AXT914 was
evaluated for its effects on bone turnover in humans, the
trial was terminated early because of a lack of effect on
bone turnover markers and a propensity to cause
hypercalcemia (John et al., 2014).
After the failure of three different NAMs in human

clinical trials of osteoporosis, the development of CaSR
NAMs diminished. However, there has been recent
interest in repurposing these NAMs for the treatment
of Ca2+o homeostasis disorders caused by gain-of-function
mutations in the CaSR or its interactors (described in VI.
Calcium-Sensing Receptor–Related Genetic Diseases and
Therapeutic Interventions). Indeed, the NAM, NPSP795
(SHP635), has recently undergone clinical testing for its
therapeutic potential in the treatment of ADH1 (Roberts
et al., 2019).
10. Calhex 231: A Mixed Positive Allosteric Modula-

tor and Negative Allosteric Modulator. Although the
arylalkylamine, calhex 231, was originally classified
as a NAM based on its ability to inhibit an EC100

Ca2+o concentration (Kessler et al., 2006), a recent study
has revealed that calhex 231 is both a PAM and a NAM
(Gregory et al., 2018). This novel mode-switching
mechanism is due to allostery across the CaSR dimer,
wherein calhex 231 acts as a PAM when it occupies
a single protomer in the dimer and a NAM when bound
to both protomers. Mixed PAM and NAM activity was
observed in HEK293 cells stably expressing the CaSR
and in primary cultures of human parathyroid cells,
demonstrating that mode-switching may occur under
physiological conditions (Gregory et al., 2018). Because
several CaSR NAMs have been characterized based on
their ability to modulate only a single Ca2+o concentra-
tion, it is unclear at present whether other CaSR
allosteric modulators also exhibit mixed PAM and
NAM activity. However, whereas other CaSR NAMs
were identified from high throughput screens of large
compound libraries, calhex 231 originated from a PAM
scaffold (Kessler et al., 2004, 2006), which likely
contributes to its mixed PAM and NAM activity.

C. Biased Agonism and Biased Allosteric Modulation

Given that the CaSR responds to a diverse array of
different ligands, it is unsurprising that the CaSR is
subject to biased agonism and biased modulation. Bi-
ased agonism is the phenomenon by which distinct
ligands stabilize preferred GPCR signaling states, with
each state having the potential to stimulate or inhibit
discrete subsets of the full repertoire of intracellular
signaling pathways that couple to a given receptor
(Kenakin and Christopoulos, 2013). This is in contrast
to the earlier dogma that all agonists activate the same

subsets of GPCR signaling pathways to greater (e.g., full
agonists) or lesser (e.g., partial agonists) extents.
Similarly, biased modulation arises when an allosteric
ligand differentially modulates different agonist-
mediated signaling pathways.

For instance, in CaSR-HEK293 cells, Ca2+o preferen-
tially mediates stimulation of Ca2+i mobilization over
pERK1/2, whereas spermine preferentially activates
pERK1/2 (Thomsen et al., 2012a). Similarly, L-amino
acids activate Ca2+i mobilization and ERK phosphorylation
(Lee et al., 2007) and also inhibit cAMP synthesis. However,
they are inactive in stimulating phosphatidylinositol-PLC
and various other signaling events, including Rho-
dependent actin stress fiber formation (Davies et al.,
2006) and cAMP responsive element-binding protein
phosphorylation (Avlani et al., 2013), and appear to
promote Ca2+i mobilization via a G12/13/transient re-
ceptor potential cation 1–dependent Ca2+o influx path-
way (Rey et al., 2005, 2006).

Evidence from patients with FHH suggests CaSR bias
may arise in part from spatial and temporal CaSR-
signaling patterns. Loss-of-function germline mutations
of the adaptor-related protein complex-2 (AP2)-S1 gene,
which encodes the sigma subunit of the heterotetrameric
AP2s, cause FHH3 (Nesbit et al., 2013b; Hannan et al.,
2015a). AP2s forms part of the heterotetrameric AP2 that
plays a critical role in clathrin-mediated endocytosis.
AP2s mutations increase CaSR cell surface expression
yet reduce CaSR signaling because CaSR residency
time in clathrin-coated pits is increased, consequently
impairing CaSR Gq/11 signaling from endosomes
(Gorvin et al., 2018c). In contrast, Gi/o-mediated sig-
naling is less sensitive to AP2s mutations. Thus,
whereas the plasma membrane localized CaSR signals
via Gq/11 and Gi/o, endosomal CaSRs signal predomi-
nantly via Gq/11 (Gorvin et al., 2018c).

It must be noted that many of the studies reporting
differential CaSR-mediated pathway activation have
not been performed in a systematic manner using
identical conditions across assays (e.g., buffers, dura-
tion of agonist stimulation, etc.) or the same cellular
background. Furthermore, bias has not been quantified
in these studies. Therefore, it remains to be definitively
proven whether biased agonism is truly operative at the
CaSR or whether previous observations were due to
observational bias (e.g., different assay conditions,
different cell types) or system bias (e.g., the relative
efficiency with which the receptor couples to different
pathways).

Nonetheless, small-molecule allosteric modulators do
appear to exhibit true biased modulation at the CaSR.
Evidence of biased modulation comes from reversals in
the magnitude of cooperativity in different pathways
between distinct PAMs or NAMs or from differences in
PAM or NAM affinity for receptor states that couple to
different signal transducers. For instance, although
cinacalcet and NPS 2143 preferentially potentiate or
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inhibit, respectively, Ca2+o -mediated Ca2+i mobilization
over pERK1/2, AC265347 and R,R-calcimimetic B
show reversed bias for CaSR-mediated pERK1/2 over
Ca2+i mobilization (Cook et al., 2015; Leach et al., 2016;
Diepenhorst et al., 2018). Similarly, AC265347, NPS R-
568, and calindol, but not cinacalcet or R,R-calcimimetic
B, have a higher functional affinity (i.e., an affinity
quantified in a functional assay using an operational
model of allosterism (Leach et al., 2007)) for the
CaSR state that signals to IP1 accumulation versus
Ca2+i mobilization (Cook et al., 2015; Diepenhorst
et al., 2018), whereas cinacalcet, NPS R-568, and
NPS 2143 all have a higher functional affinity for the
CaSR state that couples to membrane ruffling (Davey
et al., 2012).
Evidence for small-molecule PAM and NAM bias also

comes from pharmacochaperone studies, which reveal
that although cinacalcet, AC265347, and BTU com-
pound 13 are all PAMs in multiple CaSR-mediated
signaling assays, only cinacalcet positively modulates
the trafficking of an endosomally-trapped, naturally
occurring mutant CaSR, rescuing its cell surface ex-
pression back to levels comparable to wild-type CaSR
(Leach et al., 2013; Cook et al., 2015; Diepenhorst et al.,
2018). In contrast, although NPS 2143 is a NAM of
CaSR signaling, it is a PAM of loss-of-expression
mutant receptor trafficking (Leach et al., 2013). This
is in contrast to the actions of NPS 2143 at the
wild-type CaSR, wherein it reduces CaSR surface
expression (Huang and Breitwieser, 2007), suggest-
ing naturally occurring mutations (which cause
Ca2+o homeostasis disorders; see VI. Calcium-Sensing
Receptor–Related Genetic Diseases and Therapeutic Inter-
ventions) may engender bias in CaSR function. Indeed,
Ca2+o -mediated bias toward Ca2+i mobilization is abolished
by some naturally occurring mutations (Leach et al.,
2012).
Although the physiological relevance of biased ago-

nism and biased modulation at the CaSR is not at
present known, differences in the propensity of CaSR
PAMs to cause hypocalcemia could be linked to this
phenomenon. For instance, as already mentioned, R,R-
calcimimetic B and AC265347 are effective suppressors
of PTH release. However, in comparison with cinacal-
cet, R,R-calcimimetic B and AC265347 demonstrate
reduced propensity to cause hypocalcemia in rats
successfully treated for severe hyperparathyroidism
induced by CKD (R,R-calcimimetic B) or in normal rats
(AC265347). The reduced incidence of hypocalcemia
with R,R-calcimimetic B and AC265347 is presumably
linked, in part, to their lower potency and efficacy for
the stimulation of calcitonin secretion versus suppres-
sion of PTH release (Henley et al., 2011;Ma et al., 2011).
Importantly, although suppression of PTH release has
been associated with pERK1/2, calcitonin release is
independent of pERK1/2 in rat medullary thyroid
carcinoma cells (Thomsen et al., 2012b). This highlights

differences in the coupling specificity of the CaSR in
distinct tissues and is consistent with observations that
when compared with cinacalcet, AC265347 and R,R-
calcimimetic B show reversed bias for CaSR-mediated
pERK1/2 over Ca2+i mobilization.

Another apparent difference between CaSR PAMs
points toward putative clinical advantages for cinacal-
cet. The CaSR agonist Sr2+ reduces the differentiation of
bone-resorbing osteoclasts (Bonnelye et al., 2008) and
stimulates osteoclast apoptosis (Hurtel-Lemaire et al.,
2009) (described in V. (Patho)physiology of the Calcium-
Sensing Receptor and Its Ligands). In cultured osteo-
clasts differentiated from human CD14+ monocytes,
although cinacalcet potentiated Sr2+-mediated tartrate-
resistant acid phosphatase expression (a marker of
osteoclast activity) and robustly inhibited osteoclast-
mediated hydroxyapartite artificial bone resorption,
AC265347 and BTU compound 13 were without effect
in these two assays (Diepenhorst et al., 2018). Although
it is not clear whether differences in the biased profile of
AC265347 and BTU compound 13 versus cinacalcet are
responsible for their distinct PAM activities in osteo-
clasts, it is interesting that only cinacalcet, and not
AC265347 or BTU compound 13, can pharmacochaper-
one loss-of-function mutant CaSRs potentially via dif-
ferential stabilization of different conformations of the
CaSR. A more detailed understanding of the signaling
and trafficking pathways that couple the CaSR to its
many physiological responses will aid our understand-
ing of why the CaSR responds to so many endogenous
activators and may facilitate the development of biased
compounds with improved, tissue-specific effects.

In addition to bias engendered by small-molecule
allosteric modulators, CaSR autoantibodies that cause
acquired hypocalciuric hypercalcemia can act as biased
allosteric modulators. Biased autoantibodies directed
against the CaSR VFT can potentiate IP accumulation
while inhibiting pERK1/2 generation (Makita et al.,
2007; Makita and Iiri, 2014), whereas others inhibit
pERK1/2 generation but have no effect on IP accumu-
lation (Pallais et al., 2011). Importantly, cinacalcet
corrected the severe hypercalcemia associated with
acquired hypocalciuric hypercalcemia caused by a bi-
ased autoantibody (Makita et al., 2019). Taken to-
gether, these findings once again highlight how bias
and allostery are key features of CaSR (patho)physiol-
ogy and drug actions.

III. Receptor Structure

To date, the complete structure of the CaSR has not
been determined. Current CaSR structural knowledge
comes from the inactive (Geng et al., 2016) and active
(Geng et al., 2016; Zhang et al., 2016) crystal structures
of the CaSR ECD in isolation, frommutagenesis studies
and homology modeling of the 7TM based on the crystal
structures of the metabotropic glutamate receptors
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(mGluRs) 1 and 5 7TMs (Dore et al., 2014; Christopher
et al., 2015, 2019), and from comparisons with the low
resolution cryogenic electron microscopy (cryo-EM) struc-
ture of mGlu5 (Koehl et al., 2019).
The CaSR is an obligate homodimer (Romano et al.,

1996; Bai et al., 1998a; Ward et al., 1998; Ray et al.,
1999; Zhang et al., 2001; Pidasheva et al., 2006), with
each protomer comprised of an extracellular VFT
domain (amino acids 20–542) and a cysteine-rich (CR)
domain (9 Cys residues within amino acids 542–612)
that links the VFT to the prototypical GPCR 7TM
domain (amino acids 613–862) (Fig. 2). The 7TM
domain is followed by a long intracellular tail (amino
acids 863–1078), which is predicted to be largely un-
structured but is important for trafficking and phos-
phorylation (Bai et al., 1998b; Chang et al., 2001;
Stepanchick et al., 2010; Zhuang et al., 2012).

A. Calcium-Sensing Receptor Extracellular Domain

1. Structural Overview of the Calcium-Sensing Re-
ceptor Extracellular Domain. The VFT extends out-
side the cell and is comprised of two lobe subdomains
(lobe 1 and 2; Fig. 2), with each lobe forming part of
a ligand binding cleft. In other class C GPCRs, this cleft
forms the orthosteric binding pocket (Kunishima et al.,
2000; Tsuchiya et al., 2002; Muto et al., 2007). However,
in the CaSR, it is an allosteric or coagonist binding site
for L-amino acids, with Ca2+o and other cations binding
elsewhere.
Two recent VFT crystal structures confirm that the

CaSR VFT forms a dimer, with each CaSR protomer
orientated next to each other as mirror images (Fig. 2).
The dimer orientation of the extracellular domain is
similar to that reported for other class C GPCRs,

including mGluRs (Kunishima et al., 2000; Tsuchiya
et al., 2002; Muto et al., 2007) and the GABAB receptor
(Geng et al., 2012, 2013). In the inactive state, the two
VFT lobes adopt an open conformation [buried surface
area of 740 Å2, calculated using methods described in
Krissinel andHenrick (2007)], and the interdomain cleft
is empty. In contrast, the active-state structures adopt
a closed conformation and a resulting increase in the
buried surface area to just over 1000 Å2 between the
VFT lobes (Fig. 2). Upon VFT closure, the interdomain
cleft interface rotates 29°, mediated by interactions
between the two lobes of the VFT (Geng et al., 2016).

The crystal structure of the CaSR VFT plus the CR
domains shows an 83-Å distance between the CR
domains when the CaSR VFT is in the open (inactive)
conformation, which is reduced to 23 Å once the VFT is
closed (active; Fig. 2D) (Geng et al., 2016). This change
is consistent with other X-ray structures of class C
ECDs (Muto et al., 2007; Chappell et al., 2016), likely
driving a similar reorientation of the 7TM domains as
seen in the mGlu5 cryo-EM structure a "transition-
state" that is partially active but not coupled to G
proteins (Koehl et al., 2019). This reorientation is
sustained by the rigid CR domain and its nine Cys
residues, which form five covalent disulfide bonds: four
within the CR domain and one that anchors the CR
domain to lobe 2 of the VFT. Consequently, mutation of
the Cys residues compromises this rigidity, impacting
significantly on receptor function (Fan et al., 1998).

2. Amino Acid and g-Glutamyl Peptide Binding Site.
Although Ca2+o has long been considered the orthosteric
agonist for the CaSR, Ca2+o does not occupy the con-
served cleft that forms the orthosteric binding site in
other class C GPCRs. Both mutagenesis (Zhang et al.,

Fig. 2. Structural conformation of the CaSR. (A) Model of the CaSR based on homology with full-length mGlu5 (PDB 6N51). The CaSR (cartoon ribbon)
comprises an extracellular VFT domain composed of lobe 1 (LB1, dark blue) and lobe 2 (LB2, teal) and a CR domain (yellow) anchored to the 7TM
(orange). (B) Inactive ECD monomer (PDB 5K5T). The bilobed VFT adopts an open conformation revealing a conserved binding cleft between the two
lobes. (C) Inactive ECD dimer (left, front view; right, side view). The CR domains of the inactive ECDs are separated. (D) Active ECD monomer (PDB
5K5S). Upon activation, the bilobed VFT closes the amino acid–binding site, narrowing the cleft. (E) Active ECD dimer (left, front view; right, side
view). Upon activation, each protomer (orange and yellow) is drawn closer together.
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2002b, 2014a; Mun et al., 2004, 2005) and, more re-
cently, the crystal structures of the VFT have revealed
that L-amino acids bind the conserved cleft (between
lobe 1 and 2), similar to L-Glu binding in the mGluRs
(Wellendorph and Bräuner-Osborne, 2009). Thus,
L-amino acids and analogs might be better viewed as
coagonists rather than PAMs.
The binding of L-Trp (Geng et al., 2016) or the

tryptophan derivative, L-1,2,3,4-tetrahydronorharman-
3-carboxylic acid (TNCA) (Zhang et al., 2016), stabilizes
closing of the bilobed domains through hydrogen bond-
ing and hydrophobic interactions with the receptor.
Mutational analysis of residues in the conserved inter-
domain cleft support binding of L-Trp here (Zhang et al.,
2002b, 2014a; Mun et al., 2004, 2005). Interestingly,
residues in the conserved cleft are also important for
Ca2+o activation of the CaSR (Bräuner-Osborne et al.,
1999; Kunishima et al., 2000; Tsuchiya et al., 2002;
Muto et al., 2007; Geng et al., 2013; Jacobsen et al.,
2017), suggesting that L-amino acids are required for
Ca2+o activation in line with a classification as coa-
gonists. However, these mutational studies have not
accounted for mutation-induced changes in receptor
expression, therefore the mutation-induced signaling
impairments may be due to reduced receptor expres-
sion and consequent reductions in apparent agonist
efficacy.
Receptor contacts with L-Trp or TNCA are predom-

inantly through backbone interactions, and the fact that
these interactions are largely not L-Trp- or TNCA-
specific means other amino acids could be accommo-
dated within this pocket, explaining the L-amino acid
promiscuity of the CaSR (see IIB. Endogenous and
Exogenous Allosteric Modulators). Interestingly, TNCA
was not included as a constituent of the crystallization
conditions. This highlights not only the diversity of
ligands that can bind and activate the CaSR but also
suggests that TNCA has such high affinity for the CaSR
that it is difficult to remove during the purification
process.
g-Glutamyl peptides are also potent CaSR PAMs that

can promote Ca2+o -dependent Ca2+i mobilization, sup-
press intracellular cAMP levels, and inhibit PTH
secretion from normal parathyroid cells (see IIB.
Endogenous and Exogenous Allosteric Modulators)
(Broadhead et al., 2011). This activity is lost when
Thr145 and Ser170 located in the interdomain cleft are
mutated to Ala, indicating that the g-glutamyl peptides
likely share the same binding site as the amino acids
(Mun et al., 2005; Broadhead et al., 2011).
3. Cation Binding Sites. In both crystal structures

of the CaSR VFT domain, cation binding sites were
identified, but these sites differed in their number,
location (with the exception of cation binding site 1), and
the cation that was bound to each site (Fig. 3).
Anomalous difference mapping indicated four

Ca2+o binding sites in the VFT structure solved by

Geng et al. (2016) (Fig. 3). In lobe 1 of the active
(L-Trp bound and closed) VFT conformation, backbone
carbonyl oxygen atoms of Ile81, Ser84, Leu87, and Leu88
coordinate Ca2+o binding at cation binding site 1 (PDB:
5K5S). There was no Ca2+o coordinated at cation binding
site 1 in the inactive structure (PDB: 5K5T), even though
this site is not significantly different in the active versus
inactive structures (Geng et al., 2016). As such, it is
possible that Ca2+o , which was used at a lower concentra-
tion in the crystallization conditions for the inactive
structure, could bind to this site without the need for the
VFT domain to be closed.

