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Abstract——Conopeptides are a diverse group of re-
cently evolved venom peptides used for prey capture
and/or defense. Each species of cone snails produces in
excess of 1000 conopeptides, with those pharmacolog-
ically characterized (�0.1%) targeting a diverse range
of membrane proteins typically with high potency and
specificity. The majority of conopeptides inhibit volt-
age- or ligand-gated ion channels, providing valuable
research tools for the dissection of the role played by
specific ion channels in excitable cells. It is notewor-
thy that many of these targets are found to be ex-
pressed in pain pathways, with several conopeptides
having entered the clinic as potential treatments for
pain [e.g., pyroglutamate1-MrIA (Xen2174)] and one
now marketed for intrathecal treatment of severe pain
[ziconotide (Prialt)]. This review discusses the diver-
sity, pharmacology, structure-activity relationships,

and therapeutic potential of cone snail venom peptide
families acting at voltage-gated ion channels (�-, �-,
�O-, �-, �-, and �-conotoxins), ligand-gated ion channels
(�-conotoxins, �-conotoxin, ikot-ikot, and conan-
tokins), G-protein-coupled receptors (�-conopeptides,
conopressins, and contulakins), and neurotransmitter
transporters (	-conopeptides), with expanded discus-
sion on the clinical potential of sodium and calcium
channel inhibitors and �-conotoxins. Expanding the
discovery of new bioactives using proteomic/tran-
scriptomic approaches combined with high-through-
put platforms and better defining conopeptide struc-
ture-activity relationships using relevant membrane
protein crystal structures are expected to grow the
already significant impact conopeptides have had as
both research probes and leads to new therapies.

I. Introduction

The interrogation of chemical diversity with therapeuti-
cally relevant screens remains the dominant discovery en-
gine for the pharmaceutical industry. Although most suc-
cess with this approach has been achieved by exploring
natural product extracts composed mostly of smaller or-
ganic molecules, there is a growing realization that pep-
tides are an underused source of leads for new therapeu-
tics. This realization is now gaining momentum following
the disappointments of combinatorial chemistry, increas-
ing failure rates of small molecules in clinical development,
and the limitations of small-molecule–based approaches
for many druggable targets. Sources of peptides include
plant cyclotides (Henriques and Craik, 2010), phage dis-
play libraries (Pande et al., 2010), and venom peptides
(Lewis and Garcia, 2003). Among these sources, venom
peptides provide arguably the largest source of chemical
diversity, being driven by evolutionary pressure for im-
proved prey capture and/or defense. This diversity has
arisen multiple times in nature in animals as diverse as
sea anemones, jellyfish, centipedes, spiders, scorpi-
ons, cone snails, cephalopods, echinoderms, snakes,
lizards, fish, platypus and arguably even fleas, mos-
quitoes, kissing bugs, leeches, ticks, and vampire bats
(Fry et al., 2009). Ensuring their successful implemen-

tation, venom peptides have coevolved with sophisti-
cated and specialized envenomation machinery com-
prising fangs, barbs, modified teeth, harpoons,
nematocysts, spines, or sprays. Not surprisingly,
given that most venoms are delivered intravenously,
there are multiple examples of convergent evolution of
a relatively small number of structural scaffolds that
possess the requisite stability to remain intact, both
within the venom and in plasma after envenomation.
These “privileged” structural frameworks have pro-
vided the scaffolds for an explosion in sequence diver-
sity that explains much of the chemical diversity
found in present-day venoms.

Among the venomous species, cone snails within the
family Conidae are unique for their ability to use a diverse
array of small disulfide-bridged peptides (conopeptides or
conotoxins) for prey capture (Fig. 1). Conopeptides have
evolved across all phylogenetic clades and feeding strate-
gies of cone snails from at least 16 genetically distinct
superfamilies, many of which are subject to extensive post-
translational modifications (Table 1). This highly evolved
hunting strategy, developed in parallel with the deploy-
ment of a hollow, barbed harpoon, allows normally herbiv-
orous molluscs to prey on animals as diverse as worms
(vermivorous species), fish (piscivorous species), and other
molluscs (molluscivorous species). Successful implementa-
tion of this strategy has allowed this single genus of widely
distributed marine molluscs to evolve into more than 500
Conus species. Cone snails hunt prey mostly at night and
once prey is located by smell they skillfully inject small
quantities of venom (up to �50 �l) to paralyze prey within
seconds using a rich cocktail of conopeptides that are
cleaved from propeptides by specialized venom endopro-
teases (Milne et al., 2003). Their small molecular size (typ-

1Abbreviations: 5-HT3, 5-hydroxytryptamine3; ACh, acetylcho-
line; AChBP, acetylcholine binding protein; Am2766, CKQAG-
ESCDIFSQNCCVGTCAFICIE-NH2; AMPA, �-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid; AR, adrenergic receptor; Cav,
calcium channel; CNS, central nervous system; Con-G, conan-
tokin-G; DRG, dorsal root ganglion; GPCR, G-protein-coupled recep-
tor; nAChR, nicotinic acetylcholine receptor; NET, norepinephrine
transporter; NMDA, N-methyl-D-aspartate; NTSR, neurotensin re-
ceptor; SNX-482, GVDKAGCRYMFGGCSVNDDCCPRLGCHSLF-
SYCAWDLTFSD-OH; TTX, tetrodotoxin.
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ically �5 kDa), relative ease of synthesis, structural
stability and target specificity make them ideal pharma-
cological probes (Adams et al., 1999). This broadly evolved
bioactivity provides a unique source of new research tools
and potential therapeutic agents, with �-MVIIA
[ziconotide (Prialt; Azur Pharma Inc., Philadelphia, PA)]
already approved for clinical use in the treatment of severe
pain (Miljanich, 2001).

Somewhat surprisingly, many of these classes of
conotoxins act on pain targets, allowing the specific
dissection of key ion channels and receptors underly-
ing pain and providing new ligands with potential as
pain therapeutics (Fig. 2). Each species of cone snail
produces in excess of 1000 conopeptides, with an esti-
mated 5% overlap in conopeptides found between spe-
cies (Davis et al., 2009) (see Fig. 1). At the moment,

only �0.1% of conopeptides have been characterized
pharmacologically, yet many have already been iden-
tified with clinical potential, as highlighted in Table 2.
The use of advanced transcriptomic/proteomic ap-
proaches combined with high throughput and multi-
plexed high content screens is expected to accelerate
ligand and target discovery. One caveat is that many
conotoxins will preferentially target prey species over
related mammalian targets and are likely to be missed
in screens relevant to human diseases. This review
expands and updates the last comprehensive review of
Conus spp. venoms in 2004 (Terlau and Olivera,
2004). Here we discuss the diversity, pharmacology,
structure-activity relationships, and therapeutic po-
tential of cone snail venom peptide families acting at
voltage-gated ion channels (�-, �-, �O-, �-, �- and

FIG. 1. The cone snail, venom apparatus, and venoms. A, shell of C. textile, a typical tented molluscivorous cone snail. B, dissected venom apparatus
from C. textile, showing the long and convoluted venom duct, radular sac, proboscis, and salivary glands. C, high-performance liquid chromatography/
mass spectrometry separation of venom peptides from the milked venom of C. textile. D, matching liquid chromatography/mass spectrometry of the
venom duct from the same C. textile.
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�-conotoxins), ligand-gated ion channels (�-conotoxins,
�-conotoxin, ikot ikot, and conantokins), GPCRs1 (�-
conopeptides, conopressins and contulakins), and neu-

rotransmitter transporters (	-conopeptides), and we dis-
cuss the potential of sodium and calcium channel
inhibitors and �-conotoxins to modulate pain pathways.

FIG. 2. Peripheral and spinal pain pathways amenable to conopeptide modulation. A number of selected targets on peripheral nociceptive terminals and
afferent neurons as well as descending facilitatory and inhibitory pathways originating in the medulla are shown. Therapeutic targets with known conotoxin
modulators are highlighted in blue, and those targeted by peptides derived from other species are highlighted in green. Targets with therapeutic potential
but no known specific peptide modulators are shown in yellow, and targets that are modulated by venom peptides but in an undesirable manner (e.g.,
inhibition of Kv1.4 by �-conotoxins and activation of TRPV1 by 
/�-theraphotoxin-Pc1a) are highlighted in orange. ASIC, acid-sensing ion channel; P2X2/3,
purinoceptors 2X2 and 2X3; TRP, transient receptor potential channel; �2�1, auxiliary Cav subunit; GlyR, glycine receptor.

TABLE 1
Superfamilies of conopeptides, occurrence in different Conus spp. clades and prey targets, and post-translational modifications (PTMs)

Data from Conoserver (http://www.conoserver.org).

Superfamily Cysteine Framework Family Species Clades Diet PTMs

A I, II, IV, XIV �, �, � 43 E, I, II, III, V, VI, VII, X, XII, XIV, XV, XVII V, M, P O, �, �, G, Z, Ys
D XX � 6 XII V O, �
I1 VI/VII, XI � 11 E, I, V, X, XIV, XVII V, M, P O, BrW, �, D, �
I2 XI, XII � 17 I, V, VI, X, XII, XIII, XVII V, M, P O, �, �
I3 VI/VII, XI 3 XIV V
J XIV � 2 IX V �
L XIV � 2 E V, P
M III, IV, VI/VII, IX, XVI �, �, �, � 28 E, I, II, III, IV, V, VI, VII, X, XII, XIV, XVI,

XVII
V, M, P O, �, D

O1 VI/VII, XII �, �, �, �O, � 53 E, I, II, III, V, VI, VII, IX, X, XI, XII, XIII,
XIV, XV, XVI, XVII

V, M, P O, BrW, �, �

O2 VI/VII, XV � 15 I, V, VI, VII, X, XII, XIII, XIV, XVI V, M, P O, BrW, �, �
O3 VI/VII 6 V, VII, XIV, XVI V, M, P
P IX 6 V, X, XVII V, M �, �
S VIII �, � 6 I, II, V, XIV V, M, P O, BrW, �, �
T I, V, X, XVI 	, �, � 24 E, II, III, V, VI, VII, X, XII, XIII, XIV, XVI,

XVII
V, M, P O, BrW, �, �, G, Z

V XV 2 XIII V �
Y XVII 1 XIV V O

E, early clade; P, fish; M, molluscs; V, worms; �, C-terminal amidation; O, hydroproline; BrW, bromotryptophane; D, D-amino acid; �, �-carboxyglutamate; �-Val,
�-hydroxyvaline; G, glycosylation; Z, pyroglutamate; Ys, sulfotyrosine.
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II. �-Conotoxin Inhibitors of Voltage-Gated
Calcium Channels

The Cav channels are assemblies of the various pore-
forming �-subunits associated with single transmembrane
�2�-subunits and intracellular -subunits (Catterall et al.,
2005b, 2007) (Table 3). Calcium channel (Cav) inhibitors
are used as antihypertensive, antiarrhythmic, and anti-
convulsant agents and in chronic pain management, and
other potential uses are in development (Triggle, 2007).
The therapeutic potential of �-conotoxins is based on their

ability to selectively inhibit mammalian Cav isoforms
(Table 4) expressed in ascending pain pathways (especially
Cav2.2, which underlies the N-type current present in sen-
sory neurons) and to produce antinociception in animal
models of pain. Our understanding of the pharmacology of
�-conotoxins has arisen mostly from studies on GVIA,
MVIIA, CVID, and MVIIC. Although these peptides are
considered to function as simple pore blockers, their phar-
macology is reminiscent of �O-conotoxins, because coex-
pression of the pore-forming � subunit with auxiliary  or

TABLE 3
Cav distribution, toxin inhibitors and potential effects of inhibition

Cav Isoform Distribution Selective Toxin Inhibitors Effects/Side Effects of Inhibition References

Cav1.1–1.4 (L-type)
(CACNA1S or C
or D or F)

Skeletal muscle (1.1), (T-tubules),
Cardiac muscle (1.2–1.3),
smooth muscle (1.2), CNS (1.1–
1.3), DRG (1.2–1.4), retina (1.4)
lymphocytes (1.2–1.4), GIT
(1.2), cochlea (1.3).

None known
(dihydropyridines)

Widespread effects on
cardiovascular system, 1.2
implicated in neuropathic pain
in spinal cord.

Kim et al., 2001; Catterall
et al., 2005b, 2007;
Fossat et al., 2010

Cav2.1 (P/Q type)
(CACNA1A)
splice variants

Brain, spinal cord, sympathetic
neurons, DRG, endocrine cells,
contribution to presynaptic
neurotransmitter release at
CNS, PNS, and neuromuscular
junction.

�-Conotoxins MVIIC �
MVIID � CVIB �
CVIC �� MVIIA �
GVIA �� CVID

Mutations in several neurological
disorders, blockers produce
partial inhibition of synaptic
transmission. Peripheral side
effects expected from autonomic
and neuromuscular block.

Bourinet et al., 1999;
Nudler et al., 2003;
Catterall et al., 2005b,
2007 (For selectivity see
Table 4.)Spider toxins: �-

agatoxin IVA
Cav2.2 (CACNA1B)

splice variants
Brain, spinal cord, sympathetic

neurons, DRG, contribution to
presynaptic neurotransmitter
release in CNS and PNS.

�-Conotoxins CVIE �
CVID � GVIA ��
CVIA � MVIIA �
CVIB � CVIC

Blockers produce inhibition of
synaptic transmission
throughout the nervous system.

Catterall et al., 2005b,
2007 (For selectivity see
Table 4.)

Cav2.3 (CACNA1E)
splice variants

Brain, spinal cord, sympathetic
neurons, DRG, minor role in
presynaptic neurotransmitter
release in CNS and PNS,
synaptic plasticity.

No conotoxins Blockers modulate synaptic
plasticity at some brain
synapses.

Murakami et al., 2004;
Catterall et al., 2005b,
2007; Matthews et al.,
2007 (For selectivity see
Table 4.)

Spider: SNX-482

Cav3.1 (CACNA1G) Brain neurons localized to soma
and dendrites. High expression
in cerebellum and thalamus.
Modulates action potential
firing. Ovary, placenta, heart.

No conotoxins
(pimozide, mibefradil,
TTA-P2)

Small-molecule modulators may
be useful for some CNS
neurological disorders.

Catterall et al., 2005b,
2007; Yaksh, 2006;
Triggle, 2007; Zamponi
et al., 2009

Cav3.2 (CACNA1H) CNS, DRG neurons: localized to
soma and dendrites. Modulates
action potential firing. Also
heart, liver, kidney, lung,
skeletal muscle, pancreas.

No conotoxins Pain modulation. Relaxation of
coronary arteries, potential side
effects from actions in other
tissues.

Catterall et al., 2005b,
2007; Yaksh, 2006;
Triggle, 2007; Zamponi
et al., 2009; Choe et al.,
2011

Scorpion: kurtoxin
(pimozide, mibefradil,
Z123212,a TTA-P2)

Cav3.3 (CACNA1I) CNS neurons: localized to soma
and dendrites. Modulates action
potential firing.

No conotoxins
(pimozide, TTA-P2,
mibefradil very weak)

Presumably many side effects. Catterall et al., 2005b,
2007; Yaksh, 2006;
Triggle, 2007; Zamponi
et al., 2009

aZ123212 (Hildebrand et al., 2011) also targets sodium channels.
PNS, peripheral nervous system; TTA-P2, 3,5-dichloro-N-�1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl�-benzamide.

TABLE 2
Clinical potential and representative sequences of major conotoxin classes defined by pharmacology

Cysteines involved in disulfide bonds (underlined) connect in discrete overlapping patterns depending on sequence (see Tables 4, 5, 7–9, and 11).

Class Mode of Action Name Sequence Clinical Potential

� Cav2.2 inhibitor MVIIA CKGKGAKCSRLMYDCCTGSCRSGKC* Pain (intrathecal; phase IV)
� Nav inhibitor SIIIA ZNCCNGGCSSKWCRDHARCC* Pain (intravenous)
�O Nav1.8 inhibitor MrVIB ACSKKWEYCIVPIIGFIYCCPGLICGPFVCV Pain (intrathecal/intravenous)
� Nav enhancer EVIA DDCIKOYGFCSLPILKNGLCCSGACVGVCADL* ?
� Kv inhibitor PVIIA CRIONQKCFQHLDDCCSRKCNNRFNKCV Cardiac reperfusion
	 NET inhibitor Xen2174 ZGVCCGYKLCHOC Pain (intrathecal; phase II)
� nAChR inhibitor Vc1.1 GCCSDPRCNYDHPEIC* Pain (intravenous)a

� 5HT3 receptor GVIIIA GCTRTCGGOKCTGTCTCTNSSKCGCRYNVHPSGBGCGCACS* ?
� �1-Adrenoceptor inhibitor TIA FNWRCCLIPACRRNHKKFC* Cardiovascular/BPH
Conantokin NMDA-R antagonist Con-G GE��LQ�NQ�LIR�KSN Pain/epilepsy (intrathecal)a

Conopressin Vasopressin-R agonist Cono-G CFIRNCPKG* Cardiovascular/mood
Contulakin Neurotensin-R agonist Cont-G ZSEEGGSNAtKKPYIlL Pain (intrathecal)a

*, C-terminal amidation.
a Clinical development suspended.
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�2� subunits can significantly alter their channel affinity
(Lewis et al., 2000; Mould et al., 2004; Motin et al., 2007).
Such differences may have particular relevance in disease
states such as pain, where �2� subunits, particularly �2�1,
are up-regulated (see section II.C). �-Conotoxins remain
the only class of conotoxins with FDA approval to date, the
registration of MVIIA (ziconotide) for the treatment of
intractable pain having been approved in 2004. Unfortu-

nately, dose-limiting neurological side effects have limited
the clinical applications for �-conotoxins.

A. Subtype Selectivity

�-Conotoxins with defined activity at mammalian Cav
isoforms have so far been isolated only from piscivorous
cone snails, where they are likely to have evolved as part of
the motor cabal (Olivera et al., 1985). Based on the behav-

TABLE 4
�-Conotoxins targeting Cav calcium channels (loop formula C6C5–9CC2–4C3–6C)

Residues identified as being significant for affinity are underlined.

