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Abstract——The drug efflux transporters ABCB1 and
ABCG2 at the blood-brain barrier limit the delivery of
drugs into the brain. Strategies to overcome ABCB1/
ABCG2 have been largely unsuccessful, which poses
a tremendous clinical problem to successfully treat
central nervous system (CNS) diseases. Understanding
basic transporter biology, including intracellular regu-
lation mechanisms that control these transporters, is
critical to solving this clinical problem.
In this comprehensive review, we summarize current

knowledge on signaling pathways that regulate
ABCB1/ABCG2 at the blood-brain barrier. In Section I,
we give a historical overview on blood-brain barrier re-
search and introduce the role that ABCB1 and ABCG2
play in this context. In Section II, we summarize the
most important strategies that have been tested to
overcome the ABCB1/ABCG2 efflux system at the blood-

brain barrier. In Section III, the main component of
this review, we provide detailed information on the
signaling pathways that have been identified to control
ABCB1/ABCG2 at the blood-brain barrier and their po-
tential clinical relevance. This is followed by Section
IV, where we explain the clinical implications of
ABCB1/ABCG2 regulation in the context of CNS dis-
ease. Lastly, in Section V, we conclude by highlighting
examples of how transporter regulation could be tar-
geted for therapeutic purposes in the clinic.

Significance Statement——The ABCB1/ABCG2 drug
efflux system at the blood-brain barrier poses a signifi-
cant problem to successful drug delivery to the brain.
The article reviews signaling pathways that regulate
blood-brain barrier ABCB1/ABCG2 and could potentially
be targeted for therapeutic purposes.

ABBREVIATIONS: 30-UTR, 30-untranslated region; Ab, amyloid b; ABC, ATP-binding cassette; AhR, aryl hydrocarbon receptor; ALS,
amyotrophic lateral sclerosis; CAR, constitutive androstane receptor; CNS, central nervous system; CSF, cerebral spinal fluid; E2, 17b-
estradiol; DIPG, diffuse intrinsic pontine glioma; EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; ER, estrogen
receptor; ERK, extracellular signal-regulated kinase; FDA, Food and Drug Administration; FXR, Farnesoid X receptor; GR, glucocorticoid
receptor; HDAC, histone acetyltransferase and histone deacetylase; HIV, human immunodeficiency virus; IL, interleukin; JAK-STAT3,
Janus kinase and signal transducer and activator of transcription 3; LXR, liver X receptor; MAPK, p38 mitogen-activated protein kinase;
miRNA, micro RNA; mRNA, messenger RNA; NBD, nucleotide binding domains; NF-jB, nuclear factor kappa-light-chain-enhancer of acti-
vated B cells; NMDAR, N-methyl-D-aspartate receptor; NO, nitric oxide; Nrf2, nuclear factor E2-related factor 2; PPAR, peroxisome prolif-
erator-activated receptor; PXR, pregnane X receptor; RAR, retinoid acid receptor; ROS, reactive oxygen species; RTK, receptor tyrosine
kinase; RXR, retinoid X receptor; siRNA, small interfering RNA; SNP, single nucleotide polymorphisms; T4, thyroxin; TMD, transmem-
brane domain; TNFa, tumor necrosis factor a; VDR, vitamin D receptor; VEGF, vascular endothelial growth factor; WHO, World Health
Organization.
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I. Introduction

A. The Blood-Brain Barrier

1. History of Blood-Brain Barrier Knowledge. The
discovery of the blood-brain barrier in 1885 by Ger-
man microbiologist Paul Ehrlich was a serendipitous
event that arose from Ehrlich’s work to determine the
oxygen demand of the body (Ehrlich, 1885). In his
experiments, Ehrlich injected rabbits intravenously
with the “vital dyes” alizarin blue and indophenol
blue and observed that all organs were stained by the
dyes except for the brain. Several years later, in 1909,
Ehrlich’s student Edwin Goldmann repeated the origi-
nal studies in mice and rats to determine the organ dis-
tribution of the vital dye trypan blue (Goldmann, 1909).
After intravenous injection, Goldmann observed that all
peripheral organs were stained, albeit at a different
staining intensity, while the cerebrospinal fluid (CSF)
and all other parts of the central nervous system (CNS)
remained unstained (Goldmann, 1909). Goldmann in-
ferred such differences in dye distribution to be due to
differences in secretion and architecture of the respec-
tive organs and concluded that a “physiological barrier
membrane” (Physiologische Grenzmembran) separated
the blood from the CNS. To test his hypothesis,
Goldmann injected trypan blue into the mouse cranium
and observed that the brain parenchyma and spinal
cord were stained whereas the peripheral organs were
not—the opposite effect of intravenous dye injection
(Goldmann, 1913). This finding supported Goldmann’s
hypothesis and provided further evidence for the exis-
tence of a barrier between the peripheral blood circula-
tion and the CNS.
Today, Ehrlich’s and Goldmann’s experiments are

considered the dawn of blood-brain barrier research.
However, the term “blood-brain barrier” was not in-
troduced until 1921 when Russian physiologist Lina
Stern referred to it as barri�ere h�emato-enc�ephalique
(Stern and Gautier, 1921). Stern coined this term
based on a series of experiments in which she injected
guinea pigs, rabbits, cats, and dogs with a variety of
substances, including bromides, strychnine, or bile
salts, and then analyzed blood, CSF, and urine using
colorimetric assays. After intravenous injection, Stern
detected these substances only in blood and urine,
whereas after intraventricular injection, she detected
them only in the CSF. These results convinced Stern
that the blood-brain barrier was not an anatomic but
a functional structure that protects the CNS, pre-
vents the uptake of toxic substances, and maintains
normal physiologic conditions in the brain (Stern and
Gautier, 1921).
In the years following these fundamental discover-

ies, a heated scientific controversy erupted over the
nomenclature, location, and physiologic function of
the blood-brain barrier. After much discussion, Hugo

Spatz hypothesized in the early 1920s that barrier
function must reside in the brain’s capillary endothe-
lial cells (Spatz, 1934). Danish Nobel Laureate in
Physiology or Medicine August Krogh argued that
the blood-brain barrier could not be completely imper-
meable as Spatz had suggested years earlier, since
Krogh’s own studies showed that nutrients and ions
reached the brain parenchyma (Krogh, 1946). Defini-
tive proof of blood-brain barrier location and function
was provided by the seminal work of Reese and
Karnovsky (1967) and Brightman and Reese (1969).
These researchers intravenously injected mice, chicken,
and goldfish with the enzyme horseradish peroxidase.
Using electron microscopy, they showed in fixed brain sli-
ces that horseradish peroxidase remained confined in the
lumen of brain microvessels due to brain endothelial
tight junctions that prevented paracellular diffusion of
the enzyme into the brain (Reese and Karnovsky, 1967;
Brightman and Reese, 1969). These findings unequivo-
cally demonstrated that the tight junctions that had
been identified between brain capillary endothelial cells
several years earlier by Muir and Peters (1962) restrict
paracellular diffusion of solutes across the blood-brain
barrier (Reese and Karnovsky, 1967; Brightman and
Reese, 1969).

2. The Neurovascular Unit. In the early 2000s,
a new concept arose: Barrier function is not solely
based on endothelial cell properties but rather relies
on the anatomic and functional interaction of endo-
thelial cells with pericytes, astrocytes, and neurons.
Together, these cells form an anatomically complex
and functionally highly regulated and dynamic multi-
cell structure referred to as the “neurovascular unit”
(Fig. 1; Stroke Progress Review Group, 2002).
In the neurovascular unit, brain capillary endothe-

lial cells form the first layer of barrier function. Char-
acteristics of brain capillary endothelial cells that
contribute to barrier function include high expression
levels of tight junction proteins, lack of fenestration,
low pinocytic activity, and a large number of mito-
chondria that provide ATP to support a high energy
demand (Reese and Karnovsky, 1967; Brightman and
Reese, 1969; Oldendorf and Brown, 1975; Oldendorf
et al., 1977; Betz and Goldstein, 1978; Betz et al.,
1980; Yoshida et al., 1988). Brain capillary endothelial
cells also have polarized expression of transporters
and enzymes. Alkaline phosphatase and other en-
zymes localize to the luminal membrane facing the
blood, while Na1/K1-ATPase and the Na1-dependent
small amino acid carrier are located in the abluminal
membrane, facing the brain. This polar protein ex-
pression is the prerequisite for directional transport
across the blood-brain barrier and has been described
for glucose and several amino acids, including leucine
and isoleucine (Betz et al., 1975; Raichle et al., 1975).
Moreover, protein expression also changes along the

ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier 817

at A
SPE

T
 Journals on D

ecem
ber 21, 2024

pharm
rev.aspetjournals.org 

D
ow

nloaded from
 

http://pharmrev.aspetjournals.org


vascular continuum of the blood-brain barrier, a phe-
nomenon recently described as “vascular zonation,”
indicating location-specific functions in different areas
along the vasculature of the blood-brain barrier
(Vanlandewijck et al., 2018). Brain capillary endothe-
lial cells are surrounded by a basement membrane
that consists of collagens and laminins, as well as pro-
teins involved in extracellular matrix and basement
membrane reorganization, e.g., matrix metalloprotei-
nases (Bonnans et al., 2014; Joutel et al., 2016). The
basement membrane provides structure and support
for endothelial cells and is involved in signal trans-
duction between brain capillary endothelial cells and
brain parenchymal cells (Hynes, 2009; Baeten and
Akassoglou, 2011; Nehra et al., 2022). Embedded within
the basement membrane are pericytes (multifunctional
mural cells), the second cell type of the neurovascular
unit, that cover the abluminal brain capillary surface
(Cuevas et al., 1984; Armulik et al., 2005, 2010; Winkler
et al., 2011; Sweeney et al., 2016). Depending on the
brain region, pericytes cover 20% to 99% of the abluminal
surface of brain capillaries (Mathiisen et al., 2010;
Hartmann et al., 2015; Herndon et al., 2017; Berthiaume

et al., 2018). Astrocytes, the third cell type of the neuro-
vascular unit, have end feet that sit on top of the base-
ment membrane and cover approximately 60% of the
abluminal surface area of brain capillaries (Wolff, 1963;
Mathiisen et al., 2010; Korogod et al., 2015). The fourth
and last cell type at the neurovascular unit is neurons.
Neurons interact with the neurovascular unit either
through astrocytic connections or through direct interac-
tion of interneurons with endothelial cells (Niwa et al.,
2000; Gotoh et al., 2001).
Together, the neurovascular unit, consisting of endothe-

lial cells, pericytes, astrocytes, and neurons, maintains
brain homeostasis, protects the CNS from neurotoxic
compounds, and is responsible for communication be-
tween the periphery and the CNS.

a. Communication at the neurovascular unit.
The neurovascular unit represents a critical blood-
brain interface that ensures regulated bidirectional
communication between the periphery and the CNS
(Stern and Gautier, 1921; Terrando et al., 2011; Marchi
et al., 2013; Chen et al., 2020) and is a highly regu-
lated anatomic structure that senses and responds to
information flowing from the periphery to the brain

Fig. 1. (A) The neurovascular unit.
The neurovascular unit consists of
endothelial cells surrounded by a
basement membrane, astrocytes,
pericytes, and neurons. This four-
cell structure also known as the
“neurovascular unit” is responsible
for the regulation of blood-brain
barrier function. (B) History of the
blood-brain barrier. Timeline of fun-
damental discoveries made in the
blood-brain barrier field. Created
with BioRender.com.
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and vice versa (Wyss-Coray and Rogers, 2012; Chen
et al., 2020).
To enable communication, cells of the neurovascular

unit are highly specialized and equipped with a myriad
of signaling molecules. For example, brain capillary
endothelial cells express a multitude of receptors and
signaling molecules (Stefanovich, 1979; Karnushina
et al., 1980; Joo, 1985, 1993; Pardridge et al., 1985).
Among these proteins are signaling molecules like cAMP
(Stefanovich, 1979; Karnushina et al., 1980), insulin re-
ceptor (Frank and Pardridge, 1981; Pardridge et al.,
1985), hormone receptors (Edvinsson and Owman, 1975),
as well as receptor tyrosine kinases like platelet-derived
growth factor receptor (Smits et al., 1989). Additionally,
enzymes involved in the synthesis and degradation of
signaling molecules like cyclooxygenase (Baba et al.,
1985) and phosphodiesterases (Stefanovich, 1979) are
also present at the blood-brain barrier (Joo, 1985; 1993;
Saunders et al., 2014). These signaling molecules enable
endothelial cells to communicate between the periphery
and the brain.
Pericytes are in direct, basolateral contact with

brain capillary endothelial cells, which allows for
direct communication between the two cell types
through gap junctions (Cuevas et al., 1984; Armulik
et al., 2005, 2010; Winkler et al., 2011; Sweeney et al.,
2016). Pericytes play a vital role in blood-brain bar-
rier development and maintenance of barrier func-
tion. In this regard, loss of pericyte function results in
abnormal capillary development and increased capil-
lary permeability (Hellstr€om et al., 2001; Armulik
et al., 2010).
Astrocytes cover a large area of the basolateral side

of brain capillary endothelial cells and, therefore, are
in an ideal position to communicate with brain capil-
lary endothelial cells and regulate barrier function.
Signaling from astrocytes to brain capillary endothelial
cells is essential for development of tight junctions and
localization of transporters and other endothelial pro-
teins. One such regulatory pathway involves the signal-
ing peptide sonic hedgehog that is released by astrocytes.
After secretion, sonic hedgehog binds to the Patch-1 re-
ceptor on brain capillary endothelial cells inducing down-
stream activation of the transcription factor GLI family
zinc finger 1 (Alvarez et al., 2011, 2013). Activation of
GLI family zinc finger 1, in turn, increases the expres-
sion of the tight junction proteins claudin 5 and occludin,
decreasing blood-brain barrier permeability (Alvarez
et al., 2011). Astrocytes are uniquely located between en-
dothelial cells and neurons and enable communication
between those two cell types (Niwa et al., 2000; Gotoh
et al., 2001). Astrocyte-endothelial cell communication is
referred to as neurovascular coupling, indicating the
close interaction of neuronal activity and cerebral blood
flow. Cerebral blood flow is selectively increased in areas
with high neuronal activity to compensate for higher

energy consumption (Cox et al., 1993; Chaigneau et al.,
2003). Additionally, interneurons regulate cerebral blood
flow by releasing vasoactive molecules, such as prosta-
glandins or nitric oxide (NO) (Niwa et al., 2000; Gotoh
et al., 2001; Iadecola, 2017). Together, cells of the neuro-
vascular unit work together to ensure effective communi-
cation among themselves as well as the periphery and
the brain.

3. Barrier Function. Barrier function is pivotal for
protecting and ensuring nutrient supply to the brain.
The blood-brain barrier achieves this through tightly
regulated interplay among enzymes, transporters,
and structural proteins that cooperate through four
different mechanisms. First, tight junction proteins
form a physical barrier by sealing off paracellular
pathways, which prevents passive diffusion of hydro-
philic endo- and xenobiotics (Reese and Karnovsky,
1967; Brightman and Reese, 1969; Saunders et al.,
2014). Second, metabolic enzymes expressed in endo-
thelial cells form a metabolic barrier by degrading,
and thereby deactivating, CNS-active drugs before
they can reach their targets (Ghersi-Egea et al., 1994;
Dauchy et al., 2009; Saunders et al., 2017). Third, in-
flux transporters facilitate the uptake of specific nu-
trients like glucose and amino acids (Oldendorf, 1971;
Daneman et al., 2010; Saunders et al., 2017). These
transporters belong to the solute carrier superfamily
and are either facilitative, secondary, or tertiary ac-
tive transporters (Deng et al., 2014; Morris et al.,
2017; Yan et al., 2019b). Fourth, ATP-driven efflux
transporters export metabolic waste and limit xenobi-
otics, including a myriad of therapeutic drugs, from
entering the brain (Cordon-Cardo et al., 1989; Cooray
et al., 2002; Hartz et al., 2005, 2009, 2010b; Bauer
et al., 2006; Hartz and Bauer, 2010; Miller, 2010;
Saunders et al., 2017). Notably, influx and efflux
transporters make up approximately 15% of blood-
brain barrier–specific proteins indicating a high rele-
vance for proper barrier function (Li et al., 2001;
Shusta et al., 2002; Pardridge, 2007; Kamiie et al.,
2008; Uchida et al., 2011; Uchida et al., 2014).