Cation binding site 2 is located adjacent to the L-Trp
binding site above the interdomain cleft in lobe 1 of the
VFT. Cation binding site 2 is occupied by Ca2+o in both
the inactive and active structures, in which Ca2+o is
coordinated by the hydroxyl group of Thr100 in both
states and by the carbonyl of Asn102 via a water
molecule in the active structure. Thr145 also lines
cation binding site 2 and forms part of the L-Trp binding
cleft in the active state (Geng et al., 2016).

The hydroxyl groups of Ser302 and Ser303 coordinate
cation binding site 3, either directly or indirectly
throughwatermolecules, at the edge of the interdomain
cleft of lobe 2. The closing of lobe 1 and lobe 2 of the VFT
is facilitated byCa2+o stabilization of a conformation that
permits an interdomain hydrogen bond interaction
between lobe 1 residue Arg66 and lobe 2 residue
Ser301 (Geng et al., 2016).

Finally, upon agonist binding, cation binding site 4
forms part of the homodimer interface bridging the lobe
2 domain of one subunit and the CR domain of the
second subunit. Three interfacial residues, the carbox-
ylate group of Asp234, and carbonyl oxygen of Glu231
and Gly557, coordinate Ca2+o binding to site 4 (Geng
et al., 2016).

The anomalous difference map intensities varied at
each of the Ca2+o binding sites, where intensity was
ranked as Ca2+o binding site 1 = 2 . 3 . 4. The lower
anomalous signal for Ca2+o in sites 3 and 4 indicates
incomplete occupancy or higher flexibility at these
positions in the crystal lattice. The authors suggested
the lower signal reflects a lower Ca2+o affinity at
these sites. In support of a lower Ca2+o binding affinity
for cation binding site 4, the authors proposed that
Ca2+o binding at site 4 stabilizes the active homodimer
conformation, and thus the site is occupied only at
elevated concentrations required for receptor activation
(Geng et al., 2016).

In contrast to the structures by Geng et al. (2016),
Zhang et al. (2016) identified two cation binding sites in
their active VFT structures. Electron density and geo-
metric restraints were used to identify Mg2+ occupying
these cation binding sites, one of which overlapped with
cation binding site 1 in the structure by Geng et al.
(2016). However, in contrast to the unoccupied cation
binding site 1 in the inactive structure by Geng et al.
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(2016), cation binding site 1 was occupied byMg2+ in the
inactive structure by Zhang et al. (2016). The Mg2+ is
coordinated by Ser84 and backbone interactions with
Ile81, Ile87, and Leu88, in addition to two water mole-
cules. This site is similarly occupied by a Mg2+ cation in
the rat mGlu1 VFT structure (Kunishima et al., 2000).
The secondMg2+ binding site (cation-binding site 5) is

located at the dimerization interface of lobe 2 and is
coordinated through Ser240 and four water molecules
(Zhang et al., 2016). The highly conserved residues
Glu228 andGlu231 from one protomer andGlu241 from
the other protomer surround this site.
Anomalous difference maps identified a Gd3+ binding

site (cation binding site 6) coordinated by Glu232,
Glu228, and Glu229 adjacent to cation binding site 5
on the lobe 2 dimerization interface (PDB: 5FBN)
(Zhang et al., 2016). The Glu228Ile and the double
mutant Glu228Ile/Glu229Ile have previously been
shown to reduceMg2+-induced Ca2+i mobilization; there-
fore, other cations could bind here (Huang et al., 2009).
The crystal structures of theECDsuggest thatCa2+o and

other cations play a role in: 1) local stabilization of the
CaSR ECD; and 2) activation of the receptor via stabili-
zation of the homodimer through cation binding at sites

4-6 (Jensen et al., 2002; Geng et al., 2016; Zhang et al.,
2016). It is unknown whether Ca2+o alone can activate the
receptor or whether it requires the presence of the cleft-
binding ligands. Although Geng et al. (2016) obtained an
active (closed) structure in the absence of amino acids, an
unidentified continuous stretch of density in the con-
served interdomain cleft was observed, which could be
attributed to an endogenous ligand or a ligand acquired
during the crystallization process. If ligands that bind the
conserved interdomain cleft are difficult to remove during
crystallography studies, it is likely that these same
ligands are present during in vitro assays that measure
CaSR activation. Furthermore, cations identified in the
crystal structures could be artifacts of the crystallization
conditions and merely stabilize the crystal contacts re-
quired for structure determination. Although mutagene-
sis was used to corroborate the observed cation binding
sites (Geng et al., 2016; Zhang et al., 2016), these
mutational studies neither accounted for mutation-
induced changes in receptor expression nor quantified
changes in cation affinity and efficacy. Therefore, a re-
duction in cation binding uponmutation of these sites has
not been validated. Furthermore, analysis of Ca2+o -binding
proteins to predict the CaSR’s Ca2+o sites, coupled with

Fig. 3. Binding sites within the CaSR crystal structures. ECD conformations of the (A) active (PDB 5K5S) and (B) inactive (PDB 5K5S) calcium-bound
structures and the VFT conformations of the (C) active Mg2+-bound (PDB 5FBK) and (D) active Mg2+- and Gd3+-bound (PDB 5FBH) structures. Crystal
structures are shown as cartoon ribbon within the transparent molecular surface and colored as in Fig. 2. Hydrogen bond interactions (dashed lines) of
calcium (red spheres), Mg2+ (green spheres), and Gd3+ (yellow spheres) with key residues or water molecules (black spheres) are shown for each
proposed binding site.
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mutagenesis and spectroscopic techniques to validate the
predictions, confirmed multiple VFT Ca2+o binding sites,
but they differed to those identified in the VFT crystal
structures (Huang et al., 2007, 2009; Kirberger et al.,
2008; Wang et al., 2009, 2010; Zhao et al., 2012).
Moreover, analyses of a “headless” CaSR, in which the
ECD has been removed, has shown that Ca2+o can also
activate the CaSR via binding sites in the 7TM domain
(see IIIB. Calcium-Sensing Receptor 7-Transmembrane
Domain) (Ray and Northup, 2002; Leach et al., 2016).
Accordingly, the cooperative binding of Ca2+o at multiple
binding sites likelymaximizes the CaSR’s ability to respond
toCa2+o over a narrowphysiological range. Additional active-
state structures, biophysical studies, andmutagenesis work
are required to fully understand how these sites interact.
Site-directed mutagenesis and functional studies

show that Ca2+o and L-amino acids potentiate each
other’s activity in a positively cooperative manner
(Conigrave et al., 2000; Zhang et al., 2002b, 2014a,b;
Mun et al., 2005). Under physiological conditions,
L-amino acids potentiate Ca2+o potency for evoking
intracellular responses (Conigrave et al., 2007), and
mutating residues important for L-amino acid binding
eliminated L-Phe potentiation of Ca2+i mobilization
(Conigrave et al., 2000; Zhang et al., 2002a). The ability
of Ca2+o and L-amino acids to cooperatively activate the
CaSR was further demonstrated using saturation
transfer difference NMR (Zhang et al., 2014b). Using
saturation transfer difference NMR, L-Phe was esti-
mated to bind to the CaSRwith an affinity of;10mM in
the absence of Ca2+o , whereas in the presence of Ca2+o ,
L-Phe affinity was increased. Similarly, and as
expected for reciprocal cooperativity, the binding affin-
ity of Ca2+o in the presence of 10 mM L-Phe was
increased. Therefore, dual binding of Ca2+o and amino
acids enhances the sensitivity of the CaSR to changes in
concentrations of these ligands.
4. Anion Binding Sites. A total of four anion binding

sites in the inactive and active extracellular domain
structures were identified based on electron density and
crystallization conditions (Geng et al., 2016). Anion
binding sites 1-3 are located above the interdomain
cleft in lobe 1, and anion site 4 is located in lobe 2.
Although SO4

22 and PO4
32 anions were modeled into

these structures, it is possible other anions may be
present. These anions act to stabilize the local confor-
mation of the receptor in the crystal structure because,
in the absence of PO4

32 in the inactive crystal structure,
several binding site residue side chains are disordered.
In the inactive structure, anions were bound at sites 1-3,
whereas in the active structure, only sites 2 and 4 were
occupied. In the crystal structures, anions may have
stabilized the CaSR to aid crystallization. However, like
all GPCRs, the CaSR can sample multiple conformations
not captured in these crystal structures. Thus, under
physiological conditions, anions may act to stabilize in-
termediate CaSR states.

5. Etelcalcetide Binding Site. The polypeptide allo-
steric modulator etelcalcetide binds to a distinct site in
the CaSR’s VFT domain and requires a covalent S-S
bond formed directly with the CaSR VFT to retain
activity (Alexander et al., 2015). This interaction occurs
when the free Cys482, which is located at the back of
VFT lobe 1 near the hinge loops, exchanges with a L-Cys
disulphide bound to a D-Cys in the etelcalcetide
D-amino acid peptide sequence. Despite this covalent
linkage, the interaction appears transient, and the
effect of etelcalcetide on plasma PTH levels rapidly
diminishes immediately after withdrawal of intrave-
nous injection (Alexander et al., 2015). It is not known
how etelcalcetide binding potentiates CaSR activity at
a structural level; therefore, further structural and
mutagenesis studies are needed to determine the
conformational changes stabilized by etelcalcetide that
mediate its PAM activity.

B. Calcium-Sensing Receptor 7-
Transmembrane Domain

1. Structural Basis of Calcium-Sensing Receptor 7-
Transmembrane Activation. The only full-length class
C GPCR structure is of mGlu5, which was determined
using cryo-EM. The full-length mGlu5 structure shows
how the inactive (or open) VFT receptor complex
disrupts the interface between the 7TM domains,
whereas the activated (closed) complex forces a reorien-
tation of the 7TM domains, fostering an interface
between the top of TM6 and TM7 (Koehl et al., 2019).
Without a comparable structure available for the CaSR,
similar conformational changes driving CaSR activa-
tion can only be hypothesized. Nevertheless, there is
significant structural and functional data that are
available for the CaSR 7TM that is important for
understanding its activity.

Like all GPCRs, the CaSR’s 7TM helices are joined by
intracellular loops (ICLs) 1-3, which are important for
effector coupling, and ECLs 1-3, in which ECL2 and
ECL3 contain a number of residues important for
receptor activation (Leach et al., 2012; Goolam et al.,
2014). Structural and biochemical data for other GPCR
classes show that receptor activation involves an out-
ward movement of TM5 and TM6 to permit G protein
coupling and signal transduction. 7TM movements are
driven by a number of conserved amino acid sequences
important for receptor activation, which are known as
switch motifs. How this process may happen in the
CaSR is discussed in this section.

Although the CaSR responds to a diverse array of
stimuli through its VFT, the VFT is not required for the
receptor to respond to Ca2+o . The CaSR 7TM domain
alone signals in response to Ca2+o , albeit with lower
potency and a significant reduction in the Ca2+o Hill
coefficient (Ray and Northup, 2002; Leach et al., 2016).
This indicates that the CaSR 7TM also contains one or
more orthosteric binding sites. Regrettably, no
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structures of the CaSR 7TM have been determined
experimentally. However, sequence comparisons be-
tween the CaSR and mGlu1 or mGlu5 reveal that
putative switch motifs important for receptor activation
are shared throughout the 7TMs of class C GPCRs,
guiding our understanding of CaSR activation.
With the lack of a CaSR 7TM domain structure, the

CaSR 7TM has been the subject of extensive mutagen-
esis and structure-function studies in an attempt to
understand this domain. Guided by naturally occurring
and engineered mutations and sequence homology with
other GPCRs, residues important for Ca2+o activity,
allosteric modulation, biased agonism, and biased mod-
ulation have been identified (Leach et al., 2013, 2014;
Goolam et al., 2014; Cook et al., 2015). Indeed, the
putative Ca2+o binding site within the 7TM has been
predicted using this approach, in which Ca2+o is hypoth-
esized to mediate an interaction network between
Glu767ECL2 and Glu8377.32 (Leach et al., 2016).
The mGlu1 and mGlu5 X-ray structures revealed an

ionic lock formed between Lys3.50 (Lys6983.50 in the
CaSR) and Glu6.35 (Glu8036.35 in the CaSR) (Dore et al.,
2014; Christopher et al., 2015, 2019). These ionic lock
residues are conserved across class C GPCRs and this
“switch motif” is believed to stabilize the inactive
conformation of the class C 7TM domain in the absence
of agonist (Dore et al., 2014). Furthermore, a conserved
sequence in class A GPCRs important for their activa-
tion called the “toggle” switch motif (protein sequence:
FxxCWxP6.50) is replaced by a “wl switchmotif” (protein
sequence: W6.50L6.51) in class C GPCRs (Trzaskowski
et al., 2012). Although the wl switch motif differs
markedly in sequence from the class A toggle switch
motif, most notably by its lack of Pro6.50 to induce
a characteristic kink in TM6 (Lagerström and Schiöth,
2008), Trp6.50 in the class C GPCR wl motif (Trp8186.50

in the CaSR) is in an identical position to Trp6.48 in the
class A GPCR FxxCWxP6.50 motif (Trzaskowski et al.,
2012; Dore et al., 2014). Rotation of the Trp6.48 side
chain is a central feature of the toggle switch motif
during class A GPCR activation. Molecular dynamic
simulations suggest a similar rotation of Trp6.50 may
occur in mGluR2 upon activation (Perez-Benito et al.,
2017), whereas the mGlu5 crystal structures demon-
strate that Trp6.50 can alternate between two distinct
rotomers when bound to different NAMs, indicating it
differentially orientates upon binding of different
ligands (Dore et al., 2014; Christopher et al., 2015,
2019). Thus, it is hypothesized that Trp6.50 in class C
GPCRs fulfills an equivalent toggle switch function to
Trp6.48 in class AGPCRs (Trzaskowski et al., 2012; Dore
et al., 2014). Finally, the CaSR and other class CGPCRs
contain a P7.56KxY motif, which is believed to perform
an analogous role to the NP7.50xxY(x)5/6F motif
(wherein F sits five or six residues away from the Y) in
class A GPCRs. The NP7.50xxY(x)5/6F motif undergoes
significant rearrangement during activation (Fritze et al.,

2003; Katritch et al., 2013; Dore et al., 2014). Neverthe-
less, without high resolution structures of the CaSR and
with only inactive mGlu1 and mGlu5 7TM structures
available, it is difficult to confidently determine any
importance of thesemotifs to CaSRactivation and effector
coupling.

2. Small-Molecule Allosteric Modulator Binding
Sites. The CaSR 7TM contains allosteric binding sites
for small-molecule allosteric modulators (Ray and
Northup, 2002; Petrel et al., 2003, 2004; Miedlich et al.,
2004; Hu et al., 2006; Bu et al., 2008; Gerspacher et al.,
2010; Leach et al., 2016; Gregory et al., 2018; Keller et al.,
2018; Josephs et al., 2019). These sites have been
established by mutagenesis studies that examined
changes in modulator potency or affinity coupled with
homology modeling to understand the context of this
mutagenesis data. Initial homology modeling was
based on the solved X-ray crystallography structures
of class A GPCRs (Miedlich et al., 2004; Hu et al.,
2006; Bu et al., 2008; Gerspacher et al., 2010), but this
was later extended to modeling based on the NAM-
bound 7TM structures of mGlu1 and mGlu5 (Leach
et al., 2016; Gregory et al., 2018; Keller et al., 2018;
Josephs et al., 2019).

Mutagenesis and homology modeling has established
that the CaSR 7TM domain contains an extended
allosteric binding pocket formed by Phe6682.56,
Arg6803.32, Phe6843.36, Phe6883.40, Glu767ECL2, Leu7765.43,
Trp8186.50, Phe8216.53, Tyr8256.56, Val833ECL3, Ser834ECL3,
Glu8377.32, Ala8407.35, Ile8417.36, and Ala8447.39 (Leach
et al., 2016). This extended pocket overlaps with the
allosteric and orthosteric binding sites in biogenic amine
class A GPCRs (Kruse et al., 2013) and contains multiple
binding sites. For instance, arylalkylamine PAMs and
NAMs, such as cinacalcet andNPS 2143, are predicted to
form direct salt-bridge interactions with Glu8377.32 at
the top of the extended binding pocket supported by
substitutions of Glu8377.32 with uncharged or positively
charged amino acids, which abolish or significantly
reduce arylalkylamine activity (Miedlich et al., 2004;
Bu et al., 2008; Leach et al., 2016; Jacobsen et al., 2017;
Gregory et al., 2018; Keller et al., 2018; Josephs et al.,
2019). AC265347 is believed to bind lower in the
allosteric pocket because it lacks the capacity to interact
with Glu8377.32 (Leach et al., 2016). Although ATF936 is
predicted to bind in a comparable position to the
arylalkylamines, mutation of Glu8377.32 has no effect
on ATF936 potency or affinity; therefore, some of its
binding interactions with the CaSR differ to the arylal-
kylamines (Gerspacher et al., 2010; Josephs et al., 2019).