Species Name Diet
Sequence Disulfide Bonded ( 1–4/2–5/3–6)

Cav Selectivity References
1 2 34 5 6

C. consors CnVIIA P ---CKGKGAOCTRLMYD---CC-HGSCSSSKGRC* 2.2 � 2.1 Favreau et al., 2001
C. catus CVIA P ---CKSTGASCRRTSYD---CC-TGSCRS--GRC* 2.2 � 12. Lewis et al., 2000

CVIB P ---CKGKGASCRKTMYD---CC-RGSCRS--GRC* 2.2 � 2.1 � 2.3 Lewis et al., 2000
CVIC P ---CKGKGQSCSKLMYD---CC-TGSC-SRRGKC* 2.1 � 2.2 Lewis et al., 2000
CVID P ---CKSKGAKCSKLMYD---CC-SGSCSGTVGRC* 2.2 � 2.1 Lewis et al., 2000
CVIE-2** P ---CKGKGASCRRTSYD---CC-TGSCRS--LRC* 2.2 � 2.1 � 1.2 � 1.3 � 2.3 Berecki et al., 2010
CVIF P ---CKGKGASCRRTSYD---CC-TGSCRS--GRC* 2.2 � 2.1 � 1.2 � 1.3 � 2.3 Berecki et al., 2010

C. fulmen FVIA P ---CKGTGKSCSRIAYN---CC-TGSCRS--GKC* 2.2 � 2.1 � 3.2 Lee et al., 2010
C. geographus GVIA P ---CKSOGSSCSOTSYN---CC--RSCNOYTKRCY* 2.2 � 2.1 Olivera et al., 1984;

Sato et al., 1993;
Kim et al., 1994;
Kim et al., 1995

GVIIA P ---CKSOGTOCSRGMRD---CC--TSCLLYSNKCRRY Mouse � fish � frog Olivera et al., 1985;
Abe and Saisu,
1987

GVIIB P ---CKSOGTOCSRGMRD---CC--TSCLSYSNKCRRY Mouse � fish � frog Olivera et al., 1985;
Abe and Saisu,
1987

C. magus MVIIA P ---CKGKGAKCSRLMYD---CC-TGSCRS--GKC* 2.2 � 2.1 Olivera et al., 1987;
Kim et al., 1995;
Nielsen et al.,
1999a

MVIIB P ---CKGKGASCHRTSYD---CC-TGSCN--RGKC N.D. Olivera et al., 1987
MVIIC P ---CKGKGAPCRKTMYD---CC-SGSC-GRRGKC* 2.1 � 2.2 Hillyard et al.,

1992; Nielsen et
al., 1999a

MVIID P ---CQGRGASCRKTMYN---CC-SGSCN--RGRC* 2.1 �� 2.2 Haack et al., 1993;
Monje et al.,
1993; Gandía et
al., 1997

C. pennaceus PnVIA M --GCLEVDYFCGIPFANNGLCC-SGNCVFV---CTPQ Molluscan N-type Kits et al., 1996
PnVIB M DDDCEPPGNFCGMIKIGPP-CC-SGWCFFA---CA Molluscan N-type Kits et al., 1996

C. pulicarius PuIA V -RDCRPVGQYCGIPYEHNWRCC-SQLCAII---CVS N.D. Zhao and Huang,
2000

PuIIA V --TCNTPTQYCTLHRH----CC-SLYCHKTIHACA N.D. Zhao and Huang,
2000

C. radiatus RVIA P ---CKPOGSOCRVSSYN---CC--SSCKSYNKKCG 2.2 Abbott and
Litzinger, 1994

C. striatus SO3 P ---CKAAGKPCSRIAYN---CC-TGSCRS--GKC* Nav � Kv � 2.2 � 2.1 � 2.3 Lu et al., 1999; Li
et al., 2003b; Wen
et al., 2005

SO4 P ATDCIEAGNYCGPTVMKI--CC--GFCSPYSKICMNYPKN N.D. Lu et al., 1999
SO5 P STSCMEAGSYCGSTTRI---CC--GYCAYFGKKCIDYPSN N.D. Lu et al., 1999
SVIA P ---CRSSGSOCGVTSI----CC-GR-C-Y-RGKCT* 2.2 � 2.1 Ramilo et al., 1992
SVIB P ---CKLKGQSCRKTSYD---CC-SGSCGRS-GKC* 2.1 � 2.2 Ramilo et al., 1992;

Woppmann et al.,
1994; Nadasdi et
al., 1995

C. tulipa TVIA P ---CLSOGSSCSOTSYN---CC--RSCNOYSRKC 2.2 � 2.1 Chung et al., 1995;
Wang et al., 1998

C. textile TxO1 M ---CLDAGEVCDIFFPT---CC--GYCILLF--CA N.D. Lu et al., 1999
TxO2 M ---CYDSGTSCNTGNQ----CC-SGWCIFV---CL N.D. Lu et al., 1999
TxO3 M ---CYDGGTSCDSGIQ----CC-SGWCIFV---CF N.D. Lu et al., 1999
TxO4 M -YDCEPPGNFCGMIKIGPP-CC-SGWCFFA---CA N.D. Lu et al., 1999
TxO5 M ---CVPYEGPCNWLTQN---CC-DATCVVFW--CL N.D. Lu et al., 1999
TxO6 M -NYCQEKWDYCPVPFLGSRYCCDGLFCTLFF--CA N.D. Lu et al., 1999
TxVII M ---CKQADEPCDVFSLD---CC-TGICLGV---CMW Molluscan L-type Fainzilber et al.,

1996

P, fish; M, molluscs; V, worms; *, C-terminal amidation; N.D., not determined.
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ioral phenotype elicited after intracerebral injection in
mice they were termed “shaker” peptides. It is now appre-
ciated that �-conotoxins represent some of the most selec-
tive known inhibitors for the neuronal Cav isoforms 2.2
and 2.1. Specifically, �-conotoxins CVID, CVIE, CVIF,
GVIA, and MVIIA are particularly selective for Cav2.2,
whereas MVIIC and MVIID show a preference for Cav2.1
underlying P/Q-type calcium currents (Monje et al., 1993;
Woppmann et al., 1994; Nadasdi et al., 1995; Nielsen et al.,
1996; Flinn et al., 1999; Lewis et al., 2000; Berecki et al.,
2010). The binding site of �-conotoxins to the Cav subtypes
has been mapped primarily to the external vestibule of the
channel in the domain III S5–S6 region (Ellinor et al.,
1994), consistent with preliminary results obtained from
docking of �-MVIIA to a homology model of Cav2.2
(Fig. 3A) built from the recently reported crystal structure
of a bacterial sodium channel (Payandeh et al., 2011).
Residues immediately outside this region seem to also
contribute to Cav2.2 inhibition by GVIA, most notably
Gly1326, which contributes to the reversibility of �-cono-
toxin block (Feng et al., 2001). Intracellular domains
(Kaneko et al., 2002; McDonough et al., 2002) are also
reported to modulate binding kinetics and �-conotoxin af-
finity for Cav2.2 and, in addition, the presence of subunits
seems to not only modify Cav gating characteristics and

kinetics but also the interaction of �-conotoxins with the
channel.

The high-affinity block of Cav2.2 by CVID was found to
be reversible in heterologous systems expressing only the
pore-forming �-subunit, but irreversible in DRG neurons,
an effect that is mimicked in expression systems where the
�-subunit is coexpressed with auxiliary 3 and �2�1 sub-
units (Lewis et al., 2000; Mould et al., 2004; Motin et al.,
2007). Likewise, inhibition of Cav2.2 by CVIE and CVIF
was found to be virtually irreversible in the presence of 3
subunits but reversible in systems coexpressing the 2
subunit (Berecki et al., 2010). Intriguingly, these effects
parallel modification of channel characteristics by auxil-
iary subunits, suggesting that altered block characteristics
of �-conotoxins in the presence of auxiliary subunits reflect
altered channel kinetics. In addition to altered binding
kinetics, many �-conotoxins also have lower affinity for
Cav2.2 in the presence of auxiliary subunits, especially
Cav�2�1 (Lewis et al., 2000; Berecki et al., 2010). However,
the precise mechanisms contributing to these intriguing
characteristics of �-conotoxins, as well as the effect of these
pharmacological differences on the therapeutic potential of
these peptides, remain to be elucidated.

Although the vast majority of �-conotoxins isolated to
date are selective, to varying degrees, for mammalian

FIG. 3. Docking of conotoxins to homology models of sodium and calcium channels. A, �-MVIIA (dark gray) docked to a homology model of Cav2.2
(light brown) built from a bacterial sodium channel crystal structure (Payandeh et al., 2011). B, �-TIIIA (magenta) docked to a homology model of
Nav1.4 (light blue) built from the same bacterial sodium channel (Payandeh et al., 2011). Identified likely interacting residues are shown in sticks
(green), and the order of subunits is labeled numerically. The highly flexible, unstructured loops (approximately 50�100 amino acids long) between
transmembrane helices 5 and P1 in subunits 1 and 3 of both Cav2.2 and Nav1.4 were removed for clarity. The docking simulation outcomes reveal large
contact areas and extensive ionic interactions networks between conotoxins and all four subunits of voltage-gated ion channels that probably explain
their high binding affinities.
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Cav2.1 and Cav2.2, only TxVII, isolated from the mollus-
civorous Conus textile, blocks molluscan dihydropyridine-
sensitive channels, which are homologous to mammalian
L-type voltage-gated calcium channels (Fainzilber et al.,
1996). However, this �-conotoxin seems to display phylic
selectivity, as TxVII was found to be inactive at rat L-type
channels expressed in PC12 cells (Fainzilber et al., 1996;
Sasaki et al., 1999). Likewise, PnVIA and PnVIB were
isolated from the molluscivorous Conus pennaceus, but in
contrast to TxVII, they inhibit the molluscan dihydropyr-
idine-insensitive high-voltage activated Ca2� current (Kits
et al., 1996). Not surprisingly, the sequences of these re-
lated peptides are distinct from conotoxins from piscivo-
rous cone snails targeting mammalian channels. Indeed,
molluscan channels are usually insensitive to GVIA, sug-
gesting distinct phylum-selective pharmacologies resulting
from these divergent sequences. Accordingly, �-conotoxins
from molluscivorous cone snails seem to represent a dis-
tinct subclass of �-conotoxins with specificity for molluscan
calcium channels.

Other structurally diverse �-conotoxins include PuIA
and PuIIA from the worm-hunting Conus pulicarius, as
well as several peptides identified from the molluscivorous
C. textile and piscivorous Conus striatus. The precise phar-
macological target and subtype selectivity of these cono-
toxins remains to be determined; however, their homology
to the functionally promiscuous SO3, which also inhibits
sodium and potassium channels in hippocampal neurons
(Li et al., 2003b; Wen et al., 2005), suggests that their
pharmacological classification as �-conotoxins may be
premature.

B. Structure-Activity Relationships

The pharmacological activity of �-conotoxins has been
attributed primarily to Tyr13 and Lys2, both of which are
highly conserved in �-conotoxins derived from piscivorous
cone snails (Table 4) and are proposed to form a two-point
pharmacophore (Sato et al., 1993; Kim et al., 1994; Lew et
al., 1997; Flinn et al., 1999) (Fig. 4). The hydroxyl group of
Tyr13 in particular seems critical for high-affinity binding
of �-conotoxins to Cav2.2, although the aromatic moiety
also seems to contribute to binding (Kim et al., 1994; Flinn
et al., 1999). The positive charge of the second most impor-
tant residue, Lys2, which is conserved in all �-conotoxins
except MVIID and TVIA, also contributes significantly to
activity (Sato et al., 1993; Lew et al., 1997; Flinn et al.,
1999). Detailed structure-activity relationship studies in
GVIA showed that the precise location of this positive
charge is less important, both lengthening and shortening
of the side chain being tolerated. However, bulkier substi-
tutions in this position greatly reduced activity (Flinn et
al., 1999).

In addition, several other residues in loop 2 and 4 also
contribute to varying degrees to �-conotoxin affinity and
selectivity (Gandía et al., 1997; Lew et al., 1997; Nielsen et
al., 1999a). Loop 4 residues with a significant effect on
�-conotoxin affinity include Arg21 in MVIIA and Arg17,

Tyr22, and Lys24 in GVIA, whereas the residue at position
10 in loop 2 seems to play a key role in determining sub-
type selectivity (Nielsen et al., 1999a). Biotinylation of
Lys10 in the P/Q-selective MVIID significantly decreased
binding affinity (Haack et al., 1993), and the importance of
this residue for Cav subtype selectivity was also confirmed
by several independent studies (Nadasdi et al., 1995;
Nielsen et al., 1996). The residue at position 10 is consis-
tently a lysine in �-conotoxins with high affinity for
Cav2.1, but often an arginine or hydroxyproline in Cav2.2-
selective peptides (Nadasdi et al., 1995; Nielsen et al.,
1996). However, it remains to be determined if the subtype
selectivity of Cav2.1-selective MVIIC and MVIID are sig-
nificantly altered by a K10R swap. It is noteworthy that an
arginine in position 10 was reported to reduce recovery
from Cav2.2 block for both MVIIA and CVID, suggesting
that the effect of this residue on subtype selectivity could
be due to altered recovery characteristics (Mould et al.,
2004).

Although the pharmacophore of �-conotoxins responsi-
ble for affinity and subtype selectivity at Cavs is becoming

FIG. 4. Structure activity relationship of �-conotoxins. A, consensus
sequence for �-conotoxins. B and C, structure of �-MVIIA showing im-
portant residues for interaction with the N-type calcium channel. D and
E, structure of �-MVIIC showing important residues for interaction with
the P-type calcium channel.
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increasingly clear, residues responsible for any splice vari-
ant selectivity of �-conotoxins have not been determined to
date. Nonetheless, our understanding of these structure-
activity relationships are being applied to the design of
small molecule, orally active �-conotoxin peptidomimetics
with the hope of engineering novel analgesic molecules
based on the unique pharmacological properties of �-cono-
toxins (Schroeder et al., 2004; Andersson et al., 2009).

C. Calcium Channel Inhibition by Conotoxins in
Pain Management

There is strong evidence that Cav2.2 channels on noci-
ceptive primary afferent nerves are an target for pain
management. Some of the most effective nonopioid anal-
gesics for chronic pain management, gabapentin and pre-
gabalin, interact with Cav channel �2� subunits, which is
thought to disrupt trafficking of Cav2.2 channels (Bauer et
al., 2010). Indeed, in the spinal cord, opioids act predomi-
nantly on Cav2.2 channels via �-opioid receptors expressed
on nociceptive primary afferent nerve terminals to produce
presynaptic inhibition and analgesia (Heinke et al., 2011).
Many �-conotoxins exhibit high potency and selectivity for
different subtypes of voltage-gated calcium channels (Oli-
vera et al., 1994). The development of the N-type (Cav2.2)
antagonist, �-conotoxin MVIIA (SNX-111; ziconotide), as
an intrathecal analgesic to manage moderate to severe
chronic pain, provided the first validation of the use of
�-conotoxins and established Cav2.2 as new target for pain
therapeutics (Lewis and Garcia, 2003; Winquist et al.,
2005). Although ziconotide is potent and does not induce
addiction or tolerance as opioids do (Malmberg and Yaksh,
1995; Bowersox et al., 1996), its use is limited because of
the need for intrathecal administration combined with sig-
nificant dose-limiting neurological side effects (Penn and
Paice, 2000). This side-effect profile likely arises, at least in
part, from the spread of peptide from the intrathecal space
to higher (supraspinal) brain centers including cerebellum
and the dependence of a significant component of synaptic
neurotransmission on Cav2.2 at many CNS synapses, in-
cluding inhibitory spinal synapses (Penn and Paice, 2000;
Schmidtko et al., 2010). However, as discussed below,
other properties of �-conotoxins could additionally contrib-
ute to their side-effect profile and therapeutic index. The
distribution of Cav channel types (Catterall et al., 2005b,
2007), potential actions of inhibitors, as well as selective
conotoxins and other inhibitors are summarized in Table 3.
The role of Cav1 to 3 and Cav�2� in pain pathways and
their potential for selective targeting by conotoxins is out-
lined below.

The Cav1 channel �-subunits encode L-type channels
but evidence for their involvement in pain states is still
very limited (Yaksh, 2006). L-type calcium channel sub-
types are expressed in sensory neurons and dorsal horn of
the spinal cord, where they could potentially modulate the
development of neuropathic pain (Kim et al., 2001). Intra-
thecal L-type channel antagonists have mixed effects in
pain models (see Yaksh, 2006), possibly because nonselec-

tive Cav1 inhibitors have little effect on afferent substance
P release (Takasusuki and Yaksh, 2011) or the role of Cav1
changes in different models of pain. More recently, anti-
sense knockdown and microRNA regulation of the Cav1.2
in spinal cord has been shown to reverse the development
of mechanical signs of neuropathic pain, hyperexcitability
of deep dorsal horn neurons, phosphorylation of cAMP
response element-binding protein, and induction of cyclo-
oxygenase-2 mRNA in the spinal cord (Fossat et al., 2010),
consistent with Cav1.2 expression predominantly in neu-
ronal somata and dendrites and its role in gene regulation
and plasticity (Murakami et al., 2004; Zhang et al., 2006a).
These findings suggest that specific peptide inhibitors of
Cav1.2 may be useful for management and perhaps rever-
sal of central adaptations responsible for maintenance of
neuropathic pain when applied directly to the dorsal spinal
cord.

Cav2.1 encodes the �-subunit of high-voltage activated
P/Q-type calcium channels, with alternative splicing gen-
erating the P and Q phenotypic variants (Bourinet et al.,
1999). Together with Cav2.2 and Cav2.3, P/Q-type chan-
nels contribute to the calcium influx, triggering synaptic
neurotransmission at many synapses including nocicep-
tive synapses (Heinke et al., 2004; Rycroft et al., 2007) and
thus may be considered as a target for potential pain ther-
apeutics (e.g., Vanegas and Schaible, 2000; Yaksh, 2006).
However, P/Q channels are more densely expressed in
non-nociceptive than in nociceptive sensory neurons and
are the major Cav channels mediating synaptic neu-
rotransmission at neuromuscular synapses (Uchitel et al.,
1992; Westenbroek et al., 1998; Nudler et al., 2003). P/Q
channel inhibitors would therefore be expected to produce
neuromuscular and non-nociceptive sensory side effects
after systemic or intrathecal administration. This might
suggest a greater role in sensory modalities other than
nociception. Indeed, intrathecal administration of the
highly selective Cav2.1 inhibitor, agatoxin IVA, in a variety
of pain models has produced mixed results (Malmberg and
Yaksh, 1994; Vanegas and Schaible, 2000; Yaksh, 2006).

The most promising calcium channel regulating pain
pathways is arguably Cav2.2, which encodes the �-subunit
of high voltage activated N-type calcium channels. Cav2.2
inhibitors have been developed as pain therapeutics, be-
cause Cav2.2 is the predominant channel supporting noci-
ceptive primary afferent neurotransmission in the dorsal
horn of the spinal cord (Fig. 2). Although Cav2.2 is some-
times considered the only calcium channel mediating syn-
aptic transmission at nociceptive synapses, other Cav
channels, including P/Q-type, R-type, and to a small extent
L-type, contribute �50% of neurotransmitter release at
nociceptive synapses (Heinke et al., 2004; Rycroft et al.,
2007). Among a diverse group of �-conotoxins, MVIIA was
established to be highly efficacious after intrathecal ad-
ministration in a range of animal pain models (Malmberg
and Yaksh, 1994; Scott et al., 2002; Yaksh, 2006), although
severe behavioral side effects of apparent neurological or-
igin were observed within the effective dose-range for pain
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relief (Smith et al., 2002). In humans, optimal use of
ziconotide (MVIIA) requires slow and careful titration of
dose and rate of intrathecal infusion. The adverse effects
of ziconotide on the central nervous system include dizzi-
ness, nystagmus, confusion, abnormal gait, somnolence,
speech difficulties, amblyopia, ataxia, amnesia, and abnor-
mal thought processes (Penn and Paice, 2000; Schmidtko
et al., 2010). Small-molecule Cav2.2 inhibitors may suffer
from similar side-effect issues in addition to the peripheral
side effects observed after intravenous administration of
ziconotide. These include orthostatic hypotension, dizzi-
ness, sinus bradycardia, rhinitis, and nausea (McGuire et
al., 1997). Preclinical testing of other �-conotoxins suggest
improvements are possible. For example, CVID (AM336,
CNSB004, leconotide) has potency to inhibit Cav2.2 chan-
nels and relieve neuropathic pain signs in animal models
comparable to that of MVIIA but has been reported to
exhibit a better (approximately 5-fold) therapeutic index
for analgesia versus side effects (Scott et al., 2002; Smith et
al., 2002). Some of the potential reasons for improved ther-
apeutic index and potential applications of novel �-cono-
toxins are explored below.

Although CVID has similar potency at Cav2.2 as MVIIA,
it is approximately 100-fold more selective for N-type than
P/Q type channels (Lewis et al., 2000). This has been sug-
gested as a reason for its improved side effect profile both
in the CNS and periphery (Smith et al., 2002; Kolosov et
al., 2010). However, MVIIA is already nearly 10,000-fold
selective for N-type versus P/Q-type channels based on
radioligand-binding studies using rat brain membrane
(Lewis et al., 2000), so this might not be the explanation for
better selectivity of CVID versus MVIIA and GVIA. Fur-
ther systematic investigation of the relationship between
N and P/Q selectivity and therapeutic index will be re-
quired to determine whether this is important.