B. ATP-Binding Cassette Efflux Transporters

Efflux transporters belong to the ATP-binding cas-
sette (ABC) transporter superfamily of primary active
transporters and are organized based on their gene
structure, amino acid sequence, and phylogenetic
analyses into seven subfamilies (ABCA–ABCG; Sarkadi
et al., 2006; Robey et al., 2018). ABC transporter struc-
ture and function are conserved across the different sub-
families as well as across multiple species, including
fungi, bacteria, protozoa, insects, fish, and mammals
(Klokouzas et al., 2003; Kovalchuk and Driessen, 2010;
Gebhard, 2012; Luckenbach et al., 2014; Kowalski et al.,
2020). The human genome contains 48 different ABC
transporters (Vasiliou et al., 2009; Morris et al., 2017;
Robey et al., 2018); 19 of these transporters are
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expressed in the CNS, most of them at the blood-brain
barrier (Hartz and Bauer, 2011). Common structural fea-
tures of ABC transporters include two transmembrane
domains (TMD) and two nucleotide-binding domains
(NBD); (Loo et al., 2002). The TMDs form the substrate
binding pocket and facilitate substrate movement across
the blood-brain barrier and other membranes, while the
NBDs hydrolyze ATP to provide the energy for active
substrate movement against a concentration gradient
(Loo et al., 2002). The NBD structure is highly conserved
across the seven ABC subfamilies and across species.
Common motifs, including the Walker A (G-x(4)-GK-
[TS]) and B ([RK]-x(3)-G-x(3)-LhhhD) motifs, are pre-
served throughout all ABC transporters (Hyde et al.,
1990; Dean et al., 2001). The TMD sequences on the
other hand are highly variable, which allows a broad,
diverse substrate spectrum that includes lipophilic
drugs, hydrophilic metabolites, glucuronides, and sulfate
conjugates (Dean et al., 2001; de Vries et al., 2007; Kruh
et al., 2007). The two most prominent efflux transporters

at the blood-brain barrier, P-glycoprotein (P-glycoprotein
nucleotide-binding domains; ABCB1) and breast cancer
resistance protein (BCRP; ABCG2), are the main topic
of this review and are discussed in detail later.

1. History of ABCB1. The development of mustard
gas derivatives, antimetabolites, and antibiotics as
anticancer drugs in the 1940s and 1950s significantly
improved the survival of cancer patients (Goodman
et al., 1946; Hitchings and Elion, 1954; Pinkel, 1959;
DeVita and Chu, 2008). Success in treatment, how-
ever, also revealed that patients could be resistant to
anticancer drugs (Law, 1952; Niero et al., 2014). Work
analyzing this drug resistance in bacterial and mam-
malian cells eventually led to the discovery of ABCB1
and other ABC transporters (Fig. 2).
In 1970, June Biedler postulated that resistance to

actinomycin D and other anticancer drugs in Chinese
hamster ovary cells was caused by changes in cell
permeability (Biedler and Riehm, 1970). Biedler’s
experiments showed that multidrug resistance was

Fig. 2. (A) History of
ABCB1. From the discov-
ery of the “permeability
glycoprotein” by Juliano
and Ling in 1976 to
structural insights into
substrate and inhibitor
discrimination by human
ABCB1 revealed by Alam
and Locher in 2019.
(B) ABCB1 structure.
ABCB1 consists of two
transmembrane domains
TMD1 and TMD2, each
of which has six trans-
membrane spanning
a-helices and a nucleotide
binding domain (NBD1
and NBD2). ABCB1 is
N-glycosylated at the first
extracellular loop.Created
withBioRender.com.
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established through stable chromosome changes, possi-
bly in membrane-related genes (Biedler and Riehm,
1970). Later, Juliano and Ling determined that the ex-
pression of a 170 kDa glycoprotein in the membrane of
drug-resistant Chinese hamster ovary cells correlated
with the level of drug resistance (Juliano and Ling,
1976). Since the protein was not expressed in wild-type
cells and drug resistance corresponded with changes
in drug permeation, Juliano and Ling postulated that
this new glycoprotein changed the permeability of the
cell membrane and, therefore, named it “permeability gly-
coprotein” or P-glycoprotein [old nomenclature: PGY1,
MDR1, CLCS; current: ABCB1 (human protein), Abcb1a/
Abcb1b (rodent proteins), Abcb1a/Abcb1b (rodent
genes), ABCB1 (human gene) (Juliano and Ling, 1976)].
Homolog genes and proteins were later detected in bac-
teria as well as in mice and humans, where the gene is
located on chromosome 7 (chromosome 5 in mice;
Chen et al., 1986; Fojo et al., 1986; Gros et al., 1986;
Callen et al., 1987).
In human samples, ABCB1 localizes to the apical

surface of epithelial and endothelial cells of excretory
and barrier organs and tissues such as liver, kidney,
intestine, colon, and placenta, suggesting a role in se-
cretion, elimination, and protection (Thiebaut et al.,
1987; Croop et al., 1989). The role of ABCB1 in pro-
tecting critical organs was further demonstrated
when it was detected at the human blood-brain bar-
rier in 1989 (Cordon-Cardo et al., 1989). At the blood-
brain barrier, ABCB1 is expressed in the luminal
membrane of brain capillary endothelial cells (Biegel
et al., 1995). Even though ABCB1 had been identified
at the blood-brain barrier, its role and significance
were initially obscure. Based on tissue distribution
and expression in drug-resistant cancer cells, the
leading hypothesis was that ABCB1 was involved in
the active excretion of toxic xenobiotics and metabo-
lites from the brain and other excretory tissues. To
test the physiologic role of Abcb1, Schinkel et al. de-
veloped an Abcb1a (originally referred to as mdr1a)
knockout mouse (Schinkel et al., 1994). Shortly after
establishing this unique knockout mouse, unexpected
circumstances led to a serendipitous finding. Due to a
mite infestation of Schinkel’s mouse colonies, all
animals—wild-type and Abcb1a knockout—were treated
with ivermectin, a standard veterinary anthelmin-
tic drug. After treatment, all Abcb1a knockout mice,
presented with paralytic symptoms and died from
neurotoxicity; however, none of the wild-type mice
died. Toxicological testing showed that Abcb1a knockout
mice had 90-fold higher ivermectin brain levels compared
with wild-type or heterozygous littermates, which corre-
lated with a 100-fold increase in sensitivity to ivermectin-
induced neurotoxicity (Schinkel et al., 1994). Today,
Abcb1 deficiency is well recognized in dogs and cats and
is routinely screened for in pets to prevent ivermectin-

induced toxicity (Roulet et al., 2003; Mealey et al.,
2023). Based on their observations in mice, Schinkel
and coworkers concluded that blood-brain barrier
Abcb1a was important for protecting the brain and cre-
ating a pharmacological sanctuary. This was further
corroborated by results from Kim et al. showing that
knocking out Abcb1a increased oral absorption and
brain uptake of human immunodeficiency virus (HIV)
protease inhibitors (Kim et al., 1998a,b; Lee et al.,
1998). Combined, these findings indicated that Abcb1a
acts as a double-edged sword at the blood-brain barrier:
on the one hand, Abcb1a-mediated efflux is vital for pro-
tecting the brain; on the other hand, Abcb1a prevents
uptake of potentially CNS-active drugs, significantly
limiting their CNS efficacy.
At that time in the 1990s, initial models were pro-

posed to explain ABCB1-mediated transport function.
The original model hypothesized a central pore that
facilitates active substrate expulsion through the api-
cal plasma membrane (Borst and Schinkel, 1997).
However, the first 3D structure for ABCB1 proposed
by Rosenberg and colleagues showed that ABCB1 is
closed toward the cytoplasm side, contradicting the
pore model (Rosenberg et al., 1997). A second model
attempting to explain ABCB1 transport function, re-
ferred to as the “hydrophobic vacuum cleaner model,”
postulates that a substrate moves laterally through
the membrane until ABCB1 removes it through a
flipping process, indicating that ABCB1 acts as a flip-
pase (Higgins and Gottesman, 1992; Gottesman and
Pastan, 1993). Additional data from experiments to
elucidate ABCB1 structure showed a central, polyspe-
cific substrate binding chamber that is accessible
from the cytoplasm as well as the lipid membrane,
suggesting that ABCB1 efflux function is most likely
based on a combination of both models (Rosenberg
et al., 2005; Aller et al., 2009). However, understand-
ing ABCB1 function is further complicated by several
synonymous single nucleotide polymorphisms (SNPs)
that are inconsequential for ABCB1 protein structure
but affect function and substrate binding (Kimchi-
Sarfaty et al., 2007; Fung and Gottesman, 2009; Dick-
ens et al., 2013; Hattori et al., 2018). Recently, Alam
et al. found multiple substrate binding pockets in the
ABCB1 molecule and concluded that the pocket a
compound binds to determines if this compound is an
ABCB1 substrate or inhibitor (Alam et al., 2019). In
addition, Dastvan et al. (2019) demonstrated that
ABCB1 substrate binding decreases the activation en-
ergy for ATP hydrolysis and showed that ATP hydro-
lysis must occur before or simultaneously to substrate
translocation (Dastvan et al., 2019). To this date, ex-
actly how ABCB1 functions remains unclear, and
more research is necessary to fully elucidate the
mechanism of ABCB1-mediated efflux transport.
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2. History of ABCG2. In 1992, Nakagawa et al. dis-
covered that exposing MCF-7 human breast cancer cells
to the ABCB1 inhibitor verapamil did not reverse mitox-
antrone resistance (Nakagawa et al., 1992). Moreover,
daunorubicin and rhodamine 123 efflux from MCF-7
cells was not affected by the ABCB1 inhibitor cyclosporin
A but was reversed by depleting ATP (Lee et al., 1997).
These data indicated the existence of another active,
ATP-driven efflux transporter in cancer cells. In 1998,
Doyle et al. (Doyle et al., 1998) compared gene expres-
sion in parental versus doxorubicin-resistant MCF-7 cells
and revealed a differentially expressed messenger RNA
(mRNA) that coded for a new ABC transporter: breast
cancer resistance protein [old nomenclature: EST157481,
MXR, BCRP, ABCP, CD338; current: ABCG2 (human
protein), Abcg2 (rodent protein), Abcg2 (rodent gene),
ABCG2 (human gene; Fig. 3A; Doyle et al., 1998)].
Physiologically, ABCG2 is expressed in barrier or-

gans and tissues including the blood-brain barrier,
where ABCG2 localizes to the luminal plasma mem-
brane of endothelial cells and facilitates directional ef-
flux across the blood-brain barrier from brain to blood
(Cooray et al., 2002; Eisenbl€atter and Galla, 2002;

Zhang et al., 2003). However, in contrast to other
ABC transporters, ABCG2 codes for only one trans-
membrane domain with one nucleotide binding
site, resulting in a protein of approximately
70 kDa, which is half the size of other ABC transport-
ers. Therefore, ABCG2 is a so-called half transporter
that needs to homodimerize to fully function (Fig. 3B;
Abele and Tampe, 1999; Rocchi et al., 2000; Kage et al.,
2002).
Structural studies, homology modeling, and trans-

port studies with ABCG2 mutants identified multiple
substrate binding sites that confirmed an overlapping
substrate spectrum with ABCB1 (Nakanishi et al.,
2003; Clark et al., 2006; Xu et al., 2007; Rosenberg
et al., 2010). The exact mechanism of transport func-
tion, however, was unknown until Manolaridis et al.
(2018) recently constructed cryo-electron microscopy
structures of ABCG2 in substrate- and ATP-bound
pre- and post-translocation states. These different
conformations revealed that substrates bind to a central,
hydrophobic binding pocket that faces the cytoplasm.
Upon ATP binding and hydrolysis, a conformational shift
collapses the substrate binding pocket, which opens an

Fig. 3. (A) History of
ABCG2. From the discov-
ery of the “breast cancer
resistance protein” ABCG2
in 1998 to its cryo-EM
structure and function.
(B) ABCG2 structure.
ABCG2 consists of one
transmembrane domain
that has six transmem-
brane spanning a-helices
and one nucleotide bind-
ing domain (NBD1).
ABCG2 is a half trans-
porter that needs to
homodimerize to fully
function. (C) ABCB1 and
ABCG2 at the blood-
brain barrier. ABCB1
and ABCG2 are both
located at the luminal
membrane of endothe-
lial cells comprising the
blood-brain barrier. They
act as a “first line of
defense” by limiting xeno-
biotics including a large
number of therapeutic
drugs from entering into
the brain. Created with
BioRender.com.
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external cavity and pushes the substrate across the
membrane and out of the cell (Manolaridis et al.,
2018). Hofmann et al. (2019) confirmed these findings
and found two distinct cryo-electron microscopy struc-
tures of an ABCG2 bacterial homolog. Based on these
structures, the authors determined that transporter
conformation depends on substrate- and ATP-binding
state and suggested sequential conformation changes
during the transport process. In addition to exogenous
drug transport, ABCG2 has also been implicated in
the transport of endogenous metabolites including es-
trogens, steroids, and folates (Imai et al., 2003; Suzuki
et al., 2003; Ifergan et al., 2004, 2005).
Like ABCB1, several SNPs in ABCG2 have been

identified in patients (Zamber et al., 2003; Furukawa
et al., 2009; Delord et al., 2013). For example, Allegra
et al. (2018) recently demonstrated that the SNP
11941 928 rs13120400 T>C (position 89033527), an
intronic variant of ABCG2, is associated with de-
creased brain uptake of ceftriaxone in patients.
Together, at the blood-brain barrier, ABCB1 and

ABCG2 restrict brain uptake of substrate drugs and
decrease their efficacy, representing a formidable ob-
stacle to the successful therapy of many CNS diseases
(Fig. 3C). Thus, understanding ABCB1 and ABCG2
substrate specificities can make the difference be-
tween therapeutic failure or success.

3. ABCB1/ABCG2 Substrates. ABCB1 and ABCG2
were first described as mediators of anticancer drug re-
sistance in cancer cells. While ABCB1 was implicated in
resistance against daunorubicin, ABCG2 was found to
contribute to resistance against mitoxantrone, doxorubi-
cin, and daunorubicin, indicating important roles for
both transporters in multidrug resistance (Biedler and
Riehm, 1970; Juliano and Ling, 1976; Doyle et al., 1998).
de Vries et al. confirmed these findings and showed that
Abcb1a/Abcb1b and Abcg2 have overlapping substrate
spectra and work together in concert in restricting topo-
tecan brain uptake (de Vries et al., 2007).
Over the past decades, many anticancer drugs have

been identified as substrates of either ABCB1, ABCG2,
or in many cases both transporters (de Vries et al., 2007;
Agarwal and Elmquist, 2012; Traxl et al., 2019). ABCB1/
ABCG2 restrict the brain uptake of anticancer drugs
and significantly limit their efficacy in the treatment of
primary and metastatic brain tumors (Marchetti et al.,
2008; Agarwal et al., 2011; de Vries et al., 2012; Taskar
et al., 2012; Laramy et al., 2017; de Gooijer et al., 2018a;
Sorf et al., 2018). Substrates of ABCB1/ABCG2 are not
restricted to a specific class of anticancer drugs but span
the entire spectrum of chemotherapeutic compounds.
ABCB1/ABCG2 substrates include antibiotics, such as
daunorubicin (Juliano and Ling, 1976), alkylating agents
like temozolomide (de Gooijer et al., 2018b), microtubule
inhibitors including paclitaxel (Kemper et al., 2003,
2004), topoisomerase inhibitors (Marchetti et al., 2008),

cell cycle disruptors such as ribociclib (Sorf et al., 2018),
and tyrosine kinase inhibitors like lapatinib or sorafenib
(Polli et al., 2008, 2009; Agarwal et al., 2011). While
many anticancer drugs show promising effects against
different brain cancer cell lines in vitro, their efficacy
in vivo and in clinical trials has been marginal at best,
in large part due to ABCB1/ABCG2-mediated efflux at
the blood-brain barrier. Since the seminal work by de
Vries et al. in 2007, the overlap in ABCB1 and ABCG2
substrate spectra was expanded from anticancer drugs
to include a multitude of other drug classes. ABCB1 sig-
nificantly restricts brain uptake of some antiseizure
drugs and limits their efficacy in the treatment of epi-
lepsy (Cox et al., 2001; van Vliet et al., 2006; Tang
et al., 2017). Other drugs that are ABCB1/ABCG2 sub-
strates include HIV protease inhibitors (Kim et al.,
1998a,b; Lee et al., 1998), the dopamine hydroxylase in-
hibitor etamicastat (Bicker et al., 2018), riluzole, one of
the few Food and Drug Administration (FDA)-approved
drugs for amyotrophic lateral sclerosis (ALS) therapy
(Jablonski et al., 2014), and a myriad of drugs including
opioids (Letrent et al., 1999; Dagenais et al., 2004;
Bauer et al., 2006; Sharma and Ali, 2006; Hassan et al.,
2007; Yousif et al., 2008, 2012; Chaves et al., 2016;
Schaefer et al., 2018). For example, since oxycodone,
morphine, and methadone are weak Abcb1a substrates,
they can cross the blood-brain barrier, resulting in sub-
stantial brain uptake and CNS activity (Gibbs et al.,
2018). On the other hand, active efflux of opioids at the
blood-brain barrier has been exploited to develop pe-
ripherally active opioids for the treatment of diarrhea.
Take loperamide as an example, which is a good Abcb1a/
b substrate and therefore does not easily enter the brain
(Watari et al., 2019). Loperamide has a four times higher
Abcb1a-mediated transport rate compared with metha-
done, which significantly restricts loperamide brain up-
take (Gibbs et al., 2018).
Taken together, ABCB1 and ABCG2 have largely

overlapping substrate spectra that comprise a wide
range of compounds including anticancer drugs, antisei-
zure drugs, HIV protease inhibitors, opioids, and a large
number of other therapeutically used drugs. The conse-
quence of this overlap in substrates is that both trans-
porters compensate for each other. In other words, drugs
directed to the brain have to overcome not one but two
transporters—the ABCB1/ABCG2 drug efflux system.

