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Abstract 

The oceans are a rich source of a myriad of structurally different and unique natural products that 

are mainly found in invertebrates with potential applications in different disciplines. Microbial 

infection and cancer are the leading causes of death worldwide. Discovery of new sources of 

therapy for microbial infections is an urgent requirement due to the emergence of pathogenic 

microorganisms that are resistant to existing therapies. Marine bioactives have demonstrated to 

be promising sources for the discovery and development of novel antimicrobial and anticancer 

compounds.  Several marine compounds are confirmed to have antibacterial effects and most 

marine-based antifungal compounds are cytotoxic. Numerous antitumor marine natural products, 

derived mainly from sponges or molluscs, and also bryozoans and cyanobacteria, exhibit potent 

antimitotic activity. In addition, marine biodiversity offers some possible leads or new drugs to 

treat human immunodeficiency virus (HIV).  A majority of marine derived drugs are currently in 

clinical trials or under preclinical evaluation. Furthermore, marine-based drugs, approved by the 

US Food and Drug Administration (FDA) are available in the market. This review summarizes 

the sources, mechanisms of action and potential utilization of marine natural products such as 

peptides, alkaloids, polyketides, polyphenols, terpenoids and sterols as antifungal, antibacterial, 

antiviral, and anticancer compounds. 
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Significance Statement: 

The utilization of bioactive compounds from marine resources as natural health products results 

in a crucial advancement in the field of healthcare and wellness. A valuable source of therapeutic 

potential has been discovered by harnessing the diverse and potent compounds from marine 

organisms. These bioactives offer a promising medicinal value for preventing various diseases, 

promoting overall wellbeing, and advancing pharmaceutical and nutraceutical industries. Their 

sustainable extraction and utilization not only benefit human health but also contribute to the 

conservation of marine ecosystems. Utilizing marine based bioactives implies a transformative 

approach towards enhancing health outcomes and sustainability in our modern world. 
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I. Introduction 

More than 70% of earth’s surface is covered by oceans, and life on earth has its origin in the sea. 

Experts estimated that the biological diversity is higher in certain marine ecosystems, such as 

coral reefs and deep-sea floors, compared to tropical rain forests. Many marine organisms are 

soft bodied and have a sedentary lifestyle necessitating chemical means of defense. Marine 

ecosystem is an excellent source of both biological and chemical diversities. So far, more than 

30,000 natural products have been reported from marine flora and fauna (Lindequist, 2016), and 

since 2008, over 1000 new natural products have been discovered each year as shown in Figure 1 

(Carroll et al., 2024; Shahidi and Santhiravel, 2022). Over the past decades, a variety of natural 

compounds such as polyunsaturated fatty acids, proteins and peptides (e.g., collagen and gelatin), 

enzymes, polyphenols, polysaccharides, pigments, vitamins, and minerals possessing several 

biological activities have been discovered from the marine ecosystem (Barrow and Shahidi, 

2007). 

Marine invertebrates, fishes, seaweeds, and microorganisms are the major groups of marine 

organisms that produce bioactive compounds, and these compounds are commonly extracted 

from their muscles, skin, internal organs, and bones (Lobine et al., 2022). Depending on the 

species, temperature of the ocean, season, and geographical location, composition and diversity 

of bioactive molecules generated by marine species vary considerably. This diversity has been 

the source of unique chemical compounds with the potential for industrial applications as 

pharmaceuticals, nutraceuticals and other nutritional supplements, cosmetics, molecular probes, 

fine chemicals, and agrochemicals (Šimat et al., 2020; Shahidi and Ambigaipalan, 2015). The 

ongoing challenge is to sustainably produce an adequate quantity and quality of these products to 

avoid overexploitation of marine natural resources. 
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The development of new drug therapies has indeed played a crucial role in extending human life 

span and enhancing the overall well-being. In this regard, people have become more and more 

reliant on the safe and effective pharmaceutical products (Nascimento et al., 2023). Traditionally, 

new pharmaceuticals have originated from nature. Currently, more than half of the commercially 

available drugs are either derived from natural sources or synthesized by using natural products 

as templets or starting materials (Geigert, 2023). In recent years, pharmaceutical industries have 

intensified their efforts towards searching for marine organisms, including seaweeds, as a source 

for new drugs from natural products. These products are also being increasingly used in medical 

and biomedical research. Prior to the 1950s, the therapeutic application of marine sources, 

particularly seaweeds, were restricted to traditional and folk medicines (Lincoln et al., 1991). 

The actual development of marine drugs commenced in the 1950s when C-nucleosides, 

spongothymidine and spongouridine were identified from the Caribbean sponge Tethya crypta 

(Bergmann and Feeney, 1951). The discovery of antibiotic class of cephalosporins began with 

the isolation of Cephalosporin C from the fungus Acremonium chrysogenum derived from 

Mediterranean Sea water in the 1940s (Lindequist, 2016).  

During the 1980s and 90s, molecules with therapeutic potential were identified from marine 

invertebrates, algae, and bacteria. Between 1977 and 1987, algae, sponges, and cnidarians 

contributed to around 35, 29, and 22% of the discovery of novel chemical compounds, 

respectively (Ireland et al., 1993). However, the identification of new natural products from 

seaweeds has decreased since 1995, and marine microorganisms have started gaining more 

attention (Kelecom, 2002). Studies have reported many pharmacologically active novel 

compounds that are probably used as protection mechanisms by marine organisms against their 

predators. Marine invertebrates that are sessile or slow moving and mostly lack morphological 
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defense structures, such as sponges, tunicates, and certain molluscs, and hence have provided the 

largest number of marine-derived secondary constituents, including some of the most interesting 

drug candidates (Romano et al., 2022; Liu et al., 2019a). Marine biodiversity also offers some 

possible leads or new drugs to treat the human immunodeficiency virus (HIV). 

Till to date, marine species are screened for their antioxidant, antimicrobial, anticancer, 

neuroprotective, anti-inflammatory, anti-diabetic, anti-obesity, lipid-lowering, skin protective and 

sleep enhancing properties (Shahidi and Santhiravel, 2022).  These properties are widely utilized 

in the new drug development across the world. Among these, certain marine-derived drugs are 

approved by Food and Drug Administration (FDA) and European Union (EU) and various drugs 

are in different phases of clinical trials, while a huge number of marine based molecules are in 

the pre-clinical testing pipelines (Malve, 2016).  