Excitingly, the established 7TM allosteric pocket is
unlikely to be the only binding site for small-molecule
allosteric modulators. The CaSR NAM, BMS compound
1, does not appear to use this binding site because it
interacts in a noncompetitive manner with NPS 2143
and is largely unaffected by many of the 7TMmutations
that reduce the affinity of other CaSR NAMs (Arey
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et al., 2005; Josephs et al., 2019). Thus, there remains
scope for allosteric modulator binding to multiple sites
in the CaSR 7TM.
3. Structural Basis of Small-Molecule Allosteric

Modulator Cooperativity, Efficacy, and Bias. Fitting an
operational model of agonism or allosterism to functional
CaSR data has revealed structural features important
for allosteric cooperativity, agonism, and bias. For the
PAMs cinacalcet, NPS R-568, and AC265347, muta-
tions Glu767ECL2Ala, Val8176.49Ala, or Ala8447.37Val
all reduced the cooperativity of these PAMs (Leach
et al., 2016; Keller et al., 2018). However, substantial
differences between PAMs have also been described.
For instance, although mutation of Phe6883.40Ala,
Tyr8256.57Ala, or Leu8487.43Ala reduced the coopera-
tivity of the two arylalkylamine PAMs, cinacalcet and
NPS R-568, mutation of Ala6151.42Val or Lys831ECL3Ala
only reduced the cooperativity of cinacalcet. Furthermore,
mutation of Trp8186.50Ala, which is part of the wl motif
discussed above, increased cooperativity of cinacalcet but
had no significant effect on NPS R-568 cooperativity.
Although structurally and pharmacologically similar, the
divergent residues mediating cinacalcet or NPS R-568
cooperativity demonstrate how subtle differences in
chemical scaffolds can stabilize distinct structural con-
formations of the CaSR 7TM domain (Leach et al., 2016;
Keller et al., 2018).
The PAM agonist, AC265347, demonstrated further

differences from cinacalcet and NPS R-568. For in-
stance, unlike cinacalcet and NPS R-568, mutations
Tyr8256.57Ala or Leu8487.43Ala had no effect on AC265347
cooperativity, whereas mutation of Phe6883.40Ala altered
AC265347 cooperativity (Leach et al., 2016; Keller et al.,
2018). Interestingly, AC265347 biased modulation of
pERK1/2 versus Ca2+i mobilization was altered by the
mutations Leu7765.43Ala or Trp8186.50Ala. Here, these two
mutations increased or decreased AC265347 cooperativity
in pERK1/2 assays without altering cooperativity in Ca2+i
mobilization assays, providing some insight into 7TM
residues that specifically mediated CaSR signaling toward
a specific signaling pathway (Cook et al., 2015; Leach et al.,
2016). Furthermore, allosteric agonism mediated by
AC265347 has different requirements to Ca2+o agonism.
Although mutation of Leu7765.43Ala or V8176.49Ala re-
duced efficacy of both AC265347 and Ca2+o , mutations
Phe6843.36Ala or Phe6883.40Ala decreased AC265347 effi-
cacy without altering the efficacy or affinity of Ca2+o (Leach
et al., 2016; Keller et al., 2018).
Similar to residues that transmit cooperativity medi-

ated by PAMs, distinct amino acids transmit negative
cooperativity mediated by different NAMs. For in-
stance, of the residues analyzed to date, only the
mutation Leu7765.43Ala significantly altered NPS
2143 cooperativity (Leach et al., 2016). In contrast,
a number of mutations that had no effect on NPS 2143
cooperativity increased or decreased ATF936 coopera-
tivity, including Glu767ECL2Ala, Trp8186.50Ala, and

Ile8417.36Ala (Josephs et al., 2019). Other NAMs were
sensitive to different mutations (Josephs et al., 2019).
Further analysis of additional 7TM mutations will help
to unravel cooperativity networks that drive global and
ligand-specific allosteric effects.

C. Calcium-Sensing Receptor Dimerization

Like all class C GPCRs, CaSR dimerization is a key
feature governing receptor function. The dominant in-
teraction underpinning the CaSR dimer is two covalent
disulfide bonds formed at the top of lobe 1 of the VFT
domains between Cys129 and Cys131 (Ray et al., 1999).
However, the CaSR is not dependent on the disulfide
links for activity, as is evidenced by mutation of these
residues to Ser, which does not alter surface expression
or Ca2+o potency in vitro (Fan et al., 1998; Zhang et al.,
2001).

Dimerization influences allosteric modulation at the
CaSR. For instance, negative allosteric modulators
must bind both protomers to block signaling, whereas
PAMs only need occupy one protomer to exert their full
modulatory effect (Hauache et al., 2000; Jacobsen et al.,
2017; Gregory et al., 2018). This feature likely reflects
agonist-mediated signal transmission through the
CaSR, which occurs across the dimer rather than
propagating through a single protomer (Hauache
et al., 2000). Consequently, transactivation across the
dimer can result in unique pharmacology for CaSR
allosteric modulators. An example is calhex 231, which
shows positive allosteric activity when bound to the
allosteric site in only one protomer but shows negative
allosteric activity when occupying both the allosteric
sites of the dimer (Gregory et al., 2018).

Immunoprecipitation data have demonstrated that
the CaSR forms heterodimers in vitro with mGlu1/5 or
the GABAB receptor, with heterodimers detected in
bovine and mouse brain lysates, respectively (Gama
et al., 2001; Chang et al., 2007). On the other hand,
fluorescence resonance energy transfer studies have
revealed that the CaSR does not heterodimerize with its
closest receptor homolog, the GPRC6A receptor
(Jacobsen et al., 2017). Heterodimerization may facili-
tate the varied functional roles of the CaSR in different
tissues, particularly in the brain, wherein the expres-
sion of the GABAB receptor regulates CaSR expression
and vice versa (discussed in VK. Calcium-Sensing
Receptor in the Brain and Nervous System).

D. Calcium-Sensing Receptor Glycosylation

The CaSR VFT domain contains 11 potential
N-linked glycosylation sites; however, not all of these
sites have been experimentally verified. The CaSR is
glycosylated in the endoplasmic reticulum with man-
nose (immature) carbohydrate prior to mature complex
glycosylation processing in the Golgi. Disruption of at
least three glycosylation sites can impair receptor pro-
cessingand cell surface expression (Ray et al., 1998). Eight
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glycosylation sites (Asn90, Asn130, Asn261, Asn287,
Asn446, Asn468, Asn488, and Asn541) have been exper-
imentally validated, whereas questions remain over the
three remaining sites (Asn386, Asn400, and Asn594).
Notably, Asn594 was glycosylated in the solved X-ray
crystal structure, whereas Asn386 was mutated to Gln to
prevent glycosylation and aid crystallization. However, it
is unclear whether this observation at a truncated CaSR
sample reflects the glycosylation arrangement of the full-
length CaSR. Importantly, the functional role of glycosyl-
ation beyond controlling surface expression needs further
investigation.

IV. CaSR Regulation

A. Phosphorylation and Dephosphorylation

PKC-mediated phosphorylation of the CaSR provides
a rapid and quickly reversible mechanism for inhibiting
receptor activity. Indeed, treatment of parathyroid cells
with PKC-activating phorbol esters overcomes the in-
hibitory effect of Ca2+o on PTH release (Brown et al.,
1984; Nemeth et al., 1986). When first cloned, the CaSR
was predicted to contain five PKC consensus motifs,
although 54 serine and threonine residues reside in the
receptor’s C-terminal tail and ICLs (Garrett et al.,
1995a). However, the key inhibitory phosphorylation
site is Thr888 in the C-terminal tail (Bai et al., 1998b).
Thr888 is most likely phosphorylated by PKCa (Young
et al., 2014) and dephosphorylated by a calyculin A–
sensitive protein phosphatase (McCormick et al., 2010).
The functional importance of inhibitory Thr888 phos-

phorylation is most apparent with the clinical mutant,
Thr888Met, which cannot be phosphorylated. In vitro
Thr888Met is a gain-of-function mutant, whereas it
suppresses PTH secretion in vivo, resulting clinically in
ADH (see VIC. Autosomal Dominant Hypocalcemia and
Bartter Syndrome Type V) (Lazarus et al., 2011).
Therefore, CaSR phosphorylation contributes signifi-
cantly to CaSR activity in vivo and thus to the overall
control of PTH secretion and Ca2+o homeostasis
[reviewed in Conigrave and Ward (2013)].
The nonphosphorylatable mutant, Thr888Val, also

produced a significant gain of function, which was not
further enhanced by comutating the other four pre-
dicted PKC sites (Bai et al., 1998b). However, PKC
inhibition at the wild-type CaSR resulted in a greater
gain of function than produced at the Thr888Val
mutant, thus it appeared likely that another unknown
site may be phosphorylated in tandem with Thr888.
However, the identity of this site has remained elusive. In
mGlu5, the key PKC phosphorylation site, Ser839 (Kim
et al., 2005), aligns not with Thr888 in the CaSR but with
Ser875, a residue not originally predicted to be phosphor-
ylated by PKC (Garrett et al., 1995a). Intriguingly,
current data indicate removal of this putative phosphor-
ylation site from the CaSR (Ser875Ala) also produces
a gain of function, similar to that of Thr888Ala, whereas

a phosphomimetic mutation at this site (Ser875Asp)
produces a loss of function (Binmahfouz et al., 2019).
The double Ser875Ala plus Thr888Ala mutant exhibits
a greater gain of function than Ser875Ala alone, and
concomitant PKC inhibition exerts no further signal
enhancement. Thus, Ser875 is most likely the second
major inhibitory PKC site in the CaSR (Binmahfouz et al.,
2019).

Ca2+o induces biphasic concentration-dependent phos-
phorylation of Thr888 in CaSR-HEK cells, with 0.5-
2.5 mM Ca2+o eliciting increased Thr888 phosphoryla-
tion after 10minutes, whereas 2.5-5 mMCa2+o decreases
phosphorylation apparently by activating a calyculin
A-sensitive protein phosphatase (McCormick et al.,
2010). The decrease in Thr888 phosphorylation medi-
ated by 2.5-5 mM Ca2+o occurs at the same Ca2+o
concentrations that elicit sustained, as opposed to
oscillatory, Ca2+i mobilization. Consistent with this,
the Thr888Ala mutant is not only gain-of-function but
also exhibits less oscillatory and more sustained Ca2+i
mobilization, as does the wild-type CaSR when
cotreated with a PKC inhibitor (Davies et al., 2007).
Furthermore, PKC-dependent phosphorylation of
Thr888 attenuates L-amino acid–dependent signaling
in a manner similar to its effect on Ca2+o (Bai et al.,
1998b; McCormick et al., 2010). Since PKC-mediated
Thr888 phosphorylation is thus a critical regulator of
CaSR function, differential CaSR phosphorylation
could provide a mechanism to permit biased signaling
in different cells or in response to various agonists.

CaSR signaling is also modulated by the GPCR
kinases (GRKs). Specifically, overexpression of GRK2
and GRK3 decreases CaSR-induced IP formation in
a HEK-derived cell line by .70% (Lorenz et al., 2007).
Mutating GRK2 so that it could no longer bind Gq

overcame the inhibitory effect of GRK2 on CaSR
signaling, indicating that GRK2 inhibition of CaSR
signaling might be caused by sequestering of Gq rather
than by phosphorylation of the CaSR. Overexpression of
either b-arrestin 1 or b-arrestin 2 partly inhibits CaSR-
induced IP production, and this effect was abolished by
deleting all five of the predicted PKC sites as identified
by Bai et al. (1998b) (Lorenz et al., 2007).

B. Internalization and Agonist-Driven
Insertional Signaling

In heterologous expression systems, the CaSR under-
goes constitutive internalization (Reyes-Ibarra et al.,
2007; Gorvin et al., 2018c; Mos et al., 2019) and agonist-
induced internalization (Lorenz et al., 2007; Zhuang
et al., 2012; Nesbit et al., 2013b). Furthermore, CaSR
internalization is increased by the CaSR PAM, NPS R-
568, and agonist-induced but not constitutive internal-
ization is inhibited by the NAM, NPS 2143 (Mos et al.,
2019). GPCR internalization usually involves desensi-
tization by kinase phosphorylation and subsequent
b-arrestin binding followed by recruitment to clathrin-
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coated pits by b-arrestin and the clathrin-binding AP2
heterotetramer (Hanyaloglu and von Zastrow, 2008). As
described above, phosphorylation by PKC and GRKs, or
b-arrestin recruitment, is involved in CaSR desensitiza-
tion (Pi et al., 2005b; Lorenz et al., 2007). Similarly,
agonist-induced CaSR internalization requires
b-arrestin, which is in contrast with the GABAB and
mGluRs, which function independently of b-arrestin
(Pin and Bettler, 2016). However, constitutive and
agonist-induced CaSR internalization is largely in-
dependent of Gq/11 and Gi/o in HEK293 cells (Mos
et al., 2019), thus indicating that G protein–mediated
activation of PKC is not involved in this cell line.
Studies of the internalization mechanisms of endog-
enously expressed CaSRs in nonrecombinant cells are
still lacking because of the technical difficulty of
performing such experiments.
The CaSR is also predicted to couple directly to AP2s

through a dileucine motif in the CaSR C-terminal tail
(Nesbit et al., 2013b). Similar to loss-of-function muta-
tions in the CASR or GNA11 genes (Pollak et al., 1993;
Nesbit et al., 2013a), mutations that disrupt the CaSR
interaction with AP2s reduce the sensitivity of CaSR-
expressing cells to Ca2+o (Nesbit et al., 2013b). Similarly,
germline mutations of the AP2S1 gene that lead to
alteration of Arg15 in AP2s cause FHH3 (Nesbit et al.,
2013b), which is clinically the most severe of the three
FHH types (Hannan et al., 2015a) (VI. Calcium-Sensing
Receptor–Related Genetic Diseases and Therapeutic
Interventions). AP2s Arg-15 mutations inhibit CaSR
internalization (Nesbit et al., 2013b; Gorvin et al.,
2018c), and the functional similarity between loss-of-
function mutations in the CASR, GNA11, and AP2S1
genes shows a close relationship between internaliza-
tion and CaSR signaling. This relationship could be
explained by reduced resensitization and/or intracellu-
lar signaling when internalization is inhibited (Reyes-
Ibarra et al., 2007; Zhuang et al., 2012; Gorvin et al.,
2018c).
After internalization, GPCRs are either resensitized

and recycled to the cell surface or degraded (Hanyaloglu
and von Zastrow, 2008). Cell surface expression of CaSR
is constant under basal conditions (Reyes-Ibarra et al.,
2007; Zhuang et al., 2012), which means constitutively
internalized receptors are replaced. In heterologous
cells, internalized CaSR is recycled through Rab11a-
dependent slow-recycling endosomes (Reyes-Ibarra
et al., 2007) to be sorted to lysosomes for degradation
(Grant et al., 2011; Zhuang et al., 2012). The CaSR’s
C-terminal tail is involved in postendocytic sorting, as
deletion of residues 920–970 increased cell surface
expression and reduced colocalization with a lysosomal
marker (Zhuang et al., 2012). Similarly, overexpression
of associated molecule with the SH3 domain of signal-
transducing adapter molecule, which interacts with the
CaSR C-terminal tail, downregulated cell surface CaSR
(Herrera-Vigenor et al., 2006; Reyes-Ibarra et al., 2007).

The interaction of 14-3-3 proteins with an arginine-
rich motif in the CaSR C-terminal tail partly retains an
intracellular CaSR pool (regulated by Ser899 phosphor-
ylation) (Stepanchick et al., 2010; Grant et al., 2011,
2015), but the CaSR is upregulated at the cell surface
upon agonist stimulation via a Gq/11-dependent mecha-
nism called agonist-driven insertional signaling (Grant
et al., 2011; Gorvin et al., 2018c). This process involves
rapid mobilization of the intracellular pool of receptors
to the cell surface and initiation of receptor synthesis to
support prolonged upregulation (Grant et al., 2011,
2015). The rapid increase in cell surface receptors is
proposed to support the high sensitivity of the CaSR to
increases in Ca2+o .

V. (Patho)physiology of the CaSR and Its Ligands

A. Calcium-Sensing Receptor in the
Parathyroid Glands

CaSR expression appears during parathyroid devel-
opment in response to key parathyroid-determining
genes, including GCM2 (encoding Gcmb) and SHH
(encoding the inhibitory controller, Sonic Hedgehog)
(Grevellec et al., 2011). Consistent with a direct con-
nection between Gcmb and CaSR expression, GCM2
control elements have been identified in the CASR
promoters (Canaff et al., 2009), and short hairpin
RNA directed against GCM2 in parathyroid cell cul-
tures suppressed the protein levels of Gcmb and the
CaSR (Mizobuchi et al., 2009).

The CaSR’s nonredundant roles in Ca2+o metabolism
have been clearly established by the hypercalcemic
disorders, neonatal severe hyperparathyroidism (NSHPT)
and FHH, and the hypocalcemic disorders, ADH and
Bartter syndrome type V. These are discussed together
with animalmodels of loss- and gain-of-functionmutations
of the CaSR in VI. Calcium-Sensing Receptor–Related
Genetic Diseases and Therapeutic Interventions.