II. Overcoming The ABCB1/ABCG2 Drug Efflux
System

The blood-brain barrier is a challenge in the treat-
ment of many CNS diseases. Over the decades, multi-
ple strategies to overcome the blood-brain barrier
have been developed with the goal of improving drug
therapy for CNS disorders. These strategies can largely
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be divided into transporter-independent and transporter-
dependent strategies.
Transporter-independent strategies to overcome the

barrier include blood-brain barrier disruption with fo-
cused ultrasound (Hynynen et al., 2001; Burgess et al.,
2011; Mainprize et al., 2019), hyperosmotic solutions
(Neuwelt et al., 1986; Doolittle et al., 2000; Angelov
et al., 2009; Chakraborty et al., 2016; Lesniak et al.,
2019), transport vehicles that target receptor-mediated
transcytosis (Pardridge, 2001; Kariolis et al., 2020; Ull-
man et al., 2020), direct drug delivery via intraparenchy-
mal infusion, waver implantation (Valtonen et al., 1997)
or convection-enhanced delivery (Laske et al., 1997;
Lidar et al., 2004), intranasal delivery (Thorne et al.,
1995; Frey, 1997, 2001), or the use of liposomes and
nanoparticles (Huwyler et al., 1996; Ulbrich et al., 2009;
Fan et al., 2018). Currently, only intraarterial injection
of hyperosmotic mannitol and implantable drug wavers
are FDA-approved therapeutics (National Cancer Insti-
tute, 2022). Other transporter-independent strategies ex-
ist (Doolittle et al., 2000; Hynynen et al., 2001; Westphal
et al., 2003; Duntze et al., 2013; Mainprize et al., 2019;
Kariolis et al., 2020; Ullman et al., 2020).
In the following section, we discuss advantages and

disadvantages of the main transporter-dependent strat-
egies. Transporter-dependent strategies (Fig. 4) focus
on inhibiting and overcoming ABCB1- and ABCG2-
mediated drug efflux using small interfering (siRNA),
antibodies, nontransporter, or transporter inhibitors.

A. Small Interfering RNA

In vitro, siRNA reduce ABCB1/ABCG2 mRNA and
ABCB1/ABCG2 protein expression in drug-resistant
cancer cells such as U87 glioblastoma cells or hepato-
cellular carcinoma cells (Fisher et al., 2007; Zhao et al.,
2008; Li et al., 2012). ABCB1/ABCG2 knockdown also
decreases transporter function, increases the accumula-
tion of rhodamine 123, and enhances the cytotoxicity of
doxorubicin (Rittierodt et al., 2004; Fisher et al., 2007;
Zhao et al., 2008; Li et al., 2012). However, synthetic
siRNAs have not yet been tested in vivo.
While superficially similar to siRNA, microRNAs

(miRNA) have several specific differences. Both are
endogenous, small noncoding RNAs that act as a rec-
ognition sequence to permit the RNA-induced silenc-
ing complex to bind target mRNAs. However, siRNAs
silence genes by cleaving mRNA before translation,
while miRNAs function to silence the translation ap-
paratus. In addition, siRNA targeting relies on (near)
100% complementarity, whereas miRNA binding re-
quirements are less stringent. The stem-loop struc-
tures that give rise to miRNAs are also shorter than
the long double-stranded RNA that gives rise to
siRNA (Mack, 2007; Qureshi et al., 2014).
miRNAs target the 30-untranslated region (30-UTR)

of an mRNA. Binding of the 30-UTR prevents the
assembly of the translational complex and decreases
the expression of the target protein (Ambros, 2004;
Bartel, 2004). However, in some instances, miRNAs

Fig. 4. Transporter-dependent strate-
gies to overcome ABCB1 and ABCG2
drug efflux. Transporter-dependent
strategies focus on inhibiting and
overcoming ABCB1- and ABCG2-
mediated drug efflux by using (1)
siRNA, (2) antibodies, (3) nontrans-
porter substrates, or (4) trans-
porter inhibitors. Created with
BioRender.com.
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target other regions of an mRNA, including the
50-UTR and the protein-coding sequence, and mi-
RNA activity upregulates translation of some tar-
gets (Long et al., 2019) Several groups have identified
differentially expressed miRNAs in tumor cells and at
the blood-tumor barrier in samples from glioblastoma pa-
tients. For example, expression of miR-145 is decreased
in tumor samples from glioblastoma patients. Transfect-
ing U87 glioblastoma cells with synthetic miR-145 de-
creases both ABCB1 and ABCG2 protein levels, which in
return increases sunitinib cytotoxicity (Liu et al., 2015).
Another miRNA, miR-4539, altered expression of ABCB1
in T98G glioblastoma cells and aligned strongly with the
30-UTR mRNA sequence of ABCB1. Cotreatment of cells
with doxorubicin and miR-4539 increased toxicity by at
least 40%, depending on miRNA dose (Medarova et al.,
2020).
While these in vitro data seem promising, only a

few in vivo studies have been conducted in animal
disease models. Li et al. showed that miR-378 in-
creases the treatment response in orthotopic glioblas-
toma mouse models in vivo (Li et al., 2018). Deng
et al. found that miR-146a-5p expression is lower in
the brains of rats after status epilepticus compared
with control rats (Deng et al., 2019). Downregulation
of miR146a-5p increased Abcb1 protein levels at the
blood-brain barrier of rats with status epilepticus. Ad-
ditionally, injecting miR-146a-5p into the hippocam-
pus of rats with status epilepticus decreased Abcb1
mRNA and protein expression (Deng et al., 2019).
However, these authors did not evaluate treatment
response. To fully evaluate the impact of siRNA and
miRNA approaches on drug brain delivery and effi-
cacy, further studies in animal models are necessary.

B. Antibodies

Several anti-ABCB1 antibodies have been tested
both in vitro and in vivo. The antibodies MRK16 and
MRK17 inhibited Abcb1-mediated efflux in vitro and
in animal tumor models and increased doxorubicin ef-
ficacy (Broxterman et al., 1988; Tsuruo et al., 1989;
Mechetner and Roninson, 1992). MRK16 also in-
creased efficacy of other anticancer drugs in ABCB1-
overexpressing cells but had no effect on the parent cells
(Hamada and Tsuruo, 1986; Pearson et al., 1991). Other
antibodies, such as MRK17 and UIC2, had cytotoxic ef-
fects themselves, possibly through antibody-dependent
cytotoxicity (Hamada and Tsuruo, 1986; Mechetner and
Roninson, 1992). While these initial studies were promis-
ing, this strategy has not been further developed since
the mid-1990s.

C. Nontransporter Substrates

Another approach has been to develop compounds
that are pharmacologically active in the CNS but not
substrates for blood-brain barrier efflux transport-
ers. Among these nontransporter substrates are the

epidermal growth factor receptor (EGFR) inhibitors
buparlisib and avitinib (Heffron et al., 2016a,b; Sio
et al., 2014; Wu et al., 2017; de Gooijer et al., 2018c;
Wang et al., 2018). However, both drugs are associ-
ated with significant adverse effects (Borson-Chazot
et al., 2018; Di Leo et al., 2018). The PI3K/Akt/mTOR
inhibitor GDC-0084 had promising brain distribu-
tion and efficacy in preclinical models (Heffron,
2016; Salphati et al., 2016) but was ineffective in a
recent phase 1 clinical trial in patients with recurrent
glioblastoma (Wen et al., 2020). Thus, developing CNS
drugs that are neither an ABCB1 nor an ABCG2 sub-
strate is challenging.

D. ABCB1/ABCG2 Inhibitors

In the past decades, most research efforts in the drug
efflux transporter field have been spent on developing in-
hibitors for ABCB1, ABCG2, or dual inhibitors for both
transporters. Tsuruo et al. were the first to discover that
the calcium channel blocker verapamil overcomes
ABCB1-mediated resistance against vinca alkaloids
(Tsuruo et al., 1981; Broxterman et al., 1988). How-
ever, due to its primary effect on the cardiovascular
system, verapamil is associated with cardiovascular
toxicity (Pennock et al., 1991). Similarly, cyclosporin A,
another promising first-generation ABCB1 inhibitor, is
associated with immunosuppression, nephrotoxicity,
and hemodynamic adverse events (Mechetner and Ro-
ninson, 1992; Tsuji et al., 1993; Desrayaud et al.,
1997). While both verapamil and cyclosporin A en-
hanced brain delivery of several drugs in animal brain
cancer and epilepsy models (Tatsuta et al., 1992; Chi-
khale et al., 1995; Drion et al., 1996; Cox et al., 2001),
responses were small due to their low ABCB1 binding
affinity and competitive transporter inhibition that
was easily overcome (Cisternino et al., 2001; Kemper
et al., 2003; Thomas and Coley, 2003). Today, first-gen-
eration ABCB1 inhibitors are used as positron emis-
sion tomography tracers to test the efficacy of newly
developed transporter inhibitors in humans (Hen-
drikse et al., 1999; Bankstahl et al., 2008; Bauer et al.,
2017).
Second-generation ABCB1 inhibitors, like valspo-

dar (PSC833), were developed with increased potency
and reduced off-target effects and toxicity (Boesch
et al., 1991; Friche et al., 1992; List, 1996; Tidefelt
et al., 2000; Thomas and Coley, 2003). Data from
in vivo studies in mice show that valspodar increased
brain levels of several Abcb1 substrates without af-
fecting their plasma pharmacokinetics (Drion et al.,
1996; Desrayaud et al., 1997; Mayer et al., 1997;
Cisternino et al., 2001; Kemper et al., 2003; Hubensack
et al., 2008). Fellner and colleagues (2002) demonstrated
that valspodar given in combination with paclitaxel re-
duced tumor volume by 90% in a mouse glioblastoma
model and concluded that Abcb1 inhibition would poten-
tially allow anticancer drugs to reach a tumor in the
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brain (Fellner et al., 2002). However, second-generation
ABCB1 inhibitors inhibit several other ABC transporters
due to their low selectivity and are highly bound to
plasma proteins (Simon et al., 1998; Thomas and Coley,
2003). Moreover, many second-generation ABCB1 inhibi-
tors are metabolized by CYP 450 enzymes, resulting in
drug-drug interactions (Wandel et al., 1999; O’Byrne
et al., 2001; Kemper et al., 2003).
Third-generation ABCB1 inhibitors such as tariquidar

(XR9576) and elacridar (GF120918) are highly specific
and lack CYP 450 enzyme interactions (Thomas and Co-
ley, 2003). These inhibitors induce long-lasting, dose-
dependent Abcb1 inhibition without causing adverse ef-
fects in mice (Stewart et al., 2000; Abraham et al., 2001,
2009; Cisternino et al., 2001; Ferry et al., 2001; Thomas
et al., 2001; Dorner et al., 2009). Both elacridar and tari-
quidar increase the delivery of drugs into the brain, includ-
ing anticancer drugs, opioids, and HIV protease inhibitors
(Letrent et al., 1999; Edwards et al., 2002; Kemper et al.,
2003; Walker et al., 2004; Pusztai et al., 2005; Choo
et al., 2006; van Vliet et al., 2006; Fox and Bates, 2007;
Bankstahl et al., 2008; Hubensack et al., 2008; Kurnik
et al., 2008; Chen et al., 2009; Lagas et al., 2009, 2010;
Agarwal et al., 2011; Hendrikx et al., 2014; Traxl et al.,
2015; Mittapalli et al., 2016). Tariquidar and elacridar in-
hibit the ATPase activity of human ABCB1 and mouse
Abcb1 and were initially thought to not interact with the
substrate binding site (Martin et al., 1999; Cisternino
et al., 2001; Mistry et al., 2001; Dorner et al., 2009).
However, tariquidar has recently been shown to be both
an ABCB1 and ABCG2 inhibitor and substrate (Kannan
et al., 2011). Drawbacks of third-generation ABCB1 in-
hibitors include that they are poorly soluble and have
highly variable pharmacokinetics depending on the route
of administration (Ward and Azzarano, 2004; Sane et al.,
2012; Matzneller et al., 2018). Today, third-generation
ABCB1 inhibitors are also used in positron emission to-
mography imaging to determine brain uptake in the pre-
clinical and clinical setting (Wagner et al., 2009; Bauer
et al., 2010; Bauer et al., 2019; Traxl et al., 2019).
Current research efforts are focused on developing

extended-release formulations to overcome solubility and
pharmacokinetic issues associated with transporter in-
hibitors (Matzneller et al., 2018). The development of
ABCB1/ABCG2 inhibitors is further complicated by spe-
cies differences in transporter expression and activity
levels. These differences become apparent when compar-
ing rodents with humans but also when comparing
humans with other higher species, including monkeys or
dogs (Roulet et al., 2003; Haritova et al., 2008; Kamiie
et al., 2008; Ito et al., 2011; Uchida et al., 2011). Thus,
the “ideal” transporter inhibitor is yet to be found.
In summary, none of the described transporter-

dependent strategies to overcome the blood-brain barrier
in general or ABCB1/ABCG2 specifically were clinically
successful, mostly due to low efficacy, high toxicity, and

frequent adverse events, especially in combination with
standard of care treatment. Therefore, new strategies
to overcome ABCB1/ABCG2-mediated efflux at the
blood-brain barrier and to improve the treatment of
CNS disorders need to be pursued. One such strategy is
to pharmacologically target molecules that directly or
indirectly regulate the expression and activity of ABCB1
and ABCG2 at the blood-brain barrier (Hartz and Bauer,
2010). In the following section we summarize current
knowledge of ABCB1 and ABCG2 regulation and discuss
target molecules that could be used to modulate blood-
brain barrier transporter expression and activity.

III. Regulation of ABCB1/ABCG2 at the
Blood-Brain Barrier

Three main pathways regulate ABCB1 and ABCG2 at
the blood-brain barrier: (1) nuclear receptors, (2) inflam-
matory and oxidative stress signaling, and (3) receptor
tyrosine kinase/growth factor signaling. In the following
sections we describe these pathways in detail and high-
light their clinical significance where appropriate. We
also summarize other signaling mechanisms involved in
ABCB1/ABCG2 regulation and briefly describe their clin-
ical relevance.