Several recent comprehensive reviews have emphasized on the anti-diabetic (Agarwal et al., 

2023), cardioprotective (Akram et al., 2023), anti-inflammatory (Khursheed et al., 2023), and 

neuroprotective (Pereira and Valado, 2023) effects of marine bioactives. However, there is a gap 

in comprehensive reviews addressing the antimicrobial properties of marine natural products. 

Moreover, cancer is the second leading cause of death globally (WHO, 2022) and microbial 

infectious diseases are the leading causes of death in low-income countries (WHO, 2020). This 

global burden of cancer and infectious diseases necessitates the development of novel anticancer 

and antimicrobial drugs from natural sources. In this context, marine bioactives have great 

potential for novel drug development since they have been proven to exhibit anticancer, 

antibacterial, antifungal, and anticancer activities (Wong et al., 2023; Das et al., 2023). 

Therefore, a comprehensive review on the antimicrobial and anticancer properties of marine 

natural products is needed for guiding the future research and clinical applications. This review 
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focusses mainly on antifungal, antibacterial, antiviral, and anticancer activities of proteins and 

peptides, alkaloids, polyketides, polyphenols, terpenoids, and sterols isolated from marine 

ecosystem during the period of last 30 years, with the emphasis on the challenges and future 

trends associated with the development of pharmaceutical products from the marine origin 

(Figure 2). 

II. Mechanism of action of antifungal, antibacterial, antiviral, and anticancer activities 

exhibited by marine sources 

A. Antifungal Activity 

Fungi are a ubiquitous group of organisms that play a major role in different ecosystems, 

including decomposition of organic matter. Fungi are also utilized in the pharmaceutical 

industries for the purpose of obtaining certain drugs such as immunosuppressant, and antibiotics, 

among others. However, certain fungi can target different types of organs or tissues, namely 

lungs, neurons, and bones and threaten human health (Elabboubi et al., 2019). These fungal 

infections might be related to significant morbidity and mortality. The increase in the incidence 

of fungal infections is due to the emergence of resistant pathogens and their nosocomial 

dissemination, especially among immune-compromised or neutropenic patients. Scientific efforts 

to discover potential new antifungal drugs are principally leaned towards synthetic and natural 

products of plant origin. Fungi cells are eukaryotic, containing nucleus (DNA), endoplasmic 

reticulum, mitochondria, and Golgi apparatus. They differ from the mammalian cell membrane 

only by the type of sterol present in their cell membranes. Cholesterol is the major component of 

mammalian cell membrane, whereas fungal cell membranes mainly contain ergosterol (Lagrouh 

et al., 2017).  
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Several mechanisms of action have been proposed for the antifungal activity of secondary 

metabolites: (1) Disruption of cell wall integrity by inhibiting the fungal cell wall formation via 

prevention of the synthesis of -glucans and chitins, the major cell wall components. Since 

bioactives can suppress -glucan synthase and chitin synthase enzyme activities, involved in the 

synthesis of -glucans and chitins, respectively (Walker and White, 2012); (2) Dysfunction of the 

mitochondria leading to a lower level of ATP generation and the following cell death. It is 

because natural products can inhibit the components (proteins) of electron transport chain such 

as complexes I, II, III, or IV and they can also depolarize the mitochondrial membranes 

(Agostini-Costa et al., 2012); (3) Suppression of RNA/ DNA or protein synthesis by influencing 

the transcription factors and enzymes involved in their synthesis such as RNA/DNA polymerase, 

topoisomerase, and tRNA synthetase. (Lagrouh et al., 2017); (4) Disruption of cell membrane 

when ergosterols are bound by antifungal agents or their synthesis is inhibited by ergosterol 

biosynthesis inhibitors which can suppress the activity of enzymes involved in ergosterol 

synthesis pathway such as squalene epoxidase (ERG1) and lanosterol synthase (ERG 7) (Walker 

and White, 2012); (5) Inhibition of efflux pumps by binding to active sites of efflux pumps like 

ATP-binding cassette transporters (Kang et al., 2010); or (6) Prevention of cell division via 

inhibition of the mitotic spindle formation by supressing the function of microtubule associated 

proteins and mitotic kinase (Lagrouh et al., 2017). Figure 3 illustrates the schematic diagram of 

the different mechanisms of action of antifungal activity of secondary metabolites. 

Over the last few decades, marine environment has been recognized as a rich source of bioactive 

metabolites with varied biological and pharmacological activities. Among these natural products, 

numerous molecules with promising antifungal properties have been extracted from marine 

invertebrates, algae, and microorganisms. Sponges are identified as the major source of 
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antifungal metabolites, followed by bacteria and fungi (Cardoso et al., 2020). From 2000 to 

2015, approximately 65% of the marine bioactive compounds exhibiting antifungal effects were 

identified from sponges and bacteria (El-Hossary et al., 2017). The remarkable chemical 

diversity of secondary metabolites produced by marine organisms contributes to the discovery 

and development of novel drugs for the prevention and treatment of several fungal infections 

(Alves et al., 2020). 

B. Antibacterial Activity 

Bacterial infection is one of the leading causes of death in both developed and developing 

countries, and resistance to antibiotics is a major health challenge and threat to public health 

globally [20]. The antibacterial resistance is either by intrinsic or acquired resistance (from other 

pathogenic bacteria) or their combination. Therefore, several strategies should be followed to 

overcome the bacterial resistance by employing novel antibacterial agents. Subsequently, the 

urge to find new compounds for treating bacterial infection has become a pressing global issue. 

Two mechanisms are mainly involved in the antibacterial activity of natural compounds by 

affecting the function or biosynthesis of essential components of bacteria and overcoming the 

antibacterial resistance (Yan et al., 2021).  