The CaSR negatively controls parathyroid function
by suppressing acute PTH secretion primarily from
chief cells [review: (Conigrave, 2016)], inhibiting cell
proliferation and thus cell number and gland size (Fan
et al., 2018), and reducing PTH gene transcription
[review: (Chen and Goodman, 2004)]. It also activates
the local synthesis, particularly in parathyroid oxyphil
cells, of 1,25(OH)2D3 (Ritter et al., 2012), a recognized
inhibitor of PTH synthesis. The CaSR’s effects on cell
proliferation are particularly noticeable in the context
of primary hyperparathyroidism (e.g., due to adenoma-
tous disease) or hyperplasia in the context of CKD.
Interestingly, in parathyroid adenoma and CKD, cellu-
lar CaSR expression is reduced (Kifor et al., 1996).
Nonetheless, in patients with CKD and in rat models of
secondary hyperparathyroidism, sustained treatment
with cinacalcet suppresses parathyroid gland size as
well as serum PTH levels (Colloton et al., 2005; Yamada
et al., 2015). Similarly, exposure of parathyroid cells to
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cinacalcet in vitro suppresses proliferation and pro-
motes apoptosis (Tatsumi et al., 2013).
The parathyroid CaSR continuously monitors the

Ca2+o concentration as well as various other stimuli that
affect CaSR function, including the plasma levels of
L-amino acids (Conigrave et al., 2004), pH (Campion
et al., 2015), ionic strength (Quinn et al., 1998), and,
perhaps, locally generated polyamines (Quinn et al.,
1997) (see II. Agonists and AllostericModulators). CaSR
activity in the parathyroid glands is resistant to de-
sensitization, in part because of efficient receptor
recycling as well as a large intracellular receptor pool
that undergoes a high rate of trafficking from the
endoplasmic reticulum and Golgi to the plasma mem-
brane [reviews: (Breitwieser, 2013; Ray, 2015)].
Whether agonist-driven insertional signaling operates
in parathyroid glands is unknown, but the CaSR
interacts with a signaling assembly dependent on
caveolin-1 (Kifor et al., 1998) and undergoes AP2s-
regulated endocytosis (Nesbit et al., 2013b; Gorvin
et al., 2018c).
1. Parathyroid Hormone Secretion Control. The set

point for the CaSR’s half-maximal inhibitory effect on
PTH secretion lies at the lower limit of the normal free
Ca2+o concentration range (1.1–1.3 mM). In this way, the
disinhibited parathyroid provides the body’s primary
defense against hypocalcemia (Ca2+o , 1.1 mM). How-
ever, the parathyroid CaSR does not provide the
primary defense against hypercalcemia, which is medi-
ated by CaSRs in the renal cortical thick ascending
limbs (TALs) of Henle’s loop, which accelerate Ca2+o
excretion (Kantham et al., 2009; Loupy et al., 2012).
Furthermore, as Ca2+o increases, its inhibitory effect on
PTH secretion suppresses bone resorption.
Two distinct paradigms for CaSR-mediated inhibi-

tion of PTH secretion have been identified at the
cellular level: 1) stimulation of Gi/o proteins, which
oppose cAMP-dependent increases in PTH secretion
mediated by Gs-coupled receptors, for example, adren-
aline (b-adrenergic receptors 1 and 2), dopamine, hista-
mine, and prostanoid receptors [review: (Conigrave,
2016)]; and 2) inhibition of endogenous PTH secretion
mechanisms that occur in the absence of exogenous
activators, at least in part via stimulation of Gq/11

proteins. Endogenous PTH secretion mechanisms may
depend upon the intrinsic production of activators for
parathyroid secretion [review: (Conigrave, 2016)] or
may represent true constitutive secretion (Muresan
and MacGregor, 1994).
2. Calcium-Sensing Receptor Structure and Function

in the Parathyroid. The primary protein form adopted
by the CaSR in parathyroid cells is a disulphide-linked
homodimer (Kifor et al., 2003) similar to that observed
when the CaSR is expressed in HEK293 cells (Bai et al.,
1998a). However, it may also form heterodimers with
some other receptors, for example, GABAB receptors, as
reported for growth plate chondrocytes (Cheng et al.,

2007), with unknown consequences for parathyroid cell
signaling and function (see IIIC. Calcium-Sensing Re-
ceptor Dimerization).

The CaSR in the parathyroid couples to various
signaling pathways as it does when expressed heterol-
ogously in HEK293 cells and in other cell types [review:
(Conigrave and Ward, 2013)]. As described above, in
parathyroid cells the CaSR couples to multiple hetero-
trimeric G proteins, including, most notably, Gi/o and
Gq/11. Of these, Gi/o supports Ca2+o -mediated suppres-
sion of PTH secretion stimulated by Gs-coupled recep-
tors [e.g., for dopamine (Brown et al., 1990)] but not
intrinsic PTH secretion (Brown et al., 1992). Of appar-
ently greater importance, Gq/11 signaling is absolutely
required for CaSR-mediated control of PTH secretion.
Thus, mice that are global null for Ga11 or have
conditional deletion of Gaq in the parathyroid exhibit
mild-moderate hyperparathyroidism. Interestingly,
however, crossbreeding to generate mice that are both
global null for Ga11 and parathyroid null for Gaq results
in severe neonatal hyperparathyroidism (Wettschureck
et al., 2007) that is comparable to that seen in human
neonates with homozygous or compound heterozygous
loss-of-function CaSR mutations (Pollak et al., 1993).
Consistent with these observations, loss-of-function
mutations of Ga11, which only partially impair signal-
ing, have been linked to a variant form of FHH in
humans, now known as FHH2, and gain-of-function
mutations of Ga11 have been linked to a variant form of
ADH, now known as ADH2 (Nesbit et al., 2013a). The
Arg60Cys and Ile62Val gain-of-function mutations in
Ga11 also induce ADH2 in mice, in which treatment
with the NAM, NPS 2143, or the specific Gq/11 inhibitor,
YM-254890, increases PTH and Ca2+o concentrations
(Gorvin et al., 2017; Roszko et al., 2017). These findings
demonstrate the critical importance of Gq/11 in control of
PTH synthesis and/or secretion. CaSR signaling in the
parathyroid is also negatively regulated by the GTPase
activator RGS5, and overexpression of RGS5 in the
parathyroid induces hyperparathyroidism in mice (Koh
et al., 2011). Whether RGS5 has a preference for either
Gq or G11 in parathyroid cells is unknown. Interestingly,
studies in other tissues suggest that RGS5 preferen-
tially suppresses the function of Gq with little or no
effect on G11 (Ladds et al., 2007). Whether this might
support a parathyroid-based preference for CaSR-
mediated activation of G11 rather than Gq is unknown.

The mechanism by which the CaSR controls PTH
secretion downstream of Gq/11 is surprisingly ill-
defined. Contributing factors appear to include
phosphatidylinositol-PLC, which is robustly activated
by Ca2+o stimulation in parathyroid cells (Brown et al.,
1987a; Shoback et al., 1988); Ca2+i signals whose
frequency and amplitude are dependent on the phos-
phorylation status of Thr888 (McCormick et al., 2010;
Lazarus et al., 2011); and the MAPK, ERK1/2 (Corbetta
et al., 2002). Evidence has also been presented for
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a convergent signaling pathway mediated by a-klotho
and the CaSR on PTH synthesis and parathyroid
hyperplasia downstream of FGF receptors (Fan et al.,
2018). In other work, parathyroid Na+/K+-ATPase
activity has been implicated in the control mechanism
(Brown et al., 1987b; Imura et al., 2007). Whether this
might operate via changes in cell volume or intracellu-
lar ion concentrations is unclear; changes in Ca2+i
concentration appear to have been excluded (Brown
et al., 1987b).

B. Calcium-Sensing Receptor in the Thyroid Gland

In the thyroid the CaSR is expressed at high levels in
a relatively small subpopulation of cells, the parafollic-
ular C cells (Garrett et al., 1995b). In C cells, the CaSR
acts to promote secretion of the peptide hormone
calcitonin. Evidence that the CaSR stimulates calcito-
nin secretion is supported by studies in CaSR knockout
mice, in which plasma calcitonin levels were suppressed
(Fudge and Kovacs, 2004; Kantham et al., 2009). Thus,
elevated Ca2+o stimulates calcitonin release, which, in
turn, lowers the plasma calcium level, primarily by
suppressing bone resorption. Both the CaSR and calci-
tonin (or calcitonin gene–related peptide) genes are
under inhibitory regulation by thyroid transcription
factor-1 in C cells, and CaSR activation promotes
calcitonin synthesis, at least in part by suppressing
the levels of thyroid transcription factor-1 (Suzuki et al.,
1998). CaSR coupling to G proteins in C cells is similar
to its coupling in parathyroid cells and various other cell
types, and the C-cell CaSR thereby activates plasma
membrane phospholipases and cellular protein kinases
(McGehee et al., 1997). Activation of the CaSR also
stimulates acute elevations in Ca2+i in various C-cell
models. In some cell types, this occurs via Ca2+o entry
through plasma membrane L-type voltage-gated Ca2+

channels (Muff et al., 1988; Fajtova et al., 1991;
McGehee et al., 1997) and, in others, via Ca2+i mobili-
zation (Freichel et al., 1996). Recently, the amino acid–
activated CaSR was shown to stimulate calcitonin
release from human C cells (Mun et al., 2019). Despite
these insights, the molecular mechanisms by which the
CaSR stimulates calcitonin secretion are largely
unknown.

C. Calcium-Sensing Receptor in the Kidney

CaSR expression in the kidney is one of the highest in
the body, and the renal CaSR plays a major role in the
regulation of renal function in both a hormone-
dependent and independent fashion [see Riccardi and
Valenti (2016) and references therein]. A large body of
functional, molecular, and genetic evidence indicates
that the kidney CaSR plays a crucial role in mineral ion
homeostasis. Indeed, the CaSR is widely expressed
along the nephron at both the apical and basolateral
sides of kidney cells, and thereby it is uniquely poised to
monitor both urine and plasma and alter the final

ultrafiltrate composition accordingly (Riccardi et al.,
1998; Graca et al., 2016). Urinary calcium excretion
mirrors serum calcium levels and is directly propor-
tional to the filtered calcium load (Brown, 1991). Within
the kidney, the TAL of Henle’s loop is the main site for
active divalent cation movement, mostly via the para-
cellular route, and is coupled to NaCl reabsorption
(Friedman, 1998). The latter occurs through a concerted
action of an apical Na+:K+:2Cl2 cotransporter, NKCC2,
and this is followed by basolateral exit via the voltage-
gated Cl2 channel, chloride channel Kb, and the Na+:
K+:ATPase. Overall, NaCl movement generates a favor-
able transepithelial electrochemical gradient for posi-
tively charged ions to move from the urine toward the
basolateral side. In concert, the tight junctional pro-
teins, claudins 14, 16, and 19, establish a divalent
cation-selective permeable route, thereby allowing
Ca2+o (and Mg2+) reabsorption (Gong and Hou, 2014).
The TAL has the highest CaSR expression, and here the
CaSR is expressed basolaterally (Riccardi et al., 1998).
In the event of hypercalcemia, CaSR activation damp-
ens Ca2+o reabsorption in two ways: firstly, it inhibits
NaCl reabsorption, hence the driving force for divalent
cation movement; secondly, it directly reduces Ca2+o and
Mg2+ junctional permeability through its actions on
claudin 14 by activating microRNA-9 and -374 (Gong
and Hou, 2014). If the hypercalcemic stimulus persists,
hypercalciuria can occur with excess urinary calcium
excretion in the terminal collecting duct.

In the presence of hypovolemia, the antidiuretic
hormone, vasopressin, promotes water reabsorption
through the insertion of aquaporin-2 water channels
into the lumen of inner medullary collecting duct cells.
However, excessive water reabsorption could lead to
suprasaturating urinary calcium concentrations and
attendant pathologic kidney stone formation, which
could severely impair renal function. The CaSR is
expressed at the luminal side of inner medullary
collecting duct cells, where it monitors Ca2+o concentra-
tion in the urine (Sands et al., 1997). Thus, CaSR
activation inhibits the tubular response to vasopressin
by limiting the number of apical aquaporin-2 water-
channel insertions (Procino et al., 2012). In addition,
CaSR activation stimulates the activity of the proton
pump, V-ATPase, thereby evoking urine acidification
and reducing the risk of precipitation (Renkema et al.,
2009).

Further, the kidney proximal tubule is a major site of
PTH action that promotes a phosphaturia by inhibiting
the activity of the Na+:Pi cotransporters, Npt2a, and
Npt2c (Murer et al., 2001). Excess phosphate in the
urine could also exacerbate the risk of calcium-
phosphorus stone formation by the distal nephron. In
the proximal tubule, a luminal CaSR blunts the phos-
phaturic action of PTH and promotes acid secretion via
stimulation of theNa+:H+ exchanger, Na+:H+ exchanger
3 (Capasso et al., 2013). Thus, by monitoring both urine
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and plasma composition, together with the integration
of inputs deriving from urinary phosphate content,
concentration, and acidification, the renal CaSR accom-
plishes divalent cation homeostasis while minimizing
the risk of developing nephrolithiasis and nephrocalci-
nosis, which could arise as a consequence of enhanced
urinary calcium excretion by the TAL (Hebert et al.,
1997). The corollary is that altered CaSR expression or
function due to CaSR mutations leads to FHH1, ADH1,
or Bartter syndrome type V (see VI. Calcium-Sensing
Receptor–Related Genetic Diseases and Therapeutic
Interventions). In all circumstances, the aberrant cal-
ciuria is not the consequence of an impairment of renal
function but rather the result of altered Ca2+o sensing by
the CaSR in the parathyroid glands and the kidney. In
the context of CKD, hyperphosphatemia caused by
decreased renal phosphate excretion and acidosis may
both elicit CaSR underactivation, leading to secondary
hyperparathyroidism. Therefore, similarly to the para-
thyroid CaSR, the kidney CaSR is a drug target and,
indeed, pharmacological CaSR PAMs are employed to
rectify abnormal Ca2+o sensing by the kidney (Riccardi
and Valenti, 2016). Furthermore, the use of NAMs for
the treatment of nephrolithiasis and nephrocalcinosis
could also be postulated (Riccardi and Valenti, 2016).
Finally, it should be noted that CaSR PAMs increase
urinary calcium excretion by means of their actions on
both the parathyroid and kidney CaSR, and indeed,
cinacalcet promotes calciuria in patients with second-
ary hyperparathyroidism, but this occurs in the absence
of an increase in urine output (Courbebaisse et al.,
2012). Given the clinical use of PAMs, the impact of
their long-term use on urine production, acidification,
and concentration, particularly in the context of kidney
stone formation, remains to be fully understood
(Riccardi and Valenti, 2016).

D. Calcium-Sensing Receptor in the Bone

The CaSR is expressed by several types of bone cells,
including osteoblasts, osteocytes, osteoclasts, and some
chondrocytes (Santa Maria et al., 2016). Although some
controversies exist, there is good evidence that Ca2+o
and the CaSR contribute to skeletal development and
maintenance (Chang et al., 2008; Goltzman and Hendy,
2015; Hannan et al., 2018a) and that bone CaSRs may
even contribute to overall Ca2+o homeostasis (Al-Dujaili
et al., 2016). Elucidation of the CaSR’s roles in skeletal
tissue was historically complicated by models that
examined global deletion of the Casr gene (Kos et al.,
2003). GlobalCasr deletion has numerous effects, partly
through large alterations in PTH secretion and changes
in serum calcium and phosphate concentrations
(Hannan et al., 2018a), thus it is difficult to elucidate
tissue-specific CaSR effects. To further complicate
matters, early Casr knockouts involved deletion of Casr
exon 5, which results in mice encoding a nonfunctional
CaSR lacking a portion of its extracellular domain (Kos

et al., 2003). When Casr exon 5–deleted mice were
crossed with mice that had a deletion of Gcm2 (which
results in no parathyroid gland development) or the Pth
gene, the skeletal abnormalities seen in the global Casr
knockout mice were largely abolished (Kos et al., 2003;
Tu et al., 2003). Furthermore, studies of the Casr exon
5–deleted mice revealed an alternatively spliced Casr
transcript in the growth plate and other organs, such as
skin, that could compensate for the absence of full-
length CaSR in cartilage and bone (Rodriguez et al.,
2005). Nonetheless, alternative Casr knockout models
and bone-specific Casr deletion has confirmed that the
CaSR is critical to bone development and maintenance,
as described below.

1. Osteoblast Calcium-Sensing Receptors.
Perhaps the clearest evidence for a role of the CaSR in
skeletal development and maintenance comes from
studies in which exon 7 of the Casr gene was deleted
during different stages of osteoblast differentiation.
Casr exon 7 deletion removes most of the 7TM and
C-terminal tail, resulting in a nonfunctional receptor
(Chang et al., 2008; Dvorak-Ewell et al., 2011). Casr
exon 7 deletion was achieved by Cre-recombinase in
osteoblasts under the control of the 2.3-kb Col(I) a1
subunit promoter [2.3Col(I)-Cre], which is expressed in
early- and late-stage cells of the osteoblast lineage
(Chang et al., 2008); an a1(I) collagen promoter [Col
3.6-Cre], which is expressed throughout cells of the
osteoblastic lineage (Dvorak-Ewell et al., 2011); or the
osterix promoter, which is expressed in early osteoblasts
(Chang et al., 2008). In studies using the collagen-Cre
promoters, heterozygous Casr knockout mice grew
relatively normally (Chang et al., 2008; Dvorak-Ewell
et al., 2011). In contrast, homozygous Casr knockout
using any of the Cre promoters resulted in severe bone
defects (Chang et al., 2008; Dvorak-Ewell et al., 2011).
There was marked reduction in the size of the knockout
mice and their skeletons evident as early as 3 days after
birth, and at day 20 the weight of the Casr knockout
mice was only 30% that of controls (Chang et al., 2008;
Dvorak-Ewell et al., 2011). Their skeletons were se-
verely undermineralized, even in the skull, as well as in
the vertebrae and long bones (Chang et al., 2008;
Dvorak-Ewell et al., 2011). There was a marked re-
duction in bone volume in both the trabecular and
cortical bones (Chang et al., 2008). Most of these mice
died with multiple fractures by 3 to 4 weeks after birth
(Chang et al., 2008; Dvorak-Ewell et al., 2011). Osteo-
blasts from Casr knockout mice were poorly differenti-
ated, with both early and late differentiation markers
markedly reduced, compared with controls (Chang
et al., 2008; Dvorak-Ewell et al., 2011). mRNA levels
of the local growth factor, insulin-like growth factor-1,
were also substantially decreased, as were those of
factors supporting cell survival, such as B-cell lym-
phoma 2 (Bcl-2) and Bcl-2L1 (Chang et al., 2008). In
contrast, mRNA for IL-10, an inducer of apoptosis in
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many cell types, was increased, along with evidence of
augmented apoptotic osteoblast and osteocyte numbers
in sections from bone (Chang et al., 2008; Dvorak-Ewell
et al., 2011). mRNA-encoding genes that inhibit miner-
alization, such as osteopontin, ankylosis protein, and
nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1),
showed increased expression in the knockouts (Dvorak-
Ewell et al., 2011). In addition to impaired osteoblastic
differentiation and activity, deletion of Casr in early and
late osteoblasts led to increased expression of mRNA for
the bone resorption-promoting protein, receptor activator
of nuclear factor-kB ligand, together with a doubling of
osteoclast numbers and activity, with bone loss in
trabecular and cortical bone (Chang et al., 2008; Dvorak-
Ewell et al., 2011). Whether these effects of osteoblast
Casr knockout are entirely specific is not clear, since
transplantation of vertebrae from 10-day-old wild-type or
homozygous Casr knockout mice into athymice mice
resulted in no differences in the volume or composition
of transplanted bones, as assessed by microCT or histo-
morphometry after 4 weeks (Al-Dujaili et al., 2016).
Furthermore, bones of transgenic mice that expressed
a constitutively active mutant CaSR in late osteoblasts
under the control of the osteocalcin promoter (Dvorak
et al., 2007) also showed increased receptor activator of
nuclear factor-kB ligand expression and increased
osteoclast activity, with resultant bone loss over the
lifespan of the mice, but only in trabecular and not
cortical bone (Dvorak et al., 2007). Other osteoblastic
markers and function were largely unaffected, except for
a slight decrease in bone-forming activity indicated by
a small drop in mineral apposition rate (Dvorak et al.,
2007). It is difficult to explain these observations in
a comprehensivemodel of the CaSR’s role in bone, despite
attempts to propose age-related differences in the inter-
actions between theCaSRandPTH/PTH1R in bone or the
presence of mild hyperparathyroidism in the CaSR
knockout models, but not in the mutant constitutively
active CaSR mice (Dvorak et al., 2007; Goltzman and
Hendy, 2015). Under conditions of expression of a consti-
tutively active CaSR, however, normal feedback mecha-
nisms would not function. The existing evidence indicates
that Ca2+o and the CaSR, together with PTH/PTHrP and
PTH1R, interact with one another in whole animals in
ways that cannot easily be predicted (Goltzman and
Hendy, 2015; Santa Maria et al., 2016; Yang and Wang,
2018).
2. Osteoclast Calcium-Sensing Receptors. Local reg-