A. Nuclear Receptors

Nuclear receptors are critical transcription factors.
By binding directly to DNA and inducing or inhibiting
the transcription of target genes, nuclear receptors
regulate important cellular functions in development,
homeostasis, and metabolism (Evans, 1988; Olefsky,
2001). Ligands of nuclear receptors are classified as
hormones, vitamins, or xenobiotic endocrine disrup-
tors (Overington et al., 2006). After activation by
their respective ligands, nuclear receptors form homo-
or heterodimers with heat shock protein or retinoid X
receptor (RXR) that bind to specific response elements
in the promotor regions of their target genes (Klinge
et al., 1997; Linja et al., 2004; Amoutzias et al., 2007).
For ABCB1 and ABCG2, the response elements for sev-
eral nuclear receptors are located in their respective
proximal promotor (Nakanishi and Ross, 2012). There-
fore, activation of nuclear receptors regulates the tran-
scription of ABCB1 and ABCG2 changing transporter
expression and activity at the blood-brain barrier but
also in other barrier organs, such as placenta, testes,
intestine, liver, and kidney (Rigalli et al., 2019b). With a
few exceptions, this process involves transcription and
translation and is, therefore, relatively slow (Miller and
Cannon, 2014).

1. Corticoid Receptors. In 1992, Loffreda et al.
were the first to detect nuclear receptors at the blood-
brain barrier. (Loffreda et al., 1992). These research-
ers found mineralocorticoid receptor (MR) and gluco-
corticoid receptor (GR) mRNA in isolated rat brain
capillaries. Stimulating mineralocorticoid and GR

826 Schulz et al.

at A
SPE

T
 Journals on D

ecem
ber 21, 2024

pharm
rev.aspetjournals.org 

D
ow

nloaded from
 

http://pharmrev.aspetjournals.org


with dexamethasone increases Abcb1 and Abcg2 expres-
sion in vitro in primary rat brain capillary endothelial
cells and in vivo at the mouse blood-brain barrier
(Narang et al., 2008; Petropoulos et al., 2010; Chan
et al., 2013; Miller, 2015; Yasuda et al., 2015; Chaves
et al., 2017). This effect was dose-dependent and revers-
ible and could be inhibited with GR antagonists (Narang
et al., 2008).
In general, corticoid receptors are activated by en-

dogenous hormones such as glucocorticoids as well as
exogenous xenobiotics (Fig. 5A). Upon activation, the
receptor translocates from the cytoplasm to the nu-
cleus, where it binds to the response element of its
target genes, resulting in transcription (Miller, 2010).
Corticoid signaling is critical during blood-brain barrier
development. Activation of maternal GR during develop-
ment induces early Abcb1 expression in brain capillaries
isolated from Guinea pig fetuses at different developmen-
tal stages (Iqbal et al., 2016).
Glucocorticoids are often used to prevent edema in

patients with brain tumors. However, glucocorticoid
activation of GR upregulates ABCB1/ABCG2 at the
blood-brain barrier. Increased efflux transporter ex-
pression and activity then further restricts brain up-
take of anticancer drugs, limiting their efficacy in the
treatment of brain tumors (Petropoulos et al., 2010).

2. Retinoid Acid Receptor and Retinoid X Receptor.
In 1997, El Hafny et al. showed that retinoic acid in-
creases Abcb1 expression and ABCB1 activity in a rat
brain capillary endothelial cell line in a concentration-
dependent manner. Retinoic acid binds to retinoid acid
receptor (RAR) and induces the formation of heterodimers
with RXR (Fig. 5B). The RAR-RXR heterodimer activates

the retinoic acid response element in the Abcb1 promotor re-
sulting in transporter upregulation (El Hafny et al., 1997).
A similar process involves several other RAR ligands (Xu
et al., 2005; Sarkadi et al., 2006; Chan et al., 2013).

3. Pregnane X Receptor. In 1998, Kliewer and col-
leagues discovered pregnane X receptor (PXR) (Kliewer
et al., 1998). PXR functions as a xenobiotic sensor, and
its activation increases levels of proteins involved in
detoxification and xenobiotic clearance (Kliewer et al.,
1998). Upon activation, PXR forms heterodimers with
RXR (Bauer et al., 2005) or other orphan nuclear recep-
tors (Xu et al., 2005) and binds to its response element
in the promotor region of its target genes (Fig. 5C; Song
et al., 2004; Miller et al., 2008). In 2001, Synold et al.
(2001) showed that PXR regulates ABCB1 protein levels.
We found that PXR is expressed in isolated rat brain
capillaries and first reported that PXR activation upregu-
lates rodent Abcb1 protein levels and transport activity
at the blood-brain barrier (Bauer et al., 2004, 2006;
Hartz and Bauer, 2010). Other groups later confirmed
our findings and also showed that PXR activation in-
creases Abcb1 and Abcg2 protein levels and activity at
the blood-brain barrier in rodents (Chan et al., 2011;
Yasuda et al., 2015; Chaves et al., 2017).
Many drugs that are ABCB1 and ABCG2 substrates

increase their own efflux at the blood-brain barrier
through PXR-mediated upregulation. For example, an-
tiretroviral drugs, antiseizure drugs, and several other
drugs, including rifampicin and hyperforin, are PXR
agonists. These drugs induce ABCB1/ABCG2 expres-
sion at the blood-brain barrier by activating PXR and,
thus, restrict their own brain uptake and efficacy
(Chan et al., 2011; Potschka, 2012; Chan et al., 2013).

Fig. 5. Regulation of ABCB1 and
ABCG2 via corticoid receptors RAR/
RXR, PXR, and CAR. (A) Upon li-
gand binding, the corticoid receptor
dimer binds to the direct repeat and
inverted repeat region of the target
gene to increase ABCB1 and ABCG2
mRNA expression levels. (B) Upon li-
gand binding, RAR and RXR form a
heterodimer that binds and activates
the RAR response element (RARE),
which increases ABCB1 expression.
(C) APXR ligand binds to inactivated
PXR in the cytoplasm. Ligand bind-
ing then triggers conformational
change of PXR during which the co-
repressor dissociates. Activated PXR
translocates into the nucleus and
heterodimerizes with retinoic X re-
ceptor a (RXRa). The complex PXR-
RXRa together with its coactivators
binds to the xenobiotic response ele-
ment in the promotor region on
ABCB1. This results in increased
transcription of the gene and protein
expression. (D) CAR forms a hetero-
dimer with RXR that binds to RARE,
which leads to an increase in ABCB1
and ABCG2 levels. Created with
BioRender.com.
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4. Constitutive Androstane Receptor. Upon activa-
tion, constitutive androstane receptor (CAR) forms heter-
odimers with RXR, which bind to the retinoic acid
response element in the promotor sequence of target
genes (Xu et al., 2005; Sarkadi et al., 2006; Fig. 5D). Both
Abcb1 and Abcg2 are among those target genes. In this
regard, xenobiotics and drugs, such as phenobarbital, in-
crease the expression of both Abcb1 and Abcg2 and their
accompanying proteins’ activity in isolated brain capillar-
ies from mice and rats (Wang et al., 2010; Yasuda et al.,
2015) This also occurs in hCMEC/D3 cells, a human brain
microvascular endothelial cell line (Chan et al., 2011).
ABCB1 mRNA and ABCB1 protein levels increased after
exposing hCMEC/D3 cells to the CAR ligand 6-(4-chloro-
phenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde
O-(3,4-dichlorobenzyl)oxime. This upregulation was
inhibited by coexposing the cells to 6-(4-chlorophenyl)
imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlor-
obenzyl)oxime and the CAR inhibitor meclizine (Chan
et al., 2011). In a follow-up study, Chan et al. demon-
strated that the antiretroviral drugs abacavir, efavirenz,
and nevirapine are CAR ligands and upregulate ABCB1
in hCMEC/D3 cells (Chan et al., 2013).
Acetaminophen is a common over-the-counter pain

and fever-relieving agent. High doses of acetaminophen
activate CAR, which increases Abcb1 mRNA levels and
accompanying protein activity in isolated rat brain
capillaries (Slosky et al., 2013). In addition, five FDA-
approved drugs were identified that facilitate CAR trans-
port into the nucleus, including the antihypertensive
drug telmisartan (Lynch et al., 2013). These drugs could
potentially affect transporters at the blood-brain barrier.

5. Peroxisome Proliferator-Activated Receptor.
Three types of peroxisome proliferator-activated receptors

(PPARa, PPARb, PPARc) have been identified, but only
PPARa and PPARc are involved in ABC transporter regu-
lation (Xu et al., 2005). Clofibrate, linoleic acid, and other
PPARa agonists increase expression levels of Abcb1 and
Abcg2 mRNAs and accompanying proteins as well as
transporter activity in isolated mouse brain capillaries
and in hCMEC/D3 cells (Hoque et al., 2012; Chan et al.,
2013; Hoque et al., 2015; More et al., 2017). After hetero-
dimerizing with RXR, the PPARc/RXR complex binds
to the PPAR response element upstream of the Abcg2
promotor, which induces drug resistance in cancer cells
(Nakanishi and Ross, 2012; Fig. 6A). PPARc also regulates
ABCB1 and ABCG2 in human glioblastoma cell lines
in vitro (Szatmari et al., 2006; Han et al., 2015). Cannon
et al. (2020) showed that ammonium 2,3,3,3-tetrafluoro-
2-(heptafluoropropoxy) propanoate, a chemical precursor
used in the production of Teflon, rapidly inhibits Abcb1
transport activity in isolated rat brain capillaries and
that this inhibition is dependent on PPARc activity.
Fibrates, a class of drugs used treat hypercholester-

olemia, are PPARa agonists. Clofibrate upregulates
Abcb1/Abcg2 mRNA and associated protein levels as
well as efflux transporter activity in isolated rat brain
capillaries and in hCMEC/D3 cells in vitro (Hoque
et al., 2015; More et al., 2017). The thiazolidinediones
are a class PPARc agonists approved for treatment of
type II diabetes and include pioglitazone, rosiglitazone,
and lobeglitazone. Of these, pioglitazone increases docosa-
hexaenoic acid trafficking into the brain (Low et al.,
2020), crosses the blood-brain barrier, and reduces tumor
growth in a human xenograft model (Grommes et al.,
2013). Rosiglitazone, on the other hand, appears to rein-
force the integrity of the blood-brain barrier (Sivandzade
and Cucullo, 2019; Zhao et al., 2019).

Fig. 6. Regulation of ABCB1 and
ABCG2 via the nuclear receptors
PPAR, ER, AhR, and thyroid hor-
mone receptor. (A) PPAR forms
a heterodimer with RXR that
binds to and activates the PPAR
response element, which leads to in-
creased ABCB1 and ABCG2 levels.
(B) Genomic regulation of ABCG2 is
driven by the estrogen receptor that
binds to the estrogen response ele-
ment in the ABCG2 promotor re-
gion. In addition, ABCG2 is also
regulated via rapid, nongenomic
ER signaling involving PTEN/PI3K/
Akt/GSK3. (C) AhR translocates
into the nucleus and dimerizes with
the aryl hydrocarbon receptor nu-
clear translocator resulting in the
regulation of its target genes, includ-
ing ABCB1 and ABCG2. (D) The
thyroid receptor forms a complex
with RXR and coactivators. This
complex binds to the thyroid hor-
mone response element and activates
transcription of ABCB1. Created
with BioRender.com.
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6. Estrogen Receptor. Estrogen receptors (ERs) are
hormone-activated nuclear receptors (ERa and ERb) or
G-protein coupled membrane receptors (GPR30, ER-X,
and Gq-mER). Estrogen binding to these receptors triggers
either a rapid (minutes) response through nongenomic
pathways or a slow response (hours-days) through geno-
mic signaling pathways (Fig. 6B).
In 2002, Imai et al. (2002) showed that 17b-

estradiol enhances the cytotoxicity of several antican-
cer drugs in vitro by decreasing expression of ABCG2
in human leukemia cells (Imai et al., 2002). The estro-
gen response element was detected in the ABCG2 pro-
motor region (Ee et al., 2004). In addition to the
genomic regulation of ABCG2, Imai et al. (2005) also
discovered that 17b-estradiol activation of ERa in-
creases topotecan cytotoxicity via a nongenomic path-
way through posttranscriptional regulation of ABCG2
in human breast cancer cells (Imai et al., 2005). In
2010, we showed that estrogen signaling regulates Abcg2
at the blood-brain barrier (Hartz et al., 2010a,b). We found
that 17b-estradiol (E2) decreased Abcg2 activity within
minutes and this effect did not involve transcription,
translation, or proteasomal degradation, indicating a non-
genomic mechanism (Hartz et al., 2010b). Experiments
with ERa and ERb knockout mice showed that rapid loss
of Abcg2 activity was due to E2 signaling through both re-
ceptors. In a follow-up study we demonstrated that 6-hour
E2 exposure of isolated brain capillaries resulted in a loss
of Abcg2 activity that was accompanied by reduced Abcg2
protein expression levels. Altogether, we found that the
signaling process responsible for these effects in isolated
rat brain capillaries involved E2 signaling through ERb,
which inhibits the PTEN/PI3K/Akt/GSK3 pathway lead-
ing to Abcg2 proteasomal degradation (Hartz et al.,
2010b). Thus, E2 acting through either ER can signal an
initial loss of Abcg2 transport activity, but only signaling
through ERb mediates reduced ABCG2 protein expres-
sion and activity levels.
Another estrogenic compound, the synthetic xenoes-

trogen bisphenol A, is a common component of plastic
products that also activates ERs. Bisphenol A de-
creased Abcg2 protein and activity levels in isolated
rat brain capillaries via an ERa-dependent genomic
pathway (Nickel and Mahringer, 2014). Specifically,
upon bisphenol A-mediated activation, ERa binds to
the estrogen response element in the Abcg2 promotor
where it acts as a negative regulator resulting in a
slow decrease in Abcg2 expression and activity levels
in isolated mouse brain capillaries (Zhang et al.,
2010; Shin et al., 2018). Phytoestrogens from soy-
beans also induce ABCG2 expression and protein ac-
tivity through a genomic signaling pathway in breast
cancer cell lines (Rigalli et al., 2019a,b). However,
this particular pathway has not yet been identified
at the blood-brain barrier. A similar ERb-dependent,
nongenomic pathway for ABCB1 that is activated by
androstanes also exists (Zuloaga et al., 2012). Further

information on ER-dependent, nongenomic ABCB1
and ABCG2 regulation is in Section C.3.

7. Aryl Hydrocarbon Receptor. The aryl hydrocar-
bon receptor (AhR) does not belong to the family of 48
known human nuclear receptors but is a member of
the basic Helix-Loop-Helix-Period/ARNT/Single-minded
family of dimerizing transcription factors. Similar to
xenobiotic-sensing nuclear receptors, after binding and
activation by aromatic aryl hydrocarbons, from which its
name derives, AhR translocates into the nucleus and di-
merizes with the aryl hydrocarbon receptor nuclear
translocator (Xu et al., 2005; Fig. 6C) resulting in the
regulation of its target genes, including transporters.
AhR is highly expressed in hCMEC/D3 cells (Dauchy
et al., 2008, 2009) and increases Abcb1 and Abcg2
mRNA expression levels and activity levels of the respec-
tive proteins in several tissues, including the blood-brain
barrier of mice and rats (Klaassen and Slitt, 2005;
Campos et al., 2012; Nakanishi and Ross, 2012; Chan
et al., 2013; Le Vee et al., 2015; Chaves et al., 2017).
AhR inhibition with ethanol decreases Abcb1 and Abcg2
mRNA expression and associated protein levels at the
rat blood-brain barrier (Hammad et al., 2019), but other
AhR signaling in brain endothelial cells is unknown.

8. Thyroid Receptors. Thyroid hormone signaling
regulates processes including growth, development,
and metabolism. The main thyroid hormones are thy-
roxin (T4) and 3,3,30-triiodo-L-thyronine, which enter
the brain by crossing the blood-brain barrier. The role
of thyroid hormones in the regulation of ABCB1 and
ABCG2 at the blood-brain barrier, however, is not
well investigated and limited to few studies. In this re-
gard, Salj�e et al. (2012) treated rats with T4 (9 lg/kg for
9 days) and showed upregulation of Abcb1 protein ex-
pression in brain and liver tissue (Fig. 6D). Kassem and
colleagues (2007) found that ABCB1 regulates T4 levels
in the CSF by facilitating T4 transport between the cho-
roid plexus, the brain, and the CSF. However, thyroid
regulation of blood-brain barrier ABCB1 and ABCG2 re-
mains largely unexplored.