These mechanisms include (Figure 4) (1) Inhibition of biosynthesis of bacterial cell-wall by 

affecting the enzymes involved in the synthesis pathway of peptidoglycans such as 

transpeptidase and transglycosylase (Galinier et al., 2023); (2) Affecting the synthesis of 

bacterial proteins by inhibiting the ribosomal function (binding to ribosomal subunits) and tRNA 

binding via suppressing aminoacyl-tRNA synthetase (Pang et al., 2021); (3) Prevention of DNA 

replication and repair by blocking the enzymes involved in DNA synthesis such as DNA 

polymerase, helicases, and primases, as well as influencing the nucleotide excision repair and 
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base excision repair mechanism (Barreiro and Ullán, 2016); (4) Destruction of bacterial cell 

membrane by binding to phospholipids and interacting with lipopolysaccharides in the outer 

membrane (Nowotarska et al., 2014); and (5) Inhibition of a metabolic pathway of amino acid, 

nucleotide, folate, coenzyme, fatty acid, and energy synthesis by interfering with enzymes 

involved in their synthetic pathways (Alamgir, 2018). 

A large number of natural compounds with antibacterial activity has been isolated from different 

natural sources (Stan et al., 2021; Quinto et al., 2019). However, the efficacy of those 

compounds may differ due to the structural difference in the cell wall of Gram-positive and 

Gram-negative bacteria. Several marine-based compounds have demonstrated antibacterial 

effects. For instance, squalamine, isolated from dogfish shark Squalus acanthias, showed 

powerful antibacterial activity against both Gram-positive and Gram-negative bacteria (Moore et 

al., 1993).  

C. Antiviral Activity 

Viruses, a class of pathogenic microorganisms, threaten the health and safety of humans. Several 

epidemics have broken out over the past centuries killing thousands of people. Among all 

infections, viral pathogens cause more serious damage. However, the development of remedy to 

treat viral infection has been slow and only a few clinically approved antiviral drugs are 

available. For instance, the development of drugs to treat human adenovirus (HAdv) infections is 

still a great challenge for medicinal chemists (Pech-Puch et al., 2020). Moreover, fatal viral 

diseases such as hepatitis B, AIDS, influenza, and other diseases have not yet been completely 

eradicated. In addition, due to the increasing resistance of available drugs to viral infections, the 

need to develop new antiviral therapies has intensified. Exploration of marine resources for 

antiviral activity has yielded a remarkable number of bioactive natural products. Around 89 
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antiviral compounds, belonging to 8 structural classes, have been identified from marine 

microorganisms from 2015 to 2019 (Teng et al., 2020). 

Numerous marine species, including tunicates, sponges, echinoderms, and microbes, exhibit 

considerable inhibitory activities against pathogenic viruses. Marine-derived compounds 

displaying antiviral activities are included in the chemical classes of terpenes, peptides, 

polyketides, polysaccharides, and nitrogen-containing compounds. Khan et al. (2021) 

investigated the potency of certain marine-based compounds against SARS CoV-2 main protease 

(PDB ID 6MO3) and reported that these compounds may be used as a potential inhibitor 

targeting SARS CoV-2 for better management of COVID-19. 

Different phases of lifecycle of viruses have been the target for the discovery of novel antiviral 

compounds. Fundamental stages of the enveloped virus lifecycle of entry, synthesis, and 

assembly are interrupted by the natural antiviral products. Viral uncoating, viral penetration, 

viral particle or virion inhibition (virucidal effect), endosomal escape, viral genome replication, 

adsorption (cellular association), and viral assembly, packaging, and release are the major 

inhibition sites of antiviral compounds (Kausar et al., 2021; Vilas Boas et al., 2019; Magden et 

al., 2005).  

D. Anticancer Activity 

Cancer, an abnormal growth of cells and tissues, is still the leading cause of death globally. So 

far, over 277 different types of cancer have been diagnosed and the most prominent ones are 

lung, rectum, breast, prostate, urinary bladder, and bronchus cancers (Khalifa et al., 2019). 

According to WHO, nearly 18.1 million cancer cases were reported around the world and cancer 

accounts for approximately 10 million deaths in 2020 (WHO, 2022). The traditional therapeutic 

approaches include surgery, radiotherapy, chemotherapy, immunotherapy, and combination of 
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multiple therapies that may trigger irreversible injury to the important organs near to tumors. In 

addition, due to the increasing drug resistance, the discovery and development of novel active 

chemotherapeutic agents is highly desirable. Natural compounds are regarded as the most 

remarkable anticancer agents. Approximately 65% of the anticancer drugs commercially 

available in Europe and the USA are of natural origin, either microbially-derived or extracted 

from plant sources (Newman and Cragg, 2012). 

At present, there is a growing interest for potential anticancer agents derived from the marine 

ecosystem. Improvements in the technology of deep-sea collection and culture and the increasing 

understanding of marine biodiversity have raised the interest of exploring the ocean as a potential 

source of new anti-cancer candidates. Several antitumor marine natural products, derived mainly 

from marine sponges or molluscs, but also bryozoans and cyanobacteria, exhibit potent 

antimitotic activities. The marine pharmacology literature highlights the fact that the discovery 

of novel marine antitumor agents continued to increase between 1998 and 2022 (Dyshlovoy and 

Honecker, 2022; Mayer and Lehmann, 2001). Examples of antitumor compounds isolated from 

marine organisms include didemin B from a marine tunicate, bryostatin 1 from marine bryozoa, 

dolastatin 10 from sea hare, as well as halichondrin B, calyculin A and mycalamides A and B 

from sponges (Khalifa et al., 2019). 

Several mechanisms of action are involved in the anticancer activities of natural compounds. 

These compounds have created exciting new means for, (1) Disrupting tumor-specific cell 

signalling mainly by blocking ligand binding to receptor tyrosine kinases and inhibiting their 

activity (Ghosh et al., 2020); (2) Preventing cell division by targeting the cell division regulators 

such as cyclin-dependent kinases (CDKs) (Santo et al., 2015); (3) Suppressing energy 

metabolism by the inhibition of enzymes involved in glycolysis, TCA cycle, amino acid and fatty 
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acid metabolism, among others (Muniraj et al., 2019); (4) Modifying gene expression mainly by 

epigenetic modification and inhibition of transcription factor binding (Huang et al., 2018); (5) 

Inducing apoptosis and necrosis through intrinsic (mitochondrial) and extrinsic (death receptor) 

pathways (Lossi, 2022); (6) Blocking proliferation by the cell cycle arrest by the inhibition of 

CDKs and DNA damage; (7) Inhibiting invasion and metastasis through the suppression of 

epithelial-mesenchymal transition and matrix metalloproteinases (Ge et al., 2022); and (8) 

Inhibiting angiogenesis via blocking vascular endothelial growth factor (VEGF) signalling by 

targeting tyrosine kinase activity of VEGF receptors (Cerezo et al., 2019); and preventing tumor 

promoting inflammation by inhibiting pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), 

modulating nuclear factor kappa B (NF-κB) pathways, and suppressing cyclooxygenase-2 and 

lipoxygenase enzymes (Al-Khayri et al., 2022) as shown in Figure 5. Marine-based bioactive 

compounds exhibiting anticancer activities include peptides, phenols, alkaloids, sterols, and 

terpenoids, among others.  