The target residence time of a drug can strongly influ-
ence its therapeutic index (Copeland et al., 2006). The rate
of reversal of inhibition of Cav2.2 by �-conotoxins certainly
influences the extent to which side effects can be managed
clinically (Penn and Paice, 2000). Many �-conotoxins, in-
cluding MVIIA and GVIA, seem to bind nearly irreversibly
to the N-type channel. However, reversibility can be in-
duced by hyperpolarizations to potentials more negative
than the minimum of the steady-state inactivation curve;
i.e., �-conotoxins bind with higher affinity to the inacti-
vated state of the N-channel than the resting state
(Stocker et al., 1997). Such voltage-dependent recovery
from block varies for different �-conotoxins and is strongly
influenced for some by the �2�- and -subunits, in partic-
ular �2�1, 2a, and 3, coexpressed with the �-subunit
(Mould et al., 2004; Berecki et al., 2010). Reversibility of
GVIA and MVIIA is only weakly influenced by �2�1- and
2a- or 3-subunit coexpression, and both appear to have a
narrower therapeutic index than for CVID, which is
strongly influenced by the presence of these subunits
(Mould et al., 2004; Berecki et al., 2010). Two more re-
cently identified �-conotoxins from Conus catus, CVIE and

CVIF, show greater voltage-dependent reversal in the
presence of �2�1- and -subunits than CVID (Berecki et
al., 2010). The implications of this property for modulation
of primary afferent nociceptive neurotransmission will re-
main uncertain until the therapeutic indices of these novel
�-conotoxins are determined. The importance of this prop-
erty in nerve terminals is also uncertain because Cav2.2
channels in some nerve terminals seem to be resistant to
voltage-dependent inactivation (Chan et al., 2007). None-
theless, it is of interest that GVIA and MVIIA apparently
irreversibly inhibit primary afferent synaptic neurotrans-
mission, whereas CVID is partly reversible. CVIE and
CVIF are fully reversible after removal of the peptides but
show similar efficacy to CVID in pain models (Motin et al.,
2007; Berecki et al., 2010). If the therapeutic indices for
CVIE and CVIF were significantly better than for both
CVID and MVIIA, it would suggest that reversibility of
block is an important factor in therapeutic index. A novel
�-conotoxin, FVIA from Conus fulmen, may be useful be-
cause it is fully reversible within the normal steady-state
inactivation range of Cav2.2 (�80 mV). However, its volt-
age- and �2�-/-subunit dependence and therapeutic index
have not been determined (Lee et al., 2010).

Cav�2� subunits also strongly influence the potency of
some �-conotoxins but not others, independently of -sub-
unit coexpression (Mould et al., 2004; Motin et al., 2007;
Motin and Adams, 2008; Berecki et al., 2010). The potency
(with coexpression of -subunits) of MVIIA, CVID, CVIF,
and MVIIA are reduced approximately 100-fold by coex-
pression of �2�1-subunits in oocytes, whereas the potency
of CVIE is only reduced approximately 10-fold (Mould et
al., 2004; Berecki et al., 2010). This may be important
because �2�1-subunit expression is profoundly up-
regulated in the central terminals of primary afferent
nerves in neuropathic pain (Bauer et al., 2010) so that the
potency of some �-conotoxins in pain states might be
strongly modulated. Consistent with such an effect, CVID
and MVIIA at maximal effect doses are less effective at
nociceptive primary afferent synapses in a rat inflamma-
tory pain model (Rycroft et al., 2007). Other conotoxins and
neuropathic models remain to be examined at this level.

The highly specific binding of �-conotoxins to Cav2.2
suggests that specific interaction with splice variants may
be possible. The Cav2.2 gene contains several alternative
splicing sites (Lipscombe et al., 2002). If these are differ-
entially expressed in normal nociceptive nerves or in pain
states more selective �-conotoxins may be developed to
target them. The best studied e37a and e37b variants
underlie expression of two mutually exclusive isoforms of
N-type channels. The e37a isoform is enriched in nocicep-
tive sensory neurons, undergoes distinct modulation by
both G-protein �-subunits and tyrosine phosphorylation,
and influences N-type calcium current density (Bell et al.,
2004; Raingo et al., 2007). The e37a isoform is selectively
involved in nociceptive responses in pain models (Altier et
al., 2007) and confers novel pharmacological responses to
opioids (Andrade et al., 2010). Because the splice site en-
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codes a distinct pair of 32 amino acid sequences in the
intracellular, C-terminal region of the channel, the pros-
pects for developing selective �-conotoxins for these iso-
forms may be limited given these peptides bind extracel-
lularly (see Fig. 3A). The function and tissue distribution of
other splice variants have been less extensively studied. A
long C-terminal splice variant of Cav2.2 has been identified
in presynaptic membranes (Gardezi et al., 2010) and other
variants lacking a synaptic protein interaction site within
the intracellular SII-SIII linker domain are presumably
not targeted to synaptic nerve terminals (Kaneko et al.,
2002). It is noteworthy that the 	1 variant (SII-SIII do-
main truncation) was less sensitive to inhibition by both
MVIIA and GVIA (Kaneko et al., 2002), suggesting that it
may be possible to selectively target �-conotoxins to Cav2.2
splice variants, even when sequence variations are within
intracellular domains.

The efficacy of �-conotoxins in pain management is gen-
erally considered to be due exclusively to inhibition of
N-type channels at primary afferent synapses in the dorsal
horn of the spinal cord. Until recently, the possibility that
pain relief could be achieved with systemic administration
was not considered because MVIIA produces serious sys-
temic cardiovascular and other side effects mediated by the
peripheral nervous system (McGuire et al., 1997). How-
ever, in conscious rabbits and isolated, sympathetically
innervated tissues, CVID was much less potent than
MVIIA at producing sympathetic and cardiovascular ef-
fects (Wright et al., 2000), suggesting it may be safer after
systemic administration. Indeed, intravenous CVID has
recently been shown to produce modest antihyperalgesia
in pain models at doses producing no cardiovascular effects
(Kolosov et al., 2010) and synergizes strongly with other
analgesics, including morphine (Kolosov et al., 2010; Ko-
losov et al., 2011). The reasons for the greater therapeutic
index of systemic CVID are not known. It could be due to
greater N- versus P/Q-channel selectivity (but see selectiv-
ity section above) or to influences of auxiliary subunits
expressed selectively in sympathetic neurons (Kolosov et
al., 2010). Using GVIA and CVID to probe N-channels,
different contributions of N-channels to vasoconstrictor
versus vasodilator neurons have been noted (Jobling et al.,
2004; Morris et al., 2004) but sensitivities to conotoxins
differently influenced by auxiliary subunit expression,
such as CVD, CVIE, and CVIF, have not been examined.
Resolution of differential effects in relevant sympathetic
nerve terminal preparations may produce a more rational
approach to the development of safe, systemically active
�-conotoxin pain therapeutics.

In contrast to Cav2.2, Cav2.3 has not been extensively
explored in pain models and no highly selective �-conotox-
ins targeting this channel are known. R-type channels do
contribute to nociceptive primary afferent synaptic trans-
mission (Heinke et al., 2004; Rycroft et al., 2007), and the
selective Cav2.3 inhibitor SNX-482 from the tarantula,
Hysterocrates gigas, has been shown to be antinociceptive
after intrathecal administration (Murakami et al., 2004)

and to inhibit nociceptive neural responses in the spinal
cord dorsal horn in vivo in a neuropathic pain model (Mat-
thews et al., 2007).

Conotoxins acting at other calcium channel types, nota-
bly Cav3 subtypes, could also be developed as pain thera-
peutics (Yaksh, 2006; Triggle, 2007; Zamponi et al., 2009).
Cav3 �-subunits encode the family of low-voltage-activated
calcium channel currents that modulate action potential
burst firing in CNS neurons and contribute to Ca2�-
mediated plasticity. Cav3.2 is the predominant type ex-
pressed in nociceptive and mechanosensitive sensory neu-
rons (see Todorovic and Jevtovic-Todorovic, 2011). In
neuropathic pain models, T-type channel current density is
up-regulated, and this contributes to sensory neuron hy-
perexcitability (Jagodic et al., 2007, 2008). T-type channels
are also expressed by neurons in the dorsal horn of the
spinal cord (see Todorovic and Jevtovic-Todorovic, 2011)
and have been shown to be crucial for induction of plastic-
ity at nociceptive primary afferent synapses that could
contribute to persistent pain (Ikeda et al., 2003, 2006).
Consistent with this role, knockdown of Cav3.2 in sensory
neurons reduced signs of thermal and mechanical pain in
neuropathic pain models (Bourinet et al., 2005; Messinger
et al., 2009). Nonselective, small-molecule T-type channel
inhibitors also reduce neuropathic pain signs in animal
models, and antisense knockdown experiments in sensory
neurons have confirmed that this effect is mediated by
Cav3.2 (Dogrul et al., 2003; Choi et al., 2007; Choe et al.,
2011). Thus, evidence implicating Cav3.2 in sensory
neuron hyperexcitability in neuropathic pain suggests
that peripherally administered conotoxins selectively
targeting Cav3.2, if they can be identified, may be
useful therapeutics.

II. Conotoxins Interacting with Voltage-Gated
Sodium Channels

To date, four classes of conotoxins targeting Nav chan-
nels (�, �O, �, and � conotoxins) have been isolated from
cone snail venom (Cruz et al., 1985; Fainzilber et al.,
1994b; McIntosh et al., 1995; Fiedler et al., 2008). Although
these venom peptides exhibit activity at the same pharma-
cological targets, they are structurally distinct and vary in
their mechanism of action, with two families producing
inhibition (�- and �O-conotoxins) and two families activa-
tion (�- or �-conotoxins) of Nav channels (Table 5). The
�-conotoxins elicit Nav inhibition through direct pore block
overlapping with tetrodotoxin at site 1, consistent with
preliminary docking of A15-TIIIA to a homology model of
Nav1.4 built from the crystal structure of a bacterial so-
dium channel (Fig. 3B). In contrast, �O-conotoxins seem to
interfere with the voltage sensors in domain II of Nav to
restrict channel opening, �-conotoxins cause a delay in Nav
inactivation by binding to site 6 resulting in action poten-
tial prolongation and persistent neuronal firing, whereas
the �-conotoxins enhance channel opening by shifting the
voltage dependence of Nav activation to more hyperpolar-
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TABLE 5
�- and �O-Conotoxins inhibiting Nav1.x sodium channels (�-conotoxin loop formula CC1–8CC3–4C2–5C)

Cysteines are bolded and aligned separately for �- and �O-conotoxins, with residues affecting sodium channel affinity underlined.

Species Name Diet
Sequence (Disulfide Bonded 1–4/2–5/3–6)

Nav1.x Selectivity Reference
12 3 4 5 6

�-Conotoxins
C. bullatus BuIIIA P VTDRCC-K--GKRECGRW-CRDHSRC-C* 2 � 4 � 1 � 3 � 6 �

5 � 7 � 8
Holford et al., 2009;

Wilson et al.,
2011a

BuIIIB P VGERCCKN--GKRGCGRW-CRDHSRC-C* 4 � 2 � 3 � 1 � 6 �
5 � 7 � 8

Holford et al., 2009;
Wilson et al.,
2011a

BuIIIC P IVDRCCNKGNGKRGCSRW-CRDHSRC-C* 4 � ? Holford et al., 2009
C. catus CIIIA P --GRCCE-GPN--GCSSRWCKDHARC-C* Amphibian skeletal/

cardiac, TTX-R
Zhang et al., 2006b

C. consors CnIIIA P --GRCCDVPNA---CSGRWCRDHAQC-C* 2 � 4 � 6 � 5 � 3 �
1 � 7 � 8

Zhang et al., 2006b;
Wilson et al.,
2011a

CnIIIB P --ZGCCGEPNL---CFTRWCRNNARC-CRQQ Amphibian TTX-R
(� 25%)

Zhang et al., 2006b

C. geographus GIIIA P --RDCCTOOKK---CKDRQCK-OQRC-CA* 4 � 1 � 6 � 2 � 3 �
5 � 7 � 8

Cruz et al., 1985;
Wilson et al.,
2011a

GIIIB P --RDCCTOORK---CKDRRCK-OMKC-CA* 4 � 2 � 3 � 5 � 7 �
8 � ?

Cruz et al., 1985;
Lewis et al., 2007

GIIIC P --RDCCTOOKK---CKDRRCK-OLKC-CA* 4 � 2 � N.D. Cruz et al., 1985
C. kinoshitai KIIIA P ----CCN-------CSSKWCRDHSRC-C* 2 � 4 � 6 � 1 � 7 �

3 � 5 � 8
Bulaj et al., 2005;

Zhang et al.,
2007; Wilson et
al., 2011a

C. magus MIIIA P --ZGCCNVPNG---CSGRWCRDHAQC-C* 4 � 2 � 3 � 6 � 1 �
5 � 7 � 8

Zhang et al., 2006b;
Wilson et al.,
2011a

C. purpurascens PIIIA P -ZRLCCGFOKS---CRSRQCK-OHRC-C* 4 � 6 � 1 � 2 � 3 �
5 � 7 � 8

Shon et al., 1998a;
Wilson et al.,
2011a

C. pennaceus PnIVA M ----CCKYGWT---C-LLGC-SP--CGC Molluscan Fainzilber et al.,
1995b

PnIVB M ----CCKYGWT---C-WLGC-SP--CGC Molluscan Fainzilber et al.,
1995b

C. striatus SIIIA P --ZNCCNGG-----CSSKWCRDHARC-C* 2 � 4 � 6 � 1 � 3 �
7 � 5 � 8

Bulaj et al., 2005;
Yao et al., 2008;
Leipold et al.,
2011; Wilson et
al., 2011a

SIIIB P --ZNCCNGG-----CSSKWCKGHARC-C* 4 � 2 � ? Schroeder et al.,
2008

C. stercusmuscarum SmIIIA P --ZRCCNGRRG---CSSRWCRDHSRC-C 4 � 2 � 1 � 3 � 6 �
5 � 7 � 8

West et al., 2002;
Wilson et al.,
2011a

C. striolatus SxIIIA P ---RCCTGKKGS--CSGRACKN-LKC-CA* 4 � 1 � 6 � 2 � 3 �
5 � 7 � 8

Walewska et al.,
2008; Wilson et
al., 2011a

SxIIIB P --ZKCCTGKKGS--CSGRACKN-LRC-CA* N.D. Walewska et al.,
2008

C. tulipa TIIIA P -RHGCCKGOKG---CSSRECR-OQHC-C* 4 � 2 � 1 � 3 � 6 �
5 � 7 � 8

Lewis et al., 2007;
Wilson et al.,
2011a

�O-Conotoxins
C. litteratus LtVIIA V GECLGWSNYCTSHSICCSGECILSYCDIW N.D. Pi et al., 2007

LtVd V -DC------CPAKLLCCNP TTX-S � TTX-R Liu et al., 2007a
LtVIC V WPCKVAGSPCGLVSECCGT-CNVLRNRCV N.D. Wang et al., 2008

C. marmoreus MrVIA M -ACRKKWEYCIVPIIGFIYCCPGLICGPFVCV 8 � 7 � 4 � 2 �
TTX-S

Fainzilber et al.,
1995c; McIntosh
et al., 1995; Safo
et al., 2000; Daly
et al., 2004; Zorn
et al., 2006

MrVIB M -ACSKKWEYCIVPILGFVYCCPGLICGPFVCV 8 � 4 � 2 � 3 � 5 �
7 � 9

Fainzilber et al.,
1995b; Fainzilber
et al., 1995c;
McIntosh et al.,
1995; Ekberg et
al., 2006; Zorn et
al., 2006

C. geographus Conotoxin-GS P -ACSGRGSRCOOQCCMGLRCGRGNPQKCIGAH�DV 4 � 2 � N.D. Yanagawa et al.,
1988; Hill et al.,
1997

P, fish; M, molluscs; V, worms; *, C-terminal amidation; N.D., not determined; TTX-S TTX-sensitive; TTX-R, TTX-resistant.
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ized potentials. It is noteworthy that conotoxins provide
some of the most subtype-selective Nav modulators, espe-
cially for Nav1.4, Nav1.2, and more recently Nav1.8 and
have proven to be invaluable tools to dissect the physiolog-
ical roles and pharmacologies of Nav1.1 to Nav1.9. The
potential of Nav-targeting conotoxins as drug leads is only
now beginning to be explored.

A. �-Conotoxin Inhibitors of Voltage-Gated
Sodium Channels

Of the conotoxins targeting Nav, the �-conotoxins are
the most numerous and best characterized, with 20 differ-
ent �-conotoxins described to date. �-Conotoxins belong to
the M superfamily of conopeptides and comprise 16 to 26
residues including 3 conserved disulfide bonds that stabi-
lize their three-dimensional structure (see Table 5, Fig. 5).
The �-conotoxins are generally characterized by an overall
net positive charge, which contributes to their ability to
bind through electrostatic interactions to the outer vesti-
bule of Nav to inhibit ionic conductance (Hui et al., 2002;
Hui et al., 2003; Li et al., 2003a).

�-Conotoxins are the only venom peptides that bind to
site 1 on Nav, a site originally defined by the guanidinium
pore blockers tetrodotoxin (TTX) and saxitoxin (see Foz-
zard and Lipkind, 2010). Although TTX (and saxitoxin)
only distinguishes between TTX-sensitive (Nav1.1, -1.2,
-1.3, -1.4, -1.6, and -1.7) and TTX-resistant (Nav1.5, -1.8,
and -1.9) isoforms, �-conotoxins display further subtype
selectivity among mammalian TTX-sensitive Nav subtypes
(see Table 5). This difference in pharmacology arises be-
cause the binding sites of TTX and �-conotoxins only par-
tially overlap and involve multiple Nav residues in the case
of the larger �-conotoxins (Sato et al., 1991; Dudley et al.,
1995; Li et al., 1997), whereas TTX binding is crucially
defined by relatively few residues deep in the pore of the
Nav (see Fozzard and Lipkind, 2010). Not surprisingly,
�-conotoxin binding to Nav involves multiple interacting
peptide side chains (see below). This larger surface area of
interaction at the entrance to the channel opens up pros-
pects to engineer further Nav subtype selectivity, which
has been considered challenging to date because of the
overall high homology between Nav subtypes in the pore
region.

The first �-conotoxins discovered were GIIIA to GIIIC,
which selectively target the skeletal muscle subtype
Nav1.4 (Cruz et al., 1985). In recent years, the Nav subtype
selectivity of �-conotoxins has been studied with renewed
interest; many have now shown subtype selectivity for
neuronal subtypes, including PIIIA, KIIIA, MIIIA, CIIIA,
CnIIIA, CnIIIB, SIIIA, SmIIIA, and TIIIA. To date, no
�-conotoxins have been identified with affinity for the
TTX-resistant mammalian subtypes Nav1.5, -1.9, and -1.8
(Lewis et al., 2007; Schroeder et al., 2008; Leipold et al.,
2011; Wilson et al., 2011a) despite a number showing ac-
tivity at amphibian TTX-resistant isoforms (Zhang et al.,
2006b) (see Table 5). The least susceptible isoforms include
Nav1.3, -1.7, and -1.5, and no �-conotoxins have yet been
found to block recombinantly expressed Nav1.8 (Lewis et
al., 2007; Schroeder et al., 2008; Leipold et al., 2011; Wil-
son et al., 2011a). Instead, the �-conotoxins seem to either
target the mammalian skeletal muscle isoform Nav1.4
and/or the mammalian brain isoform Nav1.2 with highest
affinity. However, the modest variations in potency at the
other neuronal Nav subtypes (Table 5) may allow the de-
velopment of analogs that target therapeutically relevant
Navs.

Coexpression of the pore-forming � subunits with rele-
vant  subunits does not seem to affect �-conotoxin selec-
tivity or affinity, at least in the case of KIIIA (Wilson et al.,
2011a), although comprehensive studies using other
�-conotoxins are lacking. It is noteworthy that for many
�-conotoxins, Nav subtype selectivity seems to critically
depend on dissociation rate constants. For example, the
high affinity of KIIIA for Nav1.2 relates to its extremely
slow dissociation constant, resulting in essentially ir-
reversible high-affinity block of Nav1.2 but lower af-
finity reversible block of other TTX-sensitive channels
(McArthur et al., 2011).