9. Other Nuclear Receptors. Several other nuclear
receptors such as Farnesoid X receptor (FXR), liver X
receptor (LXR), and vitamin D receptor (VDR) have
been implicated in transporter regulation at the
blood-brain barrier. Thus far, however, they have not
been studied in detail, and little is known about their
role in transporter regulation at the blood-brain barrier.
For example, the FXR ligand chenodeoxycholic acid up-
regulates the efflux transporter Abcc2 in isolated rat
brain capillaries, indicating that FXR could be involved
in the regulation of its target genes at the blood-brain
barrier (Bauer et al., 2008a). Further, the VDR regu-
lates protein expression levels of both ABCB1 and
ABCG2 (Sarkadi et al., 2006; Chan et al., 2013; Chaves
et al., 2017). In contrast, the LXR regulates Abca1
mRNA levels in an immortalized rat brain capillary
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endothelial cell line (TR-BBB13) but has no effect on
Abcg2 mRNA levels (Akanuma et al., 2008). More stud-
ies are needed to understand the role FXR, LXR, and
VDR play in transporter regulation at the blood-brain
barrier.

B. Inflammatory and Oxidative Stress Signaling

1. Inflammation. The brain is not immune-privileged,
as originally anticipated, and immune cells do cross the
blood-brain barrier and enter the brain (Engelhardt et al.,
2017). The barrier itself contributes to inflammation, and
brain capillary endothelial cells respond to inflammatory
stimuli and release cytokines. Neuroinflammation is com-
mon among all CNS diseases including epilepsy (Choi
and Koh, 2008; Alyu and Dikmen, 2017; Rana and Musto,
2018), brain tumors (Jiang et al., 2017; Couto et al.,
2019), and Alzheimer’s disease (Akiyama et al., 2000;
Wyss-Coray and Rogers, 2012; Mosher and Wyss-Coray,
2014; Lai et al., 2017). Neuroinflammatory signaling
is driven by cytokines and oxidative stress, both of
which are implicated in the regulation of blood-brain
barrier transporters through activating different
signaling pathways. In the following sections, we discuss
four key regulators of ABC transporters at the blood-brain
barrier: (1) nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-jB), (2) tumor necrosis factor
a (TNFa), (3) prostaglandins, and (4) cytokines.

a. Nuclear factor kappa-light-chain-enhancer of ac-
tivated B cells. NF-jB is a rapidly acting, primary
transcription factor that is constitutively expressed in
the cytoplasm of all cells (Jacobs and Harrison, 1998).
In its inactive state, NF-jB is bound to the inhibitor
of jB, which prevents translocation into the nucleus
(Jacobs and Harrison, 1998). Upon activation by in-
fectious and inflammatory stimuli or through cell
surface receptors, inhibitor of jB is ubiquitinated and
degraded, which releases NF-jB, allowing translocation
into the nucleus. There, NF-jB binds to the promoters of
its target genes and stimulates transcription (Deptala
et al., 1998; Gilmore, 2006). Among NF-jB target genes
are proinflammatory cytokines as well as markers of cell
survival and proliferation (Renard et al., 1997; Basu
et al., 1998; Deptala et al., 1998; Chandel et al., 2000;
Qin et al., 2005; Fitzgerald et al., 2007).
In 2005, Dixit et al. showed that interferon c stimu-

lates ABCB1 expression and ABCB1 activity in
human intestinal cells in vitro via NO synthase and
NF-jB (Dixit et al., 2005). Pan et al. discovered a
similar pathway showing that lipopolysaccharide-in-
duced inflammation increases Abcb1 mRNA expres-
sion levels at the blood-brain barrier of wild-type but
not NF-jB knockout mice, indicating an important
role for NF-jB in Abcb1 regulation (Pan et al., 2010).
Since then, several groups have shown that NF-jB
activation by inflammatory stimuli or cellular stress
increases the expression of Abcb1 and associated
protein activity at the rodent blood-brain barrier

in vivo and in vitro (Bauer et al., 2007; Pan et al.,
2010; Ronaldson et al., 2010; Zhang et al., 2014). In
contrast, stimuli that inhibit NF-jB signaling de-
crease Abcb1 and Abcg2 mRNA expression and asso-
ciated protein activity levels at the blood-brain
barrier. For example, in cultured rat microvessel endo-
thelial cells in vitro, insulin inhibits NF-jB through the
insulin receptor, which decreases both Abcb1 and Abcg2
mRNA expression and protein activity levels (Liu et al.,
2009; Liu et al., 2011). Additionally, in vivo experiments
in diabetic rats showed the opposite effect: increased
ABC transporter expression and activity at the blood-
brain barrier due to decreased insulin plasma levels
(Maeng et al., 2007). Thus, NF-jB is a key transcription
factor that regulates both Abcb1 and Abcg2 at the
blood-brain barrier.
Multiple drug candidates for repurposing to regu-

late NF-jB include clemastine, topotecan, bortezomib,
and dexamethasone (Roberti et al., 2022) and are
known to affect ABC transporters (Hartz et al., 2016).
Other drugs, like methamphetamine, weaken the blood-
brain barrier by inhibiting NF-jB (Coelho-Santos et al.,
2015), and another drug of abuse, mephedrone, activates
NF-jB and increases blood-brain barrier permeability
(Buzhdygan et al., 2021). At this point, it is unclear if
these compounds affect ABC transporters.

b. Wnt/b-catenin signaling. Wnt/b-catenin sig-
naling is part of several inflammatory signaling cas-
cades. During canonical Wnt signaling, b-catenin is
degraded by a so-called “destruction complex” formed
by GSK3b, APC, and axin. Upon activation, Wnt
binds to the Frizzled receptor, which recruits axin
and inhibits GSK3B. Consequently, the destruction
complex cannot assemble, and b-catenin accumulates
in the cytosol. After translocation into the nucleus,
b-catenin acts as transcription factor and induces
transcription of genes involved in cell proliferation
and survival (Atlasi et al., 2014). At the blood-brain
barrier, b-catenin regulates the transcription of Abcb1
and Abcg2. b-catenin leads to increased transporter
expression and activity levels at the blood-brain bar-
rier in vitro in hCMEC/D3 cells and in mice and rats
in vivo (Lim et al., 2008, 2009; Harati et al., 2013;
Paolinelli et al., 2013; Strazielle and Ghersi-Egea,
2015; Laksitorini et al., 2019).

c. Tumor necrosis factor alpha. TNFa is com-
monly involved in CNS inflammation (Probert et al.,
1997; Fresegna et al., 2020; Raffaele et al., 2020).
In 1992, Sharief and Thompson described increased
TNFa levels in the cerebrospinal fluid from patients
with multiple sclerosis that correlated with blood-
brain barrier dysfunction (Sharief and Thompson,
1992). Maternal infections in guinea pigs led to TNFa
release, which decreased Abcb1 function at the blood-
brain barrier of the fetus, consequently rendering the
fetal brain vulnerable to potentially teratogenic compounds
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(Iqbal et al., 2012, 2016). At later stages of development,
TNFa signaling decreases Abcg2 activity at the rat blood-
brain barrier (Harati et al., 2012). In adulthood, TNFa has
differential effects on Abcb1 and Abcg2 expression levels
and associated protein and activity levels, depending on
exposure time and concentration. For example, we
showed that acute short-term exposure of isolated rat
brain capillaries to nanomolar concentrations of TNFa
activated the TNF receptor 1, which activated endothelin
converting enzyme (Fig. 7; Hartz et al., 2006). Endothe-
lin converting enzyme activation, in turn, leads to the
production of endothelin 1, which signals through the en-
dothelin receptor B to activate the inducible nitric oxide
synthase. NO stimulates protein kinase Cb1 (PKCb1)
and sphingosine release from the brain capillary mem-
brane (Pilorget et al., 2007; Rigor et al., 2010). Sphingo-
sine is phosphorylated by sphingosine kinase and binds
to the sphingosine-1-phosphate receptor decreasing
Abcb1 and Abcg2 mRNA levels and associated protein
activity levels at the blood-brain barrier in vitro and
in vivo (Hartz et al., 2004, 2006; Evseenko et al.,
2007; Pilorget et al., 2007; von Wedel-Parlow et al.,

2009; Hawkins et al., 2010; Heemskerk et al., 2010;
Cannon et al., 2012; Harati et al., 2013). In addition,
the PKCb1 activator 12-deoxyphorbol-13-phenylace-
tate-20-acetate significantly increases brain uptake of
the ABCB1 substrate [3H]-verapamil in rats, indicat-
ing that downregulating Abcb1 expression and pro-
tein activity enhances brain drug delivery (Rigor
et al., 2010).
Long-term exposure (6 hours) of isolated rat brain

capillaries to TNFa leads to endothelin 1 release,
which in turn activates both endothelin receptor A recep-
tors and endothelin receptor B receptors, stimulating NO
release and activation of PKCb2. This signaling path-
ways results in downstream activation of NF-jB, which
translocates to the nucleus and induces transcription
and translation of Abcb1 at the blood-brain barrier (Rigor
et al., 2010; Bauer et al., 2007; Mayati et al., 2017).

d. Prostaglandins. In 1995, Tishler et al. analyzed
resected brain tissue from patients with medically intrac-
table (refractory or drug-resistant) epilepsy and found in-
creased ABCB1 mRNA levels (Tishler et al., 1995). This
led to the transporter hypothesis of refractory epilepsy,

Fig. 7. Inflammatory and oxidative stress signaling. (A) NFkB, a primary transcription factor, is activated by infectious and inflammatory stimuli.
NF-jB binds to the promoters of its target genes and stimulates transcription. Both ABCB1 and ABCG2 are regulated via NFkB signaling at the blood-
brain barrier. (B) Upon activation, Wnt binds to the Frizzled receptor, which recruits axin and inhibits GSK3B. Consequently, the destruction complex
cannot assemble, and b-catenin accumulates in the cytosol. After translocation into the nucleus, b-catenin acts as transcription factor and induces tran-
scription of both ABCB1 and ABCG2. (C) In isolated brain capillaries, TNFa signals through TNF receptor 1 activating the endothelin converting enzyme,
which, in turn, leads to the production of endothelin 1, which signals through the endothelin receptor B to activate the inducible nitric oxide synthase.
NO stimulates protein kinase C, which leads to the activation of NF-jB, which upregulates ABCB1 protein expression and transport activity. (D) Seizure-
induced glutamate release activates NMDAR- cytosolic phospholipase A2-COX-2 signaling that leads to the generation of prostaglandin E2 (PGE2) by
the microsomal prostaglandin synthase. PGE2 activates the prostaglandin EP1 receptor, which via NF-jB activation ultimately leads to increased ABC
transporter expression and activity levels at the blood-brain barrier. Created with BioRender.com.
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which states that ABCB1 overexpression at the blood-
brain barrier in epilepsy restricts antiseizure brain drug
uptake, thus, leading to antiseizure drug resistance (Tang
et al., 2017). Much research has been done to understand
the role of blood-brain barrier ABC transporters in epilepsy
and lead to the partial unraveling of signaling pathways
that control these transporters after seizures.
Release of glutamate in the CNS of patients with

epilepsy is linked to seizure activity and subsequent
CNS damage (Ronne-Engstrom et al., 1992). Extracel-
lular glutamate upregulates Abcb1 mRNA and associ-
ated protein levels in rat brain capillary endothelial
cells in vitro and proposed that glutamate activates the
N-methyl-D-aspartate receptor (NMDAR) and triggers a
signaling cascade that increases Abcb1 expression at the
blood-brain barrier (Zhu and Liu, 2004). At the same
time, efflux of anticonvulsive drugs by ABC transporters
at the blood-brain barrier was considered as one of the
main causes of refractory epilepsy (van Vliet et al.,
2005).
Since then, we and others have identified several

signaling steps through which seizures upregulate
ABC transporters at the blood-brain barrier. Specifi-
cally, seizure-induced glutamate release activates the
NMDAR in brain capillaries (Hartz et al., 2019;
Mohamed et al., 2019). NMDAR activation stimulates
cytosolic phospholipase A2 to cleave arachidonic acid
from triglycerides in the cell membrane (Hartz et al.,
2019). Arachidonic acid is converted by cyclooxygen-
ase 2 to prostaglandin H2, which is then converted to
prostaglandin E2 by microsomal prostaglandin syn-
thase 1, a process first described in isolated rat brain
capillaries (Baba et al., 1985; Bauer et al., 2008b;
Zibell et al., 2009; Schlichtiger et al., 2010; van Vliet
et al., 2010; Soldner et al., 2019). Prostaglandin E2
activates the prostaglandin EP1 receptor in brain cap-
illary endothelial cells and via NF-jB activation ulti-
mately leads to increased ABC transporter expression
and activity levels (Pekcec et al., 2009; Soldner et al.,
2019). Targeting signaling steps in this pathway has
the potential to prevent ABCB1 upregulation at the
blood-brain barrier and thus overcome drug resis-
tance in patients with epilepsy (Bauer et al., 2008b;
Pekcec et al., 2009; Zibell et al., 2009; Schlichtiger
et al., 2010; van Vliet et al., 2010; Hartz et al., 2019;
Mohamed et al., 2019; Soldner et al., 2019). This
pathway is active at the blood-brain barrier of pa-
tients with epilepsy and ALS (Avemary et al., 2013;
Mohamed et al., 2019). In addition to epileptic seiz-
ures, morphine withdrawal also activates this path-
way and upregulates Abcb1 expression and associated
protein activity levels at the rat blood-brain barrier
(Yousif et al., 2012; Chaves et al., 2017). Other cell
membrane lipids like ceramide 1-phosphate and other
sphingolipids also stimulate this pathway and increase
Abcb1 activity at the blood-brain barrier (Mesev et al.,

2017). Taken together, prostaglandin signaling is a key
pathway that regulates ABCB1 and ABCG2 and associ-
ated proteins at the blood-brain barrier.
Multiple drugs operate through modifying prosta-

glandin levels or activity. These include bimatoprost
(glaucoma treatment), carboprost (induce uterine con-
tractions), dinoprost (cervical dilation during labor),
misoprostol (abortifacient, gastric ulcer treatment),
and latanoprost (glaucoma treatment). The antibiotic
cefmetazole can inhibit prostaglandin transport out of
the brain across the blood-brain barrier (Akanuma
et al., 2011). However, focused research on modifying
prostaglandin activity to regulate blood-brain barrier
activity is currently lacking.

e. Other cytokines. Several other cytokines are in-
volved in transporter regulation at the blood-brain
barrier but have not been studied extensively. For ex-
ample, interleukin (IL) 1b decreases expression and
activity levels of both Abcb1 and Abcg2 and associated
proteins (Evseenko et al., 2007; Ronaldson et al.,
2008; Robey et al., 2009; Ashraf et al., 2011). Another
example includes members of the IL-6 family, including
leukemia inhibitory factor and ciliary neurotrophic factor
that stimulate NF-jB signaling and increase Abcb1 ac-
tivity at the blood-brain barrier (Monville et al., 2002;
Evseenko et al., 2007; Ashraf et al., 2011). ABCG2 ex-
pression levels, on the other hand, are decreased by IL-6
(Poller et al., 2010). While the underlying mechanisms of
how cytokines affect transporters are not well under-
stood, some data indicate that cytokine signaling alters
caveolae in the brain capillary endothelium, which
moves transporters from intracellular storage vesicles
into the luminal membrane (Tome et al., 2016).