III. Marine resources for pharmaceutical and medical products 

Research into pharmacological properties of marine natural products has led to the discovery of 

many potent active agents considered worthy of clinical application. The marine environment is 

an exceptional reservoir of bioactive natural products, many of which exhibit structural and 

chemical features not found in terrestrial natural products (Khalifa et al., 2019). As mentioned 

above, the first marine-based bioactive compounds, C-nucleosides, spongothymidine and 

spongouridine, were discovered from Caribbean sponge Cryptothecaa crypt by Bergmann and 

Feeney in 1951 (Bergmann and Feeney. 1951). Later in mid 1960s, these compounds were 

proven to possess anticancer and antiviral activities (Cragg et al., 1997). In 1970s, research on 

marine products accelerated and began to appeal to different disciplines, including biochemistry, 
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biology, ecology, organic chemistry, and pharmacology. Since the 1970s, more than 15,000 

structurally diverse natural products with different bioactivities have been discovered from 

marine microbes, algae, and invertebrates (Mohamed et al., 2021). A majority of marine natural 

products have been obtained from sessile soft-bodied invertebrates, such as sponges and cnidaria. 

Most of the marine-based bioactive compounds, which have the application as natural health 

products, are categorized into groups of proteins and peptides, alkaloids, polyketides, and 

polyphenols. 

A. Protein and Peptides 

Ocean is an important biological ecosystem with an excellent source of novel functional proteins 

and peptides. Peptides are made up of an amino acid sequence, mostly in the range of 2 to 20 

amino acid residues. Bioactive peptides, protein fragments, exhibit biological activities when 

released from the parent protein. Marine derived peptides possess numerous functionalities 

including antiviral, anticancer, antimicrobial, and cardioprotective effects, among others. 

Antimicrobial peptides are generally classified based on their prevalence of cationic and 

hydrophobic amino acid residues (Cunha and Pintado, 2022).  

1. Antifungal 

Caspofungin is a well-known antifungal peptide with the MIC50 values typically in the range of 

0.03-0.1 μg/mL against Candida albicans (Pfaller et al., 2006) and around 0.5-1 μg/mL against 

Aspergillus fumigatus (Espinel-Ingroff, 2003). Numerous studies have shown that marine-based 

peptides are potent antifungal agents. Recently, Karim et al. (2021) isolated two bicyclic 

peptides, namely nyuzenamides A and B, from deep sea water Streptomyces collected from Sea 

of Japan. Nyuzenamide A exhibited potent antifungal activity against human and plant pathogen, 

Trichophyton rubrum NBRC5467 and Glomerella cingulata NBRC5907 with the minimum 
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inhibitory concentration (MIC) values of 6.3 and 3.1 g/mL, respectively, while nyuzenamide B 

was weakly active against these two fungi with the MIC value of 25 g/mL. Maribasins C-E and 

maribasins A-B, cyclic lipopeptides isolated from marine gorgonian-associated 

fungus Aspergillus sp. SCSIO 41501 (Trichocomaceae), exhibited antifungal activity against five 

fungal strains such as Fusarium oxysporum, Curvularia australiensis, Pyricularia oryzae, 

Alternaria solani, and Colletotrichum gloeosporioiles with the MIC values of 3.12–50 μg/disc 

(Yao et al., 2021). 

Moreover, a bicyclic glycopeptide theonellamide G extracted from Red Sea sponge Theonella 

swinhoei inhibited the activity of wild and amphotericin-B-resistant strains of C. albicans, with 

an IC50 of 4.49 and 2.0 M, respectively (Youssef et al., 2014). Gageopeptides A-D, discovered 

from the marine based bacterium Bacillus subtilis, showed antifungal effects towards pathogenic 

fungi P. capsica, C. acutatum, R. solani, and B. cinerea with MIC values of 0.02-0.06 M 

(Tareq et al., 2014a). In addition, mohangamide A, a dilactone-tethered pseudodimeric peptide, 

was identified from a marine-derived Streptomyces sp. Mohangamide A was active against C. 

albicans isocitrate lyase with an IC50 value of 4.14 mg/mL (Bae et al., 2015).  

2. Antibacterial 

Living organisms use antibacterial peptides as an important tool to combat bacterial infections. 

Daptomycin and vancomycin are the well-established antibacterial peptide. MIC values of 

daptomycin is typically ≤1 μg/mL against all MRSA isolates (Moses et al., 2020) and MIC value 

of vancomycin against vancomycin-sensitive S. aureus is ≤2 μg/mL (Wang et al., 2006). Marine 

environment is a rich source of antibacterial peptides with new discoveries. These peptides can 

act against a broad spectrum of bacteria including both Gram-positive and Gram-negative 

bacteria.  For instance, Oreoch-1, isolated from Teleost fish, tilapia gills Oreochromis niloticus, 
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was active against Gram-positive bacteria, namely B. subtilis (MIC = 3 M) and S. aureus (MIC 

= 5 M), and Gram-negative bacteria such as E. coli (MIC = 6.7 M) and P. aeruginosa (MIC = 

35 M) (Acosta et al., 2013). Further, SpHyastatin, obtained from Crab Scylla paramamosain, 

had potential effect towards Gram-positive bacteria (S. aureus, Micrococcus luteus, 

Micrococcusluteus, and Corynebacterium glutamicum), and Gram-negative bacteria 

(Pseudomonas stutzeri, Aeromonashydrophila, and P. fluorescens) with MIC values in the range 

of 0.63-2.5 M (Shan et al., 2016). 

Chemical investigation of Antarctic Fish Parachaenichthys charcoti yielded a moronecidin-like 

peptide called MoroPC-NH2, which exhibited antibacterial activity against Gram-positive S. 

aureus, L. monocytogenes, and Streptococcus pyogenes with MICs < 5 M and Gram-negative 

Psychrobacter sp., E. coli DH5, and Shigella sonnei with MICs < 5 M (Shin et al., 2017). 