FIG. 5. Structure activity relationship of �-conotoxins. A, consensus
sequence for �-conotoxins. B and C, structure of the smaller �-SIIIA
showing important residues for interaction with the sodium channel. D
and E, structure of larger �-TIIIA showing important residues for inter-
action with the sodium channel.
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The pharmacophore of the �-conotoxins GIIIA, PIIIA,
and TIIIA with five residues in loop 1 has been mapped to
a critical Arg13 or Arg14 in similar positions on a turn in
loop 2 (Chahine et al., 1995; Shon et al., 1998a; Lewis et al.,
2007). In contrast, the pharmacophore of �-conotoxins
with one to three residues in loop 1 has been mapped to an
�-helical motif formed by loops 2 and 3, with the equivalent
loop 2 arginine playing only a minor role in affinity (Zhang
et al., 2007; Schroeder et al., 2008). Reflecting the more
extended surface of interaction with Nav for these small
�-conotoxins, several residues have been found to contrib-
ute critically to Nav affinity and/or selectivity of �-conotox-
ins, opening up perhaps the best opportunities for the
development of subtype specific inhibitors. Lys7 in KIIIA
and the equivalent Lys11 in SIIIA contribute mostly to
Nav1.4 affinity (Zhang et al., 2007; Schroeder et al., 2008);
Lys7 substitutions also affected the extent of Nav inhibi-
tion by KIIIA, the decrease in efficacy correlating with the
residue size (Zhang et al., 2010). The corresponding Arg14
in PIIIA and TIIIA also significantly decreased Nav affin-
ity, again most prominently at Nav1.4 (Shon et al., 1998a;
Lewis et al., 2007; Schroeder et al., 2008), consistent with
direct binding of this residue in the pore of Navs (McArthur
et al., 2011). Not surprisingly, substitution of the analo-
gous residue in GIIIA (Arg13) produced a striking loss of
activity at Nav1.4 in this peptide (Sato et al., 1991; Becker
et al., 1992), with interaction with Glu758 in domain II and
Glu403 in domain I identified in Nav1.4 (Chang et al.,
1998).

Another residue with important implications for Nav
affinity and selectivity is Trp8 in KIIIA and the equivalent
Trp12 in SIIIA (Lewis et al., 2007; Schroeder et al., 2008;
McArthur et al., 2011; Van Der Haegen et al., 2011); sub-
stitution of this residue in KIIIA and SIIIA decreases af-
finity and favors Nav1.2 selectivity over Nav1.4. In con-
trast, the unusual negative charge (Glu15) in loop 2 of
TIIIA seems to introduce an unfavorable interaction or
clash, with [E15A]TIIIA having enhanced affinity, espe-
cially for Nav1.2, where it is the most potent �-conotoxin
inhibitor of neuronal Navs identified to date (Lewis et al.,
2007). The smaller �-conotoxins KIIIA (SIIIA) are also
affected by alanine substitutions at Arg10 (Arg14) and
Asp11 (Asp15), which favor Nav1.2 selectivity over Nav1.4
(Zhang et al., 2007; Schroeder et al., 2008). It is noteworthy
that the sequence of SIIIA and SIIIB differ only in residues
at this position (Arg14 and Asp15 for SIIIA, and Lys14 and
Gly15 for SIIIB); accordingly, the major difference between
these toxins is the preferential inhibition of Nav1.2 over
Nav1.4 by SIIIA and the reversed selectivity for SIIIB
(Schroeder et al., 2008).

Several �-conotoxin analogs have been identified that
have striking effects on subtype selectivity beyond Nav1.2/
1.4. Most notably, KIIIA[R14A] has been found to prefer-
entially inhibit Nav1.7 over Nav1.2 and Nav1.4, albeit with
decreased affinity overall (McArthur et al., 2011). None-
theless, this finding indicates that it is possible to engineer
smaller �-conotoxins with tailored subtype selectivity, es-

pecially as our understanding of the precise structural
requirements for Nav subtype binding are improved after
the report of the first voltage-gated sodium channel struc-
ture (see Fig. 3B).

B. �O-Conotoxin Inhibitors of Voltage-Gated
Sodium Channels

The �O-conotoxins belong to the O superfamily of cono-
peptides and possess an ICK motif with appropriate disul-
fide bond connectivity (Table 5). Despite the relatively few
peptides identified in this class, �O-conotoxins MrVIA and
MrVIB have received considerable attention, because their
analgesic effects in animal models of pain were ascribed to
their relative selectivity for Nav1.8 over other TTX-
sensitive Nav subtypes expressed in DRG neurons (Daly et
al., 2004; Bulaj et al., 2006; Ekberg et al., 2006). Significant
differences in their affinity at native Nav1.8 expressed in
DRG neurons and heterologously expressed Nav1.8 have
been reported. These presumably arise because of the pres-
ence of auxiliary  subunits, particularly 2, which has
recently been shown to significantly increase the rate of
Nav1.8 inhibition by MrVIB and to increase its potency
accordingly (Wilson et al., 2011b). It is noteworthy that
�O-conotoxins can also differentiate between the TTX-
resistant subtypes Nav1.8 and -1.9, because the persistent
Nav1.9 current in DRG neurons was unaffected by MrVIB
(Ekberg et al., 2006). Although MrVIA and MrVIB have
been found to affect molluscan Cav (Fainzilber et al.,
1995c), this mechanism does not seem to contribute to the
analgesic effect, because mammalian Cav in DRG neurons
were unaffected (Daly et al., 2004).

The �O-conotoxin binding site remains to be fully de-
fined but seems to overlap at least partially with site 6, in
that MrVIA was able to displace �-conotoxin TxVIA bind-
ing (Ekberg et al., 2006). In addition, selectivity of MrVIA
at Nav1.4 over Nav1.2 has been attributed to the SS2 loop
of domain III (Zorn et al., 2006). It is noteworthy that this
site is also involved in  scorpion toxin binding to site 4
(Leipold et al., 2006), and both Nav1.4 and Nav1.8 share a
homologous residue in this domain that is distinct from the
other Nav subtypes and may contribute to the relative
selectivity of MrVIA and MrVIB (Ekberg et al., 2006).
Accordingly, functional overlap with the  scorpion toxin
Ts1 was recently described, suggesting �O conotoxins in-
teract with the voltage sensor of Navs (Leipold et al., 2007).
Indeed, voltage-dependent relief of Nav1.4 inhibition by
MrVIB was attributed to the voltage sensor of domain II
(Leipold et al., 2007), another site shared with  scorpion
toxins. Similar effects were also reported for Nav1.8, where
the Koff of MrVIB was also accelerated by strong depolar-
izations (Wilson et al., 2011b). However, compared with
Nav1.4, the Koff of MrVIB at Nav1.8 was significantly
slower and required repeated depolarizations to relieve
block (Wilson et al., 2011b).

In contrast to the �-conotoxins, relatively little is known
about the structure-activity relationships of �O-conotox-
ins, in part because only MrVIA and MrVIB, which differ
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by only three residues (Ser3/Arg3; Leu14/Ile14; Val17/
Ile17), have been available for pharmacological evaluation,
and their effects remain to be evaluated across all Nav
subtypes in parallel. In addition, difficulties synthesizing,
correctly folding, and purifying hydrophobic �O-conotoxins
have thwarted attempts to identify their pharmacophore
through alanine-scanning approaches. However, recent
improvements in oxidative folding of synthetic MrVIB
through regioselective synthesis using selenocysteines
may provide an accelerated avenue for the generation of
�O-conotoxin analogs, allowing residues contributing to
their affinity and subtype selectivity to be identified (de
Araujo et al., 2011).

C. Other Conotoxin Inhibitors of Voltage-Gated
Sodium Channels

Conotoxin GS was identified as an O-superfamily cono-
toxin; however, in contrast to MrVIA and MrVIB, cono-
toxin GS seems to share a binding site with TTX and
GIIIA, suggesting that this conotoxin is distinct both in
structure and mode of action (Yanagawa et al., 1988; Hill
et al., 1997). In addition, two novel O-superfamily conotox-
ins, LtVIC and LtVIIA, were identified from Conus littera-
tus using a DNA-sequencing approach (Pi et al., 2007;
Wang et al., 2008). Both recombinant peptides inhibited
sodium currents in DRG neurons in a manner similar to
that of MrVIA and MrVIB, suggesting that they are novel
�O-conotoxins, but their subtype selectivity and structure-
activity relationships remain to be investigated. Even
more unusual is the �T-conotoxin, LtVD, which is reported
to inhibit TTX-sensitive Nav and is thus classified as the
first �-conotoxin from the large class of small T-superfam-
ily conopeptides (Liu et al., 2007a).

D. �-Conotoxin Activators of Voltage-Gated
Sodium Channels

The �-conotoxins, ICK peptides structurally related to
the �O- and �-conotoxins, exhibit functional similarities to
the site 3 �-scorpion toxins; they inhibit fast Nav inactiva-
tion and shift the voltage-dependence of activation to more
negative potentials, resulting in a prolongation of action
potentials and persistent neuronal firing (Leipold et al.,
2005). Structural analysis has shown that several hydro-
phobic residues conserved across the �-conotoxins are pre-
sented on the external surface of the peptides (Shon et al.,
1994), where they could potentially interact with hydro-
phobic residues in the S3/S4 linker of domain IV, which
form part of the �-conotoxin binding pocket, site 6 (Leipold
et al., 2005).

Little is known about Nav subtype selectivity of the
�-conotoxins. �-Conotoxins isolated from molluscivorous
cone snails, with the exception of Am2766 (Sudarslal et al.,
2003; Sarma et al., 2005), target only molluscan Nav and
are inactive at mammalian targets, whereas �-conotoxins
from piscivorous cone snails seem to also inhibit inactiva-
tion of mammalian Nav. Intriguingly, although �-conotox-
ins from molluscivorous cone snails, such as TxVIA and

GmVIA, showed no activity at mammalian Nav, they still
bind to mammalian tissues, suggesting that subtle differ-
ences in the �-conotoxin binding site lead to profound ef-
fects on activity (Fainzilber et al., 1995a; Hasson et al.,
1995; Shichor et al., 1996). A number of �-conotoxins with
activity at mammalian Nav1.2 and Nav1.4 have been de-
scribed previously (Bulaj et al., 2001; Sudarslal et al., 2003;
Leipold et al., 2005; Sarma et al., 2005), although detailed
selectivity studies have not been conducted for the major-
ity of these peptides. A recent report that EVIA displayed
selectivity for neuronal subtypes Nav1.2, 1.3 and 1.6 over
muscle and cardiac subtypes Nav1.4 and Nav1.5 promises
that subtype selectivity may be found for other �-conotox-
ins (Barbier et al., 2004).

Reminiscent of the �O-conotoxins, difficulties relating to
the synthesis and purification of the hydrophobic �-cono-
toxins and their analogs again results in low yields of
correctly folded peptide that have limited progress on both
Nav subtype-selectivity and structure-activity relation-
ships. High sequence homology between �-conotoxins from
piscivorous cone snails has been noted, particularly in the
central hydrophobic region of these peptides (Bulaj et al.,
2001). It is noteworthy that the PVIA[F9A] and
PVIA[I12A] analogs lost activity at mammalian Nav, con-
sistent with the hypothesis that these hydrophobic resi-
dues interact with hydrophobic residues that form part of
site 6, whereas analogs of the adjacent residues T8A and
K13A retained activity (Bulaj et al., 2001). However, the
substantial reduction in affinity upon replacing Ile12 with
an alanine is surprising if only hydrophobic interactions
are involved, suggesting the possibility that this change
may have in fact altered the structure of PVIA. It remains
to be determined to what degree, if any, these residues
affect Nav subtype selectivity, or whether these findings
apply to �-conotoxins from molluscivorous cone snails that
have divergent sequences.

E. �-Conotoxin Activators of Voltage-Gated
Sodium Channels

Two �-conotoxins have recently been identified as Nav
activators with a mechanism of action distinct from that of
the �-conotoxins. �-RXIA is a large, 46-residue peptide from
the I superfamily that forms an ICK motif, whereas LtIIIA
is a small, 17-residue peptide belonging to the M super-
family of conotoxins (Jimenez et al., 2003; Buczek et al.,
2007; Wang et al., 2009). Despite these sequence and struc-
tural differences, both �-conotoxins activate Nav without
significantly affecting inactivation, in contrast to the
�-conotoxins. Specifically, LtIIIA enhanced the amplitude
of TTX-sensitive whole-cell Na� currents in DRG without
any apparent effects on inactivation (Wang et al., 2009),
whereas RXIA shifted the voltage dependence of activation
of Nav1.6 and Nav1.2 to more hyperpolarized potentials
without affecting inactivation (Fiedler et al., 2008). It is
noteworthy that the post-translationally modified Phe44
(D-Phe) was important for activity particularly at Nav1.2,
suggesting participation of the disordered C-terminal tail
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in binding to a yet to be defined Nav site (Fiedler et al.,
2008). RXIA was also active at Nav1.7 but did not affect
other Nav subtypes (Fiedler et al., 2008), suggesting that
detailed structure-activity relationship and subtype selec-
tivity studies of the 17 �-conotoxins identified in Conus
radiatus (Jimenez et al., 2003) might shed further light on
the mode of action of this potentially interesting family of
excitatory conopeptides.

F. Sodium Channel Inhibition in Pain Management

Sodium channel (Nav) inhibitors are used as local anes-
thetics, analgesics, antiarrhythmics, and anticonvulsants.
They are most widely used for regional anesthesia and
analgesia, as well as systemically for chronic pain manage-
ment. Until very recently, the utility of small-molecule Nav
inhibitors, particularly systemic local anesthetics, has
been limited both by unwanted actions on nontarget so-
dium channel types and difficulty in restricting distribu-
tion to target body compartments. For example, mexile-

tine, an orally administered lidocaine analog, is a third-
line therapy for chronic pain management but has limited
efficacy largely because of serious dose-limiting side effects
(Dworkin et al., 2007). The severe side-effect profile of
currently used Nav inhibitors is largely due to very poor
selectivity among Nav subtypes (England and de Groot,
2009). Growth in knowledge of the diversity of Nav types,
implication of specific Nav types in pain pathogenesis, to-
gether with highly selective expression in different tissues
has provided a strong impetus to identify subtype selective
Nav antagonists for pain management.

The selectivity of conotoxins for different channel types
may provide novel drugs for clinical use in regional anes-
thesia and for systemic or intrathecal administration in
chronic pain states. The potential restriction of peptide
distribution to systemic tissue compartments rather than
central nervous or local application in restricted tissue
compartments could provide advantages for these selective
peptide Nav antagonists. Among the conotoxin classes,

TABLE 6
Distribution of Nav subtypes and efficacy of inhibitors

Isoform Distribution Potential Effects/Side Effects Selective Toxin Inhibitors References

Nav1.1 (SCN1A) Located primarily in neuronal
soma. Found widely in CNS
and peripheral neurons
(including DRG) cardiac
myocytes (T-tubules)
(cortex, hippocampus,
cerebellum), PNS: DRG,
motor neurons.

Widespread effects on the
nervous and cardiovascular
systems.

No selective conotoxins Catterall et al., 2005a;
Catterall, 2010

Nav1.2 (SCN2A) Located primarily in axons,
node of Ranvier. Found in
CNS low expression in
adult DRG.

Widespread effects on the
nervous and cardiovascular
systems.

�-Conotoxins Catterall et al., 2005a;
Schroeder et al.,
2008; Catterall,
2010; Wilson et al.,
2011a

Nav1.3 (SCN3A) Widely distributed in
embryonic nervous system
but declines postnatally;
adult rat CNS, particularly
dorsal spinal cord; also
upregulated after injury;
adult human CNS.

Limited evidence for analgesia.
If restricted to periphery,
side effects should be
minimal; intrathecal CNS
side effects possible.

No selective conotoxins Felts et al., 1997;
Hains et al., 2003;
Catterall et al.,
2005a; Catterall,
2010

Nav1.4 (SCN4A) Skeletal muscle Muscle dysfunction �-Conotoxins Catterall et al., 2005a;
Schroeder et al.,
2008; Catterall,
2010; Wilson et al.,
2011a

Nav1.5 (SCN5A) Cardiac muscle, embryonic
DRG

Cardiac side effects No selective conotoxins Catterall et al., 2005a;
Catterall, 2010

Nav1.6 (SCN8A) Highly localized in nodes of
Ranvier in CNS and PNS,
including DRG.

Widespread effects on the
nervous and cardiovascular
systems.

No selective conotoxins Catterall et al., 2005a;
Catterall, 2010

Nav1.7 (SCN9A) High expression in small
sensory (DRG) neurons and
autonomic neurons, also
Schwann cells, CD1 �
dendritic cells, and some
endocrine cells (adrenal
medulla).

Analgesic effects. Possible
autonomic side effects but
autonomic function seems
normal with loss-of-function
mutations; olfactory side
effects.

No selective conotoxins
(ProTx-II, huwentoxin-IV)

Catterall et al., 2005a;
Cummins and Rush,
2007; Schmalhofer
et al., 2008; Xiao et
al., 2008a; Xiao et
al., 2008b

Nav1.8 (SCN10A) Small- to medium-sized
(presumably nociceptive)
DRG neurons, also found in
retina and cardiac
myocytes.

Analgesic effects. Visual and
cardiac side-effects likely
from distributional and
human mutation studies.

MrVIA, MrVIB Ekberg et al., 2006;
Cummins and Rush,
2007; O’Brien et al.,
2008; Chambers et
al., 2010

Nav1.9 (SCN11A) Small-diameter, mostly
unmyelinated DRG
neurons, also found in
retina.

Potential analgesic effects.
Potential visual effects.

None known Catterall et al., 2005a;
Cummins and Rush,
2007; O’Brien et al.,
2008

PNS, peripheral nervous system.
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some �- and �O-conotoxins show promise as selective Nav
subtype inhibitors. A large number of �-conotoxins display
considerable channel type selectivity. Most of those iso-
lated inhibit Nav1.2 and Nav1.4 most potently (Schroeder
et al., 2008; Wilson et al., 2011a). Although some �-cono-
toxins (e.g., KIIIA) have analgesic activity after systemic
administration (Zhang et al., 2007), none to date have
shown a clear Nav selectivity profile suitable for develop-
ment as pain therapeutics. By contrast, several �O-
conotoxins have potentially useful selectivity profiles (see
below) for the major Nav types implicated in pain.

As summarized in Table 6, Nav1.7, -1.8, -1.9, and per-
haps -1.3 are potential candidate targets for pain thera-
peutics because of their established role in pain, selective
expression in nociceptive neurons and nerve terminals,
and/or their regulation in pain states (see reviews by Cat-
terall et al., 2005a; Cummins and Rush, 2007; Dib-Hajj et
al., 2009; England and de Groot, 2009; Catterall, 2010;
Dib-Hajj et al., 2010). Other Nav types are also expressed
in sensory neurons, including Nav1.1, -1.6, and (at low
levels) -1.5 (Catterall et al., 2005a; Catterall, 2010; Dib-
Hajj et al., 2010), but inhibition studies with �-conotoxins
have suggested that Nav1.6 and Nav1.7 are the major
contributors to peripheral nerve action potentials (Wilson
et al., 2011a). Widespread expression of these subtypes
(except Nav1.7, see below) in other excitable tissues is
likely to preclude the application of inhibitors of these
channels as pain therapeutics. The role of Nav subtypes in
pain pathways and their potential for selective targeting
by conotoxins is outlined below.

Of the potential Nav pain targets, Nav1.7 is one of the
most promising for pain management. Nav1.7 is expressed
almost exclusively in peripheral neurons (Catterall et al.,
2005a) and selectively in nociceptive primary afferents
(Raymond et al., 2004). Nav1.7 gene deletion targeted to
nociceptive sensory neurons (Nav1.8 expressing) or knock-
down reduces inflammatory pain and thermal hyperalge-
sia (Nassar et al., 2004) but not neuropathic pain (Nassar
et al., 2005). The reason for this lack of effect in neuro-
pathic pain is still unknown. Nav1.7 expression is up-
regulated in injured nerves and in sensory neuron cell
bodies in inflammatory pain and may contribute to ectopic
action potential discharge in painful neuromas (Dib-Hajj et
al., 2010). In humans, rare loss-of-function mutations of
Nav1.7 produce a complete absence of pain sensation (Cox
et al., 2006; Goldberg et al., 2007) and, conversely, gain-of-
function mutations are associated with painful neuropa-
thies (Fertleman et al., 2006; Han et al., 2006). Polymor-
phisms in Nav1.7 in normal humans are also significantly
correlated with pain sensitivity (Reimann et al., 2010). The
mechanism responsible for the profound loss of function for
Nav1.7 mutations in human pain remain uncertain, but
these channels are concentrated in nerve endings and am-
plify small depolarizations; they therefore have the poten-
tial to play a major role in coupling generator potentials in
nociceptive afferent nerves with action potential genera-
tion (Cummins et al., 1998).