ulatory pathways relevant to Ca2+o and the CaSR are
likely to involve osteoclasts, which, along with bone
marrowmonocytes andmacrophages, express the CaSR
(House et al., 1997; Kameda et al., 1998; Diepenhorst
et al., 2018). Activation of the CaSR in these cells with
high concentrations of Ca2+o or Sr2+ S inhibited osteo-
clast maturation and secretion of acid phosphatase,
which is critical for bone resorption, and increased apo-
ptosis of mature osteoclasts, all of which would suppress

bone resorption (Zaidi et al., 1991; Kameda et al., 1998;
Kanatani et al., 1999;Mentaverri et al., 2006; Diepenhorst
et al., 2018). Although high Ca2+o concentrations were
required to activate these osteoclast responses, this might
be relevant in vivo, since an acid environment, as present
in resorption pits, increases Ca2+o potency at the CaSR
(Quinn et al., 2004), and the Ca2+o concentration in bone
resorptionpits canbeashighas40mM(Silver et al., 1988).
There is some recent evidence that cinacalcet can inhibit
the actions of osteoclasts (Diepenhorst et al., 2018), raising
the possibility of CaSR activation in osteoclasts as a poten-
tial antiresorptive strategy in osteoporosis. However,
another study found no effect of cinacalcet on osteoclast-
mediated resorption (Shalhoub et al., 2003).

3. Osteoblast and Osteoclast Calcium-Sensing Recep-
tors as Therapeutic Targets. Given the negative
effects of CaSR deletion on bone mass and bone cell
survival (Chang et al., 2008; Dvorak-Ewell et al., 2011;
Santa Maria et al., 2016), it follows that there would be
interest in targeting the CaSR in osteoblasts/osteocytes
for a bone anabolic effect (Marie, 2010; Goltzman and
Hendy, 2015; Diepenhorst et al., 2018). Indeed, there is
evidence that Sr2+, which displays higher potency than
Ca2+o in osteoblasts (Brennan et al., 2009), increased
bone mineral density and reduced fractures in the clinic
(Reginster et al., 2005). Other receptors, including
GPRC6A, may also mediate the effects of Sr2+ (Pi
et al., 2005a; Rybchyn et al., 2009). Unfortunately,
reported cardiovascular side effects of Sr2+ ranelate
(marketed as Protelos/Osseor) narrowed the potential
patient population so that this agent was withdrawn
from the market. Nevertheless, preclinical studies
showed Sr2+ reduced bone-resorbing signals and in-
creased bone cell anabolism and survival under stress
(Bonnelye et al., 2008; Brennan et al., 2009; Rybchyn
et al., 2011). They also reported that Sr2+ stimulated the
important bone anabolic Wnt pathway downstream of
the CaSR and Akt phosphorylation in osteoblasts
(Rybchyn et al., 2011). CaSR-dependent activation of
theWnt pathway in bone cells was in turn dependent on
the formation of a complex involving CaSR, Homer1 (a
long isoform of this scaffold protein), and mechanistic
target of rapamycin complex-2, which phosphorylates
Akt on Serine 475 (Rybchyn et al., 2019). These
observations provide proof of principle that selective
activation of the CaSR in osteoblastsmight be a suitable
strategy for osteoporosis therapies, either alone or in
combination with other anabolic agents, such as in-
termittent PTH. Intermittent PTH has anabolic effects
on bone but also stimulates osteoclast activity. Given
that CaSR activation in osteoclasts suppresses bone
resorption, as discussed above, and has anabolic effects
on bone, the use of CaSR PAMs in conjunction with
intermittent PTH may reduce the likelihood of hyper-
calcemia and enhance the bone anabolic effects of
intermittent PTH. Indeed, administration of the PAM,
NPS R-568, in combination with intermittent PTH in
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mice reduced blood Ca2+o concentrations, increased
trabecular bone, and increased cortical bone strength
compared with intermittent PTH alone (Santa Maria
et al., 2016). The effect of intermittent PTH on trabec-
ular bone volume as a fraction of total bone volume was
slightly but significantly blunted in mice in which the
Casr gene was deleted in early and late osteoblasts (Al-
Dujaili et al., 2016).
4. Chondrocyte Calcium-Sensing Receptors. High lev-

els of CaSR protein are present in hypertrophic chondro-
cytes in the growth plate of long bones (SantaMaria et al.,
2016). When mice with the loxP sites flanking exon 7 of
the Casr were crossed with mice expressing the Cre
transgene under the control of the type II collagen a1
subunit [Col(II)] promoter [Col(II)-Cre], which targets
growth plate chondrocytes and other types of chondro-
cytes, they all died in utero at around E13 (Chang et al.,
2008). Whether this was due to interference in heart
valve development is unclear. When the Col(II)-Cre
promoter was modified to a tamoxifen-inducible var-
iant and 4-hydroxytamoxifen was given at E18-19, the
resultant growth plate chondrocyte targeted Casr
knockout and produced small, undermineralized skel-
etons, with expansion and reduced mineralization of
the hypertrophic zone of the growth plate (Chang
et al., 2008). Gene expression analysis confirmed
reduced expression of terminal differentiation markers
and reduced expression of insulin-like growth factor-1 and
its receptor (Chang et al., 2008).
The CaSR is also expressed in articular cartilage

chondrocytes, with increased expression reported in
chondrocytes from osteoarthritic joints (Burton et al.,
2005). Increased expression of the CaSR was also
reported in cartilage endplate chondrocytes adjacent
to degenerated intervertebral discs from human sub-
jects along with high total calcium concentrations and
low water content (Grant et al., 2016). Treatment of
cartilage endplate chondrocytes in vitro with increasing
Ca2+o resulted in lower accumulation of collagens I and II
and aggrecan, whereas catabolic enzymes were in-
creased, an effect that was abrogated by knockdown of
the CASR (Grant et al., 2016). The authors proposed
a role for increased Ca2+o and the CaSR in intervertebral
disc degeneration (Grant et al., 2016). In a dental
malocclusion model affecting the temporomandibular
joint in rats, increased expression of CaSR in articular
chondrocytes and in the endoplasmic reticulum of these
cells was also observed (Zhang et al., 2019). These
provided some evidence to support a role for endoplas-
mic reticulum expressed CaSR, as opposed to cell
membrane CaSR in chondrocytes under stress (Zhang
et al., 2019). Increased whole-cell CaSR and increased
endoplasmic reticulum CaSR were also observed
in vitro using articular cartilage chondrocytes ex-
posed to shear stress (Zhang et al., 2019). Shear stress
resulted in increased expression of chondrocyte
terminal differentiation markers, such as alkaline

phosphatase, osteocalcin, and matrix metalloprotease-
13, which contributes to cartilage degradation. Criti-
cally, local CaSR knockdown or the use of the NAM,
NPS 2143, reduced the shear stress-induced increases
in terminal differentiation markers in chondrocytes in
culture and reduced the severity of osteoarthritis in the
temporomandibular joint of a rat model of dental
malocclusion (Zhang et al., 2019). In contrast, injection
of the PAM, cinacalcet, into the temporomandibular
joint of these rats promoted thinning and loss of
articular cartilage (Zhang et al., 2019). These studies
in chondrocytes raise the possibility that the chondro-
cyte CaSR is a potential therapeutic target for pre-
vention or management of joint degeneration.

E. Calcium-Sensing Receptor in Keratinocytes

The CaSR is highly expressed in keratinocytes, the
main epidermal cell type. Moreover, an ionic calcium
gradient exists in the epidermis, which increases from
the basal proliferative layer to reach a maximum in the
stratum granulosum, wherein the keratinocytes are
well-differentiated, decreasing again in the relatively
water-deficient lipid-containing cells of the stratum
corneum (Menon et al., 1985; Celli et al., 2010). The
epidermal calcium gradient and the CaSR are critically
important for various epidermal functions, including
keratinocyte differentiation, water and xenobiotic bar-
rier function, and wound healing (Tu and Bikle, 2013;
Hannan et al., 2018a). Interestingly, the epidermal
calcium gradient is predominantly present in intracel-
lular organelles of keratinocytes, such as the endoplas-
mic reticulum and Golgi, although an extracellular
gradient makes some contribution to the gradient
(Celli et al., 2010).

Keratinocytes cultured in low-calcium media (,0.07
mM) proliferate well. Raising the Ca2+o concentration
above 0.1 mM promotes differentiation, as indicated by
the appearance of E-cadherin/catenin complexes (adhe-
rens junctions) and desmosomes, upregulation of kera-
tins 1 and 10, stratification of cells, and then formation
of cornified envelope precursors (Braga et al., 1995).
Disruption of the permeability barrier of the skin by
tape stripping disrupts the epidermal calcium gradient,
resulting in disorganization of the normally differenti-
ated cell layers (Menon et al., 1994). When the calcium
gradient is re-established over the next day or so, the
permeability barrier also recovers. Skin diseases, such
as psoriasis, characterized by abnormal barrier function
also exhibit a loss of the calcium gradient (Menon and
Elias, 1991).

CaSR expression increases in upper layers of the
epidermis with the increase in differentiation, with high
expression in the stratum granulosum but weak ex-
pression in the corneocytes (Komuves et al., 2002).
There is some expression of the CaSR on the plasma
membrane of keratinocytes, but its predominant local-
ization in these cells is intracellular and in the
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cytoplasm around the nucleus (Komuves et al., 2002).
This perinuclear localization is also seen, although not
to the same extent, in rodent osteoblasts and chondro-
cytes (Chang et al., 1999). It is likely that Ca2+o signals to
the keratinocyte via the plasma membrane CaSR in
amanner similar to that of more classic calcium targets,
such as the parathyroid or kidney. The function of the
intracellular CaSR is unclear at this time. Knockdown
or inactivation of the CaSR in keratinocytes abrogates
calcium-induced inhibition of proliferation and stimu-
lation of differentiation of these cells (Tu et al., 2008).
Not surprisingly, in mice in which there had been
knockdown of the CaSR in the epidermis, skin barrier
function was disrupted with impaired differentiation of
keratinocytes, and these problems were exacerbated by
a low-calcium diet (Tu et al., 2012). Keratinocytes from
these epidermal Casr2/2 mice had blunted Ca2+i mobi-
lization in response to Ca2+o , decreased Ca2+i pools,
defective cell-cell adhesion, and reduced expression of
differentiation markers (Tu et al., 2012).
In contrast, mice engineered to constitutively over-

express the CaSR in basal keratinocytes displayed
enhanced keratinocyte differentiation and barrier for-
mation during development as well as accelerated hair
growth at birth (Turksen and Troy, 2003). There was
hypertrophy of the suprabasal keratinocyte layers with
increased expression of early and late differentiation
markers together with upregulation of epidermal
growth factor and noncanonical Wnt-signaling path-
ways (Turksen and Troy, 2003).
In the epidermis, there are interactions between the

CaSR and the vitamin D system in skin. The active
vitamin D hormone, 1,25(OH)2D, increases the calcium
response in keratinocytes (Ratnam et al., 1999). De-
letion of the epidermal CaSR reduces expression of both
the vitamin D receptor (VDR) and CYP27B1, the enzyme
that produces 1,25(OH)2D from 25-hydroxyvitamin D (Tu
et al., 2012). It is likely that these effects on the vitamin D
system contribute to impaired differentiation of the
epidermis in these mice and reduced function of the
innate immune system (Schauber et al., 2007). Moreover,
1,25(OH)2D increases transcription of the CASR (Canaff
and Hendy, 2002).
It has previously been reported that wound healing is

impaired in mice with epidermal deletion of the VDR
(Oda et al., 2017). Very low dietary calcium or deletion
of the Casr gene exacerbates this impairment in wound
healing in epidermal VDR-deficient mice (Oda et al.,
2017). There is a robust increase in Ca2+ in the bed of
wounds withinminutes of injury (Jungman et al., 2012),
rapid increase in Ca2+i in cells near the site of thewound,
and spreading to surrounding cells (Tsutsumi et al.,
2013), with all of these indicating that the CaSR may
play an important role in wound healing. The CaSR is
coexpressed with E-cadherin at the cell membranes of
migratory keratinocytes. Blockade of either the CaSR or
E-cadherin inhibited keratinocyte proliferation and

migration after wound induction (Tu et al., 2019).
Accordingly, the PAM, NPS R-568, accelerated wound
healing in normal mice, potentially pointing to the
epidermal CaSR as a therapeutic target to enhance
repair of skin wound (Tu et al., 2019).

Mice with epidermal knockout of the VDR are more
susceptible to UV- or chemically induced skin tumor
formation (Zinser et al., 2002; Ellison et al., 2008).
Neither the epidermal VDR knockout mice nor mice
with epidermal Casr knockout develop skin tumors
spontaneously, but mice null for both epidermal Vdr
and Casr are reported to spontaneously develop squa-
mous cell carcinomas (Bikle et al., 2015). In keratino-
cytes, stimulation of Wnt signaling results in b-catenin
translocation to the nucleus and subsequent transcrip-
tional activity, which may be important in skin tumor-
igenesis (Wei et al., 2007; Youssef et al., 2012). The VDR
appears to suppress this b-catenin transcriptional
activity in skin (Wei et al., 2007), in part by helping to
keep b-catenin at the cell membrane as part of the
E-cadherin/catenin complex (adherens junctions). As
noted earlier, the CaSR is also important for the
development of the E-cadherin/catenin complex, which
helps to retain b-catenin at the cell membrane by
promoting wound healing and differentiation of the
skin cells (Oda et al., 2017) and inhibiting nuclear
translocation and associated protumorigenic activities
of b-catenin (Wei et al., 2007). This is in direct contrast
with osteoblasts, wherein activation of the CaSR pre-
dominantly promotes b-catenin stabilization, subse-
quent b-catenin translocation to the nucleus, and
increased transcriptional activity (Rybchyn et al.,
2011). Some preliminary data indicate that both CaSR
PAMs andNAMs enhance DNA repair after UV damage
in cultured keratinocytes (Yang et al., 2016), although
the mechanism and why PAMs and NAMs have a sim-
ilar effect are unclear. How this observation fits with
observed effects of CaSR knockdown in mice remains to
be examined.

F. Calcium-Sensing Receptor in the
Gastrointestinal Tract

The CaSR is expressed along the entire gastrointes-
tinal tract in parietal and G cells of stomach gastric
glands (Ray et al., 1997; Busque et al., 2005; Feng et al.,
2010; Engelstoft et al., 2013), epithelial and enter-
oendocrine cells of the small and large intestine (Liou
et al., 2011; Wang et al., 2011; Cheng et al., 2014;
Alamshah et al., 2017), and neurons of the submucosal
and myenteric plexuses of the enteric nervous system
(ENS) (Geibel et al., 2006; Cheng, 2012; Tang et al.,
2018). In the gastrointestinal tract, the CaSR functions
as a nutrient sensor, binding not only Ca2+, Mg2+, and
other cations but also L-amino acids and dipeptides and
polypeptides (e.g., glutamyl dipeptides, poly-L-lysine).
The CaSR is involved in regulation of gastric acid and
hormone secretion, nutrient absorption, intestinal fluid
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homeostasis, energy metabolism, cellular differentia-
tion and proliferation, motility and enteric nerve
activity, maintenance of gut microbiota, immune
homeostasis, and intestinal inflammation (Dufner
et al., 2005; Ceglia et al., 2009; Geibel and Hebert,
2009; Feng et al., 2010; Brennan et al., 2014; Cheng
et al., 2014; Tang et al., 2016b, 2018; Alamshah et al.,
2017; Sun et al., 2018).
The CaSR responds to alterations in nutrient levels

by regulating hormone secretion from enteroendocrine
cells (Geibel and Hebert, 2009; Liou et al., 2011; Wang
et al., 2011; Alamshah et al., 2017; Liu et al., 2018). In
global Casr knockout mice, gastric G cell number was
significantly reduced, suggesting the CaSR regulates G
cell growth. Further, in wild-type but not knockout
mice, NPS 2143 inhibited gastrin secretion after gavage
of Ca2+o , L-Phe, or cinacalcet (Feng et al., 2010). In rat
whole-stomach preparations, ex vivo exposure to
Ca2+o increased acid production in parietal cells by
enhancing H+-K+-ATPase activity. These effects were
potentiated by L- but not D-amino acids, implicating
the CaSR (Busque et al., 2005). The function of the
recently identified acid secretory protein, vacuolar
H+-ATPase, in parietal cells is also dependent on
CaSR activity (Kitay et al., 2018).
The amino acid–stimulated CaSR may influence

appetite and satiety via stimulatory effects on satiety
hormones, cholecystokinin (CCK), glucagon-like pep-
tide 1 (GLP-1) and protein YY (PYY) (Alamshah et al.,
2017), and/or inhibitory effects on the release of the
appetite-stimulating hormone ghrelin (Engelstoft et al.,
2013). In the mouse enteroendocrine cell line, STC-1,
L-Phe increased PYY and GLP-1 secretion, an effect
inhibited by NPS 2143, suggesting involvement of the
CaSR (Alamshah et al., 2017). In a transgenic mouse
model expressing aCCKpromoter–driven enhancedGFP,
the CaSR was enriched in CCK-producing duodenal I
cells, in which L-Phe and cinacalcet induced Ca2+i changes
and stimulated CCK in the presence of Ca2+o (Liou et al.,
2011). L-Phe- and Trp-stimulated CCK secretion was
inhibited by calhex 231 (Wang et al., 2011). In intestinal
L-cells, the CaSR was involved in peptone-stimulated
GLP-1 release (Pais et al., 2016), whereas in a ghrelinoma
cell line, the CaSR partially mediated the L-Phe,
L-Ala, and peptone-induced secretion of octanoyl
ghrelin (Vancleef et al., 2015). In swine duodenum,
ex vivo L-Trp perfusion induced secretion of CCK and
glucose-dependent insulinotropic peptide and upre-
gulated CaSR expression. This effect was inhibited by
NPS 2143 (Zhao et al., 2018). To conclude that the
Trp-induced gut-hormone secretion is mediated by
the CaSR, further proof is needed. In mice and rats,
L-Phe reduced short-time food intake and plasma
ghrelin release, affecting the appetite of the animals
(Alamshah et al., 2017). In minks, CaSR-mediated
secretion of CCK and PYY led to emesis (Wu et al.,
2017). These findings might explain why cinacalcet

and other CaSR PAMs cause gastrointestinal side
effects (Block et al., 2017).