Venerupis philippinarum defensin (VpDef), obtained from a clam Venerupis philippinarum, 

displayed potent antibacterial properties against Micrococcus luteus (MIC = 6.25-12.5 M) and 

Enterobacter aerogenes (MIC = 12.5-25 M) (Zhang et al., 2015a). In addition, Qin et al. (2014) 

extracted Mytichitin-CB, an antimicrobial peptide with 55 amino acid residues, from 

Hemolymph of Mytilud coruscus. This peptide was effective against different species of bacteria, 

including  S. luteus, B. subtilis, B. megaterium, and S. aureus with MIC values < 5 M. SA-

hepcidin2, a cysteine rich antibacterial peptide isolated from spotted scat fish Scatophagus argus, 

exhibited activity against S. aureus, Vibrio anguillarum, and V. alginolyticus with MIC values of 

50 M (Gui et al., 2016). Antibacterial activities of marine derive peptides discovered after 2010 

are explained in Table 1. 
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3. Antiviral 

Antiviral peptides are short-chain peptides with 12-50 amino acid residues. Among all the 

general characteristics of antimicrobial peptides, hydrophobicity is the key feature for antiviral 

peptides to act against enveloped viruses (Wang et al., 2017), particularly hydrophobic cysteine 

residues that are abundant in antiviral peptides (Mishra et al., 2012). The mechanism of action of 

antiviral peptides includes direct inhibition of viral pathogenesis or host cell infection by directly 

binding to the viral target and indirect inhibition by attaching to the target site on the host 

surface, inhibiting viral enzymes associated with intracellular replication and transcription, and 

suppressing viral gene expression (Kausar et al., 2021; Gao et al., 2021). Enfuviride is a common 

antiviral peptide drug and its IC50 value is in the range of 0.01 to 0.1 M against HIV-1. 

Ford et al. (1999) found that cyclic depsipeptides papuamides A and B, derived from sponges 

Theonella mirabilis and Theonella swinhoei, inhibit the infection of HIV in T-lymphoblastic 

cells. Marine sources are regarded as potential therapeutics to treat HIV and have gained much 

attention as natural anti-HIV compounds due to the several side effects, resistance, and toxicity 

of commercially available anti-HIV drugs (Singh and Bodiwala, 2010). Examples of compounds 

exhibiting anti-HIV activities include mollamide F, stellettapeptines A and B, malformin C, 

mirabamides E-H, and divamide A (Sukmarini, 2022). Certain peptides have also proven to 

exhibit potent antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), an epidemic associated with high rates of mortality. Plitidepsin, a cyclic depsipeptide 

originally identified from tunicate Aplidium albicans, has been shown to possess antiviral 

activity against SARS-CoV-2 with 90% inhibitory concentration of 0.88 nM (White et al., 2021). 

Table 2 summarizes some antiviral peptides derived from marine sources. 
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4. Anticancer 

Numerous anticancer peptides have been isolated from different marine sources, such as 

sponges, fungi, ascidians, cyanobacteria, fish, and mollusks. For example, nearly 2500 new 

peptides with anti-cancer activities have been discovered from marine flora from 2002 to 2012 

(Malaker and Ahmad, 2013). Currently, various novel marine-derived anti-tumor peptides and 

their derivatives have been largely used in clinical research (Dyshlovoy and Honecker, 2020). 

Anticancer potential of bioactive peptides is mainly dependent on the structural properties of 

peptides attributed to their varying unusual amino acid residues (Cheung et al., 2015). 

Mechanism of anti-cancer activity of peptides include induction of apoptosis, inhibition of cell 

migration, prevention of cell cycle arrest, and disorganization of tubulin structure (Srinivasan et 

al., 2020). Cancer cell apoptosis caused by peptides is mainly through the collapse of cellular 

membrane. Overall charge of the outer surface of the of cancer cells is negative due to their 

higher concentration of anionic phosphatidylserine. Therefore, cationic anticancer peptides can 

bind to the surface of the cell membrane and cause their breakdown and prompt cell apoptosis 

(Yang et al., 2013). Bortezomib (Velcade®), peptide-based proteasome inhibitor, is a well-

known anticancer drug with the IC50 of 1.9 to 10.2 nM against multiple myeloma cell lines 

(Shabaneh et al., 2013). However, IC50 values vary depending on the specific target cell lines. 

Cyanobacteria are considered as a remarkable source of bioactive peptides exhibiting anticancer 

activities. Different types of anticancer peptides derived from cyanobacteria include apratoxins 

A-D, coibamide A, bisebromoamide, aurilide B and C, cryptophycin, hectochlorin, 

grassypeptolide A-E, desmethoxymajusculamide C, coibamide A, desmethoxymajusculamide 

C, hantupeptin A, itralamide A and B, hormothamnin A, largazole, lagunamide A-

C, symplocamide A, laxaphycin A and B, and tasiamide B, among others. Apratoxin A, a cyclic 
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depsipeptide isolated from cyanobacterium Lyngbya majuscule, exhibited anticancer activity in 

human tumor cell lines such as epidermal KB carcinoma cancer cells and LoVo colon carcinoma 

cancer cells, with IC50 values of 0.52 and 0.36 nM, respectively (Luesch et al., 2002). Apratoxin 

D showed in vitro cytotoxicity against H-460 lung cancer cells with IC50 value of 2.6 nM 

(Gutiérrez et al., 2008). 

Anti-proliferative peptides derived from marine fungi include azonazine, sansalvamide A, 

and scopularides A and B and tunicates include aplidin and didemnin B. Chemical analysis of 

Fusarium sp. derived from marine plant Halodule wrightii yielded a cyclic depsipeptide, 

sansalvamide A exhibiting cytotoxic activity towards several cell lines, namely colon, pancreatic, 

prostrate, breast sarcoma, and melanoma cancer cell lines (Vasko et al., 2010), while azonazine, 

obtained from Aspergillus insulicola (collected from Hawaiian marine sediments), displayed 

cytotoxic activity in HCT-116 cell line with IC50 value < 15 ng/mL (Wu et al., 2010). Didemnin 

B, discovered from marine tunicate Trididemnum solidum, exhibited potent anti-tumor activity 

towards human prostatic cancer cell line with IC50 value of 2 ng/mL in L1210 leukemia cells and 

antiproliferative properties on B16 melanoma and P388 leukemia cells (Kotoku et al., 2006). 