There are already several relatively selective small-
molecule inhibitors of Nav1.7 that have shown efficacy in
acute, inflammatory, and neuropathic pain models (Wil-
liams et al., 2007; London et al., 2008; Bregman et al.,
2011; Chowdhury et al. 2011). Although many conotoxins
can also inhibit Nav1.7 (see above), no highly selective
antagonists have been identified to date, although analogs
of the smaller �-conotoxins have potential (see above). At
the moment, spider venoms are more promising sources of
selective Nav1.7 inhibitors. For example, ProTx-II from the
tarantula Thrixopelma pruriens is a potent and selective
inhibitor of Nav1.7 (�100-fold over other types) but shows
limited efficacy in inflammatory pain models after intra-
venous or intrathecal administration (Schmalhofer et al.,
2008). This lack of activity in pain models might suggest
that selective Nav1.7 inhibitors are not as useful as previ-
ously thought, but the possibility that the peptide distrib-
utes poorly from the circulation to nociceptive nerve end-
ings cannot be excluded. Huwentoxin-IV, from the
tarantula Ornithoctonus huwena, is also modestly selec-
tive for Nav1.7 (it also inhibits Nav1.2 and Nav1.3), but
actions in animal pain models have not been reported in
detail (Xiao et al., 2008a,b).

Nav 1.7 is also expressed in several other tissues. A
major off-target location of Nav1.7 expression are olfactory
neurons (Ahn et al., 2011), and loss-of-function mutations
can cause anosmia (Weiss et al., 2011). However, such side
effects may not be of major concern to persons suffering
severe pain, but loss of smell would be expected to reduce
quality of life during prolonged treatment. More recently
Nav1.7 expression in monocyte-derived dendritic cells has
been shown to modify responses to cytokines (Kis-Toth
et al., 2011), suggesting potential for immune modu-
lation and potentially immunological side effects of
Nav1.7 inhibitors.

The TTX-resistant channel Nav1.8 is also a promising
target for pain management. It is expressed predomi-
nantly in small nociceptive primary afferent nerves (Cat-
terall et al., 2005a; Cummins and Rush, 2007; Catterall,
2010; Dib-Hajj et al., 2010). Nav1.8 contributes to the ac-
tion potential and repetitive firing in small, nociceptive
sensory neurons (Catterall et al., 2005a; Cummins and
Rush, 2007; Catterall, 2010; Dib-Hajj et al., 2010). The
activity of Nav1.8 in sensory neurons is strongly enhanced
by inflammatory mediators, both via up-regulation and/or
modulation of channel kinetics by protein kinase A and C
(see Dib-Hajj et al., 2010). Both protein and mRNA for
Nav1.8 are up-regulated locally in injured sciatic nerves in
nerve injury models (Gold et al., 2003; Thakor et al., 2009).
Nav1.8 knockdown (Lai et al., 2002; Gold et al., 2003) and
gene deletion (Akopian et al., 1999) studies have suggested
an important role in neuropathic and inflammatory pain.
Perhaps the most significant phenotype in Nav1.8 knock-
out mice is a nearly complete loss of ectopic action potential
activity in experimental neuromas (Roza et al., 2003). To-
gether with the established redistribution of Nav1.8 to
sites of nerve injury and neuromas in animal models and
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humans (e.g., Black et al., 2008), this finding may suggest
a specific therapeutic use for Nav1.8 inhibitors in nerve
injury-induced pain associated with neuromas.

�O-conotoxins MrVIA and MrVIB inhibit Nav1.8 in sen-
sory neurons (Daly et al., 2004; Ekberg et al., 2006) and
significantly reduce mechanical and thermal pain in both
neuropathic and inflammatory pain models; selectivity
over motor side effects is more than 30-fold greater than
found for lidocaine (Ekberg et al., 2006). It is noteworthy
that potentially more stable and easier to synthesize sel-
enocysteine analogs produced similar beneficial effects (de
Araujo et al., 2011). These findings suggest that direct
spinal administration of Nav1.8-selective conotoxins may
have a place in pain management. MrVIB has also been
shown to display local anesthetic actions after intraplantar
administration (Bulaj et al., 2006). Although Nav inhibi-
tory toxins from other species have yet to show preferential
Nav1.8 targeting, a chimeric scorpion toxin (drosotoxin)
shows quite low potency but high selectivity for TTX-
resistant (Nav1.8) versus TTX-sensitive Nav currents in
rat sensory neurons (Zhu et al., 2010). Consistent with
results obtained using �O-conotoxins, small-molecule an-
tagonists preferentially targeting Nav1.8 (Jarvis et al.,
2007; Scanio et al., 2010) have since been reported to show
efficacy in neuropathic pain models.

Although small-molecule and conotoxin inhibitors of
Nav1.8 have produced efficacy in pain models, there are
concerns about adverse side effects. For example, in addi-
tion to their selective expression in nociceptive sensory
nerves, Nav1.8 (and Nav1.9) is expressed in retina (O’Brien
et al., 2008), where small-molecule antagonists could pro-
duce retinal side effects, although peptides are potentially
excluded from this compartment. Of more concern is the
recent finding that Nav1.8 is expressed in cardiac myocytes
and that polymorphisms in the Nav1.8 gene influence QT
interval, electrocardiogram conduction block, and ventric-
ular fibrillation (Chambers et al., 2010), raising the poten-
tial for severe cardiac side effects from systemic use of
Nav1.8 inhibitors that would complicate long-term use.

The tetrodotoxin-resistant channel, Nav1.9 is also a
promising target for pain management but has been less
thoroughly studied than Nav1.7 or Nav1.8, largely because
attempts to express the channel in heterologous expression
systems have been unsuccessful. It is expressed predomi-
nantly in small sensory neurons, particularly in a subclass
of C-fiber nociceptors (Fang et al., 2006) and visceral sen-
sory nerves (Rugiero et al., 2003). It has also been detected
in retina (O’Brien et al., 2008). Nav1.9 produces a persis-
tent sodium current that modulates resting membrane
potential and amplifies small depolarizations, contributing
to excitability of small nociceptive nerves. The activity of
Nav1.9 is strongly enhanced by inflammatory mediators
(e.g., Maingret et al., 2008; Ostman et al., 2008), although
a number of Nav1.9 gene deletion studies have consistently
found little or no effect on neuropathic pain, except for
inhibition of cold allodynia (Leo et al., 2010). In contrast,
thermal pain sensitivity is consistently blunted in inflam-

matory pain models in Nav1.9 knockout animals (Priest et
al., 2005; Amaya et al., 2006). Nav1.9 inhibitors may there-
fore be useful for inflammatory and visceral pain. Because
of the difficulties in heterologously expressing Nav1.9, no
selective pharmacological tools, including conotoxins, have
been identified to study its function in normal neurons and
pain states. However, some spider and scorpion toxins
including ProTxI and TsVII were recently found to interact
with Nav1.9 endogenously expressed in DRG neurons in a
nonselective manner (Bosmans et al., 2011).

Nav1.3 is also a potential target for pain therapeutics,
although its role in the maintenance of pain remains con-
troversial. It is highly expressed in embryonic DRG neu-
rons but declines to very low levels in adult sensory neu-
rons (Felts et al., 1997). Expression of Nav1.3 in sensory
neurons is strongly up-regulated by nerve injury (Black et
al., 1999; Lindia and Abbadie, 2003; Fukuoka et al., 2008)
and is up-regulated in humans in painful neuromas (Black
et al., 2008) and the spinal cord (Hains et al., 2003). Anti-
sense knockdown of Nav1.3 in nerve-injured rats has been
shown to attenuate signs of neuropathic pain (Hains et al.,
2003), but in other studies, no effects of knockdown were
found (Lindia et al., 2005). Moreover, both global and no-
ciceptor-specific (Nav1.8 Cre mice) deletion of Nav1.3 in
mice had no effect on neuropathic pain behavior or ectopic
discharges from damaged nerves, suggesting Nav1.3 is nei-
ther necessary nor sufficient for development of nerve-
injury related pain (Nassar et al., 2006). The latter find-
ings have strongly questioned the importance of Nav1.3 in
nerve injury-related pain and have reduced the impetus to
develop Nav1.3 specific inhibitors. Although several
�-conotoxins can inhibit Nav1.3, they all interact more
potently with Nav1.2 or Nav1.4 (Wilson et al., 2011a),
and more selective analogs are required before chem-
ical dissection of the role of Nav1.3 in different pain
states can be investigated.

In conclusion, the potential for identification and devel-
opment of Nav subtype-selective conotoxins remains
largely untapped. Conotoxins that selectively interact with
Nav1.7, Nav1.9, and/or Nav1.3 need to identified; mixed
block of these subtypes potentially produces greater effi-
cacy than the selective block of a single subtype. It should
also be noted that the potency of conotoxins may differ in
injured versus uninjured neurons. As observed for �-cono-
toxins (see section II.C), interactions of �O-conotoxins with
Nav channel types are also influenced by auxiliary subunit
expression. Nav2 subunits are up-regulated in sensory
neurons in neuropathic pain models (Pertin et al., 2005)
and interact with Navs to increase the on-rate of MrVIB in
heterologous systems (Wilson et al., 2011b), providing the
�O-conotoxins with a window of functional selectivity. It is
noteworthy that Nav3 subunits are also up-regulated in
pain states (Shah et al., 2000), and their expression levels
influence gating of Nav1.3 (Cusdin et al., 2010) to poten-
tially influence �O-conotoxin pharmacology in a disease-
dependent manner.
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III. �-Conotoxins Interacting with
Potassium Channels

Potassium channels comprise a vastly diverse family of
ion channels, with a large number of genes encoding for
the pore-forming �-subunits, which are divided into chan-
nels with six, four, and two transmembrane domains. Ac-
cordingly, multiple families of �-conotoxins targeting sev-
eral different potassium channels have been isolated from
cone snail venom (Table 7). Activity at potassium channels
appears to constitute an important component of the
“lightning-strike” cabal of piscivorous cone snails (Terlau
et al., 1996); however, relatively little is known about sub-
type selectivity and structure-activity relationship of cono-
toxins targeting potassium channels, and potential thera-
peutic uses have not yet been determined.

A. �A-Conotoxins

The �A-conotoxins MIVA, SIVA, SIVB, SmIVA, SmIVB,
PIVE, CcTx, and PIVF (Teichert et al., 2007a) are rela-
tively short excitatory peptides that elicit potent effects
after intramuscular injection in fish and direct exposure to
amphibian neuromuscular preparations, but not in mam-
mals. It remains unclear whether these observed differ-
ences are due to pharmacodynamic effects (such as re-
stricted access to mammalian Kv channels expressed in

juxtaparanodal regions of myelinated motor axons) or they
reflect strong differences in subtype affinity (Teichert et
al., 2007a). Although some of these peptides inhibit Shaker
Kv channels, the precise target and structure activity re-
lationship for many of the �A-conotoxins remains unclear.

B. �O-Conotoxins

The �O-conotoxin PVIIA has received particular atten-
tion because it was shown to exhibit cardioprotective prop-
erties in several animal models of ischemia-reperfusion
injury (Lubbers et al., 2005). Arg2, Lys7, Phe9, and Phe23
were shown to contribute to voltage-dependent interac-
tions with the Shaker potassium channel (Scanlon et al.,
1997), which was identified as the molecular target of
PVIIA and is highly homologous with mammalian Kv iso-
forms (Terlau et al., 1996; Shon et al., 1998b; Huang et al.,
2005). These residues form part of a lysine-hydrophobic
residue dyad, which is evolutionally conserved and contrib-
utes to activity at Kv channels in several other toxins,
including charybdotoxin from scorpion and BgK from sea
anemone (Savarin et al., 1998; García et al., 1999). Figure 6
shows a model of the interaction between PVIIA and the
shaker potassium channel, revealing a likely model of in-
teraction of the dyad comprising Lys7 and Phe9. It is
surprising that the rat Kv1.1 isoform was resistant to

TABLE 7
�-Conotoxins inhibiting Kv potassium channels (�A/M-conotoxin loop formula C0C6–7CC2–4C0–3C)

Lower-case serine or threonine residues are glycosylated, and the lower case tryptophan is a D-amino acid. Cysteines are bolded and aligned separately for the different
�-conotoxin classes, with residues affecting potassium channel affinity underlined.

Species Name Diet
Sequence (Disulfide Bonding Likely 1–4/2–5/3–6)

Selectivity (Kvx) References
12 3 4 5 6

�M- and �A- Conotoxins
C. radiatus RIIIJ P --------LOOCCTOOKKH-COAOACKYKOC---CKS 1.2 Chen et al., 2010

RIIIK P --------LPSCCSLNLRL-CPVPACKRNPC---CT* TSha1 � Shaker �
1.2 � 1.5 � 1.6 �
1.1 � 1.3 �
1.4

Chen et al., 2010;
Ferber et al., 2003,
2004; Al-Sabi et
al., 2004

C. consors CcTx P AOWLVPsQITTCCGYNOGTMCOSCMCTNT-C Favreau et al., 1999
C. magus MIVA P AO�LVVtAtTNCCGYNOMTICOO--CM---CTYSCOOKRKO* ? Santos et al., 2004
C. purpurascens PIVE P ----------DCCGVKLEM-CHP--C---LCDNSCKNYGK* Frog, fish Teichert et al.,

2007a
PIVF P ----------DCCGVKLEM-CHP--C---LCDNSCKKSGK* ? Teichert et al.,

2007a
C. striatus SIVA P ZKSLVPsVITTCCGYDOGTMCOO--CR---CTNSC* Frog, fish, Shaker Craig et al., 1998;

Santos et al.,
2004

SIVB P ZKELVPsVITTCCGYDOGTMCOO--CR---CTNSCOTKOKKO* ? Santos et al., 2004
C. stercusmuscarum SmIVA P ZTWLVPstITTCCGYDOGTMCOT--CM---CDNTCKOKOKKS* ? Santos et al., 2004

SmIVB P ZPWLVPstITTCCGYDOGSMCOO--CM---CNNTCKOKOKKS ? Santos et al., 2004
Other �-conotoxins

C. planorbis pl14a V ---FPRPRICNLACRAGIGHKYPFCHCR* 1.6 � 1.1 � 1.2 �
1.3 � 1.4 � 1.5 �
2.1 � 3.4

Imperial et al.,
2006

C. virgo ViTx V SRCFPPGIYC-TSYLPCCWGICC-STCRNVCHLRIGK 1.1 � 1.3 � 1.2 Kauferstein et al.,
2003

C. spurius sr11a V --CRTEGMSC��NQQ-CCWRSCCRGECEAPCRFGP* 1.2 � 1.6 � 1.3 Aguilar et al., 2007,
2010

C. betulinus BeTX V --CRA�GTYC-�NDSQCCLN�CCWGGCGHOCRHP* BK Fan et al., 2003
C. purpurascens PVIIA P --CRIPNQKCFQHLDDCCSRKCNRFNKCV* Shaker Kv Huang et al., 2005
C. striatus Conkunitzin-S1 P KDRPSLCDLPADSGSGTKAEKRIYYNSARKQCLRFDYTGQG

GNENNFRRTYDCQRTCL
Shaker Kv Bayrhuber et al.,

2005
C. ventricosus Contryphan-Vn P GDCPwKPWC* Voltage-gated and

Ca2�-dependent
K� channels

Massilia et al.,
2003

P, fish; M, molluscs; V, worms; *, C-terminal amidation; TSha1, from trout, frog Kv, the skeletal muscle form; BK, Ca2�/voltage-dependent potassium channel.
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PVIIA (Shon et al., 1998b), indicating that other presently
unidentified mammalian Kv isoforms contribute to the car-
dioprotective effects of PVIIA.

C. �M-Conotoxins

Like PVIIA, the �M-conotoxin RIIIJ was found to exert
cardioprotective effects, presumably due to the high affin-
ity of this peptide for mammalian Kv1.2 and Kv1.2-
containing Kv1.1, Kv1.5, and Kv1.6 heteromultimers (Chen
et al., 2010). Lys9, in conjunction with other less clearly
identified residues, contributes to the high affinity of RIIIJ
for Kv1.2. It is noteworthy that RIIIJ was less potent at
Kv1.2/Kv1.7-heteromultimers than the related �M-
conotoxin RIIIK, demonstrating that different Kv channel
heteromultimers are pharmacologically distinct. Several
residues, including Leu1, Arg10, Lys18, and Arg19, were
found to contribute critically to activity of RIIIK at the
trout TSha1 K� channel, the Kv isoform most sensitive to
block by RIIIK (Al-Sabi et al., 2004). It is surprising that

these residues do not seem to form part of a functional
dyad but interact with the channel by means of electro-
static interactions (Al-Sabi et al., 2004; Verdier et al.,
2005). Based on docking interactions at the Shaker potas-
sium channel, residues potentially involved in the phar-
macophore are indicated in Fig. 6C.

D. �J-Conotoxins

pl14a, a member of the J superfamily, is an unusual
conotoxin in that it inhibits both Kv1.6 and several iso-
forms of the nicotinic acetylcholine receptor (nAChR) (Im-
perial et al., 2006). Homology modeling suggests that this
peptide possesses both the putative functional dyad,
formed by residues Lys18 and Tyr19, and a ring of basic
residues comprising Arg3, Arg5, Arg12, and Arg25, remi-
niscent of the pharmacophore found in the �M-conotoxin
RIIIK (Mondal et al., 2007). However, it remains to be
determined whether these residues are involved in inter-
actions with Kv channels as predicted. Based on docking

FIG. 6. Structure activity relationship of conotoxins interacting with potassium channels. A, model of the interaction between PVIIA and the
shaker potassium channel, revealing a likely model of interaction of the dyad comprising Lys7 and Phe9. B, structure of Pl14a, a �J-conotoxin. C,
structure of RIIIK, a �M-conotoxin.
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interactions at the Shaker potassium channel, residues
potentially involved in the pharmacophore are indicated in
Fig. 6B.

E. �I(2)-Conotoxins

ViTx, sr11a, and BeTX belong to the �I(2) class of cono-
toxins and constitute an interesting class of structurally
related potassium channel modulators. ViTx inhibits Kv1.1
and Kv1.3 but not Kv1.2 (Kauferstein et al., 2003), whereas
the recently identified sr11a inhibits Kv1.2 and Kv1.6 but
not Kv1.3 (Aguilar et al., 2010). In contrast, BeTX displays
an unusual potentiation of Ca2�- and voltage-dependent
BK channel current by increasing the channel open prob-
ability (Fan et al., 2003). This effect was independent of
channel inactivation and was readily reversible, suggest-
ing an interaction with an extracellular binding site (Fan
et al., 2003). The molecular basis of the unique subtype
selectivity of the �I(2) conotoxins remains unknown to
date. The only lysine in ViTx occurs at the C terminus,
suggesting that the conserved dyad motif is not involved
and implicates alternate mechanisms of interaction with
Kv channels (Kauferstein et al., 2003). Likewise, sr11a
seems to lack a functional dyad motif; however, homology
modeling identified Arg17 and Arg29 as residues possibly
involved in the biological activity of this novel peptide
(Aguilar et al., 2010).

F. Contryphan-Vn

Contryphan-Vn was recently identified as a D-trypto-
phan-containing disulfide-constrained nonapeptide with
activity at both voltage-gated and Ca2�-dependent K�

channels, perhaps owing to the presence of a unique Lys-
Trp dyad. However, the structural requirements for activ-
ity of Contryphan-Vn at these molecular targets, as well as
its subtype-selectivity, remain to be determined (Massilia
et al., 2003).

G. Conkunitzin-S1

The potassium channel-targeted toxin conkunitzin-S1 is
a 60-amino acid peptide that, despite belonging to the
Kunitz domain family of proteins, is stabilized by only two
disulfide bonds (Bayrhuber et al., 2005). Conkunitzin-S1
was shown to inhibit the Shaker potassium channel by
interacting with the ion channel pore through K427 (Bay-
rhuber et al., 2005).