2. Oxidative Stress. Oxidative stress occurs in
many CNS disorders (Qosa et al., 2016a; Singh et al.,
2019; Mendiola et al., 2020). Reactive oxygen species
(ROS) generated during oxidative stress damage cells
lead to cytokine release, which in turn affects cellular
processes including transport (Mendiola et al., 2020).
In 2002, Felix et al. first demonstrated that hypoxia-
induced ROS increase Abcb1 mRNA and protein ex-
pression levels in rat brain capillary endothelial cells
in vitro (Felix and Barrand, 2002; Neuhaus et al.,
2014). Following this initial discovery, other groups
also unraveled signaling pathways through which oxi-
dative stress increases Abcb1 expression and associ-
ated protein activity levels at the blood-brain barrier.
For example, ROS stimulate the extracellular signal-
regulated kinase (ERK) signaling cascade that in-
cludes protein kinase C, c-Jun, and Akt (Bauer et al.,
2005; Miller et al., 2008). The key relay in this path-
way is NF-jB that, once activated, increases Abcb1
protein levels (Bauer et al., 2005; Miller et al., 2008;
Qosa et al., 2016a; Grewal et al., 2017). In contrast,
ROS-mediated ERK1 and ERK2 stimulation in mouse
brain capillary endothelial cells in vitro induces Abcg2
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downregulation (Neuhaus et al., 2014; Grewal et al.,
2017). ROS also oxidizes Kelch-like ECH-associated pro-
tein 1, which releases nuclear factor E2-related factor 2
(Nrf2) allowing its translocation into the nucleus. There,
Nrf2 binds to the antioxidant response element in the
promoter region of its target genes resulting in increased
transcription. These target genes code for detoxification
enzymes, antioxidant proteins, proteins involved in xeno-
biotic metabolism, and efflux transporters including
Abcb1 (Klaassen and Slitt, 2005; Maher et al., 2005;
Copple, 2010, 2012; Aleksunes and Klaassen, 2012). Nrf2
also activates p53 and stimulates the p38 mitogen-
activated protein kinase (MAPK) cascade that activates
NF-jB, which increases Abcb1 expression and associ-
ated protein levels in isolated rat brain capillaries
(Wang et al., 2014; Grewal et al., 2017). On the other
hand, oxidative stress activates pathways that decrease
ABCB1 expression and associated protein levels at the
blood-brain barrier. For example, oxidative stress acti-
vates Abl and Src kinases that phosphorylate caveolin-1,
which triggers internalization of both caveolin-1 and co-
localized ABCB1 reducing ABCB1 expression and pro-
tein activity levels (Hoshi et al., 2019).
If ROS affects transport, one might expect antioxi-

dants like N-acetylcysteine to reverse this. Indeed,
exposing cultured rat capillary endothelial cells or
isolated rat brain capillaries to N-acetylcysteine re-
versed the ROS effects on the expression and activity
of Abcb1 and Abcg2 and associated proteins (Zhu and
Liu, 2004; Li et al., 2016; Zhou et al., 2019), which
might provide a future clinical avenue.

3. Clinical Relevance of Inflammatory and Oxidative
Stress Signaling. Our research shows that, in epi-
lepsy, seizure-induced glutamate release activates a
prostaglandin-dependent signaling pathway leading
to Abcb1 and Abcg2 upregulation at the blood-brain
barrier (Bauer et al., 2008b; Pekcec et al., 2009; Zibell
et al., 2009; Hartz et al., 2017). In addition, proin-
flammatory cytokines are increased in the blood and
brain of patients with epilepsy indicating neuroin-
flammation. Cytokines that are upregulated in the
brain of patients with epilepsy include IL1a, IL1b,
IL6, and TNFa, all of which regulate blood-brain bar-
rier ABCB1 and ABCG2 (Arend et al., 2018; de Vries
et al., 2016; Gao et al., 2016; Mercado-Gomez et al.,
2018; Kothur et al., 2019). Moreover, our and other
data indicate that inflammation contributes to ele-
vated protein levels and functional activity of ABCB1/
Abcb1 and ABCG2/Abcg2 and is also involved in epi-
leptogenesis (Hartz et al., 2004; Bauer et al., 2007,
2008a; Alyu and Dikmen, 2017; Rana and Musto,
2018). Neuroinflammation exacerbates seizures and
increased expression levels of drug efflux transporters
in the brain endothelium could hinder antiseizure
drugs from entering the brain (Cox et al., 2001; van
Vliet et al., 2006). Uncontrolled seizures in patients

cause more neuroinflammation driving a vicious cycle of
disease progression and drug resistance. In addition to
epilepsy, neuroinflammation is part of many other CN
S disorders. In glioblastoma, for example, tumor cells
stimulate microglia to release proinflammatory cytokines
such as IL1b, IL6, TNFa, and prostaglandins (Maruno
et al., 1997; Matsuo et al., 2001; Samaras et al., 2007;
Schwartzbaum et al., 2007, 2017; Wang et al., 2009;
Jiang et al., 2017; Couto et al., 2019; Gao et al., 2019;
Ham et al., 2019). In this context, microglia help form a
proinflammatory tumor microenvironment that is condu-
cive to gliomagenesis and tumor growth and progression
including tumor migration and invasion (Maruno et al.,
1997; Matsuo et al., 2001; Samaras et al., 2007; Wang
et al., 2009; Desmarais et al., 2015; Lepore et al., 2018).
In addition, cytokines transcriptionally upregulate
ABCB1/ABCG2 and enhance translation of their asso-
ciated proteins at the blood-brain barrier, which
restricts anticancer drug delivery into the brain. Block-
ing cytokine signaling prevented tumor growth and in-
vasion, which improved survival in glioblastoma
animal models (Desmarais et al., 2015; Kast et al.,
2017; Lamano et al., 2019). Thus, such treatment ap-
proaches could help prevent or reverse ABCB1/ABCG2
overexpression and potentially improve drug delivery
and efficacy in patients.
Brain levels of proinflammatory cytokines are also

increased in neurodegenerative diseases, including
Alzheimer’s disease (Akiyama et al., 2000; Cai et al.,
2014). Amyloid b (Ab), a neurotoxic peptide and one
hallmark of Alzheimer’s disease, activates microglia,
which in turn generate and release IL1, IL6, TNFa,
and prostaglandins into the brain parenchyma. These
inflammatory mediators, in turn, activate NF-jB sig-
naling, which leads to more inflammation and even
higher Ab levels in Alzheimer’s disease patients, ulti-
mately leading to neuronal death (Bauer et al., 1991;
Buxbaum et al., 1992; Strauss et al., 1992; Mackenzie
et al., 1995; Pasinetti and Aisen, 1998; Ringheim
et al., 1998; Ho et al., 1999; Kitamura et al., 1999;
Meda et al., 1999; Tarkowski et al., 1999; Yates et al.,
2000; Combs et al., 2001; Haas et al., 2002; McGeer
and McGeer, 2003; Sochocka et al., 2013; Cai et al.,
2014; Mosher and Wyss-Coray, 2014; Heppner et al.,
2015; Bhattacharya et al., 2020).
While levels of proinflammatory mediators are in-

creased, ABCB1/Abcb1 and ABCG2/Abcg2 expression
and associated protein activity levels are decreased
in animal models of Alzheimer’s disease as well as in
patients with Alzheimer’s disease (Vogelgesang et al.,
2002, 2004; Hartz et al., 2010c, 2012, 2018; Wijesuriya
et al., 2010; Jeynes and Provias, 2011b; van Assema et al.,
2012b; Mehta et al., 2013; Carrano et al., 2014; Chiu
et al., 2015; Wang et al., 2016; Bauer et al., 2017; Kannan
et al., 2017; Shubbar and Penny, 2018; Al-Majdoub et al.,
2019). At this point it is unclear if neuroinflammation

ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier 833

at A
SPE

T
 Journals on D

ecem
ber 21, 2024

pharm
rev.aspetjournals.org 

D
ow

nloaded from
 

http://pharmrev.aspetjournals.org


contributes to the loss of ABCB1/ABCG2 proteins at the
blood-brain barrier in Alzheimer’s disease.
Research and development of anti-inflammatory strat-

egies for neurologic disorders that involve the blood-brain
barrier are currently in progress. Currently, 14 clinical
trials are reported by clinicaltrials.gov as recruiting, en-
rolling, completed, or in planning. However, none of
these trials address blood-brain barrier transporters.

C. Receptor Tyrosine Kinases and Growth Factor
Signaling

Growth factors, cytokines, and hormones activate
receptor tyrosine kinases (RTK) that are critical in
survival and apoptosis (Robinson et al., 2000). RTKs
have a hydrophobic transmembrane domain that con-
nects the extracellular N terminus with the ligand
binding domain and the intracellular C terminus con-
taining the catalytic kinase domain (Hubbard, 1999;
Zwick et al., 2001). Ligands, like growth factors, cyto-
kines, and hormones, bind to the ligand binding do-
main and induce receptor dimerization and rapid
activation of the kinase domain. Autophosphorylation
of the receptor allows signal transfer through the cell
membrane. The phosphorylated receptor interacts
with adaptor proteins that act as linkers to down-
stream kinases, such as Src or phospholipase C.
These kinases further activate a network of redun-
dant pathways with feedback loops, crosstalk, and
compensatory mechanisms (Zwick et al., 2001; Lem-
mon and Schlessinger, 2010). Mutations in RTKs or

downstream signaling partners are implicated in the
development and progression of cancer (Zwick et al.,
2001). RTK signaling cascades regulate proliferation
and modify protein expression and activity (Lemmon
and Schlessinger, 2010). Several growth factors and
their respective RTKs regulate ABCB1 and ABCG2 at
the blood-brain barrier, including epidermal growth
factor (EGF), platelet-derived growth factor (Smits
et al., 1989; Bleau et al., 2009b), transforming growth
factor beta (Dohgu et al., 2004; Baello et al., 2014),
and vascular endothelial growth factor (VEGF). In
general, activation of RTKs and downstream signal-
ing cascades increases expression levels of blood-brain
barrier ABCB1 and ABCG2 but also of other trans-
porters such as Oatp1a1 (Ronaldson et al., 2011). In
contrast, inhibition of this signaling decreases trans-
porter expression levels.
The FDA has approved several RTK inhibitors for an-

ticancer use, including axitinib, cabozantinib, lenvatinib,
nintedanib, and others (Hou et al., 2021). Effects of such
drugs on the blood-brain barrier have not been charac-
terized, and RTK agonists are even less investigated.

1. Janus Kinase and Signal Transducer and Activa-
tor of Transcription 3 Cascade. The Janus kinase and
signal transducer and activator of transcription 3 (JAK-
STAT3) cascade is commonly activated by cytokines
(Fig. 8). Downregulation and inhibition of JAK1, STAT3,
or phosphorylated STAT3 downregulate ABCB1 at the
blood-brain barrier (Jagadeeshan et al., 2017). Similar
effects occur after p38 MAPK inhibition. Specifically,

Fig. 8. Regulation of ABCB1 by
JAK-STAT3. Cytokines activate the
JAK-STAT3 cascade, which leads to
phosphorylation of STAT3, which
leads to activation of the c-JunNH2
terminal kinase that in turn deacti-
vates c-Jun and reduces Abcb1
mRNA expression levels. Regula-
tion by VEGF. VEGF signals
through VEGFR2 to activate the
nonreceptor tyrosine kinase Src.
Activation of Src then induces phos-
phorylation of caveolin-1, which is
followed by Abcb1 internalization
and lysosomal degradation of the
transporter. Regulation by the
PI3K/Akt pathway. E2 signaling
through ERb inhibits the PTEN/
PI3K/Akt/GSK3 pathway, which in
turn leads to proteasomal degradation
ofAbcg2.CreatedwithBioRender.com.
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inhibiting p38 MAPK in epileptic rats decreased Abcb1
expression and associated protein activity levels, which
correlated with increased brain drug uptake (Shao
et al., 2016). The signaling molecules JNK, ERK, and
c-Jun are also involved in this cascade, and activation
of the c-Jun NH2 terminal kinase deactivates c-Jun
and reduces Abcb1 mRNA expression levels (Zhou
et al., 2006; Ronaldson et al., 2008). However, activat-
ing ERK and c-Jun with EGF via EGFR induces
Abcb1 and Abcg2 expression at the blood-brain barrier
(Bauer et al., 2005; Evseenko et al., 2007; Nakanishi
and Ross, 2012; Munoz et al., 2014).
Currently approved JAK inhibitors include tofaciti-

nib and ruxolitinib that are used for the treatment
of rheumatoid arthritis and autoimmune diseases (Taylor,
2019). Other indications include ulcerative colitis, myelofi-
brosis, and atopic dermatitis (Hu et al., 2021). However,
targeting the JAK-STAT3 signaling cascade for blood-
brain barrier manipulation is little explored.

2. Vascular Endothelial Growth Factor. VEGF acti-
vates its receptors VEGFR2 and Flk-1 that in turn ac-
tivate the nonreceptor tyrosine kinase Src (Fig. 8;
Agarwal et al., 2011). Src activation induces phos-
phorylation of caveolin-1 followed by Abcb1 internali-
zation and degradation (Hawkins et al., 2010; Miller
and Cannon, 2014; Qosa et al., 2015). Phosphorylated
caveolin-1 colocalizes with Abcb1 in the plasma mem-
brane and initiates Abcb1 endocytosis and vesicular
trafficking to the endosome or lysosome. There, Abcb1
is either recycled and trafficked back to the plasma
membrane or, as in most cases, undergoes lysosomal
degradation (Tome et al., 2015).
EGFR is highly expressed in some cancers, and

EGFR inhibitors are used to block cancer cell growth.
In glioblastoma patients, currently available EGFR
inhibitors do not provide a survival benefit but could
be used to overcome blood-brain barrier ABCB1/ABCG2-
mediated drug resistance via transporter internalization/
degradation (de Gooijer et al., 2018b; Kim et al., 2019b).
In particular, EGFR inhibitors with improved brain par-
titioning, like buparlisib, might be useful to increase
drug delivery into the brain and thus be beneficial in the
treatment of glioblastoma patients (de Gooijer et al.,
2018b).

3. PI3K/Akt/mTOR Pathway. In cancer, includ-
ing gliomas, the PI3K/Akt/mTOR signaling pathway
is dysregulated due to the loss of the tumor suppres-
sor PTEN or constitutively active PI3K and Akt mu-
tants. PTEN loss and PI3K/Akt mutations induce
proliferation and prevent apoptosis of cancer cells and
are associated with migration, invasion, and resis-
tance to both radiation and chemotherapy (Balsara
et al., 2004; Chen et al., 2005; Mellinghoff et al.,
2005; Tang et al., 2006; Jiang et al., 2007; Cancer Ge-
nome Atlas Research Network, 2008; Verhaak et al.,
2010; Song et al., 2012; Zhang et al., 2015; Wang

et al., 2017). PI3K/Akt/mTOR also regulates trans-
porters and in several cancers PI3K/Akt/mTOR sig-
naling leads to transporter-mediated drug resistance.
For example, constitutive overactivity of the PI3K/Akt
pathway induces ABCB1 and ABCG2 expression and
their associated proteins’ translocation to the plasma
membrane of brain microvasculature endothelial cells,
which increases drug resistance of brain tumors (Takada
et al., 2005; Bleau et al., 2009b; Agarwal et al., 2011;
Huang et al., 2013; Huang et al., 2014b). In this regard,
we showed that estradiol activation of ERb activates
PTEN, leading to PI3K/Akt inactivation followed by
GSK3 phosphorylation. Phosphorylated GSK3 then in-
duces ABCG2 internalization and proteasomal degra-
dation (Fig. 8; Hartz et al., 2010a,b). Similarly, PI3K
inhibition with LY294002 stimulates ABCG2 trans-
porter internalization and degradation (Mogi et al.,
2003; Takada et al., 2005; Bleau et al., 2009a).
Until recently, the cause of transporter upregula-

tion in cancer was unknown. Matsumoto et al. (1991)
found ABCB1 overexpression in glioblastoma samples
from patients after initial treatment and concluded
that glioblastoma acquires ABCB1-mediated resis-
tance during treatment (Matsumoto et al., 1991).
However, transporter overexpression could also be
due to pathway dysregulation. In support of this
model, RTK signaling components, including down-
stream kinases like PI3K, are mutated in 95% of glio-
blastoma patients (Schlessinger, 2000; Brennan et al.,
2013; Eskilsson et al., 2018). Overactive PI3K signal-
ing drives tumor progression and upregulates ABCB1
and ABCG2 expression and associated protein activity
in tumors and at the blood-brain barrier, contributing
to drug resistance (Schlessinger, 2000; Shinojima
et al., 2003; Brennan et al., 2013; Eskilsson et al.,
2018). Specifically, activation of the PI3K/Akt signal-
ing cascade through increased phosphorylation of
PI3K and Akt, PI3K/Akt overexpression or loss of
PTEN, significantly increases ABCB1 and ABCG2 ex-
pression and associated protein activity at the blood-
brain barrier (Brennan et al., 2013; Huang et al., 2013,
2014a). Thus, inhibiting PI3K, mTOR, or upstream
RTKs holds the potential to attenuate transporter upre-
gulation (Huang et al., 2013; de Gooijer et al., 2018c).
In tumor cells and at the blood-brain barrier,

ABCB1 and ABCG2 restrict the uptake of anticancer
drugs, and transporter expression levels were thought
to correlate with the extent of multidrug resistance
(Marchetti et al., 2008; Agarwal et al., 2010, 2011; de
Vries et al., 2012; Laramy et al., 2017; de Gooijer
et al., 2018c). This transporter-centric view on multi-
drug resistance in cancer, however, is controversial.