Sponge-derived peptides, mainly cyclodepsipeptides, display a wide range of anticancer 

activities. Examples of these peptides are arenastatin A, geodiamolide H, homophymine A-

E, discodermin A-H, hemiasterlin A and C, orbiculamide A, koshikamide B, jaspamide, 

microcionamide A and B, scleritodermin A, papuamide A-F, and rolloamide A. Exploration of 

marine sponge Scleritoderma nodosum resulted in the isolation of a cyclic peptide 

Scleritodermin A, which exhibited in vitro anticancer activities towards different human cancer 

cell lines such as A2780 ovarian carcinoma, HCT116 colon carcinoma, and SKBR3 breast 

carcinoma with IC50 values of 0.94, 1.92, and 0.97 µM, respectively (Liu et al., 2008; Schmidt et 
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al., 2004). Some other examples of marine peptides possessing anticancer activities are presented 

in Table 3. 

B. Alkaloids 

Alkaloids are a broadly distributed and a vastly diverse group of compounds. Depending on their 

chemical structure, biosynthetic pathway, biological activity, and heterocyclic and non-

heterocyclic composition, alkaloids can be classified in several subclasses such as indole 

alkaloids, guadinine alkaloids, sterol alkaloids, pyridoacrine alkaloids, isoquinoline alkaloids, 

aminoimidazole alkaloids, and pyrrole alkaloids. A variety of biologically active metabolites 

containing an indole ring have been identified from marine sponges. They include 

tryptophan/tryptamine derivatives, clionamide, topsentin A, jaspamide, and fascaplysin, among 

others (Roll et al., 1988; Andersen et al., 1979). Marine-based alkaloids, a large and structurally 

diverse group of natural products, are used in the development of several antibacterial drugs. 

1. Antifungal 

Berberine is a well-known antifungal supplement extracted from natural sources, exhibiting 

antifungal properties against Candida species. It exhibits varying MIC against different Candida 

species between 16 μg/mL against C. krusei and >128 μg/mL against C. haemulonii (Freile et al., 

2003). Studies on Australian marine sponge Xestospongia exigua yielded dimeric 2,9-

disubstituted 1-oxaquinolizidine alkaloids xestospongin A, C, and D (Moon et al., 2002; 

Nakagawa et al., 1984). Demethylxestospongin C and xestospongin A, C, and D (Figure 6) 

exhibited moderate inhibitory effect towards a fluconazole-resistant C. albicans ATCC 14503 

strain with the MIC value of 100 μg/mL (Moon et al., 2002).  
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Haga et al. (2013) isolated four novel 4-hydroxy-2-pyridone alkaloids, didymellamides A-D, 

from the marine-based fungus Stagonosporopsis cucurbitacearum. They found that 

didymellamide A displayed antifungal effect against azole-resistant and -susceptible C. albicans, 

C. glabrata, and Cryptococcus neoformans (MIC = 1.6 or 3.1 μg/mL) and didymellamide B 

acted against C. neoformans (MIC = 6.3 μg/mL), whereas didymellamides C and D exhibited no 

effect against fungi. Therefore, it was proposed that hydroxamic acid moiety has an influence on 

the antifungal property of alkaloids. Moreover, caerulomycin A (Figure 7), isolated from the 

marine actinomycete Actinoalloateichus cyanogriseus, inhibited two fluconazole-resistant C. 

krusei GO3 and C. glabrata HO5 (MICs in the range of 0.39–1.56 μg/mL) (Ambavane et al., 

2014). 

Evaluation of antifungal activity of an alkaloid 5-bromo-8-methoxy-1-methyl-𝛽�-carboline 

(Figure 7), purified from New Zealand bryozoan Pterocella vesiculosa, proved its inhibitory 

effect against C. albicans and Trichophyton mentagrophytes (MID = 4-5 𝜇�g/mL) (Till and 

Prinsep, 2009). Takahashi et al. (2012) isolated nakijinamines A, B, F-I, and 6-bromoconicamin 

from an Okinawan marine sponge Suberites sp. and evaluated their antimicrobial properties. It 

was found that nakijinamine A (Figure 7) exhibited antifungal action towards C. albicans (IC50 = 

0.25 𝜇�g/mL), Trichophyton mentagrophytes (IC50 = 0.25 𝜇�g/mL), and C. neoformans (IC50 = 0.5 

𝜇�g/mL), whereas nakijinamines B and C (Figure 7) inhibited the growth of C. albicans (IC50 = 8 

𝜇�g/mL). 

Investigation of Okinawan marine sponges Hyrtios spp. led to the discovery of novel indole 

alkaloids, hyrtimomines A-C (Momose et al., 2013), hyrtimomines D and E (Tanaka et al., 

2013a), and hyrtimomines F-K (Tanaka et al., 2014). Hyrtimomine A showed inhibitory activity 

against A. niger (IC50 = 4.0 𝜇�g/mL), while hyrtimomines A and B (Figure 8) were active against 
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C. neoformans (IC50 = 2.0 and 4.0 𝜇�g/mL, respectively) and C. albicans (IC50 = 1.0 𝜇�g/mL 

each). Hyrtimomines F, G, and I (Figure 8) showed antifungal effect towards Aspergillus niger 

(IC50 = 8.0 𝜇�g/mL each) and hyrtimomine I inhibited C. neoformans (IC50 = 4.0 𝜇�g/mL) 

(Tanaka et al., 2014). Recently, two novel quinazoline indole alkaloids, fumigatosides E and F 

(Figure 8), were discovered from the deep-sea fungus Aspergillus fumigatus SCSIO in the Indian 

Ocean. Fumigatosides E exhibited strong antifungal activity against Fussarium oxysporum sp. 

momordicae and moderate inhibitory effect towards F. oxysporum sp. cucumerinu (Limbadri et 

al., 2018). 

Hyrtinadines C and D, new bisindole alkaloids, were extracted from a marine sponge Hyrtios sp. 