IV. Conotoxins Interacting with Ligand-Gated
Ion Channels

Cone snails have evolved multiple classes of conopep-
tides to target ligand-gated ion channels, including
nAChR, 5-hydroxytryptamine3 (5-HT3), and N-methyl-D-
aspartate (NMDA) antagonists as well as �-amino-3-
hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) en-
hancers. Of these, antagonists of nAChRs are the largest
and most diverse and, along with the NMDA antagonists,

show most potential as leads to new ligand-gated ion chan-
nel therapeutics (Table 8).

A. Conotoxin Inhibitors of Nicotinic
Acetylcholine Receptors

All Conus spp. venoms investigated to date contain at
least one conotoxin that inhibits the nAChR (McIntosh et
al., 1999; Dutertre et al., 2007). Overall, seven different
families of conotoxins are known to target the nAChR:
�-conotoxins, �C-conotoxins, �D-conotoxins, �-conotoxins,
�S-conotoxins, �L-conotoxins, and �J-conotoxins (Table 8).
The �-conotoxins are selective antagonists of the muscle-
type (3/5) and neuronal-type (4/7, 4/4, and 4/3) nAChRs
and arguably represent the largest group of characterized
Conus spp. peptides (McIntosh et al., 1999) (Table 8).
�-Conotoxins selective for neuronal subtype of nAChR
have significantly contributed to their characterization
both in vivo and in vitro, and some of these peptides may
have therapeutic potential (Livett et al., 2006). The phar-
macophore of these �-conotoxins has been thoroughly in-
vestigated and has been shown to be composed of a con-
served hydrophobic patch in the first loop that determines
binding and a more variable second loop that confers se-
lectivity through pairwise interactions with different
nAChR subunits (Dutertre et al., 2005).

One of the first structure-activity relationship studies on
�-conotoxin was carried out on the closely related PnIA
and PnIB (Fainzilber et al., 1994a). The sequences differ by
only two amino acids at position 10 and 11, yet PnIA is
selective for �32, whereas PnIB binds preferentially to �7
nAChR. It was later determined that position 10 alone was
responsible for the shift in nAChR selectivity (Hogg et al.,
1999; Luo et al., 1999). In addition, sequential truncation
of the second loop was shown to influence potency and
ultimately significantly alter the structure of PnIA (Jin et
al., 2008). On the receptor side, mutation of three residues
on the �3 nAChR subunit (Pro182, Ile188, and Gly198)
affected the high affinity of PnIA (Everhart et al., 2003).
These structure-activity relationship studies allowed the
construction of a model of the interaction between PnIA
and nAChR (Dutertre et al., 2004), which was consistent
with the subsequent cocrystal structure of the acetylcho-
line binding protein (AChBP) and a variant of PnIA (Celie
et al., 2005).

ImI is another �-conotoxin for which structure-activity
relationship studies have identified determinants that in-
fluence potency. Modification of Asp5, Pro6, Arg7, and
Trp10 altered the potency of ImI at the �7 nAChR (Quiram
and Sine, 1998a, b). Later, thermodynamic mutant cycle
analysis identified pairwise interactions between ImI and
�7 nAChR (Quiram et al., 1999). The results revealed a
major interaction between Arg7 of ImI and Tyr195 in �7,
accompanied by smaller contributions between Asp5 of
ImI and Trp149, Tyr151, and Gly153 of �7, and between
Trp10 of ImI and Thr77 and Asn111 of �7. Again, most of
these pairwise interactions were confirmed in the struc-
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TABLE 8
�-Conotoxins inhibiting nAChRs (loop formula C0C3–4C3–7C, excluding 3 � disulfide bonded and framework XIV �-conotoxins)

Cysteines are bolded and aligned separately for the different �-conotoxin classes.

Species Diet Name
Sequence (Disulfide Bonded 1–3/2–4)

nAChR select References
12 3 4

C. achatinus P �-Ac1.1a -NGRCC-HPAC--GKHFNC* Muscle nAChR Liu et al., 2007b
�-Ac1.1b -NGRCC-HPAC--GKHFSC* Muscle nAChR Liu et al., 2007b

C. anemone V �-AnIA ----CCSHPACAANNQDyC* �32 Loughnan et al., 2004
�-AnIB --GGCCSHPACAANNQDyC* �32 � �7 Loughnan et al., 2004

C. arenatus V �-ArIA IRDECCSNPACRVNNPHVCRRR �7 � �32 Whiteaker et al., 2007
�-ArIB --DECCSNPACRVNNPHVCRRR �7 � �32 Whiteaker et al., 2007

C. aulicus M �-AuIA ---GCCSYPPCFATNSDYC* �34 Luo et al., 1998
�-AuIB ---GCCSYPPC-FATNPDC* �34 � �7 Luo et al., 1998
�-AuIC ---GCCSYPPCFATNSGYC* �34 Luo et al., 1998

C. bullatus P �-BuIA ---GCCSTPPC---AVLYC* �6�32 � �6�34 � �32 Azam et al., 2005
C. consors P �-CnIA --GRCC-HPAC--GKYYSC* Muscle nAChR Favreau et al., 1999
C. ermineus P �-EI -RDOCCYHPTCNMSNPQIC* Muscle nAChR (�/� � �/�) Martinez et al., 1995
C. episcopatus M �-EpI ---GCCSDPRCNMNNPDyC* �7 Loughnan et al., 1998;

Nicke et al., 2003b
C. geographus P �-GI ---ECC-NPAC--GRHYSC* Muscle nAChR Gray et al., 1981

�-GIA ---ECC-NPAC--GRHYSCGK Muscle nAChR Gray et al., 1981
�-GIC ---GCCSHPACAGNNQHIC* �32 � �42 McIntosh et al., 2002
�-GID IRD�CCSNPACRVNNOHVC �7 � �32 � �42 Nicke et al., 2003a
�-GII ---ECC-HPACG--KHFSC* Muscle nAChR Gray et al., 1981

C. imperialis V �-ImI ---GCCSDPRC-AWR---C* �32 � �7 � �9 McIntosh et al., 1994;
Ellison et al., 2004

�-ImII ---ACCSDRRC-RWR---C* �7, noncompetitive Ellison et al., 2004
C. leopardus V �-Lp1.1 ---GCCARAACAGIHQELC* �32 � �6�32 Peng et al., 2008
C. litteratus V �-LtIA ---GCCARAACAGIHQELC* �32 � �6�323 Luo et al., 2010
C. magus P �-MI --GRCC-HPAC--GKNYSC* Muscle nAChR McIntosh et al., 1982

�-MII ---GCCSNPVCHLEHSNLC* �6�323 � �32 � �7 Cartier et al., 1996
C. omaria M �-OmIA ---GCCSHPACNVNNPHICG* �32 � �7 Talley et al., 2006
C. pergrandis V �-PeIA ---GCCSHPACSVNHPELC* �9/�10 � �32 � �34 McIntosh et al., 2005
C. purpurascens P �-PIA -RDPCCSNPVCTVHNPQIC* �6�32 Dowell et al., 2003

�-PIB ZSOGCCWNPACVKNR---C* Muscle López-Vera et al., 2007b
C. pennaceus M �-PnIA ---GCCSLPPCAANNPDyC* �32 � �7 Fainzilber et al., 1994a

�-PnIB ---GCCSLPPCALSNPDyC* �7 � �32 Fainzilber et al., 1994a
C. quercinus V �-Qc1.2 ---QCCANPPCKHVN---C* �32, �34 Peng et al., 2009
C. regius V �-Reg1b/c ---GCCSDORCKHQ----C* N.D. Franco et al., 2006

�-Reg1d ---GCCSDPRCKHE----C* N.D. Franco et al., 2006
�-Reg1e ---GCCSDORCRYR----C* N.D. Franco et al., 2006
�-Reg1f --DYCCRROOCTLI----C* N.D. Franco et al., 2006
�-Reg2a ---GCCSHPACNVNNPHIC* N.D. Franco et al., 2006
�-RgIA ---GCCSDPRCRYR----CR �9/�10 Ellison et al., 2006

C. striatus P �-SI ---ICC-NPAC-GPKYS-C* Muscle nAChR Zafaralla et al., 1988
�-SIA ---YCC-HPAC-GKNFD-C* Muscle nAChR Myers et al., 1991

C. spurius V �-SrIA --RTCCSROTCRM�YP�LCG* Muscle/�42 López-Vera et al., 2007a
�-SrIB --RTCCSROTCRMEYP�LCG* Muscle/�42 López-Vera et al., 2007a

C. tinianus V �-TiIA --GGCCSHPAC-QNNPDyC* Neuronal nAChR Kauferstein et al., 2011
C. textile M �-TxIA ---GCCSRPPCIANNPDLC �32 � �7 Dutertre et al., 2007
C. victoriae M �-VcIA ---GCCSDPRCNYDHPEIC* Sandall et al., 2003;

Vincler et al., 2006
C. striatus P �-SII ---GCCCNPACGPNYG--CGTSCS Muscle nAChR Ramilo et al., 1992
C. ermineus P �A-EIVA ---GCCGPYONAACHOCGCKVGROOYCDROSGG* Muscle nAChR Jacobsen et al., 1997

�A-EIVB ---GCCGKYONAACHOCGCTVGROOYCDROSGG* Muscle nAChR Jacobsen et al., 1997
C. obscurus P �A-OIVA ----CCG-VONAACHOCVCKNT----C* Muscle nAChR Teichert et al., 2004

�A-OIVB ----CCG-VONAACPOCVCNKT----CG* Fetal � adult muscle nAChR Teichert et al., 2005b
C. pergrandis V �A-PeIVA ----CCG-VONAACHOCVCTGK----C Fetal � adult muscle Teichert et al., 2006

�A-PeIVB ----CCG-IONAACHOCVCTGK----C Fetal � adult muscle Teichert et al., 2006
C. purpurascens P �A-PIVA ---GCCGSYONAACHOCSCKDROS-YCGQ* Muscle nAChR Hopkins et al., 1995

�-PIIIE -HOOCCLYGKCRRYOGCSSAS-----CCQR* Muscle, noncompetitive Shon et al., 1997
�-PIIIF -GOOCCLYGSCROFOGCYNAL-----CCRK* Muscle, noncompetitive Van Wagoner et al.,

2003
C. litteratus V �L-LtXIVA -----MCPPLCKPS-------CTNC* Neuronal nAChR Peng et al., 2006
C. planorbis V �J-PlXIVA FPRPRICNLACRAGIGHKYPFCHCR* Muscle � �32 Imperial et al., 2006
C. radiatus P �S-RVIIIA KCNFDKCKGTGVYNCG�SCSC�GLHS

CRCTYNIGSMKSGCACICTYY
Muscle and neuronal nAChR Teichert et al., 2005a

C. parius P �-PrIIIE -AARCCTYHGSCLKEKCRRKYCC* Adult � fetal muscle nAChR Lluisma et al., 2008
C. vexillum V �D-VxXXA DVQDCQVSTOGSKWGRCCLNRVCGPMCCPASH

CYCVYHRGRGHGCSC (dimer)
N.D. Loughnan et al., 2006

�D-VxXXB DD�S�CIINTRDSPWGRCCRTRMCGSMCCPRNGCT
CVYHWRRGHGCSCPG (dimer)

�7 � �32 Loughnan et al., 2006

�D-VxXXC DLRQCTRNAPGSTWGRCCLNPMCGNFCCPRSG
CTCAYNWRRGIYCSC (dimer)

N.D. Loughnan et al., 2006

P, fish; M, molluscs; V, worms; *, C-terminal amidation; N.D., not determined.
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ture of ImI bound to AChBP (Hansen et al., 2005; Ulens et
al., 2006).

A third �-conotoxin of particular interest is MII, which
blocks �32- and �6-containing nAChRs (Cartier et al.,
1996). A series of analogs were designed to selectively
target the �6�323 combination (McIntosh et al., 2004)
and later used to determine the contribution of �6-
containing nAChR in dopamine release in the striatum
and to reveal a down-regulation of this subtype upon long-
term nicotine exposure (McCallum et al., 2005; Perry et al.,
2007). Radiolabeled and flurorescently labeled MII/
analogs have also been used to demonstrate down-
regulation of these �-conotoxin binding sites in nigrostria-
tal damaged animal models as well as in post mortem
brain from humans with Parkinson’s disease (Quik et al.,
2004). Residues involved in MII binding on the �32
nAChR have been identified, and these include Lys185 and
Ile188 on �3, and Thr59, Val109, Phe117, and Leu119 on
the  subunit, allowing a model of the interaction to be
built (Harvey et al., 1997; Dutertre et al., 2005). More
recently, ArIB, which blocks both �7 and �32
nAChR, was compared with other �-conotoxin se-
quences and rationally modified to increase �7 nAChR
selectivity (Whiteaker et al., 2007). This structure-
function analysis yielded two analogs, V11L,V16A-
ArIB and V11L,V16D-ArIB, which had low affinity for
�32 but retained �7 nAChR activity as predicted,
with an iodinated form developed as a pharmacologi-
cal tool (Whiteaker et al., 2008).

GID is the only �-conotoxin with relatively high affinity
for the �42 nAChR subtype (Nicke et al., 2003a). This
�-conotoxin is unusual in that it possesses an extended N
terminus of four residues, as well as two post-translational
modifications. A complete alanine scan of all noncysteine
residues revealed that most analogs had at least a 10-fold
reduced activity at the �42 subtype, implying a highly
specific interaction (Millard et al., 2009). Docking of GID to
�42 or its cocrystallization with AChBP could reveal the
specific interactions responsible for its �42 affinity and
provide a rationale basis for the design of more selective
analogs.

Newly discovered �-conotoxins Vc1.1, RgIA, and PeIA
target the �9�10 nAChR subtype (McIntosh et al., 2005;
Clark et al., 2006; Ellison et al., 2006), which may poten-
tially be involved in immune responses and pain (Satku-
nanathan et al., 2005; McIntosh et al., 2009). Scanning
mutagenesis of �-conotoxin Vc1.1 revealed that Ser4 and
Asn9 are important for �9�10 nAChR potency (Halai et al.,
2009), whereas for RgIA, Asp5, Pro6, and Arg7 were shown
to be critical for both �9�10 and �7 nAChR blockade (El-
lison et al., 2008). It is noteworthy that these �9�10-
selective �-conotoxins are analgesic in different animal
models of chronic pain, but there is an uncertainty about
the true molecular target responsible for this effect. In-
deed, whereas �9�10 nAChR-selective small molecules
were recently shown to also provide pain relief, N-type
calcium channel inactivation through a novel interaction

with GABAB receptor has also been proposed (Callaghan
and Adams, 2010; Zheng et al., 2011).

The determination of several X-ray crystal structures of
AChBP/�-conotoxin complexes significantly advanced our
understanding of the structural basis for the nAChR sub-
type selectivity of �-conotoxins (Celie et al., 2005; Hansen
et al., 2005; Ulens et al., 2006; Dutertre et al., 2007). We
were surprised to find that the three conotoxins (�-ImI,
and variants of �-PnIA and �-TxIA) that have been cocrys-
tallized with AChBP showed a similar orientation within
the ACh binding pocket despite divergent primary se-
quences. All three structures show a strong contribution of
hydrophobic contacts between a conserved proline and sev-
eral hydrophobic residues of the �-conotoxins and several
residues in the aromatic cage of AChBP (Fig. 7). Therefore,
the different nAChR selectivity profiles arise from specific
electrostatic interactions and hydrogen bonds formed be-
tween �-conotoxin and nAChR subunits. For instance,
�-conotoxin TxIA uses a unique electrostatic pairing be-
tween Arg5 and AChBP-Asp195 to achieve its high-affinity
binding (Dutertre et al., 2007). In addition, a tilt in the
orientation of the �-conotoxin TxIA structure within the
ACh binding pocket was found to correlate with nAChR
subtype selectivity. Clearly, additional �-conotoxin-
AChBP crystal structures and new models of �-conotoxin-
nAChR interactions are expected to emerge, which should
further expand our understanding of subtype-selectivity at
nAChR. The structures of the 4/7 �-conotoxin A10L-TxIA
and the smaller 4/3 �-conotoxin ImI and their interactions
with the AChBP are shown in Fig. 7.

Compared with the �-conotoxins, the other conotoxin
families targeting nAChRs are less well understood, both
in their mode of action and pharmacophore. These nontra-
ditional �-conotoxins are often named with a letter to des-
ignate their superfamily origins. For example, the first
member of the �C-conotoxin family, PrXA, was isolated
from the venom of Conus spurius (Jimenez et al., 2007).
This 32-amino acid peptide induced paralysis when in-
jected into mice and fish and was shown to potently inhibit
the muscle nAChR in vitro in a competitive manner. The
primary structure of this peptide seems very different from
that of �-conotoxins, with only one disulfide bond and three
hydroxyprolines. A second family comprises �S-Conotoxin
RVIIIA, which is also unique, with a broad selectivity
profile against nAChR subtypes and the presence of �-car-
boxyl glutamates, a post-translational modification not
otherwise found in conotoxins targeting nAChRs (Teichert
et al., 2005a). RVIIIA is also paralytic to mice and fish but
elicits seizures in mice upon intracranial injection. Electro-
physiological recordings of recombinantly expressed
nAChR in oocytes revealed it competitively inhibited sev-
eral neuronal subtypes in addition to the muscle nAChR.
Within the same family is �-GVIIIA, a peptide that targets
another ligand-gated ion channel, the serotonin receptor
(see section IV.B). Conotoxin lt14a belongs to yet another
family �L-conotoxin and was discovered using a cDNA
library from the venom gland of C. litteratus (Peng et al.,
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2006). The sequence showed no homology to other
families, but the cysteine arrangement is reminiscent
of that of the �-conotoxins. A synthetic version was
tested on frog nerve preparations and PC12 cells, as-
suming the �-conotoxin cysteine connectivity (1–3;
2– 4), and it was found to block the response of ACh-
evoked currents. It is noteworthy that although this
peptide has not been tested across the various sub-
types of nAChRs, lt14a produced dose-dependent an-

algesia in a hot-plate assay in mice, suggesting that it
may target therapeutically relevant nAChRs. Further
atypical �-conotoxins include the �J-pl14a, which was
recently identified with an unusual dual activity at
two different classes of ion channels (Imperial et al.,
2006). Indeed, this 25-amino acid peptide inhibits
both Kv1.6 and muscle and �32 nAChRs (see section
III.D). Its well defined structure, comprising an �-he-
lix and two short 310-helices, may allow future struc-

FIG. 7. Structure activity relationship of 4/7 (A, B, C, and D) and 4/3 (E, F, G, and H) �-conotoxins. A, the consensus sequence for 4/7 �-conotoxins.
B, overlay of the structures of �-conotoxins OmIA (2GCZ), EI (1K64), GIC (1UL2), GID (1MTQ), MII (1MII), PIA (1ZLC), PnIA (1PEN), PnIB (1AKG),
and Vc1.1 (2H8S). C, crystal structure of �-A10L-TxIA bound to AChBP. D, details of the interactions of �-A10L-TxIA with AChBP. E, consensus
sequence for 4/3 �-conotoxins. F, overlay of the structures of �-ImI (1CNL) and RgIA (2JUT). G, crystal structure of ImI bound to AChBP. H, details
of the interactions of �-ImI with AChBP.
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ture-activity relationship studies to reveal whether
this peptide uses the same or different pharmacoph-
ores to interact with both receptors.

An unusually large family of conopeptides found only in
one clade of worm-hunting cone snails also inhibit nAChRs
(Loughnan et al., 2006, 2009; Kauferstein et al., 2009).
These �D-conotoxins have a molecular mass of �11 kDa,
with Edman degradation, mass spectrometric, and NMR
data revealing they assemble as a pseudo-homodimer com-
prising two 47- to 50-residue peptides. So far, �D-
conotoxins have been isolated only from worm-hunting
species of cone snails where traditional �-conotoxins seem
to be absent. Therefore, they may represent another exam-
ple of convergent evolution to a common prey target. Bind-
ing assays and two-electrode voltage-clamp analyses
showed that �D-conotoxins are potent inhibitors of several
nAChRs, including �7, �32, and �42 subtypes. Finally,
several noncompetitive conotoxins have also been discov-
ered (Shon et al., 1997). These �-conotoxins show homology
to the �-conotoxins, which are Nav channel pore blockers.
PIIIE was originally shown to block muscle nAChR but
targets a different binding site compared with �-bungaro-
toxin. PrIIIE was shown to also potently inhibit muscle
nAChR, with a preference for the adult over the fetal
subtype (Lluisma et al., 2008). Thus, it seems that
Conus spp. have devised many original solutions to
target this important physiological target, providing
us with as many templates for nAChR subtype-
selective tools and drugs.