Specific knockout of intestinal epithelial cell Casr
leads to epithelial cell hyperproliferation and changes
in intestinal crypt structure driven by b-catenin signal-
ing (Rey et al., 2012). Mice additionally have decreased
intestinal transepithelial resistance and reduced levels
of colonic tight-junction proteins, suggesting that the
epithelial CaSR maintains intestinal barrier function
(Cheng et al., 2014). The inadequate epithelial barrier
function was associated with lower amounts of benefi-
cial Lactobacilli bacteria and more Deferribacteraceae
bacteria, which are linked to colitis (Cheng et al., 2014).
This intestinal dysbiosis has been associated with more
severe proinflammatory responses in the intestinal
epithelium-specific Casr null mice compared with
wild-type controls (Owen et al., 2016).

The amino acid-stimulated CaSR has recently been
found to suppress intestinal inflammation in inflam-
matory bowel disease and other settings [reviews:
(Owen et al., 2016; Sun et al., 2018)]. Inflammatory
cytokine expression, including IL-1R, was higher in the
distal colons of the CaSR knockout mice, in addition to
a marked increase in nuclear factor-kB–dependent
genes (Cheng et al., 2014). These mice developed more
severe colitis with delayed recovery than the CaSR-
expressing littermates when challenged with dextrane
sulfate sodium (DSS) (Cheng et al., 2014). In a mouse
model of colitis, poly-L-lysine (commonly used as a food
preservative) and glutamyl dipeptides reduced DSS-
induced inflammation, whereas intravenous adminis-
tration of NPS 2143 inhibited this effect (Mine and
Zhang, 2015; Zhang et al., 2015). Dietary supplementa-
tion of Trp, L-Phe, and Tyr also reduced the expression
of intestinal inflammatory markers in piglets after
short-term induction of inflammation by lipopolysacchar-
ides (Liu et al., 2018). However, a recent study found
that the CaSR PAMs, cinacalcet and GSK3004774 (an
intestine-specific modulator), did not reduce the in-
flammatory effects of DSS, whereas NPS 2143 ame-
liorated the DSS-induced symptoms and reduced
immune cell infiltration (Elajnaf et al., 2019).

The anti-inflammatory effect of the CaSR was also
shown in vitro in cell lines. In a colonic myofibroblast
cell line, activation of the CaSR inhibited tumor necro-
sis factor-a secretion (Kelly et al., 2011) and increased
expression of bone morphogenetic protein-2, which is
a promoter of colonic epithelial barrier maturation
(Peiris et al., 2007). In colon cancer cell lines, amino
acids and dipeptides inhibited proinflammatory cyto-
kine secretion, and the effect was reversed by NPS 2143
(Mine and Zhang, 2015; Zhang et al., 2015). Inflamma-
tory cytokines, such as tumor necrosis factor-a, IL-1b,
and IL-6, increased the expression of the CaSR at the
mRNA and protein level in some colon cancer cell lines
(Fetahu et al., 2014), which could be a defensemechanism
against inflammation in the intestines.
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Bicarbonate (HCO3
2) secretion in the colon is fine-

tuned by the CaSR (Tang et al., 2015). However, it
seems that the neurogenic secretory responses in the
intestinal epithelium are mediated mainly by the CaSR
expressed in the ENS and not in the epithelium (Geibel
et al., 2006; Cheng, 2012; Tang et al., 2018). Because
abnormalities of the ENS affect the severity of in-
testinal inflammation and contribute to the pathogen-
esis of inflammatory bowel disease (Margolis et al.,
2011), the CaSR could be a potential therapeutic target.
Increased dietary intake of calcium reduces the risk of

several cancers. The inverse correlation between cal-
cium intake and risk of colorectal cancer has been
known for decades, although the mechanisms driving
the protective effect of calcium were not clear. There is
some evidence that the CaSR is one of the central
mediators of the antitumorigenic effects of calcium and
acts as a tumor suppressor (Kállay et al., 1997, 2003;
Yang et al., 2018). In colon cancer cells, activation of the
CaSR increased differentiation and reduced prolifera-
tion, epithelial-to-mesenchymal transition, and expres-
sion of stem cell markers (Aggarwal et al., 2015, 2017).
The signaling pathways involved in these processes still
need to be determined. Interestingly, in the upper
intestinal tract, it seems that the CaSR functions as
an oncogene, as it promoted gastric cancer cell pro-
liferation (Xie et al., 2017).

G. Calcium-Sensing Receptor in the Pancreas

The CaSR is expressed in pancreatic acinar cells
(Bruce et al., 1999), which promote digestion via
nutrient-stimulated release of digestive enzymes and
fluid. The CaSR is also expressed in the pancreatic islets
on glucagon-secreting a cells and insulin-secreting b
cells (Babinsky et al., 2017). Thus, the CaSR may
influence not only protein metabolism but also carbo-
hydrate and fat metabolism.
Ca2+o is critical for pancreatic islet function and acts

via voltage-gated Ca2+ channels to trigger the exo-
cytosis of insulin- and glucagon-containing secretory
granules from b- and a-cells, respectively (Rorsman
et al., 2012). Ca2+o also activates the pancreatic islet
CaSR, with ex vivo and in vitro studies demonstrating
a role for the CaSR in mediating islet hormone secre-
tion. Thus, stimulation of isolated human islets and an
insulin-secreting mouse cell line (MIN6) with the PAM,
NPS R-568, potentiated Ca2+o -mediated insulin secre-
tion (Gray et al., 2006), whereas knockdown of the CaSR
through RNA interference diminished glucose-induced
insulin secretion in MIN6 cells that were cultured as
pseudoislets (Kitsou-Mylona et al., 2008). Studies in-
volving MIN6 pseudoislets have also revealed CaSR-
stimulated insulin secretion to be mediated by PLC and
the MAPK pathway (Gray et al., 2006). Furthermore,
CaSR-mediatedMAPK activation inMIN6 cells induces
b-cell proliferation, thus highlighting a potential role
for the CaSR in the regulation of b-cell mass (Kitsou-

Mylona et al., 2008). The CaSR also upregulates the
expression of E-cadherin in MIN6 cells, which is
associatedwith increased adherence betweenneighboring
b-cells (Hills et al., 2012). Thus, the CaSR may facilitate
cell-to-cell communicationwithinan individual pancreatic
islet to coordinate insulin secretion from b-cells (Hodgkin
et al., 2008). In addition, the level of islet CaSR expression
correlates with insulin secretion from isolated wild-type
mouse pancreatic islets (Oh et al., 2016). Studies in wild-
type mice have shown that islet CaSR expression
increases with age, which may compensate for the insulin
resistance in aged mice by increasing insulin secretion
(Oh et al., 2016). Transient stimulation of isolated human
islets with Ca2+o and NPS R-568 also promoted glucagon
secretion, thereby indicating a role for the CaSR in a-cells
(Gray et al., 2006). The intestinalCaSR,which is activated
by dietary amino acids and peptides, may also influence
pancreatic islet function by regulating the secretion of
incretin hormones. In support of this, studies involving
isolated mouse intestine have shown that the CaSR is
expressed in GLP-1-secreting L-cells and also that oligo-
peptides enhance GLP-1 secretion by activation of the
CaSR (Diakogiannaki et al., 2013).

The role of the CaSR in systemic glucose homeostasis
has been investigated in studies involving human
subjects. An association study reported a common
coding-region CASR gene variant to be an independent
determinant of plasma glucose concentrations in renal
transplant recipients (Babinsky et al., 2015). However,
another study involving patients with FHH1 (caused by
germline loss-of-function CASR mutations) did not re-
veal any alterations in insulin secretion or glucose
tolerance (Wolf et al., 2014). The effect of altered CaSR
function on glucose tolerance has also been evaluated in
an ADH1 mouse model, which is referred to as Nuclear
flecks (Nuf) because the mutant mouse was initially
identified to have nuclear cataracts (Babinsky et al.,
2017). Nuf mice, which harbor a germline gain-of-
function CaSR mutation (Leu723ICL2Gln) causing hy-
pocalcemia, have impaired glucose tolerance and hypo-
insulinemia in associationwith reductions in pancreatic
islet mass and b-cell proliferation (Babinsky et al.,
2017).Nufmice also lack glucose-mediated suppression
of glucagon secretion, which was associated with an
increase in a-cell proliferation and an impairment of
a-cell membrane depolarization (Babinsky et al., 2017).
Administration of the NAM, ronacalceret, ameliorated
the hypocalcemia and glucose intolerance of Nuf mice,
and these findings highlight the potential utility of
targeted CaSR compounds for modulating glucose
metabolism (Babinsky et al., 2017).

H. Calcium-Sensing Receptor in Mammary Glands

The CaSR is expressed in breast epithelial cells, in
which its main role is to fine tune maternal Ca2+

metabolism by balancing Ca2+o mobilization and usage:
It ensures the supply of Ca2+ for milk while protecting
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against maternal hypocalcemia (Cheng et al., 1998;
VanHouten et al., 2004, 2007; Kim and Wysolmerski,
2016). The expression of the CaSR is increased during
lactation when it regulates Ca2+o transport into milk. In
parallel, it inhibits synthesis of PTHrPby couplingwithGi

to inhibit adenylyl cyclase activity and cAMP produc-
tion (VanHouten et al., 2004). Duringmilk production, the
CaSR enables the lactating breast to participate in
the regulation of systemic Ca2+o and bone metabolism.
VanHouten andWysolmerski (2013) suggested a negative
feedback between systemic Ca2+o delivered to the lactating
breast and PTHrP synthesis and secretion by mammary
epithelial cells. When the mother’s serum calcium level is
adequate, the CaSR in breast epithelial cells stimulates
calcium secretion into milk, but reduces Ca2+o usage when
themother’s calcium supply becomes limited (VanHouten
andWysolmerski, 2013). Inmammary epithelial cells, the
CaSR regulates Ca2+o transport by altering the activity of
the plasma membrane Ca2+ ATPase 2; however, the
detailed molecular mechanism is not yet known
(VanHouten et al., 2007; VanHouten and Wysolmerski,
2007).
The CaSR is expressed also in the neoplastic mam-

mary gland. In contrast with normal breast cells, in
breast cancer cells the CaSR stimulates PTHrP secre-
tion. This is possible because the CaSR switches
coupling from Gi/o to Gs, leading to stimulation of cAMP
and PTHrP synthesis (Mamillapalli et al., 2008). The
higher PTHrP levels, secreted because of activation of
the CaSR, inhibit the cell cycle inhibitor p27kip1 and the
apoptosis-inducing factor, stimulating cell proliferation
and reducing apoptosis (Kim et al., 2016). Moreover,
PTHrP is an activator of osteoclasts and often stim-
ulates osteolytic bone destruction when secreted from
cancer cells that metastasize to bone (Wysolmerski,
2012).
The CaSR is highly expressed by metastatic breast

cancer cells and potentiates their osteolytic ability,
promoting a more aggressive behavior. In vitro, the
CaSR promoted breast cancer cell migration only in
cells capable of forming bone metastases (e.g., MDA-
MB-231, MCF-7) but not in BT474 cells that have no
bone-metastatic potential, even though CaSR levels
were similar in all cell types (Saidak et al., 2009). It
has been shown recently that breast cancer cells over-
expressing the wild-type CaSR injected intratibially
into BALB/c-Nudemice led to osteolytic lesions through
an epiregulin-mediated mechanism (Boudot et al.,
2017). The oncogenic potential of the CaSR in breast
cancer cells was also suggested by the fact that activa-
tion of the CaSR by NPS R-568 or Ca2+o increased
secretion of proangiogenic and chemotactic cytokines
and growth factors from the highly invasive MDA-MB-
231 breast cancer cells (Hernández-Bedolla et al., 2015).
Another group, however, found that activating the
CaSR with Ca2+o induced sensitivity of MCF-7 and
MDA-MB-435 cells to the chemotherapeutic drug

paclitaxel and reduced malignant behavior. The
paclitaxel-resistant cells expressed no CaSR (Liu et al.,
2009). This group suggested a positive link between the
tumor suppressive functions of BRCA1 and the CaSR
(Promkan et al., 2011).

I. Calcium-Sensing Receptor in Airway Smooth
Muscle and Epithelium

Asthma is characterized by airway hyperresponsive-
ness, inflammation, and remodeling of the conducting
airways. A number of mechanisms, many driven by
inflammation, have been hypothesized to contribute to
airway hyperresponsiveness and/or remodeling. Among
these, local increases of polycations are seen in the
airways of patients who are asthmatic (Kurosawa et al.,
1992) and, vice versa, increased inflammation increases
the local concentration of polycations. Furthermore, the
polycations, eosinophil cationic protein and major basic
protein, are markers for asthma severity and stability.
Elevated arginase activity increases the consumption of
L-arginine to enhance production of the polycations,
spermine, spermidine, and putrescine (North et al.,
2013). Indeed, arginase inhibitors have been proposed
to have therapeutic potential for allergic asthma (van
den Berg et al., 2018). Recent evidence suggests that the
CaSR is expressed in the airway epithelium, smooth
muscle, and inflammatory cells and that polycations act
at the CaSR and are directly implicated in the patho-
genesis of asthma (Yarova et al., 2015). Yarova et al.
(2015) have also shown that inhaled CaSR NAMs
delivered topically reverse-airway hyperresponsive-
ness, inflammation, and remodeling in in vivo models
of allergic asthma and other inflammatory lung dis-
eases, such as chronic obstructive pulmonary disease.
Inhaled NAMs also show efficacy in nonallergic asthma,
which is often associated with poor response to steroids,
and for which currently there is no treatment (Riccardi
unpublished observations). Four CaSR NAMs have
been studied in humans; NPSP795, ronacaleret,
AXT914, and JTT-305 (IIB. Endogenous and Exogenous
Allosteric Modulators, Table 1), which could be repur-
posed, via the inhaled route, as novel asthma treat-
ments. Crucially, delivery of CaSRNAMs directly to the
lung does not significantly affect serum calcium levels
up to 24 hours post-treatment, suggesting absence of
any significant systemic overspill and possible effects on
whole-body mineral ion homeostasis in vivo. Thus,
CaSR NAMs could provide a new therapeutic approach
to treating inflammatory lung disease in humans.

J. Calcium-Sensing Receptor in the Vasculature

The CaSR is expressed in the intima, media, and
adventitia of the blood vessels in endothelial, smooth
muscle cells and in the perivascular neurons. Although
consumption of dietary calcium reduces blood pressure
(Nakamura et al., 2019; Rietsema et al., 2019), direct
actions of Ca2+o on isolated blood vessels have yielded
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contrasting effects, with both relaxation and constric-
tion reported (Bohr, 1963). Furthermore, the molecular
mechanisms underlying these actions are elusive. Stud-
ies carried out over the last two decades indicate that
the CaSR could mediate at least some of the effects of
Ca2+o on vascular function, with opposing effects in the
endothelium and smooth muscle cell layers of the blood
vessels. Specifically, CaSR activation by the CaSR
PAM, cinacalcet, in the vascular endothelium leads to
hyperpolarization and attendant nitric oxide release
and vasodilatation (Smajilovic et al., 2007). In contrast,
studies of Casr gene ablation in the vascular smooth
muscle cells show that activation of the CaSR in these
cells leads to contraction, as evidenced by the fact that
Casr knockout mice exhibit impaired vascular reactiv-
ity, hypotension, and reduced contractile response to
Ca2+o (Schepelmann et al., 2016). Thus, the CaSR sets
blood vessel tone by integrating prorelaxing (endothe-
lium-mediated) actions with procontractile (smooth
muscle–mediated) effects (Schepelmann et al., 2016).
Therefore, altered CaSR expression within either the
endothelium or smooth muscle could account for the
abnormal vascular reactivity seen in advanced CKD
or in type 2 diabetes. Indeed, systemic administration
of the CaSR PAM, NPS R-568, initially evokes an
increase in blood pressure in control and in uremic
rats (a model for advanced CKD), which is followed by
a reduction in blood pressure, but only in uremic
animals (Odenwald et al., 2006), suggesting partial
loss of the CaSR-dependent contractile component of
the vasculature.
However, there is some controversy regarding the

role of the CaSR in regulating blood pressure. In ex vivo
studies in rat mesenteric arteries, relaxant responses to
cinacalcet and calindol were not blocked by calhex 231
(Thakore and Ho, 2011), which at the time was believed
to be a CaSR NAM (but has now been shown to have
mixed PAM and NAM activity, see II.B. Endogenous
and Exogenous Allosteric Modulators). Nonetheless,
Ca2+o influx into these vessels stimulated by the a1
adrenergic receptor agonist, methoxamine, was
inhibited, not potentiated, by cinacalcet and calindol,
as were contractions in response to an L-type calcium
channel activator (Thakore and Ho, 2011). Given that
arylalkylamine PAMs are structurally related to the
nonselective calcium channel blocker, fendiline, and
have low affinity for calcium channels, the relaxing
effects of CaSR PAMs in arteries may in part arise
from off-target calcium channel effects. Further sup-
port for a non-CaSR-mediated effect of PAMs in the
vasculature comes from findings that, although the
S-enantiomers of arylalkylamine PAMs have little
activity at the CaSR, the effects of NPS R-568 on
vascular tone, blood pressure, and heart rate are not
stereoselective and only occur at concentrations in
excess of those required to inhibit PTH secretion
(Nakagawa et al., 2009).