(Okinawa, Japan). Hyrtinadine C exhibited inhibitory activity against A. niger with IC50 value of 

32 µg/mL (Kubota et al., 2016). Kubota et al. (2015) identified two novel 

bromotyrosine alkaloids, tyrokeradines G and H, from a marine sponge of the order Verongida 

(Okinawa, Japan). Both compounds displayed antifungal effect towards A. niger with IC50 value 

of 32 μg/mL for each, whereas tyrokeradine G was active against Cryptococcus 

neoformans (IC50 = 16 μg/mL). Bromopyrrole alkaloids namely, longamides D-F, 2-oxethyl-3-

[1-(4,5-dibromopyrrole-2-yl)-formamido]-methyl propionate, and 3-oxethyl-4-[1-(4,5-

dibromopyrrole-2-yl)-formamido]-butanoic acid methyl ester , isolated from the South China Sea 

sponge Agelas sp., showed antifungal activity versus C. albicans in a Caenorhabditis 

elegans candidiasis model (Zhu et al., 2016). 

South China Sea sponge Agelas nakamurai derived diterpene alkaloids, such as isoagelasine C, 

agelasine B, agelasine J, nemoechine G, isoagelasidine B, and (-)-agelasidine C, exhibited 

potential antifungal effect towards C. albicans (MICs ranging from 0.59 to 4.69 μg/mL) (Chu et 

al., 2017). Chemical investigation of an Okinawan marine sponge Amphimedon sp. yielded a 
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new manzamine alkaloid zamamidine D, which was active against Cryptococcus neoformans 

IFM62681and Trichophyton mentagrophytes IFM62679 with IC50 values of 2 and 8 μg/mL, 

respectively (Kubota et al., 2017). Recently, Shaala et al. (2021) discovered two dimeric 

alkaloids fusaripyridines A and B from the organic extract of the fungus Fusarium sp. LY019 

associated with Red Sea sponge Suberea mollis. Both compounds exhibited antifungal activity 

versus C. albicans with MIC value of 8.0 µM. 

In a recent study, the analysis of South China Sea fungus Talaromyces mangshanicus 

BTBU20211089 resulted in the discovery of seven new compounds such as talaromydene, 

talaromylectone, talaromanloid A, ditalaromylectones A and B, 10-hydroxy-8-

demethyltalaromydine, and 11-hydroxy-8-demethyltalaromydine, along with seven known 

natural products. Among these compounds, ditalaromylectones A and B exhibited antifungal 

activity towards C. albicans with an MIC value of 200 μg/mL (Zhang et al., 2022). 

Indolepyrazines A and B, obtained from marine based Acinetobacter sp. ZZ1275, exhibited 

antifungal activity against C. albicans with MIC value of 12-14 μg/mL (Anjum et al., 2019). 

Furthermore, two diketopiperazine alkaloids cyclo(L-Phe-cis-4-OH-D-Pro) and cyclo(L-Phe-

trans-4-OH-L-Pro) were isolated from a sponge Callyspongia siphonella derived actinomycete 

strain Streptomyces coelicolor LY001. Both compounds were more active against C. albicans 

with MIC of 32 µg/mL (Shaala et al., 2020). Eutypellenoid B, isolated from Arctic fungi 

Eutypella sp. D-1, displayed inhibitory effect towards C. albicans, C. parapsilosis, C. tropicalis, 

and C. glabrata with MIC values of 8, 8, 32, and 16 μg/mL, respectively (Yu et al., 2018a). 

Some examples of marine based alkaloids exhibiting antifungal activities are presented in Table 

4. 
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2. Antibacterial 

Alkaloids groups such as pyrrolidines, pyrrolizidines, indoles, quinazolines, quinolines, 

diketopiperazines, and purines exhibit antibacterial activities. Mechanism of action of 

antibacterial activity of most alkaloids is the inhibition of efflux pump (Cushnie et al., 2014). 

Recently, Wang et al. (2022a) identified six novel phenethylamine-containing alkaloids, 

dispyridine, discolins A and B, dispyrrole, and dispyrrolopyridine A and B, from predatory 

bacterium Tenacibaculum discolor sv11. Among these compounds, dispyrrole exhibited 

moderate inhibitory activity towards Gram-positive bacteria. Dispyrrolopyridine A and B 

displayed strong activity against B. subtilis DSM10, Mycobacterium smegmatis ATCC607, S. 

aureus ATCC25923, and L. monocytogenes DSM20600 with MIC values ranging from 0.5 to 4 

μg/mL, whereas dispyrrolopyridine A showed potent activity against efflux pump deficient E. 

coli ATCC25922 (MIC = 8 μg/mL) and Caenorhabditis elegans N2 (MIC = 32 μg/mL). 

Exploration of deep-sea sediment-derived fungus Aspergillus fumigatus SCSIO41012 yielded 

two new alkaloids fumigatosides E and F (Figure 9) along with five known compounds. Among 

these compounds, fumigatosides F exhibited antibacterial activity against Acinetobacter 

baumannii ATCC 19606 with a MIC value of 6.25 µg/mL (Limbadri et al., 2018). Pyrrospirone 

C–F and I (Figure 9), obtained from Fungus Penicillium sp. ZZ380, derived from a wild crab 

(Pachygrapsus crassipes), inhibited the growth of Gram-negative E. coli and Gram-positive S. 

aureus with MIC values of 3.0 μg/mL and 1.7 μg/mL, respectively (Song et al., 2019). A list of 

alkaloid compounds with the potential antibacterial activities is presented in Table 5. 

3. Antiviral 

Sun et al. (2015) isolated several tetramic acid derivatives containing a decalin ring, such as 

trichobotrysins A, B and D, from the culture of fungal stain Trichobotrys effuse, collected from 
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deep sea sediment of South China Sea. These natural products exhibited potential activity 

towards HSV-1 with IC50 values of 3.08, 9.37 and 3.12 µM, respectively. Recently, El-

Demerdash and coworkers explored the antiviral potential of fourteen structurally diverse 

brominated tyrosine alkaloids against five SARS-CoV-2 proteins. Among all tested compounds, 

the polybrominated alkaloid, fistularin-3, exhibited antiviral properties against protease, spike 

glycoprotein, nucleocapsid phosphoprotein, membrane glycoprotein and non-structural protein of 

SARS-CoV-2 (El-Demerdash et al., 2021). 