B. �-Conotoxin Inhibitors of Serotonin 5-HT3 Receptors

One family of conotoxins targets the 5-HT3 receptor,
pentameric, cation-selective channels that open in re-
sponse to the binding of the neurotransmitter serotonin
(Hoyer et al., 1994) and share overall topology with nico-
tinic receptors. Five human subtypes (5-HT3A, 5-HT3B,
5-HT3C, 5-HT3D, and 5-HT3E) have been cloned (Kar-
novsky et al., 2003; Niesler et al., 2003) but only homo-
meric 5-HT3A and heteromeric combinations of 5-HT3A
and 5-HT3B have been pharmacologically characterized in

detail. To date, only the large �-conotoxin GVIIIA has been
identified to target 5-HT3 receptors (England et al., 1998).
GVIIIA inhibits 5-HT3 receptors expressed in Xenopus lae-
vis oocytes in a competitive manner. This 41-amino acid
peptide contains 10 cysteines (five disulfide bonds), an
amidated C terminus, and the unusual post-translational
modification 6-bromoptryptophan. Unfortunately, this
complicated structure precluded chemical synthesis and
any structure-activity relationship studies at the receptor.

C. Ikot-Ikot Conopeptide Enhancers of �-Amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid Receptors

A novel polypeptide isolated from C. striatus venom has
been shown to selectively target AMPA receptors (Walker
et al., 2009). This toxin, named con-ikot-ikot (referring to
the Filipino word for “spinning around” in reference to the
swimming phenotype observed in fish injected with this
toxin), is 86 amino acids long with 13 cysteines, corre-
sponding to a molecular mass of 9432 Da. It is noteworthy
that the active form of con-ikot-ikot is a dimer of dimers, as
evidenced by a band corresponding to a molecular mass of
38 kDa on an electrophoresis gel. This peptide achieves its
biological effect through block of AMPA desensitization,
greatly increasing the current magnitude. AMPA recep-
tors belong to the ionotropic glutamate receptors, and to-
gether with NMDA and kainate receptors, mediate excit-
atory neurotransmission in the central nervous system
(Dingledine et al., 1999). Native AMPA receptors assemble
as heterotetramers (dimer of dimers) to form a functional
channel. Each subunit (GluA1–4) consists of four domains:
the N-terminal domain, the ligand binding domain, the
pore forming transmembrane domain, and finally a small
C-terminal domain (Chen and Wyllie, 2006). The structure
of intact AMPA receptors was solved by Sobolevsky et al.
(2009), revealing a dimer of dimers arrangement of four
subunits. This structure is expected to help identify the
binding site of con-ikot-ikot and guide further structure-
activity studies for this novel class of conotoxin.

TABLE 9
Conantokins inhibiting NMDA glutamate receptors

Species Diet Name Sequence NMDA Selectivity References

C. caracteristicus V Con-Ca2 GY��R�IA�TVR�LEEA N.D. Franco et al., 2006
C. ermineus P Con-E GE��HSKYQ�CLR�IRVNNVQQ�C N.D. Gowd et al., 2008
C. geographus P Con-G GE��LQ�NQ�LIR�KSN* NR2B � NR2C, NR2D McIntosh et al., 1984;

Gowd et al., 2008
C. gloriamaris M Con-Gm GAK�RNNA�AVR�RLEEI N.D. Franco et al., 2006
C. lynceus V Con-L GE��VAKMAA�LAR�DAVN* N.D. Jimenez et al., 2002
C. purpurascens P Con-P GE��HSKYQ�CLR�IRVNKVQQ�C NR2B, NR2A Gowd et al., 2008
C. orchroleucus V Con-Oc GE��RKAMA�LEAKKAQ�ALKA N.D. Franco et al., 2006
C. parius P Con-Pr1 GED�YA�GIR�YQLIHGKI NR2B, NR2D Teichert et al., 2007b

Con-Pr2 DEP�YA�AIR�YQLKYGKI NR2B � NR2D Teichert et al., 2007b
Con-Pr3 GEP�VAKWA�GLR�KAASN* NR2B, NR2D Teichert et al., 2007b

C. quercinus V Con-Qu GY��R�VA�TVR�LDAA N.D. Franco et al., 2006
C. radiatus P Con-R GE��VAKMAA�LAR�NIAKGCKVNCYP NR2B, NR2A White et al., 2000
C. sulcatus (brettinghami) P Con-Br GD��YSKFI�RER�AGRLDLSKFP NR2B, NR2D, NR2A � NR2C Twede et al., 2009
C. tulipa P Con-T GE��YQKML�NLR�AEVKKNA* NR2B, NR2A Haack et al., 1990;

Klein et al., 2001

P, fish; M, molluscs; V, worms; �, �-carboxyglutamate; *, C-terminal amidation; N.D., not determined.
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D. Conantokin Inhibitors of
N-Methyl-D-aspartate Receptors

Conantokins are small peptides (17–22 amino acids) iso-
lated from the venom of various Conus species that selec-
tively and potently inhibit NMDA receptors. The first co-
nantokin isolated was Con-G; more recent members have
been isolated from another 11 species (see Table 9). Conan-
tokins have therapeutic potential as analgesics (Malmberg
et al., 2003) and anticonvulsants (Jimenez et al., 2002). As
opposed to the vast majority of conopeptides, conantokins
do not contain cysteines but instead have a high content of
�-carboxyglutamic acid residues that when correctly
spaced, induce �-helicity in the presence of divalent cat-
ions. Structure-activity studies of conantokins (Nielsen et
al., 1999b) have revealed a number of important residues
for binding, and a docking model showed that Con-G can fit
into the agonist binding cleft of the NR2 subunit (see

Fig. 8) (Wittekindt et al., 2001), revealing interactions be-
tween Glu386/Asp689 and Asn662 from NR2 subunit and
Asn17/Lys15 and Glu2 of Con-G, respectively.

NMDA receptors are tetrameric ligand-gated ion chan-
nels with high Ca2� permeability that mediate fast excit-
atory neurotransmission in the CNS (Dingledine et al.,
1999). They are composed mainly of two NR1 and two NR2
subunits, with an NR3 subunit potentially coassembling
with NR1 and NR2 to modify NMDA receptor-mediated
responses, reducing calcium permeability and single-
channel conductance (Ciabarra et al., 1995). The topology
of each subunit comprises an extracellular N-terminal do-
main, an agonist binding core, three transmembrane do-
mains (domains 1 and 2 are separated by a “P-loop”), and
a cytoplasmic tail of a variable length (Mayer and Arm-
strong, 2004). For the proper functioning and gating of
NMDA receptors, the binding of both the agonist gluta-

FIG. 8. Structure activity relationship of conantokins. A, consensus sequence for conantokins. B, structure of conantokin-G. C, model of likely
interactions between conantokin-G and extracellular domain of the NMDA receptor NR2 subunit. D, details of the interactions between conantokin-G
and NR2.
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mate (on the NR2 subunit) and the coagonist glycine (on
the NR1 subunit) is required at the same time. Differential
expression of isoforms (i.e., NR2A–D) occurs in the central
nervous system, where they mediate fast excitatory neu-
rotransmission. NMDA receptors have also been impli-
cated in a number of chronic and acute neurological disor-
ders, and significant research efforts are currently directed
toward the development of specific drugs that can inhibit
these targets (Loftis and Janowsky, 2003). Atomic resolu-
tion structures of the NMDA extracellular binding do-
mains bound to agonists, partial agonists, and antagonists
have been determined that might open the way to the
rational development of NMDA receptor antagonists (Fu-
rukawa and Gouaux, 2003; Furukawa et al., 2005). Based
on the docking model shown in Fig. 8, it is conceivable that
conantokin analogs might be rationally designed to have
selectivity for subunit combinations of clinical interest.

E. Ligand-Gated Ion Channels Inhibitors in
Pain Management

A number of ligand-gated ion channels have been impli-
cated in pain modulation and chronic pain states but this
discussion will focus on the two families of channels with
evidence for application of conopeptides. Conopeptides tar-
geting subtypes of nAChR subtypes (�-conotoxins) and
NMDA receptors (several conantokins) have shown good
efficacy in preclinical pain models and have reached differ-
ent stages of development for use in humans. Their phar-
macological characteristics underlying their analgesic ef-
fects are discussed below.

The involvement of nAChR subtypes in pain modulation
is complex, and the mechanisms of action of �-conotoxins
in pain relief remains controversial. Much of the difficulty
in resolving the actual targets of these toxins arises from

the complexity of physiologically and pathologically rele-
vant nAChR subtypes found in vivo, together with limited
knowledge of expression and role of subunits in pain path-
ways (Olivera et al., 2008). For example, nicotinic agonists
selective for �42 subtypes of nAChRs produce analgesic
actions in neuropathic pain models (Bannon et al., 1998;
Rashid and Ueda, 2002), probably as a result of stimula-
tion �42 nAChRs on inhibitory interneurons in the dorsal
horn of the spinal cord (Genzen and McGehee, 2005). By
contrast, analgesic �-conotoxins are selective antagonists
of different neuronal nAChR subtypes (and agonists at
GABAb; see below) but avoid muscle or �42 nAChRs.

Synthetic Vc1.1 (ACV1) identified from cDNA was the
first �-conotoxin shown to exhibit efficacy in pain models
(Sandall et al., 2003; Satkunanathan et al., 2005). The
peptide was potent and peripherally active after intramus-
cular injection, producing partial reversal of mechanical
allodynia in several neuropathic pain models. The findings
that the effectiveness of the peptide escalated with re-
peated daily injections and seemed to allow functional re-
covery of injured nerves (Satkunanathan et al., 2005) sug-
gested that it had clinical potential in treatment of
neuropathic pain. Vc1.1 was initially selected for testing in
pain models on the basis of its potent block of neuronal
(bovine adrenal chromaffin cells) versus muscle nAChRs
(Livett et al., 2006; see Table 10). Bovine adrenal chromaf-
fin cells express �3-, �5-, �7-, and 4-nAChR subunits
(Sala et al., 2008). Accordingly, the main nAChR subtypes
expressed on nociceptive peripheral fibers and their cen-
tral terminations are composed of �3, �5, 4, and 2 sub-
units (Khan et al., 2003; Lang et al., 2003; Rau et al., 2005).
Vc1.1 also inhibited peripheral nerve-mediated vascular
responses in rats (Satkunanathan et al., 2005) and, at low
concentrations (100 nM), inhibited excitatory responses of

TABLE 10
Target selectivity and efficacy of analgesic �-conotoxins administered systemically

�-Conotoxins Efficacy nAChR selectivity Nanomolar GABAB-Cav
Activity References

Vc1.1 Partially reverses mechanical allodynia
in several neuropathic models after
intramuscular dosing. Escalating
actions and recovery of nerve
function.

�9�10 �� �6�323 �
�6�34 � �34 �
�32

Yes Sandall et al., 2003;
Satkunanathan
et al., 2005;
Vincler et al.,
2006; Klimis et
al., 2011

CyclizedVc1.1 Partially reverses mechanical allodynia
in several neuropathic models after
oral dosing.

Very weak �9�10 Yes Clark et al., 2010

Vc1a No reversal of allodynia in a
neuropathic pain model. Recovery of
nerve function retained

�9�10 �� �34 � �32 No Nevin et al., 2007

Rg1A Partially reverses mechanical allodynia
in several neuropathic models after
intramuscular dosing.

�9�10 �� �7 �� �34
� �32

Yes Vincler et al., 2006

AuIB Partially reverses mechanical allodynia
in several neuropathic models after
intramuscular dosing.

�34 � �32 �� �9�10 Yes Klimis et al., 2011

MII Partially reverses mechanical allodynia
in several neuropathic models after
intramuscular dosing.

�32 � �34 �� �9�10 No Klimis et al., 2011

Lt14a Acute thermal antinociception (hotplate
test) after intraperitoneal
administration.

Unkown but inhibits
PC12 cell nAChR
(�3- �5-, �7-, 2-,
3-, and 4-subunits)

Unknown Sun et al., 2011
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human sural nerve to nicotine (Lang et al., 2005). Vc1.1
has relatively low affinity for �32 and �34 nAChRs
(Clark et al., 2006; Vincler and McIntosh, 2007) but may
have higher affinity for more complex subunit combina-
tions; e.g., its affinity for �6/�3�223 nAChRs is 140 nM
(Vincler and McIntosh, 2007). It was therefore suggested
that Vc1.1 might produce pain relief via inhibition of �3
and/or �5 nAChR channels on sensory nerves. It is note-
worthy that the analgesic �-AuIB has relatively low affin-
ity for �34 but MII has very high affinity for �32
nAChRs (�1 nM). It therefore remains possible that pain
relief may be achieved in the periphery by antagonism of
nAChRs comprising �3, �5, 4, and 2 subunits, perhaps
in combination with other less common subunits. The
novel �-conotoxin, lt14a, potently inhibits nAChR re-
sponses in rat PC12 cells and produces analgesia in a
hotplate assay after systemic administration (Peng et al.,
2006). Because PC12 cells express �3- �5-, �7-, 2-, 3-,
and 4-nAChR subunits (Henderson et al., 1994), the an-
algesic target likely involves subunit combinations that
comprise one or more of these subunits. Other potential
targets of Vc1.1 and other analgesic �-conotoxins are sum-
marized in Table 10 and discussed below.

Vc1.1 was also shown to be a potent antagonist at �9�10
nAChRs, potentially contributing to its analgesic effects
(Vincler et al., 2006). Another �-conotoxin, RgIA, displayed
similar activity at �9�10 nAChRs and was also efficacious
in neuropathic pain models (Vincler et al., 2006). However,
�9�10 nAChRs show very limited tissue distribution, be-
ing expressed predominantly in the olivocochlear system
(Vetter et al., 2007), and their role in sensory nerve func-
tion is unclear. A more plausible hypothesis was forwarded
by Vincler and McIntosh (2007), who suggested the anal-
gesic efficacy of �-conotoxins that inhibit �9�10 nAChRs
was due to inhibition of immune cell migration to injured
nerves, although it remains to be determined whether this
process is modulated by �9�10 nAChRs. However, two
analogs of Vc1.1, Vc1a and [P6O]Vc1.1, retain full activity
�9�10 nAChRs but lose activity at other targets (see be-
low) and fail to reverse allodynia in a neuropathic pain
model (Nevin et al., 2007). Conversely, �-AuIB and �-MII
are efficacious in a neuropathic pain model but do not
inhibit �9�10 nAChRs (Klimis et al., 2011). These findings
cast doubt on the role of �9�10 nAChRs in acute analgesia
in neuropathic pain models, although immune cell inter-
actions may contribute to the longer term functional recov-
ery of nerves. In support, Livett et al. (2008) claimed that
Vc1a retained activity at �9�10 nAChRs and lost analgesic
activity as reported by Nevin et al. (2007) but retained an
apparent ability to induce functional recovery in injured
nerves as measured by the peripheral vascular response to
substance P.

Another potential target for the pain-relieving actions of
�-conotoxins was identified by Callaghan et al. (2008). This
group reported that the analgesic �-conotoxins Vc.1.1,
RgIA, and AuIB, but not MII, potently inhibit calcium
currents mediated by N-type (Cav2.2) channels in mouse

sensory neurons (Callaghan et al., 2008; Klimis et al.,
2011). After extensive pharmacological characterization,
they identified that this effect was blocked by GABAB
receptor antagonists and mediated by nonclassical G-pro-
tein-coupled modulation of Cav2.2 channels (Callaghan et
al., 2008; Klimis et al., 2011). To date, all �-conotoxins
tested that potently inhibit Cav2.2 are also analgesic when
administered systemically (Callaghan et al., 2008; Clark et
al., 2010; Klimis et al., 2011) and analogs of Vc1.1 (Vc1a
and [P6O]Vc1.1) that retain activity at �9�10 nAChRs but
lose analgesic activity (Nevin et al., 2007) also lose their
ability to modulate N-type currents in sensory neurons
(Callaghan et al., 2008). Furthermore, modulation of N-
type calcium channels persists in DRG neurons from
�9�10 knockout mice (Callaghan and Adams, 2010). How-
ever, the mechanism of GABAB receptor-dependent
�-conotoxin modulation of N-type calcium channels re-
mains controversial. Cav2.2 inhibition by classic GABAB
agonists is due to direct association of G-protein � sub-
units with the Cav2.2 �-subunit. This effect is rapid, in-
volves slowing of the activation of the channel, and is
relieved by strong depolarizations (Herlitze et al., 1996;
Ikeda, 1996). None of these properties were observed for
inhibition by Vc1.1, strongly suggesting another mecha-
nism is involved. Another form of G-protein-coupled inhi-
bition of N-type channels in sensory neurons is voltage-
independent and mediated by tyrosine phosphorylation of
the e37a splice variant (Raingo et al., 2007). However, this
mechanism is unlikely to account for the actions of �-cono-
toxins on N-type calcium channels, because direct �-
subunit-mediated inhibition also occurs on both the e37a
and 37b variants expressed by sensory neurons (Raingo et
al., 2007). This interpretation is consistent with the failure
of Vc1.1 and RgIA to modulate GIRK channels via coex-
pressed GABAB receptors, which is also G-protein �-
mediated (McIntosh et al., 2009).

In summary, several �-conotoxins seem to be potential
candidates for development of treatments for neuropathic
pain. Although the mechanism(s) of action remain contro-
versial, they produce partial relief from the signs of neu-
ropathic pain and seem to accelerate functional recovery of
sensory nerve function. The �-conotoxins are also rela-
tively small peptides, and the recent development of a
cyclized analog of Vc1.1 (Clark et al., 2010) revealed
that the peptide could relieve signs of neuropathic
pain when administered orally. ACV1 (Vc1.1) was
taken through a phase I clinical trials by Metabolic
Pharmaceuticals (Melbourne, VIC, Australia) but sub-
sequently dropped after completion of a phase 2A trial
over potential concerns over efficacy and its reduced
affinity at human versus rat �9/�10 nAChRs.

Finally, NMDA receptors, particularly those in the
dorsal spinal cord that include the NR2B subunit, have
long been recognized as candidates for development of
pain therapeutics (Parsons, 2001), with small-molecule
NR2B-selective antagonists selectively inhibiting signs
of chronic pain in animal models (Boyce et al., 1999).
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Several conantokins, including conantokin-G, selec-
tively inhibit NMDA receptors composed of NR1 and
NR2B subunits (Layer et al., 2004) and inhibit signs of
neuropathic pain intrathecally. Unfortunately, Con-G

produced motor side effects in a similar dose range in
nerve injury models (Malmberg et al., 2003), and the
utility of intrathecal conantokins targeting NR2B for
pain management remains to be established.

V. Conotoxins Interacting with G Protein-Coupled
Receptors and Neurotransmitter Transporters

Two novel classes of conopeptide (�- and 	-conopeptides)
were discovered that inhibit noradrenaline activation of
�1-adrenoceptors or its transport via the noradrenaline
transporter (Sharpe et al., 2001). It is noteworthy that both
noncompetitively (allosterically) inhibited noradrenaline,
making them useful new probes of allosteric sites on these
physiologically and pathologically important membrane
proteins. In contrast, competitive (isosteric) agonists of the
vasopressin and neurotensin receptors have also been dis-
covered that are closely related to the endogenous peptides
for these targets. Sequences of known conopeptides belong-
ing to these four classes are shown in Table 11, and their
structures are compared in Fig. 9.