D. Other Pathways

Several other pathways that regulate blood-brain
barrier ABCB1/ABCG2 have been identified in recent
years and are summarized in the following sections.
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1. Adenosine. Adenosine receptor A2 and adenyl-
ate cyclase, both key components of the adenosine
signaling pathway, exist at the blood-brain barrier
(Fig. 9A; Kalaria and Harik, 1986). In 2016, Kim and
Bynoe (2016) demonstrated that activation of the
adenosine receptor A2A in hCMEC/D3 cells in vitro de-
creases ABCB1 and ABCG2 expression and associated
protein activity through membrane metalloprotease
9-mediated cleavage followed by ubiquitination and
proteasomal degradation (Kim and Bynoe, 2016). A2A

activation decreases the expression of tight junction
proteins, which increases paracellular permeability
(Kim and Bynoe, 2015). The adenosine receptor A2B

has a low affinity for adenosine and to be activated re-
quires high adenosine concentrations that are usually
associated with pathologic conditions, such as brain
tumors (Fredholm et al., 2001; Hasko et al., 2009;
Aherne et al., 2011). Jackson et al. (2016, 2018) demon-
strated that A2B inhibition disrupts blood-brain barrier
function and improves brain drug uptake in rats (Jack-
son et al., 2016, 2018). Later studies showed that A2B

signaling through protein kinase A and phospholipase
C increases ABCB1 protein levels in endothelial cells,
thereby contributing to drug resistance (Hasko et al.,
2009; Aherne et al., 2011; Yan et al., 2019a).
Adenosine levels are increased in various pathologic

conditions including brain cancer (Hasko et al., 2009;
Aherne et al., 2011; Jackson et al., 2016; Yan et al.,
2019a). Several preclinical studies suggest that in-
creased adenosine levels could drive tumor invasion
and drug resistance in glioblastoma models (Yan et al.,
2019a,b; Zavala-Tecuapetla et al., 2020). Preclinical stud-
ies also suggest that adenosine inhibition improves drug
brain uptake and efficacy in animal glioblastoma and ep-
ilepsy models. In a 2017 pilot study with patients with

cardiovascular disease, A2A inhibition increased brain
levels of the imaging reagent (99m)Tc-sestamibi (Jackson
et al., 2017). However, A2A inhibition did not translate
into increased temozolomide levels in a phase 1 clinical
trial in glioblastoma patients (Jackson et al., 2018). At
this point the therapeutic value of adenosine receptor in-
hibition to regulate blood-brain barrier transporters with
the goal of improving brain drug levels needs further
evaluation.

2. Circadian Rhythm. The circadian rhythm regu-
lates multiple physiologic processes, including metab-
olism and transport, which affects drug delivery and
elimination and,f thus, efficacy (Fig. 9B; Erol et al.,
2001; Okyar et al., 2012; Filipski et al., 2014; Kervezee
et al., 2014; Savolainen et al., 2016). At the molecular
level, the circadian rhythm is controlled by a complex
system of transcription factors including the main circa-
dian regulator CLOCK, its heterodimer BMAL1, PAR do-
main basic leucine zipper proteins, Period, and E4BP4, a
transcriptional activator protein that follows an opposing
oscillating cycle and acts as a negative regulator during
the sleep phase (Gekakis et al., 1998; Murakami et al.,
2008). These proteins regulate a number of processes in-
cluding the circadian oscillations of metabolizing en-
zymes and drug transporters.
In this regard, Zhang et al. (2018) first reported

that xenobiotic efflux at the blood-brain barrier in
fruit flies (Drosophila melanogaster) underlies circa-
dian rhythm regulation. Specifically, they studied
Mdr65, which is a pesticide-resistance protein with
homology to ABCB1, along with Mdr49. Mdr65 activity
is regulated through opposing variation of intracellular
Mg21 and Ca21 concentrations without changing trans-
porter expression. Importantly, increased Mdr65-mediated
efflux during the active period of the fruit fly decreased

Fig. 9. Other signaling pathways.
Diagram showing several other
signaling pathways identified to
regulate ABCB1 and/or ABCG2 at
the blood-brain barrier: (A) adeno-
sine, (B) circadian rhythm, (C) epi-
genic changes, and (D) P53. Created
with BioRender.com.
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brain accumulation of xenobiotics (Zhang et al., 2018).
The oscillating changes in efflux are repressed in Period
knockout flies, further supporting circadian rhythm regu-
lation of efflux transporter activity. Furthermore, Abcb1
activity at the blood-brain barrier of mice and ABCB1 ac-
tivity in hCMEMC/D3 cells in vitro also underly circadian
rhythm regulation (Zhang et al., 2021). Of particular
note is that circadian oscillation of ABCB1 intestinal ex-
pression in primates (Macaca fascicularis) altered the
pharmacokinetics of its substrates, suggesting a similar
principle operating in the brain of higher mammal (Iwa-
saki et al., 2015).
In this regard, in the 1970s researchers discovered

that mice with leukemia responded better to treat-
ment when anticancer drug therapy was adjusted to
the circadian rhythm (Haus et al., 1972). Thus, a dos-
ing schedule following the circadian rhythm has the
potential to improve brain uptake and efficacy of CNS
therapeutics. Several studies show that brain uptake
of the Abcb1 substrate quinidine is increased during
the resting phase of mice compared with the active
phase, when Abcb1 activity is increased (Kervezee
et al., 2014; Savolainen et al., 2016). Human patients
had higher serum drug levels and better seizure control
when phenytoin was dosed at night compared with the
morning (Yegnanarayan et al., 2006). These findings
suggest that decreased ABCB1 activity during the rest-
ing phase—daytime in rodents, nighttime in patients—
is sufficient to improve drug brain uptake and efficacy
while decreasing side effects (Yegnanarayan et al.,
2006; Filipski et al., 2014).

3. Epigenetic Markers. Epigenetic markers in-
clude methylation and hydroxymethylation of target
gene DNA and methylation, acetylation, phosphoryla-
tion, ubiquitylation, and sumoylation of associated
histones that alter gene transcriptional activity without
changing DNA sequence (Fig. 9C; Liberman et al., 2019).
Regarding ABCB1, promotor (de)methylation is an im-
portant regulator of transporter expression (Scotto, 2003;
Sarkadi et al., 2006; Nakanishi and Ross, 2012). ABCB1
promotor methylation increases the association of chro-
matin with deacetylated histones and methyl-CpG-
binding protein 2, which represses transcription and, in
turn, reduces ABCB1 mRNA and protein expression
levels (El-Osta et al., 2002). Promotor demethylation
triggers the release of methyl-CpG-binding protein 2
and causes chromatin relaxation, which enables ABCB1
gene transcription (El-Osta et al., 2002). While histone
acetylation does not activate the ABCB1 promotor, it in-
duces ABCB1 transcription and causes transporter
overexpression (El-Osta et al., 2002; Nakanishi and
Ross, 2012). Several groups have investigated histone
acetyltransferase and histone deacetylase (HDAC) and
their effects on ABCB1 expression. HDAC inhibition
specifically increases acetylation of histone H4, which
regulates the expression of Rab GTPases that stimulate

vesicular trafficking of ABCB1 protein to the membrane
(Noack et al., 2016). HDAC inhibition and histone ace-
tyltransferase activation combined activate the ABCB1
promotor (Jin and Scotto, 1998; Sarkadi et al., 2006;
You et al., 2019). You et al. (2019) showed that HDAC
inhibitors increase ABCB1 mRNA and protein levels in
cultured hCMEC/D3 cells, accompanied by increased
AhR binding to the ABCB1 promotor, indicating a core-
gulatory mechanism.
Another epigenetic pathway involves melatonin, a hor-

mone that controls the sleep-wake cycle and methylates
the ABCG2 promotor, which ultimately leads to de-
creased ABCG2 protein levels in brain tumor stem cells.
Since melatonin is a DNA methyltransferase substrate,
methyltransferase inhibitors prevent ABCG2 downregu-
lation (Martin et al., 2013). Recently, Jumnongprakhon
et al. (2017) identified an alternative melatonin signaling
pathway that regulates Abcb1 in primary rat brain mi-
crovascular endothelial cells. They showed that melato-
nin reverses methamphetamine-induced reduction in
Abcb1 mRNA expression and associated protein lev-
els at the blood-brain barrier by preventing internali-
zation, ubiquitination, and proteasomal degradation
(Jumnongprakhon et al., 2017). Since melatonin is
not an Abcb1 substrate, competitive inhibition is un-
likely to contribute to these effects (Tran et al., 2009).
Gene amplification, alternative promotors, and mul-

tiple transcription start sites are important ABCB1
regulators in the context of bacterial antibiotic resis-
tance and cancer multidrug resistance; their role at
the blood-brain barrier is unknown (Nakanishi and
Ross, 2012).
Epigenetic changes are common in cancer cells,

where they drive tumor progression and drug resis-
tance (Hegi et al., 2005; Dong and Cui, 2019). In this
regard, anticancer drugs, specifically DNA alkylating
agents, increase DNA methylation, which causes dou-
ble-strand breaks and leads to apoptosis. While this is
the main mechanism of action of DNA alkylating
agents, drugs from this category also change expres-
sion levels of other genes, including ABCB1 and
ABCG2 (Munoz et al., 2015). This might explain why
temozolomide and carmustine, two clinically used al-
kylating agents for the treatment of glioblastoma, de-
crease their own brain distribution and efficacy in
glioblastoma patients (Valtonen et al., 1997; Stupp et al.,
2005). However, opposing effects of alkylating agents
have been described in glioblastoma cells (Riganti et al.,
2013).

4. p53. p53 (gene: TP53) is one of the best-studied
tumor suppressor proteins. Mutations and loss of p53
in different cancer types upregulate transcription and
translation of ABCB1 (Fig. 9D; Bush and Li, 2002;
Marroni et al., 2003; Sarkadi et al., 2006). Wild-type
p53 decreases Ras/Raf signaling and phospholipase C
activity, which increases ABCB1 expression levels
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(Chin et al., 1992; Bush and Li, 2002; Scotto, 2003).
At the blood-brain barrier, DNA damage induces
ataxia-telangiectasia-mutated kinase, which, in turn,
activates p53, p38, and NF-kB, leading to ABCB1
overexpression (Bush and Li, 2002; Bleau et al.,
2009b; Miller, 2015). Interestingly, the TP53 promoter
is activated by intracellular Ab, an ABCB1 substrate
(Ohyagi et al., 2005).
TP53, which encodes p53, is the most mutated gene

in cancer, including 30% of all brain tumors (Cancer
Genome Atlas Research Network, 2008; Brennan et al.,
2013; Duffy et al., 2017). TP53 mutations result in p53
loss-of-function, which dysregulates cell cycle progres-
sion, proliferation, and tumor growth.

IV. Overall Clinical Implication

Approximately 1 billion people worldwide and
100 million people in the United States suffer from CNS
diseases, accounting for 6.3% of total global disease bur-
den [World Health Organization (WHO), 2006; Gooch
et al., 2017]. Many CNS diseases are difficult to treat,
and the economic and social impact of treatment failure
is significant (WHO, 2006; Gooch et al., 2017). Conse-
quently, new therapeutic strategies are urgently needed.
Two main obstacles exist to successful treatment of CNS
disorders. First, the efflux transporters ABCB1 and
ABCG2 at the blood-brain barrier prevent access of
drugs to the brain and thus significantly interfere with
the treatment of CNS diseases (Schinkel et al., 1994;
Kim et al., 1998b; de Vries et al., 2007). Second, changes
in the blood-brain barrier contribute to disease pathology
that further restricts drug uptake into the brain, adding
another layer of intricacy to the successful treatment of
CNS diseases. Next we discuss some of the distinct
changes that occur at the blood-brain barrier in patients
with CNS disease or in animal disease models and high-
light how those changes affect the progression and treat-
ment of the respective disease (Fig. 10).

A. Epilepsy

The WHO estimates that about 46 million people
worldwide suffer from epilepsy, a disease character-
ized by recurring, unprovoked seizures that also im-
pair cognition and sleep (Beghi, 2020). Approximately
one-third of epilepsy patients do not respond to phar-
macological treatment with antiseizure drugs and
thus suffer from refractory, drug-resistant epilepsy
and uncontrolled seizures (Kwan and Brodie, 2000).
One major contributor to this drug resistance is
ABCB1 and potentially other drug efflux transporters
including ABCG2 at the blood-brain barrier, which
prevent the delivery of antiseizure drugs into the
brain (Cox et al., 2001; van Vliet et al., 2006; Tang
et al., 2017). The significance ABCB1 plays in refrac-
tory epilepsy is further amplified by the fact that
ABCB1 is upregulated at the blood-brain barrier of

patients with refractory epilepsy (Tishler et al., 1995;
Dombrowski et al., 2001). Abcb1 is overexpressed spe-
cifically in epileptogenic brain regions of chronic epi-
leptic rats (van Vliet et al., 2006). In a case report,
Iannetti et al. demonstrated that the ABCB1 inhibitor
verapamil increased the efficacy of antiseizure drugs
in a boy with epilepsy (Iannetti et al., 2005). However,
the use of ABCB1 inhibitors is currently not a viable
clinical strategy due to severe adverse effects.