End-stage CKD is associated with impaired mineral
ion metabolism, which can lead to pathologic vascular
calcification of the medial layer of the blood vessel, left
ventricular hypertrophy, and increased cardiovascular
mortality (Locatelli et al., 2002). CaSR expression is
significantly reduced in the medial layer of calcifying
blood vessels and is completely absent in areas of
extensive medial calcification, suggesting an involve-
ment of the CaSR in the vascular calcification process
(Alam et al., 2009). Human and bovine vascular smooth
muscle cells exposed to Ca2+ and phosphate concen-
trations mimicking those seen during pathologic CKD
exhibit marked calcification in vitro, an effect that is
exacerbated by CaSR downregulation and that is re-
versed by the CaSR PAM, NPS R-568 (Alam et al.,
2009). In addition, NPS R-568 reduces blood pressure
and ameliorates cardiac remodeling in animal models of
advanced CKD in vivo (Ogata et al., 2003). Taken
together, these results suggest that loss of CaSR
expression by the medial layer of the blood vessels in
advanced CKD leads to vascular calcification and that
CaSR PAMs might be vasculo-protective by directly
restoring normal CaSR expression levels within the
vasculature. However, CaSR PAMs reduce systemic
levels of serum Pi and PTH through their actions on
the parathyroid CaSR, and parathyroidectomy sup-
presses vascular calcification (Kawata et al., 2008);
therefore, PAM-mediated reduction of vascular calcifi-
cation may be dependent on activation of parathyroid
CaSRs. Although in vitro and in vivo studies support
a direct role for the vascular CaSR in protecting
vascular function, human observational studies of
clinical evaluation of the CaSR PAM, cinacalcet,
assessed by the Evaluation of Cinacalcet Hydrochloride
Therapy to Lower Cardiovascular Events randomized
controlled trial failed to reach its endpoints (reduction
of all-cause and cardiovascular mortality in patients
with advanced CKD) (Chertow et al., 2012). However,
a recent Bayesian meta-analysis combined with a sys-
tematic literature review concluded that once subject
ages and high drop-out rates throughout the trial are
accounted for, cinacalcet treatment does reduce mortal-
ity rates in patients with secondary hyperparathyroid-
ism on hemodialysis (Lozano-Ortega et al., 2018).
Therefore, further clinical studies are needed to fully
evaluate the effects of CaSR PAMs on cardiovascular
and all-cause mortality in patients with advanced CKD.

Finally, it should be pointed out that the CaSR is also
expressed in arterial smooth muscle cells of the pulmo-
nary vasculature, wherein receptor activation leads to
pulmonary vasoconstriction and proliferation. Here,
CaSR NAMs prevent the development and progression
of pulmonary hypertension in mouse and rat models
in vivo (Tang et al., 2016a). Thus, targeting the CaSR in
the pulmonary arteries with inhaled NAMs might pro-
vide a novel treatment of patients with idiopathic
pulmonary hypertension.
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K. Calcium-Sensing Receptor in the Brain and
Nervous System

For a comprehensive review of all evidence for CaSR
function in the brain, readers are directed to a recent
review (Giudice et al., 2019).
Although the role of the CaSR in human brain

requires validation, the CaSR is expressed throughout
the rat brain, with particular abundance in the hippo-
campus, striatum, cerebellum, pituitary, and olfactory
bulb (Ruat et al., 1995). However, CaSR expression can
change with developmental age (Vizard et al., 2008),
which supports a role for the CaSR in brain development.
For instance, rat CaSR expression increases in fetal
oligodendrocyte precursor cells and postnatal imma-
ture oligodendrocytes during myelination of nerve
axons, but expression declines in mature oligoden-
drocytes (Chattopadhyay et al., 1998, 2008; Ferry
et al., 2000).
Although hyperparathyroidism and consequent early

lethality resulting from global Casr ablation preclude
determination of the role of the CaSR in brain de-
velopment, concomitant Casr and PTH ablation pre-
vents hyperparathyroidism, and mice survive to
adulthood (Kos et al., 2003). In brains of Casr2/2/
Pth2/2 mice, neuron and glial cell differentiation
markers were reduced after birth, whereas differentia-
tion of neural stem cells fromCasr2/2mice was delayed
(Liu et al., 2013). These mice also had reduced numbers
of gonadotropin-releasing hormone-positive neurons in
the hypothalamus. These findings suggest a role for the
CaSR in neuron and glial cell differentiation.
To elucidate region-specific CaSR brain functions,

hippocampus-specific Casr ablation 3 weeks postbirth
has been undertaken (Kim et al., 2014). Although mice
did not display an obvious phenotype under normal
conditions, they were protected from hippocampal
neuronal damage in response to ischemia-induced in-
jury, which mimics injury sustained during cardiac
arrest or stroke. In line with these findings, hypoxia
increases CaSR expression in rat hippocampal neurons
in vivo and in vitro (Bai et al., 2015), but neuroprotec-
tion from ischemia is blocked when the related class C
GPCR, GABABR1, is also ablated (Kim et al., 2014).
This may be explained by the discover of an increase in
CaSR expression in hippocampal neurons in culture
upon suppression of GABABR1 levels (Chang et al.,
2007), which is also observed in cortical neurons of mice
who have experienced controlled cortical impact as
a model for traumatic brain injury (Kim et al., 2013).
In support of a role for the CaSR in the hippocampus, in
rat hippocampal neurons from wild-type but not
Casr2/2 mice, CaSR activation opens nonselective
cation channels (Ye et al., 1997b). Similarly, trans-
fection of a dominant negative Arg185Glnmutant CaSR
into pyramidal neurons of hippocampal brain slice
cultures resulted in significantly shorter and less

complex dendritic branching (Vizard et al., 2008).
Taken together, these studies suggest that CaSRNAMs
could be neuroprotective.

In addition to neuroprotective effects upon brain
injury, inhibition of brain CaSRs may afford neuro-
protection in Alzheimer disease. The first evidence for
a possible role of the CaSR in Alzheimer disease came
from a study that demonstrated activation of nonselec-
tive cation channels in cultured hippocampal pyramidal
neurons from wild-type rats and mice but not from
Casr2/2 mice (Ye et al., 1997a). Although additional
studies have since suggested b-amyloid proteins acti-
vate the CaSR (Conley et al., 2009; Dal Pra et al., 2014),
these findings warrant further validation. Nonetheless,
CaSR expression is increased in the hippocampus of an
Alzheimer disease mouse model (Gardenal et al., 2017),
and there is a positive association between CaSR SNPs
and Alzheimer disease, although this is only in patients
who do not harbor the Alzheimer risk allele encoding
apolipoprotein E4 (Conley et al., 2009). Furthermore, in
human cortical astrocytes and neurons in culture, neuro-
toxic b-amyloid25–35 stimulates full-length b-amyloid42
secretion, an effect that is blockedby theCaSRNAM,NPS
2143 (Armato et al., 2013; Chiarini et al., 2017b). NPS
2143 also blocked b-amyloid25–35–mediated GSK-3b acti-
vation and subsequent phosphorylation of t in cultured
human astrocytes (Chiarini et al., 2017a).

The CaSR has also been implicated in the etiology of
neuroblastomas, tumors originating from precursor
nerve cells of the sympathetic nervous system. Approx-
imately 98% of neuroblastomas are associated with
spontaneous mutations in a variety of genes (Aygun,
2018). Analysis of mRNA from neuroblastoma tumors
indicates that although the CaSR is expressed in benign
differentiated tumors, epigenetic hypermethylation of
the CASR P2 promoter region silences CASR transcrip-
tion in some aggressive neuroblastomas (de Torres
et al., 2009; Casalà et al., 2013). Similarly, two non-
coding CASR SNPs (rs7652579 and rs1501899) that
reduce CaSR expression are present in homozygous or
heterozygous form in 58% of neuroblastoma tumors but in
only 47% of the general population (Masvidal et al., 2017). In
a subset of ganglioneuromas, CASR expression was absent
in fouroutof six tumorsharboringrs7652579andrs1501899.
However, neuroblastoma patients with rs7652579 and
rs1501899 SNPs did not have poorer outcomes or
survival (Masvidal et al., 2017). In contrast, neuroblas-
tomas with a haplotype SNP in the CASR gene-coding
region were associated with poorer outcomes, including
increased risk of death (Masvidal et al., 2013). Impor-
tantly, cinacalcet reduced neuroblastoma tumor growth
in immunocompromised mice carrying neuroblastoma
xenograftsby inducingendoplasmic reticulumstress, tumor
differentiation, and fibrosis as well as upregulation of
cancer-testis antigens (Rodríguez-Hernández et al., 2016).

Finally, approximately 40% of patients harboring
ADH1 gain-of-function CASR mutations present with
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seizures (Gorvin, 2019). Although this could be associ-
ated with the consequent reduction in serum calcium
concentrations, a gain-of-expression CaSR mutation,
Arg898Gln, was identified in a patient with idiopathic
epilepsy who did not have low serum concentrations of
calcium or PTH (Kapoor et al., 2008). These findings
suggest a possible role for CaSR in neurotransmission,
which is supported by numerous in vitro studies
suggesting the CaSR regulates synaptic transmission
and neuronal activity via activation of nonselective
cation channels on presynaptic terminals [reviewed in
Jones and Smith (2016)].

VI. Calcium-Sensing Receptor–Related Genetic
Diseases and Therapeutic Interventions

A. Loss- and Gain-of-Function Mutations in the
Calcium-Sensing Receptor and Its Signaling Partners

Alterations in CaSR signaling, which lead to derange-
ments of mineral homeostasis, can result from loss-of-
function germline mutations of the CASR gene on
chromosome 3q21.1, which cause FHH1 and NSHPT,
or gain-of-function germline CASR mutations, which
lead to ADH1 and Bartter syndrome type V (Fig. 4;
Table 2) (Hannan et al., 2012; Hannan and Thakker,
2013). In addition, loss- and gain-of-function germline
mutations of the GNA11 gene on chromosome 19p13.3,
which encodes Ga11, are associated with FHH2 and
ADH2, respectively (Table 2) (Nesbit et al., 2013a;
Hannan et al., 2016). Furthermore, loss-of-function
germline mutations of the AP2S1 gene on chromosome
19q13.3, which encodes AP2s, cause FHH3 (Table 2)
(Nesbit et al., 2013b; Hannan et al., 2015a).

B. Familial Hypocalciuric Hypercalcemia and
Neonatal Severe Hyperparathyroidism

FHH is a genetically heterogeneous autosomal dom-
inant disorder characterized by lifelong nonprogressive
elevations of serum calcium concentrations, mild hyper-
magnesemia, normal or mildly raised serum PTH
concentrations, and low urinary calcium excretion
(Table 2) (Hannan and Thakker, 2013). FHH1 (OMIM
145980) accounts for ;65% of all FHH cases and is
usually an asymptomatic disorder. It has been associ-
ated with .150 different CASR mutations (Hannan
et al., 2018a). The majority (.85%) of these loss-of-
function CASR mutations are heterozygous missense
substitutions, which are predominantly located in the
VFT of the CaSR ECD and also in the 7TM (Hannan
et al., 2012). These FHH1-associated missense muta-
tions cause a loss of function by diminishing the
signaling responses of CaSR-expressing cells (Leach
et al., 2012) or by reducing CaSR anterograde traffick-
ing and cell surface expression (Huang and Breitwieser,
2007; White et al., 2009). In addition, FHH1-causing
missense mutations may induce biased agonism by
switching from a wild-type CaSR that preferentially

increases Ca2+i mobilization to mutant receptors that
demonstrate equal preference for Ca2+i and MAPK
pathways or that preferentially act via MAPK (Leach
et al., 2012, 2013; Leach and Gregory, 2017). Between
10% and 15% of FHH1 cases are caused by heterozygous
deletion, insertion, nonsense, and splice-site mutations
that lead to nonsense-mediated decay of mRNA and
CaSR haploinsufficiency or truncate the CaSR protein
(Hannan et al., 2012). The offspring of two parents with
FHH1 can harbor biallelic loss-of-function CASRmuta-
tions that cause NSHPT (OMIM 239200), which is
associated with marked hyperparathyroidism that
leads to hypercalcemia and bone demineralization
causing fractures and respiratory distress (Hannan
and Thakker, 2013). Occasionally, biallelic loss-of-func-
tion CASR mutations can lead to primary hyperpara-
thyroidism, which presents in adulthood (Table 2)
(Hannan et al., 2010). Furthermore, some heterozygous
mutations (e.g., Arg185Gln) can cause NSHPT due to
dominant negative effects on the wild-type CaSR (Bai
et al., 1997).

FHH2 (OMIM 145981) is the least common form of
FHH and has been reported in four probands to date
(Nesbit et al., 2013a; Gorvin et al., 2016, 2018b). FHH2
appears to have a mild clinical presentation with
serum-adjusted total calcium concentrations usually
between 2.55 and 2.80 mM (normal range 2.10–2.55
mM). Urinary calcium excretion may be normal or low
(Table 2) (Nesbit et al., 2013a; Gorvin et al., 2016,
2018b). The GNA11 mutations reported in FHH2 pro-
bands consist of three missense substitutions
(Thr54Met, Leu135Gln, Phe220Ser) and an in-frame
isoleucine deletion (Ile200del) (Nesbit et al., 2013a;
Gorvin et al., 2016, 2018b). All of these mutations
impair CaSR-signaling responses and are located
within key domains of the Ga11 protein (Nesbit et al.,
2013a; Gorvin et al., 2016, 2018b). Thus, the Ile200del
and Phe220Ser mutations are located within the Ga11

GTPase domain and are predicted to diminish the
interaction of Ga11 with the CaSR or PLC, respectively
(Nesbit et al., 2013a; Gorvin et al., 2018b). In contrast,
the Leu135Gln mutation is situated within the PLC-
interacting portion of the Ga11 helical domain, and the
Thr54Met mutation is located at the interface between
the helical and GTPase domains and may potentially
affect GTP binding (Nesbit et al., 2013a; Gorvin et al.,
2016).

FHH3 (OMIM 600740) has been reported in .60
FHH probands and has a more marked clinical pheno-
type than FHH1. Thus, FHH3 is associated with
significant elevations of serum calcium and magnesium
and also a significantly reduced urinary calcium excre-
tion compared with FHH1 (Table 2) (Hannan et al.,
2015a; Vargas-Poussou et al., 2016). In addition, hyper-
calcemic symptoms, low bone mineral density, and
alterations in cognitive function have been described
in some patients with FHH3 (McMurtry et al., 1992;
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Fig. 4. CaSR snakeplot with residues linked to loss- and gain-of-function germline mutations. Snakeplot of the CaSR showing the location of the ECD,
7TM, ICLs, ECLs, and carboxy terminus. Sites of loss- and gain-of-function germline mutations causing FHH1/NSHPT (red), ADH1/Bartter syndrome
type V (green), or both FHH1/NSHPT and ADH1/Bartter syndrome type V (yellow), respectively. Snakeplot generated by GPCRdb (Munk et al., 2016)
with data from the Human Gene Mutation Database (Stenson et al., 2012). C-term, C terminal; N-term, N terminal.
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Hannan et al., 2015a). Nearly all FHH3 cases are
caused by a missense mutation of the AP2s Arg15
residue (Arg15Cys, Arg15His, or Arg15Leu) (Fujisawa
et al., 2013; Nesbit et al., 2013b; Hendy et al., 2014;
Hannan et al., 2015a; Howles et al., 2016; Vargas-
Poussou et al., 2016; Hovden et al., 2017). In addition,
a genotype-phenotype correlation has been observed at
the AP2s Arg15 residue with the Arg15Leu mutation
being associated with significant increases in serum
calcium and an earlier age of presentation compared
with patients harboring the Arg15Cys or Arg15His
AP2s mutations (Hannan et al., 2015a; Hovden et al.,
2017). The AP2s subunit forms part of the heterotetra-
meric AP2 complex, which is involved in clathrin-
mediated endocytosis (Kelly et al., 2008), and the
FHH3-causing AP2sArg15mutations have been shown
to reduce CaSR endocytosis and impair endosomal
signaling from the internalized CaSR (Gorvin et al.,
2018c). However, given the role of AP2 in clathrin-
mediated endocytosis, it remains to be established
whether phenotypic observations, such as cognitive
deficits in FHH3, are attributable to CaSR dysregula-
tion or potentially due to alterations in the endocytosis
of other plasma membrane proteins.

C. Autosomal Dominant Hypocalcemia and Bartter
Syndrome Type V

ADH is comprised of two genetically distinct variants,
designated ADH1 and 2, which are caused by germline
gain-of-function mutations of the CaSR and Ga11, re-
spectively (Table 2) (Hannan et al., 2016). ADH1 (OMIM
601198) is characterized by mild-to-moderate hypocalce-
mia in association with mild hypomagnesemia, hyper-
phosphatemia, and serum PTH concentrations that are

usually detectable but within the lower half of the
reference range (Nesbit et al., 2013a). Patients with
ADH1 have significantly increased urinary calcium ex-
cretion compared with patients with hypoparathyroid
(Yamamoto et al., 2000), and ;10% of patients with
ADH1 have an absolute hypercalciuria (Nesbit et al.,
2013a). Some patients with ADH1 may have ectopic
calcifications and/or elevations in bone mineral density
(Pearce et al., 1996), and patients with a severe gain-of-
function CaSR mutation may also develop a Bartter
syndrome (referred to as Bartter syndrome type V)
(Table 2), which is characterized by renal salt wasting
leading to volume depletion, hyper-reninemic hyperaldos-
teronism, and hypokalemic alkalosis (Watanabe et al.,
2002). Over 90 different ADH1-causing CaSR mutations
have been reported (Hannan and Thakker, 2013; Hannan
et al., 2016), and around 95% of these are heterozygous
missense substitutions, whereas ;5% are in-frame or
frameshift insertion or deletionmutations (Hannan et al.,
2012). ADH1 mutations cluster within the second loop of
the VFT domain (residues 116–136), which contributes to
the dimeric CaSR interface (Geng et al., 2016) (Fig. 4). A
second ADH1 mutational hotspot is located in a region
that encompasses transmembrane helices 6 and 7 and the
intervening third ECL of the CaSR (residues 819–837)
(Hannan et al., 2016). This transmembrane region may
participate in a network of interactions with other trans-
membrane helices (Dore et al., 2014), thereby causing the
CaSR to adopt an inactive conformational state.