A. �-Conopeptide Inhibitors of �1-Adrenoceptors

The conopeptide �-TIA is a 19-amino acid peptide with
two disulfide bonds isolated from the venom of Conus tu-
lipa (Sharpe et al., 2001). This peptide was originally dis-
covered after reduction of the noradrenergic component of
the electrically evoked contraction of the rat vas deferens.
Competition experiments with radiolabeled ligands re-
vealed TIA was a selective and negative allosteric modu-
lator of hamster �1B (Sharpe et al., 2003b). Additional
radioligand displacement studies showed that TIA is also
10-fold selective for human �1B over �1A and �1D (Chen et
al., 2004). An alanine walk identified Asn2, Trp3, Arg4,
Leu7, and Ile8 as the major binding determinants on TIA
(Sharpe et al., 2003b). It is noteworthy that the first four
residues in the N-terminal “tail” are key determinants of
binding, despite being outside the disulfide bonds and rel-
atively unconstrained in solution (Sharpe et al., 2003b).
F18A (and F18N) analogs of TIA had increased selectivity
for �1B, whereas the I8A analog had slightly reduced af-

FIG. 9. Structure activity relationship of conopeptides interacting
with GPCRs and transporters. A, consensus sequence for conopressins. B,
structure of conopressin-T, a V1AR selective antagonist. C, structure of
�-TIA, a selective, noncompetitive antagonist of the �1B-adrenergic re-
ceptor. D, structure of 	-MrIA, a selective and noncompetitive antagonist
of the noradrenaline transporter.

TABLE 11
Conopeptides targeting GPCRs and monoamine transporters

Species Diet Name
Sequence

Target Reference
12 3 4

C. tulipa F �-TIA FNWRCCLIPACRRNHKKFC* �1-Adrenoceptor Sharpe et al., 2001
C. marmoreus M 	-MrIA -NGVCCGYKLCHO-----C NET Sharpe et al., 2001

	-MrIB -VGVCCGYKLCHO-----C NET Sharpe et al., 2001
	-CMrVIA ---VCCGYKLCHO-----C N.D. Balaji et al., 2000
	-CMrX --GICCGVSFCYO-----C N.D. Balaji et al., 2000

C. geographus P Conopressin G CFIRNCPKG*
CIIRNCPRG*

Vasopressin R Cruz et al., 1987; Nielsen et al., 1994
C. imperialis V
C. striatus P Conopressin S CFIRNCOP V1bR, OTR � V1aR Cruz et al., 1987; Dutertre et al., 2008
C. textile M Conopressin Tx CYIQNCLRV* N.D. Ueberheide et al., 2009
C. tulipa P Conopressin-T CLIQDCP�G* OT, V1aR Dutertre et al., 2008
C. villepini V Conopressin-vil ZSEEGGSNAtKKPYIIL N.D. Möller and Marí, 2007
C. geographus F Contulakin-G ZSEEGGSNAtKKPYIIL Neurotensin R Craig et al., 1999

P, fish; M, molluscs; V, worms; �, �-carboxyglutamate; *, C-terminal amidation; N.D., not determined.

CONOPEPTIDE PHARMACOLOGY AC
not been copyedited and formatted. The final version may differ from this version. 

Pharmrev Fast Forward. Published on 8 March 2012 as DOI 10.1124/pr.111.005322 This article has
at A

SPE
T

 Journals on M
arch 20, 2024

pharm
rev.aspetjournals.org 

D
ow

nloaded from
 

http://pharmrev.aspetjournals.org


finity for �1B, and its mode of action was switched to
become a competitive antagonist (Chen et al., 2004).

High-resolution crystal structures of the closely related
-ARs have been determined in both the resting and acti-
vated states, as well as in complex with various ligands
(Cherezov et al., 2007; Rasmussen et al., 2007, 2011a,
2011b; Warne et al., 2008; Rosenbaum et al., 2011; Warne
et al., 2011). Although these structures confirmed the lo-
cation of the orthosteric binding site for competitive li-
gands that had been mapped previously using affinity la-
beling, site-directed mutagenesis, and substituted-cysteine
accessibility methods, the site of allosteric compounds re-
mains rather elusive. Allosteric ligands are of particular
interest to both fundamental science and the pharmaceu-
tical industry, because they can achieve greater selectivity
and act only where the endogenous agonist exerts its phys-
iological effect (Conn et al., 2009). Using the recent crystal
structure of -adrenoceptors, modeling of the interaction
between TIA and �1B-AR should provide a clearer view of
this allosteric binding site and potentially allow the devel-
opment of more selective inhibitors.

It is worthwhile to consider the therapeutic potential of
peptide inhibitors of �1-adrenoceptors, a traditional small-
molecule GPCR drug target. These receptors belong to the
family A of GPCRs, and therefore share the common to-
pology comprising a core composed of seven transmem-
brane helices connected by three extracellular and three
intracellular loops. Adrenoceptors regulate critical aspects
of blood pressure control, myocardial contractility, pulmo-
nary function, metabolism, and activities in the CNS (Koch
et al., 1995). They are broadly divided in �1-, �2-, and
-adrenoceptors based on anatomical localization; then,
each group is further separated into three subtypes based
on pharmacological and molecular strategies (�1A, �1B, and
�1D; �2A, �2B, and �2C; 1, 2, and 3) (Bylund et al., 1994;
Graham et al., 1996). The �1-ARs are located on postsyn-
aptic membranes, whereas �2-ARs are found on presynap-
tic nerve terminals (Langer, 1974). In particular, �1-ARs
are crucial for the stimulation of smooth muscle contrac-
tion (Bylund et al., 1994). Agonists at the �1-ARs may be
associated with an alerting or antidepressant action,
whereas antagonists are being used and refined for the
treatment of benign prostatic hypertrophy (Hieble and
Ruffolo, 1996). Peptides with improved selectivity and re-
stricted to peripheral compartments have the potential to
treat diseases such as benign prostatic hypertrophy.

B. 	-Conopeptide Inhibitors of the
Noradrenaline Transporter

	-Conopeptides are small hydrophobic peptides that se-
lectively inhibit the transport of noradrenaline by NET, an
important target for drugs treating a range of neurological
diseases, including depression, anxiety, obsessive-compul-
sive disorder, and attention deficit hyperactivity disorder
(Goddard et al., 2010). 	-MrIA and -MrIB noncompeti-
tively inhibit NET (Sharpe et al., 2001), providing oppor-
tunities to regulate NET efficiently, irrespective of the

concentration of noradrenaline present. 	-MrIA seems to
be specific for NET, with no effect on the function of a
diverse range of targets (Sharpe et al., 2001), including
other monoamine neurotransmitter transporters (Sharpe
et al., 2001). The solution structure of MrIA revealed that
	-conopeptides have a rigid framework stabilized by two
disulfide bonds and two antiparallel strands connected by
an inverse �-turn (Sharpe et al., 2001; Nilsson et al., 2005).
Although the cysteine spacings in the linear sequence are
reminiscent of small �-conotoxins, 	-conopeptides have an
alternative cysteine-stabilized scaffold, with cysteines
bonded 1 to 4 and 2 to 3 (see Table 11), that allows a �-turn
to form in an optimized conformation for high-affinity in-
teractions with NET. Residues in this � turn (Gly6, Tyr7,
Lys8, and Leu9), plus His11 in loop 2, have been identified
as critical for high-affinity interactions at NET through
alanine-scanning mutagenesis, but only mutations to Gly6
affect structure (Sharpe et al., 2003a). To define the 	-cono-
peptide pharmacophore, an expanded series of analogs was
synthesized, revealing that 	-conopeptides interact with
NET mainly through interaction of Tyr7 with NET via
aromatic and/or H-bond acceptors, Lys8 contributing an
essential basic residue for NET binding, Leu9 interacting
with a large hydrophobic patch on NET, and His11 and
hydroxyproline 12 contributing weaker interactions
through aromatic and basic interactions (Brust et al.,
2009).

Based on its mode of action to inhibit NET, intrathecal
administration of MrIA was evaluated in rodent models
of acute, inflammatory, and neuropathic pain, where it
was able to produce significant reversal of the signs of
acute and neuropathic pain in mice and rats, respectively,
without significant side effects (McIntosh et al., 2000;
Nielsen et al., 2005). To consider 	-MrIA as a therapeutic
lead, its chemically unstable N-terminal asparagine
needed to be replaced or removed to allow long-term hu-
man use in implanted pumps. Extensive replacements and
truncations/extensions at the N-termini revealed that re-
placing asparagine with a pyroglutamate significantly im-
proved chemical stability without compromising the side-
effect profile observed for MrIA (Brust et al., 2009).
Pyroglutamate1-MrIA (Xen2174), produced few side ef-
fects even at high doses, and an extended duration of
action after a single bolus intrathecal dose in the rat model
of neuropathic pain (Nielsen et al., 2005). Xen2174 was
also found to accelerate recovery from pain when given
pre-emptively in a rat-paw-incision model of postsurgical
pain (Obata et al., 2005). Xen2174 was progressed to a
phase I intravenous study, where it was determined to be
safe and well tolerated in healthy volunteers, and most
recently a phase IIa intrathecal study in patients with
cancer pain. This open label, dose-escalating study was
conducted in 37 cancer patients suffering severe chronic
pain that was poorly controlled using conventional thera-
pies. It is noteworthy that Xen2174 reportedly provided
pain relief rapidly and for a sustained period across a wide
range of tolerated intrathecal bolus doses from 0.1 to 30
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mg. Xen2174 is presently being prepared for a phase IIb
double-blind study to establish whether Xen2174 is safe
and efficacious in a bunionectomy setting of postsurgical
pain. Further details on the discovery and development of
Xen2174 are reported in a review by Lewis (2011).

C. Conopeptides Modulating
Vasopressin/Oxytocin Receptors

Conopressins were first discovered in the venom of fish-
hunting cone snails based on the “scratching effect” in-
duced in mice upon intracerebral injection (Cruz et al.,
1987). The sequences of both conopressin-G and conopres-
sin-T were very similar to vasopressin itself, with only an
additional positive charge in position 4. It is noteworthy
that conopressin-G was later isolated from a worm-
hunting cone snail species, Conus imperialis, as well as
from the nonvenomous snails Lymnea stagnalis and Aply-
sia californica and the leech Erpobdella octoculata (Mc-
Master et al., 1992; Salzet et al., 1993; Nielsen et al., 1994;
Van Kesteren et al., 1995). Therefore, conopressin-G was
proposed to represent the endogenous vasopressin ho-
molog in these invertebrates. However, novel conopressins
have since been discovered from other cone snail species,
supporting a role in envenomation (Möller and Marí, 2007;
Dutertre et al., 2008; Ueberheide et al., 2009). We were
surprised that conopressin-T acted as a V1-vasopressin
receptor-selective antagonist, with partial agonist activity
at the oxytocin receptor and replacing Gly9 with Val9 also
switched the activity of vasopressin and oxytocin from
agonist to antagonist (Dutertre et al., 2008). Therefore,
new conopressins may serve as templates for the design of
novel ligands with tailored pharmacological profiles.

Vasopressin and oxytocin receptors belong to the GPCR
family A and apparently bind vasopressins and cono-
pressins in a pocket formed by the arrangement of the
seven transmembrane domains (Mouillac et al., 1995; Du-
tertre et al., 2008). On the basis of extracellular domain
exchanges between and oxytocin receptor, it has been pro-
posed that the three extracellular loops are also important
for agonist binding (Postina et al., 1996). Models of the
interaction of vasopressin with V1 and V3 developed using
a rhodopsin structural template were consistent with most
experimental data and supported by follow-up site-
directed mutagenesis (Rodrigo et al., 2007). At least three
different subpopulations of vasopressin receptors have
been recognized: V1 (or V1a), V2, and V3 (or V1b) (Birn-
baumer, 2000). V1 regulates blood pressure and vasocon-
striction, whereas activation of V2 produces an antidiuretic
effect on the kidney, and stimulation of V3 is responsible
for corticotrophin release from the pituitary gland. Only
one oxytocin receptor has been characterized, and its acti-
vation stimulates the contraction of uterine and mammary
myocytes during parturition and lactation, respectively
(Petersson, 2002). Using such models, it may be possible to
rationally develop vasopressin/oxytocin receptor antago-
nists with tailored selectivity.

D. Neurotensin Receptor Agonists

Contulakin-G (also known as CGX-1160) was isolated
from the venom of Conus geographus and was shown to
possess agonist activity at neurotensin receptors 1
(NTSR1) and 2 (NTSR2) (Craig et al., 1999). The primary
sequence of contulakin-G (ZSEEGGSNATKKPYIL) closely
resembles neurotensin (ZLYENKPRRPYIL), yet contu-
lakin-G is approximately 150-fold less potent at NTSR2
and NTSR1 receptors compared with the endogenous li-
gand, which contains a glycosylation at Thr10 (Craig et al.,
1999, 2001). It is noteworthy that the native peptide was
more biologically active than the synthetic nonglycosylated
peptide (Craig et al., 1999).

Neurotensin plays important roles in neurotransmission
and neuromodulation in the nervous system (Hermans
and Maloteaux, 1998) by activating NTSR1 and NTSR2,
which belong to G protein-coupled receptor family A
(Tanaka et al., 1990; Vita et al., 1993). Both subtypes
exhibit distinct pharmacological properties, NTSR1 show-
ing high affinity for levocabastine, whereas NTSR2 has
much lower affinity (Vita et al., 1998). Docking of neuro-
tensin in the NTSR1 binding pocket was modeled based on
rhodopsin structure (Härterich et al., 2008). Neurotensin
has since been shown also to interact with D2 dopamine
receptor (Fuxe et al., 1992); the recent crystal structure of
D3 dopamine receptor may provide a more appropriate
template to model these interactions (Chien et al., 2010).
Because neurotensin is analgesic, contulakin-G was as-
sessed for its antinociceptive activity in formalin models of
acute and inflammatory pain in rats and dogs (Allen et al.,
2007). Contulakin-G showed an antinociceptive effect
greater than morphine, without motor deficits, prompting
preclinical development and progression to phase I clinical
trials. However, the mechanism by which contulakin-G
induces analgesia remains unclear, because the antinoci-
ceptive effect is realized at a concentration 100-fold lower
than its NTSR1 binding affinity.

VI. Conclusions and Outlook

In addition to their well recognized value as pharmaco-
logical tools to dissect the physiological and pathophysio-
logical roles of ion channels, receptors, and transporters in
a vast range of disease pathways, cone snail venom pep-
tides are attracting growing interest as potential therapeu-
tic leads because of their high potency and specificity at
mammalian targets. With only a fraction of the conopep-
tides identified and characterized to date, the natural
product space of cone snail venom peptides represents a
vast untapped biological resource. Given this potential,
accelerated discovery platforms are becoming increasingly
important to unravel conotoxin diversity. In particular,
high-throughput and high-content approaches promise to
accelerate the discovery of novel bioactives as well as the
potential to provide unique insight into the effects and
mechanisms of action of conopeptides even on heteroge-
neous cell populations such as DRG neurons. In addition,
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recent technological advances and improved bioinformatic
tools have led to the successful application of transcrip-
tomic and proteomic approaches to Conus spp. venom pep-
tide discovery. These approaches are likely to lead to the
rapid identification of novel conotoxins belonging to known
pharmacological classes and to accelerate the identifica-
tion and characterization of conopeptides with new se-
quences and potential novel biological activities.

Naturally occurring conotoxins are ideal scaffolds for the
interrogation of specific pharmacophores using alanine-
scanning mutagenesis approaches, and these structure-
activity relationships can help guide molecular docking
studies to define new allosteric sites on membrane pro-
teins. Detailed studies of the interaction of conotoxins with
their respective pharmacological targets have already pro-
vided invaluable insight into the pharmacology of ion
channels, receptors and transporters. Exemplifying this
are Nav interactions with naturally derived compounds,
including �-, �O-, and �-conotoxins, which have contrib-
uted significantly to our understanding of this channel’s
structure and function. As crystal structures of these mem-
brane protein targets become available, such as the re-
cently reported sodium channel structure (Payandeh et al.,
2011), further refinement of our understanding of toxin-
target interactions will without doubt lead to improved
conotoxin-derived compounds with exceptional affinity and
subtype selectivity. It is noteworthy that non-native disul-
fide bond isomers of conopeptides can also provide useful
membrane protein probes, further expanding on the phar-
macology of conopeptides. For example, the two isomers of
�-AuIB differ in their inhibitory mechanisms, with the
AuIB (ribbon) form competitively inhibiting only �34
nAChRs containing an �3 subunit in the fifth position, an
effect distinct from the native AuIB (globular) form, which
inhibited �34 nAChRs independent of the fifth subunit,
primarily through a noncompetitive mechanism (Grishin
et al., 2010). Furthermore, a structural isomer of �-TIA
named NMB-1 was found to preferentially inhibit the sus-
tained component of mechanically evoked current in DRG
neurons, providing a novel diagnostic tool for the molecular
definition of channels involved in hearing and pressure-
evoked pain (Drew et al., 2007).

In recent years, an increasing emphasis has been placed
on genetic ablation or knockdown of pharmacological tar-
gets to dissect their role in physiology and the pathophys-
iology of disease. However, an inherent flaw of this ap-
proach is that heteromultimeric ion channels composed of
several subunits, such as nAChR or Kv channels, cannot be
targeted selectively. This has profound implications for our
understanding of the composition and identity of receptor
subtypes expressed in native tissues, as well as their phys-
iological roles. The high selectivity and subtype specificity
of conopeptides can yield novel insights especially for such
targets and can help unravel the physiologic and patho-
physiological roles of specific subunit combinations of these
ion channels. Here, the �-conotoxins have proved espe-
cially valuable for chemically dissecting the role of a wide

range of physiologically and pathologically relevant
nAChR subunit combinations.

In addition, the importance of conotoxins as therapeu-
tics in their own right is becoming increasingly apparent.
Both naturally occurring conotoxins such as synthetic
�-MVIIA (ziconotide) or the sequence-optimized 	-cono-
peptide Xen2174 have become either novel pharmaceutics
or promising drug leads. Although conotoxins acting at
peripheral targets can be delivered by systemic routes,
central targets still require direct delivery to the site of
action (e.g., intrathecal injection) because of the limited
permeability of the blood-brain barrier to peptides. How-
ever, our understanding of conotoxin structure-activity re-
lationships is now being applied to the design of smaller,
orally active conotoxin peptidomimetics, with the hope of
engineering novel therapeutic molecules based on the
unique pharmacological properties of conotoxins. The
growing realization of the many limitations inherent to
small molecules, as well as improved peptide dosage form
design and drug delivery strategies, such as liposomal
packaging, pro-drug approaches, conjugation to carrier
molecules, and microinjection devices (Malik et al., 2007),
promise to refocus drug development efforts beyond tradi-
tional approaches to more fully embrace the potential of
peptide therapeutics. The favorable characteristics of cono-
toxins as peptide therapeutics in particular arise from
their small size, relative ease of synthesis and high struc-
tural stability as a result of their disulfide connectivity and
compact, relatively rigid structures. These properties of
conotoxins also impart a low immunogenic potential and
perhaps advantageous pharmacodynamic and pharmaco-
kinetic behavior allowing compartmentalized delivery that
can reduce side effects. For example, delivery of conotoxins
to the intrathecal space could, in principle (on the basis of
limited redistribution because of their peptidic nature),
avoid side effects resulting from on-target effects at differ-
ent sites. In addition, once delivered to these compart-
ments, it seems that many conotoxins are surprisingly
stable, with half-lives of hours or more, rather than min-
utes (Wermeling et al., 2003; Kern et al., 2007). For exam-
ple, a relatively long half-life in cerebrospinal fluid may
also account for the extended duration of action observed
after intrathecal dosing of Xen2174 (Lewis, 2011). In ad-
dition, it is now possible to engineer potentially more sta-
ble N-C-cyclized forms as exemplified by using �-conotoxin
Vc1.1, which retained analgesic activity even after oral
dosing (Clark et al., 2010). Thus, it is now possible to
extend the broadly evolved bioactivity of cone snail venom-
derived peptides to novel uses that will further expand the
potential and unique source of new research tools and
potential therapeutic agents.
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Lluisma AO, López-Vera E, Bulaj G, Watkins M, and Olivera BM (2008) Character-
ization of a novel �-conotoxin from Conus parius Reeve. Toxicon 51:174–180.

Loftis JM and Janowsky A (2003) The N-methyl-D-aspartate receptor subunit NR2B:
localization, functional properties, regulation, and clinical implications. Pharma-
col Ther 97:55–85.

London C, Hoyt SB, Parsons WH, Williams BS, Warren VA, Tschirret-Guth R, Smith
MM, Priest BT, McGowan E, Martin WJ, et al. (2008) Imidazopyridines: a novel
class of hNav1.7 channel blockers. Bioorg Med Chem Lett 18:1696–1701.
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