B. Brain Tumors

Brain tumors account for 2% of all cancer cases
worldwide but disproportionately contribute to cancer
morbidity and mortality (Kleihues et al., 2014). In the
United States, approximately 77,000 patients are
newly diagnosed with a brain tumor every year,
which makes brain tumors the most common and
deadliest cancer in children and the sixth most com-
mon cancer in adults (Ostrom et al., 2019). Treatment
options are limited and mostly involve surgical resec-
tion and radiotherapy (Stupp et al., 2005). Chemo-
therapy of primary and secondary brain tumors is
often unsuccessful, in part because ABCB1 and
ABCG2 at the blood-brain barrier restrict access to a
wide range of anticancer drugs to the brain and im-
pair their efficacy (de Vries et al., 2012; Taskar et al.,
2012; de Gooijer et al., 2018d; Sorf et al., 2018). The
situation is especially dire for patients with glioblas-
toma multiforme, the most common malignant pri-
mary brain tumor (Ostrom et al., 2018). Median

Fig. 10. Clinical implications. Overview of diseases where ABCB1 and/or
ABCG2 are changed and affect the progression and treatment of the re-
spective disease. Created with BioRender.com.
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survival after diagnosis is 15 to 23 months, and fewer
than 7% of glioblastoma patients survive 5 years or
longer (Ostrom et al., 2018, 2019). While many anti-
cancer drugs are promising in vitro, their efficacy
in vivo and in clinical trials has been marginal at
best, due to ABCB1- and ABCG2-mediated efflux at
the blood-brain barrier. Recently, Kim et al. demonstrated
and visualized this “ABC challenge” in an elegant study
(Kim et al., 2018, 2019a). In brief, Kim and coworkers
showed that the MDM2 inhibitor SAR405838 signifi-
cantly decreased the viability of patient-derived glioblas-
toma cell lines (Kim et al., 2018). In addition, SAR405838
prevented growth of glioblastoma cells injected into the
flanks of immunocompromised mice (Kim et al., 2018). In
contrast, when the tumor cells were injected into the
brain, the drug did not reach the brain and, therefore,
had no beneficial therapeutic effect on survival in the or-
thotopic xenograft model (Kim et al., 2018). The data fur-
ther showed that SAR405838 is both an ABCB1 and
ABCG2 substrate (Kim et al., 2019a). Even though
SAR405838 was effective in vitro and in flank models,
ABCB1- and ABCG2-mediated efflux at the blood-brain
barrier prevented drug entry into the brain, rendering
the compound ineffective (Kim et al., 2019a).
Diffuse intrinsic pontine glioma (DIPG) is another

example of a CNS tumor. DIPG is the most common
brain tumor in children (Ostrom et al., 2019). DIPGs
reside in the brain stem and, therefore, cannot be sur-
gically removed or biopsied (Ostrom et al., 2019). Con-
sequently, to date, little information is available on
the molecular composition of DIPGs, hindering the
development of targeted therapies. Data from recent
studies with animal DIPG models indicate that blood-
brain barrier ABC transporters contribute to the low
efficacy of chemotherapy (Veringa et al., 2013; Becher
and Wechsler-Reya, 2014; Chung et al., 2014; Duchatel
et al., 2019; Chaves et al., 2020). Similar data have also
been obtained for secondary, metastatic brain tumors of
lung and breast cancer as well as melanoma. Several re-
search groups have also shown increased uptake of fluo-
rescent dextrans into brain metastases exists, suggesting
a disrupted blood-brain/tumor barrier (Palmieri et al.,
2009; Lockman et al., 2010; Taskar et al., 2012; Mitta-
palli et al., 2016; Osswald et al., 2016; Terrell-Hall
et al., 2017; Mohammad et al., 2018). However, de
Gooijer et al. (2021) and other groups have demonstrated
that “ATP-binding cassette transporters restrict drug de-
livery and efficacy against brain tumors even when
blood-brain barrier integrity is lost,” suggesting that
ABCB1 and ABCG2 overcome barrier leakage (Thomas
et al., 2009; Adkins et al., 2013; Dudek et al., 2013; Li
et al., 2013; Ballard et al., 2016; Vaidhyanathan et al.,
2016; Yang et al., 2016; Gampa et al., 2018, 2019; Ippen
et al., 2019).
In addition to the blood-brain barrier, ABCB1 is also

upregulated in tumor tissue samples from brain tumor

patients. One underlying mechanism for ABCB1 upregu-
lation in cancer cells is the amplification of the ABCB1-
containing 7q21 chromosomal region, which confers mul-
tidrug resistance (Genovese et al., 2017). Thus, ABCB1
copy number plays an important role in cancer-associ-
ated drug resistance. In glioblastoma, ABCB1 protein ex-
pression levels, measured with Western blotting and
immunohistochemistry, were increased in patient sam-
ples from the second resection compared with those
from the first resection (Matsumoto et al., 1991).
ABCB1 expression increased in astrocyte-derived gli-
oma cells compared with healthy human astrocytes
(Spiegl-Kreinecker et al., 2002; Marroni et al., 2003).
The increase in ABCB1 expression in glioblastoma pa-
tient samples may be mainly due to increased expres-
sion at the blood-tumor barrier, and transporter
expression levels in tumor cells seem to play a minor
role in drug resistance (Tanaka et al., 1994; Tews
et al., 2000; Veringa et al., 2013).

C. Alzheimer’s Disease

Alzheimer’s disease is the leading cause of dementia
worldwide. In the USA, an estimated 6.5 million peo-
ple over the age of 65 suffer from the disease (Alz-
heimer’s Association, 2022). One hallmark of
Alzheimer’s disease is the accumulation and aggrega-
tion of Ab in the brain (Murphy and LeVine, 2010; Ser-
rano-Pozo et al., 2011). The mechanism underlying
brain Ab accumulation is not fully understood, but
data from recent studies suggest that loss of ABC
transporters at the blood-brain barrier impairs Ab
clearance from the brain, contributing to an imbalance
between Ab production and clearance.
In 2001, Lam et al. (2001) were the first to show

that ABCB1 transports Ab in vitro (Lam et al., 2001;
Kuhnke et al., 2007; Hartz et al., 2010c; Callaghan
et al., 2020). Abcb1 cooperates with low-density lipo-
protein receptor-related protein-1 (LRP1) located in
the abluminal membrane of the brain capillary endo-
thelium where it shuttles Ab from the brain into
brain capillary endothelial cells (Shibata et al., 2000;
Deane et al., 2004; Storck et al., 2018). Additional
data indicate that ABCB1 then clears Ab from the en-
dothelial cell into the blood (Cirrito et al., 2005; Hartz
et al., 2010c; Mawuenyega et al., 2010; Hartz et al.,
2018; Krohn et al., 2018).
In 2002, Vogelgesang and colleagues (2002) showed

in brain tissue samples from nondemented elderly pa-
tients (n 5 243; 50–91 years) that blood-brain barrier
ABCB1 expression and associated protein levels are
decreased in areas with high Ab load (Vogelgesang
et al., 2002). Such a reduction in transporter levels
also occurs in animal models of Alzheimer’s disease
and in Alzheimer’s disease patients (Vogelgesang
et al., 2004; Wijesuriya et al., 2010; Jeynes and Pro-
vias, 2011a; van Assema et al., 2012a; Mehta et al.,
2013; Carrano et al., 2014; Chiu et al., 2015; Wang
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et al., 2016; Bauer et al., 2017; Kannan et al., 2017;
Shubbar and Penny, 2018; Al-Majdoub et al., 2019).
ABCB1 loss is particularly pronounced in areas di-
rectly surrounding Ab plaques (Jeynes and Provias,
2011a; Chiu et al., 2015). Our group has shown that
exposing isolated capillaries from mice and rats to
nanomolar concentrations of human Ab 40 decreases
Abcb1 protein expression and activity levels (Hartz
et al., 2010c, 2016). This effect is abolished by inhibit-
ing ubiquitination, transporter internalization, and
proteasomal degradation (Akkaya et al., 2015; Hartz
et al., 2016, 2018; Ding et al., 2021). In addition to
posttranslational modifications, other pathways in-
cluding RAGE and NF-jB also regulate Abcb1 expres-
sion and associated protein levels at the blood-brain
barrier in response to Ab exposure (Park et al., 2014).
While the role ABCB1 plays in Ab clearance from the
brain is well established, potential involvement of
ABCG2 is less clear. In brain slices from Alzheimer’s
disease patients capillaries surrounding Ab plaques
have decreased ABCG2 protein levels compared with
cognitive normal controls (Carrano et al., 2014). How-
ever, other groups reported increased ABCG2 protein
levels at the blood-brain barrier of Alzheimer’s dis-
ease patients (Xiong et al., 2009) or found no changes
at all (Wijesuriya et al., 2010). Thus, currently it is
unclear if ABCG2 is involved in Ab clearance from
the brain (Pahnke et al., 2008; Hartz et al., 2010c;
Krohn et al., 2011). The involvement of other ABC
transporters such as ABCA1 or ABCC1 in Alzheimer’s
disease has been reviewed in detail by Wolf et al.
(2012).

D. Chronic Pain

Chronic pain is one of the leading causes of disabil-
ity and significantly impairs patients’ ability to partic-
ipate in daily activities (Gooch et al., 2017; Vlaeyen
et al., 2018). Opioids (natural and synthetic) are com-
monly used to treat chronic pain and are also, coinci-
dentally, ABCB1 substrates (Letrent et al., 1999;
Dagenais et al., 2004; Bauer et al., 2006; Sharma and
Ali, 2006; Hassan et al., 2007; Yousif et al., 2008,
2012; Chaves et al., 2016; Schaefer et al., 2018). For
example, oxycodone, morphine, and methadone are
weak ABCB1 substrates and therefore cross the
blood-brain barrier and exert activity on the CNS
(Gibbs et al., 2018). Some centrally active opioids
such as oxycodone, morphine, or fentanyl, induce
Abcb1 expression, diminishing their own brain uptake
and efficacy (Letrent et al., 1999; Dagenais et al.,
2004; Sharma and Ali, 2006; Hassan et al., 2007; You-
sif et al., 2008, 2012; Chaves et al., 2016; Schaefer
et al., 2018). Other opioids such as loperamide and
naldemedine are more active Abcb1 substrates and
thus only have low brain uptake, which minimizes
their central action and side effects (Watari et al.,

2019). Loperamide has a four times higher Abcb1-
mediated transport rate than methadone, which
significantly restricts its brain uptake and makes lo-
peramide a safe and effective drug for diarrhea
treatment without CNS side effects (Gibbs et al.,
2018). Of potential note is that k-carrageenan-
induced inflammatory pain increased brain uptake
and antinociception of codeine (Hau et al., 2004).
This suggests that inflammatory pain may be an
important consideration in therapeutic drug dosing,
potential adverse effects, and neurotoxicity.

E. Human Immunodeficiency Virus

Major breakthroughs in human immunodeficiency
virus (HIV) treatment have transformed this origi-
nally deadly disease into a manageable chronic
condition. The development of several classes of anti-
retroviral drugs with good safety and efficacy profiles
significantly improved and prolonged the lives of HIV
patients (Kwon et al., 2020). However, one obstacle
remains: ABCB1 at the blood-brain barrier restricts
HIV protease inhibitor uptake into the brain, thereby
creating a sanctuary where the virus can persist and
replicate (Kim et al., 1998a,b; Lee et al., 1998;
Edwards et al., 2002). Virus replication in the brain
causes decline in motor and cognitive function and can
lead to dementia (Edwards et al., 2002). Further, antire-
troviral drugs are a double-edged sword: They are effec-
tive against HIV in the periphery but increase ABCB1
expression at the blood-brain barrier through activation
of nuclear receptors such as PXR or CAR, thereby hin-
dering drugs from reaching the brain (Chan et al.,
2013). In a recent study, McRae et al. provided evidence
that the HIV protein Tat1 increased Abcb1 expression
and Abcb1 activity levels at the blood-brain barrier in
mouse models, further restricting brain uptake of anti-
retroviral drugs (McRae et al., 2019).

F. Stroke

Stroke is one of the deadliest neurologic diseases
causing annually more than 3 million deaths world-
wide (Katan and Luft, 2018). Only 20% of patients
who survive a stroke regain complete independence,
making stroke the CNS disease responsible for the
highest rate of long-term disability (WHO, 2006).
In patients who survive, stroke is known to induce
neuroinflammation and blood-brain barrier damage,
mainly by disrupting tight junctions (Yang et al.,
2019). Further, Dazert et al. showed in a rat ischemic
stroke model that middle cerebral artery occlusion in-
creases the expression of several ABC transporters,
including Abcb1 and Abcg2, in the infarct region,
potentially limiting brain uptake of neuroprotective
drugs (Dazert et al., 2006). A follow-up study by
DeMars et al. (2017) confirmed that Abcb1 protein
levels are significantly increased after ischemic stroke
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in the brain capillary endothelium in vivo (DeMars
et al., 2017). The presence of blood-brain barrier ABC
transporters decreased drug concentrations in the is-
chemic brain by up to an order of magnitude, thus re-
ducing neuroprotective drug efficacy (Spudich et al.,
2006; Kilic et al., 2008; ElAli and Hermann, 2010). In-
hibiting Abcb1 or silencing Abcb1 with siRNA reduced
levels of inflammatory cytokines, matrix metallopro-
teinases (membrane metalloprotease-2 and -9), and
adhesion molecules (ICAM-1 and VCAM-1), which re-
sulted in reduced infarct volume (Huang et al., 2022).
These findings suggest that Abcb1 impairs brain drug
entry of therapeutic drugs and may also contribute to
barrier dysfunction in ischemic stroke and could poten-
tially be a therapeutic target. More research is needed
in this area to clarify the role of ABC transporters dur-
ing stroke.

G. Amyotrophic Lateral Sclerosis

ALS is a neurodegenerative disease leading to neu-
ronal damage and loss of voluntary muscle move-
ment. To this day, there is no cure, and only limited
treatment options are available. Riluzole is one of two
FDA-approved drugs for ALS therapy and is also an
ABCB1 substrate, restricting riluzole brain uptake and
efficacy (Jablonski et al., 2014). A preclinical study in a
mouse ALS model showed that the Abcb1 inhibitor ela-
cridar increases riluzole brain uptake and improves drug
efficacy (Jablonski et al., 2014). Drug brain uptake is fur-
ther restricted due to Abcb1 upregulation in brain capil-
lary endothelial cells and in astrocytes of mice with a
SOD1 mutation, a commonly used animal ALS model
(Jablonski et al., 2012; Qosa et al., 2016b; Chan et al.,
2017). ABCB1 expression increases in human pluripo-
tent stem cell-derived brain endothelial cells that were
cocultured with astrocytes isolated from ALS patient
samples (Mohamed et al., 2019).

V. Concluding Remark

CNS disorders make up approximately 50% of the
total health burden in the United States, significantly
contributing to mortality and disability (Gooch et al.,
2017). Moreover, CNS disorders are often difficult to
treat (Gooch et al., 2017), which is in part because
many CNS active drugs are substrates of ABCB1 and
ABCG2 at the blood-brain barrier. We now know that
ABCB1 and ABCG2, and possibly other ABC transport-
ers, work together in restricting brain drug uptake, ren-
dering CNS pharmacotherapy extremely difficult. Over
the past decades, numerous therapeutic approaches
have been tested to overcome blood-brain barrier efflux
transporters and to improve treatment outcomes in pa-
tients with CNS disorders. In this regard, we have
worked to unravel signaling pathways that regulate
transporters (Hartz and Bauer, 2010). Part of this

research involves identifying target molecules that can
be manipulated to control ABC transporter expression
and/or activity. For example, this approach could be
used to increase transporter expression and/or activity
to protect the brain while treating peripheral diseases
when CNS effects are not desired (Bauer et al., 2004,
2007). Consider the chemotherapy of peripheral cancers,
where one prominent side effect is the development of
“chemo brain,” a form of drug-induced dementia (Joshi
et al., 2010; Ren et al., 2019; Stefancin et al., 2020). In
this case, shielding the brain from anticancer drugs by
upregulating ABC transporters could be beneficial to pre-
vent chemo brain, which would improve patients’ overall
health and quality of life.
On the other hand, targeting transporter regulation

has the potential to open the barrier for a short
“window in time” and allow drug uptake when needed
while protecting the brain in between treatments
(Hartz and Bauer, 2010). Selectively turning off ABC
transporters to increase brain uptake of CNS thera-
peutics could be an important tool to improve the
treatment of various CNS disorders (Hartz and
Bauer, 2010). Since reducing ABC transporter activity
could exacerbate conditions such as Alzheimer’s dis-
ease, including prodromal stages, where ABCB1 ac-
tivity is critical for clearance of Ab from the brain,
chronic downregulation of ABC transporters could bear
risks. This further supports the idea of time-limited
ABCB1/ABCG2 reduction to maximize drug delivery and
therapeutic outcomes, while minimizing risk that could
stem from chronic transporter suppression. Several of
the pathways described here could be targeted with ex-
isting FDA-approved drugs with the potential of regulat-
ing ABCB1/ABCG2 expression and associated proteins’
activity at the blood-brain barrier (Table 1). For example,
ER-mediated decrease of ABCB1/ABCG2 expression and
associated proteins activity levels at the blood-brain bar-
rier could potentially be accomplished with ethinyl estra-
diol or could be blocked with fulvestrant (Imai et al.,
2002, 2005; Hartz et al., 2010a,b; Zuloaga et al., 2012).
Inflammation-mediated changes in ABCB1/ABCG2 could
be blocked with the anti-TNFa antibodies adalimumab
or infliximab or with the cyclooxygenase 2 inhibitor cele-
coxib to prevent ABCB1 and ABCG2 upregulation (Hartz
et al., 2004, 2006; Bauer et al., 2007; Zibell et al., 2009).
Another option is the use of tyrosine kinase inhibitors
such as lapatinib (EGFR), erlotinib (EGFR), sunitinib
(VEGFR), or bevacizumab (VEGFR), to decrease ABCB1/
ABCG2 expression/activity levels at the blood-brain bar-
rier (Evseenko et al., 2007; Hawkins et al., 2010; Tome
et al., 2015). While this approach seems promising, more
research is needed to evaluate the effect of increased or
decreased ABC transporter expression and activity at
the blood-brain barrier on drug brain levels, efficacy, and
overall disease progression.
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