ADH2 (OMIM 615361) (Table 2) has been reported in
seven probands (Mannstadt et al., 2013; Nesbit et al.,
2013a; Li et al., 2014a; Piret et al., 2016; Tenhola et al.,
2016). Patients with ADH2 generally have mild-to-
moderate hypocalcemia, in keeping with the serum

TABLE 2
Calcitropic disorders caused by germline CASR, GNA11, and AP2S1 mutations

Gene Mutation and Disease Genotype Serum Calcium Serum PTH Urine Calcium

CASR mutations
Loss-of-function

FHH1 Heterozygousa High Normal or
high

Low

NSHPT Heterozygous, compound heterozygous,
or homozygous

High High Normal, low or
high

Primary hyperparathyroidism (PHPT)b Heterozygous or homozygous High High Normal, low or
high

Gain-of-function
ADH1 Heterozygousa Low Normal or low Normal, low or high
Bartter syndrome type V Heterozygous Low Low High

GNA11 mutations
Loss-of-function

FHH2 Heterozygous High Normal or
high

Normal or low

Gain-of-function
ADH2 Heterozygous Low Normal or low Normal or low

AP2S1 mutations
Loss-of-function

FHH3 Heterozygous High Normal or
high

Low

aMay occasionally be caused by homozygous CASR mutations (Lietman et al., 2009; Cavaco et al., 2018).
bCASR mutations are a rare cause of primary hyperparathyroidism.
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biochemical phenotype of ADH1 (Hannan et al., 2016).
However, ADH2 is associated with a milder urinary
phenotype, with significantly reduced urinary calcium
excretion compared with ADH1 (Li et al., 2014a).
Moreover, short stature caused by postnatal growth
insufficiency has been reported in two ADH2 kindreds
(Li et al., 2014a; Tenhola et al., 2016). ADH2-causing
mutations all comprise missense substitutions
(Arg60Cys, Arg60Leu, Arg181Gln, Ser211Trp, Val340-
Met, and Phe341Leu), which enhance CaSR-mediated
signaling responses, consistent with a gain of function
(Nesbit et al., 2013a; Li et al., 2014a; Piret et al., 2016).
ADH2-causing mutations cluster at the interface be-
tween the Ga11 helical and GTPase domains (Piret
et al., 2016) and may enhance the exchange of GDP and
GTP, thereby leading to G protein activation. ADH2
mutations also affect the C-terminal portion of the Ga11

protein, which facilitates G protein–GPCR coupling
(Piret et al., 2016).

D. Animal Models of Genetic Diseases

Mouse models for FHH, NSHPT, and ADH have been
generated using gene knockout and knock-in techniques
and also by using chemical mutagenesis (Piret and
Thakker, 2011).
1. Familial Hypocalciuric Hypercalcemia/Neonatal

Severe Hyperparathyroidism Mouse Models. A mouse
model lacking the CaSR was generated by replacing
part of exon 5 with a neomycin resistance gene (Ho
et al., 1995). Mice harboring this germline heterozygous
CaSR deletion (Casr+/2) had mild hypercalcemia and
hypocalciuria, similar to patients with FHH1, whereas
mice with a homozygous CaSR deletion (Casr2/2) had
a phenotype resembling NSHPT with parathyroid
hyperplasia, severe hypercalcemia, bone abnormalities,
and retarded growth (Ho et al., 1995). TheCasr2/2mice
died within the first 30 days of life (Ho et al., 1995),
whichwas attributed to severe hyperparathyroidism. In
support of this, correction of the hyperparathyroidism
by the additional germline ablation of the Pth or Gcm2
genes rescued the early lethality and bone demineral-
ization in Casr2/2 mice (Kos et al., 2003; Tu et al.,
2003). The importance of the parathyroid CaSR in the
pathogenesis of NSHPT has been further highlighted by
mice harboring a parathyroid-specific ablation of the
CaSR, which developed severe hypercalcemia and
hyperparathyroidism (Chang et al., 2008; Fan et al.,
2018). In contrast, mice with a kidney-specific ablation
of the CaSR do not have alterations in serum calcium or
PTH but are hypocalciuric, and these findings support
an independent role of the kidney CaSR in the regula-
tion of urinary calcium excretion (Toka et al., 2012).
Amousemodel forFHH2hasbeengeneratedbychemical

mutagenesis using the N-ethyl-N-nitrosourea–alkylating
agent (Howles et al., 2017). The mutant mice harbor
a germline loss-of-function Gna11 mutation, Asp195Gly
(D195G) (Howles et al., 2017).Heterozygous (Gna11+/195G)

mice have mild hypercalcemia and normal plasma
PTH concentrations (Howles et al., 2017). Homozygous
(Gna11195G/195G) mice have significantly increased
plasma calcium and PTH concentrations compared
with Gna11+/195G and wild-type mice (Howles et al.,
2017). However, Gna11195G/195G mice do not have
growth retardation, bone demineralization, or early
lethality to suggest an NSHPT phenotype (Howles
et al., 2017). Thus, these studies indicate that the
loss-of-function D195G Ga11 mutation is associated
with a mild calcitropic phenotype. Furthermore, the
Gna11+/195G and Gna11195G/195G mice have no alter-
ations in urinary calcium excretion (Howles et al.,
2017), which suggests that Ga11 may not play a major
role in the renal handling of calcium.

2. Autosomal Dominant Hypocalcemia Mouse
Models. Three different ADH1 mouse models have
been reported (Hough et al., 2004; Dong et al., 2015).
Nuf mice (described in V.G. Calcium-Sensing Receptor
in the Pancreas) weregenerated by chemical mutagen-
esis using the isopropyl methane sulfonate–alkylating
agent (Hough et al., 2004). Heterozygous and homozy-
gousNufmice have hypocalcemia, hyperphosphatemia,
reduced plasma PTH concentrations, and ectopic calci-
fications caused by a germline gain-of-function CaSR
mutation, Leu723Gln (Hough et al., 2004). Two knock-
inmousemodels, which harbor ADH1-causing germline
Cys129Ser or Ala843Glu gain-of-function CaSR muta-
tions, have also been generated (Dong et al., 2015).
Homozygous mutant knock-in mice exhibited embry-
onic or perinatal lethality, whereas heterozygous knock-
in mice have hypocalcemia, hyperphosphatemia, re-
duced plasma PTH, hypercalciuria, and renal calcifica-
tions, consistent with the phenotype of patients with
ADH1 (Dong et al., 2015).

Two mouse models for ADH2 have been described
(Gorvin et al., 2017; Roszko et al., 2017). One mouse
model, which is known asDark skin 7, was generated by
N-ethyl-N-nitrosourea chemical mutagenesis (Gorvin
et al., 2017) and harbors a germline gain-of-function
Ga11 mutation, Ile62Val, whereas the other ADH2
mouse model was generated by CRISPR-Cas9 gene
editing and harbors a human ADH2-causing germline
Ga11 mutation, Arg60Cys (Roszko et al., 2017). Both of
these ADH2 mouse models have hypocalcemia, hyper-
phosphatemia, reduced plasma PTH, and normocalciu-
ria in association with increased skin pigmentation
(Gorvin et al., 2017; Roszko et al., 2017).

E. Therapeutic Interventions—Successes and Failures

CaSR PAMs represent a targeted therapy for symp-
tomatic forms of FHH (Hannan et al., 2018b) and
potentiate the signaling responses of cells expressing
FHH-associated CaSR, Ga11, or AP2s mutant proteins
in vitro (Table 3) (Rus et al., 2008; Leach et al., 2013;
Babinsky et al., 2016; Howles et al., 2016; Gorvin et al.,
2018b). Furthermore, cinacalcet treatment is effective
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at decreasing serum calcium concentrations in patients
with FHH1 and has been reported to improve hyper-
calcemic symptoms occasionally associated with FHH1,
such as anorexia, polydipsia, and constipation (Table 3)
(Alon and VandeVoorde, 2010; Rasmussen et al., 2011;
Sethi et al., 2017). However, the response of NSHPT to
cinacalcet is variable and appears to depend on
the underlying CASR mutation. Indeed, cinacalcet
rectifies the hypercalcemia and hyperparathyroidism
in patients with NSHPT harboring a heterozygous
Arg185Gln CaSR mutation (Reh et al., 2011; Gannon
et al., 2014; Fisher et al., 2015) but is less effective for
patients with NSHPT with biallelic truncating CASR
mutations (Table 3) (García Soblechero et al., 2013;
Atay et al., 2014), which would be a consequence of the
truncated mutant receptor being unable to bind cina-
calcet or couple with intracellular signaling proteins
(Hannan et al., 2018b). Cinacalcet has also rectified the
hypercalcemia in a mouse model for FHH2 (Howles
et al., 2017) and ameliorated the hypercalcemia in
a patient with symptomatic FHH2 (Table 3) (Gorvin
et al., 2018b). Furthermore, cinacalcet is an effective
therapy for symptomatic hypercalcemia caused by all
three types of FHH3-causing Arg15 AP2s mutations
(Table 3) (Howles et al., 2016). However, hypocalcemic
symptoms have occurred in a cinacalcet-treated child

affected by FHH3 and the chromosome 22q11.2 deletion
syndrome (Tenhola et al., 2015). Thus, long-term sur-
veillance is required to detect hypocalcemia in
cinacalcet-treated patients with FHH (Howles et al.,
2016).

CaSR NAMs have been evaluated as a potential
targeted therapy for ADH. In vitro studies have dem-
onstrated that NPS 2143 normalizes the signaling
responses associated with gain-of-function CASR and
GNA11 mutations, which cause ADH1 and ADH2,
respectively (Table 3) (Letz et al., 2010; Leach et al.,
2013; Hannan et al., 2015b; Babinsky et al., 2016).
However, NPS 2143 is less effective for gain-of-function
mutations causing Bartter syndrome type V (Letz et al.,
2010; Leach et al., 2013). In contrast, the quinazolinone-
derived NAMs rectify gain-of-function CASRmutations
that cause Bartter syndrome V (Table 3) (Letz et al.,
2014). CaSR NAMs have also been characterized
in vivo, and single-dose studies have demonstrated that
NPS 2143 significantly increases circulating concentra-
tions of calcium and PTH in ADH1 and ADH2 mouse
models (Table 3) (Hannan et al., 2015b; Gorvin et al.,
2017; Roszko et al., 2017). In addition, repetitive dosing
studies have shown that the NAM, JTT-305/MK-5442,
prevents the occurrence of nephrocalcinosis in mouse
models of ADH1 (Dong et al., 2015). Furthermore, the

TABLE 3
Summary of key studies assessing effectiveness of PAMs and NAMs for FHH, NSHPT, and ADH

Adapted from Hannan FM, Olesen MK, Thakker RV. Calcimimetic and calcilytic therapies for inherited disorders of the calcium-sensing receptor–signaling pathway. Br J
Pharmacol (2018) 175:4083–4094.

Disorder In Vitro Studies In Vivo Studies

Hypercalcemic
disorders

FHH1/NSHPT NPS R-568 and cinacalcet enhance the signaling responses
and cell surface expression of loss-of-function FHH1/
NSHPT-causing CaSR mutants (Rus et al., 2008; Leach
et al., 2013)

Cinacalcet lowers serum calcium and PTH concentrations and
improves hypercalcemic symptoms in patients with FHH1
(Alon and VandeVoorde, 2010; Rasmussen et al., 2011; Sethi
et al., 2017)

Cinacalcet lowers serum calcium and PTH concentrations in
patients with NSHPT harboring a heterozygous Arg185Gln
CASR mutation (Reh et al., 2011; Gannon et al., 2014; Fisher
et al., 2015) but is less effective for NSHPT caused by biallelic
truncating CASR mutations (García Soblechero et al., 2013;
Atay et al., 2014)

FHH2 Cinacalcet enhances the signaling responses of cells
expressing loss-of-function FHH2-causing Ga11 mutants
(Babinsky et al., 2016)

Cinacalcet lowers serum calcium and PTH concentrations in
a mouse model for FHH2 (Howles et al., 2017) and also
normalizes serum calcium concentrations in a patient with
FHH2 (Gorvin et al., 2018b)

FHH3 Cinacalcet enhances the signaling responses of cells
expressing loss-of-function FHH3-causing Arg15Cys,
Arg15His, or Arg15Leu AP2s mutants (Howles et al., 2016)

Cinacalcet lowers serum calcium and PTH concentrations and
improves hypercalcemic symptoms in patients with FHH3
with Arg15Cys, Arg15His, or Arg15Leu AP2S1 mutations
(Howles et al., 2016)

Hypocalcemic
disorders

ADH1 NPS 2143 reduces the signaling responses of cells expressing
gain-of-function ADH1-causing CaSR mutants but has
limited efficacy for constitutively active CaSR mutants
(Letz et al., 2010; Leach et al., 2013)

Acute administration of NPS 2143 and JTT-305/MK-5442
increases serum calcium and PTH concentrations in mouse
models for ADH1 (Dong et al., 2015; Hannan et al., 2015b)

ATF936 and AXT914 rectify the gain of function caused by
constitutively active CaSR mutants (Letz et al., 2014)

Administration of JTT-305/MK-5442 over 12 wk reduces
urinary calcium excretion and prevents nephrocalcinosis in
mouse models for ADH1 (Dong et al., 2015)

Intravenous infusion of NPSP795 increases serum PTH
concentrations and reduces urinary calcium excretion in
patients with ADH1 (Roberts et al., 2019)

ADH2 NPS 2143 reduces the signaling responses of cells expressing
gain-of-function ADH2-causing Ga11 mutants (Babinsky
et al., 2016; Gorvin et al., 2017; Roszko et al., 2017)

NPS 2143 increases serum calcium and PTH concentrations in
mouse models for ADH2 (Gorvin et al., 2017; Roszko et al.,
2017)
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NAM, NPSP795, has been administered to five ADH1
patients in a phase IIa clinical trial and increased
plasma PTH concentrations and reduced urinary cal-
cium excretion (Table 3) (Roberts et al., 2019). However,
circulating calcium concentrations were not altered in
these patients, and the optimal dosing regimen of
NPSP795 for ADH remains to be established.

VII. Conclusions and Perspective

The CaSR is a highly complex GPCR, as evidenced by
its widespread tissue expression and varied physiolog-
ical roles, its capacity to respond tomultiple stimuli that
act via numerous binding sites, and the ability of
different stimuli to bias CaSR signaling toward distinct
subsets of G protein–dependent and independent sig-
naling pathways. The existence of multiple allosteri-
cally linked binding sites for endogenous CaSR ligands
demonstrates how allostery is fundamental to CaSR
activity. It is therefore unsurprising that the CaSR was
the first GPCR for which an allosteric therapeutic,
cinacalcet, was FDA-approved. The clinical success of
cinacalcet in treating various forms of hyperparathy-
roidism highlights the potential of targeting the CaSR
with allosteric drugs. Given the many fundamental
roles of the CaSR, the CaSR is a putative therapeutic
target for numerous diseases beyond Ca2+o homeostasis,
including asthma, diabetes, and cancer. Thus, drug
discovery efforts at the CaSR will no doubt continue.
In addition to the aforementioned CaSR (patho)

physiology, ongoing research is expanding the known
roles of this receptor. Analysis of CASR SNPs supports
associations between CaSR expression or activity and
the risk of kidney stones (Vezzoli et al., 2011), vascular
calcification (Babinsky et al., 2015), breast cancer (Li
et al., 2014b; Wang et al., 2017), psoriasis (Zuo et al.,
2015), and serum glucose concentrations (Babinsky
et al., 2015). Furthermore, the sensitivity of the CaSR
to amino acids and other stimuli raises the possibility
that Ca2+o is not solely responsible for CaSR-mediated
Ca2+o homeostasis. Indeed, high dietary protein intake
modestly increases bone density at some sites and
reduces hospital stay after fracture (Dawson-Hughes,
2003; Shams-White et al., 2017). In contrast, low-
protein diets induce secondary hyperparathyroidism
(Kerstetter et al., 2000; Dubois-Ferrière et al., 2011)
and acute increases in L-amino acids suppress PTH
secretion and potentiate Ca2+o -mediated Ca2+i mobiliza-
tion in human parathyroid cells (Conigrave et al., 2004).
Thus, the CaSR could couple protein metabolism to
changes in Ca2+o homeostasis (Conigrave et al., 2002,
2008).
Although novel analytical methods, such as the

operational model of allosterism, have facilitated quan-
tification of CaSR drug actions, CaSR drug discovery
still suffers from limited tools to directly probe drug
binding (e.g., commercially available radioligands or

fluorescently labeled ligands) and from the lack of 7TM
and full-length CaSR structures for structure-based
drug discovery. Furthermore, given the critical impor-
tance of Ca2+o homeostasis to human health, novel drugs
that target the CaSR outside the parathyroid glands
and kidney must have limited on-target effects in these
tissues (e.g., by delivery of the drug regiospecifically to
the targeted tissue). Alternatively, biased signaling has
the potential to revolutionize our ability to target
GPCRs in a tissue-specific manner by directing receptor
signaling toward desirable pathways that mediate
therapeutic effects at the expense of pathways linked
to unwanted effects. Furthermore, major advances in
GPCR structural biology resulting in 7TM and full-
length structures of the class C GPCRs, mGlu1, and
mGlu5 (Dore et al., 2014; Wu et al., 2014; Koehl et al.,
2019) provide confidence for forthcoming CaSR struc-
tural biology efforts. Thus, the future holds much
promise for the design of novel drugs that target
the CaSR.
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