Chemical investigation of marine-derived fungus Penicillium raistrickii yielded Raistrickindole 

A and raistrickin, exhibiting in vitro antiviral activity against Hepatitis C virus with E50 values of 

5.7 and 7.0 µM, respectively (Li et al., 2019a). Neosartoryadins A and B, having pyrido [2,1-b]-

quinazoline framework and a tetrahydrofuran ring, were purified from the endophytic fungus 

Neosartorya udagawae. Both Neosartoryadins A and B inhibited the activity of H1N1 with IC50 

values of 66 and 58 µM, respectively (Yu et al., 2016). Trypilepyrazinol, extracted from marine-

derived fungus Penicillium sp., displayed antiviral properties towards human immunodeficiency 

virus (HIV) and hepatitis C virus with IC50 values of 4.6 and 7.7 µM, respectively (Li et al., 

2019b). Polycitone A, an aromatic alkaloid isolated from Polycitor sp. (ascidian), inhibited the 

reverse transcriptase and DNA polymerases of HIV and retroviruses (Loya et al., 1999). 

4. Anticancer 

A large number of cyclic nitrogen and amine-containing alkaloids derived from marine sources 

displayed potent anticancer activities. Vincristine is an example of established anticancer 

alkaloid drug, which can induce apoptosis in tumor cells with IC50 values of 0.1 M (Donoso et 

al., 1977). Several scientists have investigated the anticancer properties of marine alkaloids. In a 

recent study, Wang et al. (2020) identified that ascomylactam A, an alkaloid isolated from 
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mangrove endophytic fungus Ascomycota sp., suppressed the growth of A549 and NCI-H460 

tumor cells (6 mg/kg/day) in male BALB/c-nu mice. Moreover, (−)-Agelamide D (1), isolated 

from marine sponge Agelas sp., aided the cancer treatment in xenograft Hep3B cells by 

increasing the radiation therapy efficiency (Choi et al., 2020). Recently, Dyshlovoy et al. (2020) 

reported that monanchoxymycalin C, isolated from marine sponge Monanchora pulchra, possess 

cytotoxic activity towards human prostate cancer by JNK1/2 activation and non-apoptotic cell 

death. Antiviral activities of some marine derived alkaloids are given in Table 6. 

In another study, 4-chlorofascaplysin, found in marine sponges, exhibited antiangiogenic activity 

in mice with human breast cancer MDAMB- 231 via decreasing VEGFs levels (Sharma et al., 

2017). Medellin et al. (2016) reported that C2-substituted 7-deazahypoxanthine showed 

inhibitory effect of tumor growth in animals xenografted with colon cancer SW620. Moreover, 

reduction of tumor growth in epidermoid-nasopharyngeal and colon cell lines was observed in 

nude mice supplemented with neoamphimedine, extracted from marine sponge Xestospongia sp. 

(Marshall et al., 2003). 

C. Polyketides 

Polyketides are a large group of biologically active secondary metabolites with varying chemical 

structures and functionalities. Polyketides contain various β-hydroxyaldehyde and β-

hydroxyketone functional groups and are highly oxygenated. Examples of polyketides include 

macrolides, polyols, polyethers, and aromatic compounds. 

1. Antifungal 

Marine-derived antifungal polyketides include aurantosides, forazoline, hippolachnin, and 

woodylide. Aurantosides are a group of compounds produced by sponge genera Theonella, 
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Siliquariaspongia, and Homophymia. They contain a N-glycosidic part of one to three 

monosaccharides and a tetramate ring with a mono- or dichlorinated long conjugated polyene 

chain (Kumar et al., 2012; Angawi et al., 2011). Aurantosides were originally obtained as 

antifungal and cytotoxic constituents and later found to inhibit binding of interleukin-6 to its 

receptors (Beutler et al., 1988; Schabacher and Zeeck, 1973). Aurantosides A and B are 

polyketide metabolites isolated from the marine sponge Theonella swinhoei (Matsunaga et al., 

1991). Wolf et al. (1999) isolated aurantoside C from the Philippine sponge Homophymia 

conferta (Theonellidae). 

Later, Sata et al. (1999) isolated aurantosides D, E, and F, new polyene tetramic acids comprising 

an N-trisaccharide units, from the marine sponge Siliquariaspongia japonica. Their structures 

were determined by spectral and chemical methods, and the NMR data of the previously 

discovered aurantosides A and B were reinvestigated. It was found that aurantosides A, B, D, and 

E exhibited potential antifungal effect towards Aspergillus fumigatus and Candida albicans. 

Angawi et al. (2011) isolated a new aurantoside J along with three known aurantosides G-I from 

an Indonesian sponge Theonella swinhoei. The antifungal activity of these four compounds were 

tested against four Candida and one Fusarium fungal strains, which cause fungal infections in 

immune-compromised patients. Only aurantosides G and I exhibited detectable antifungal effect. 

Aurantoside I showed strong antifungal activity against all the tested strains, particularly towards 

C. albicans, C. tropicalis, and C. glabrata, while aurantoside G exhibited only moderate to poor 

effect towards all the tested strains with the MIC90 of 4-16 g/mL. The C18 polyene chain and 

three sugar chains linked to the tetramate ring by the nitrogen atom of the compound Aurantoside 

I are responsible for the inhibition of the growth of five fungal strains. Aurantoside K, a novel 

tetramic acid glycoside, was discovered from a marine sponge Melophlus sp. This compound 
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displayed antifungal effect towards wild type C. albicans and amphotericin-resistant C. albicans 

with the MIC values of 1.95 and 31.25 µg/mL, respectively. In addition, it showed potent 

inhibitory activity against pathogenic Penicillium sp., Sordaria sp., Aspergillus niger, 

Cryptococcus neoformans, and Rhizopus sporangia (Kumar et al., 2012). Figure 10 depicts the 

chemical structures of Aurantoside A-I. 

Wyche et al. (2014) isolated forazoline A (Figure 11), a novel polyketide, from a marine 

invertebrate-associated bacteria Actinomadura sp. Forazoline A exhibited in vivo antifungal 

activity against C. albicans in a mouse model by affecting their cell membranes via 

dysregulating the phospholipid homeostasis. Chemical investigation of South China Sea sponge 

Hippospongia lachne resulted in the discovery of Hippolachnin A (Figure 11), a polyketide with 

a four-membered ring and an unprecedented carbon skeleton. This compound exhibited potential 

inhibitory activity at MIC value of 0.41 µM against pathogenic fungi Trichophyton rubrum, 

Cryptococcus neoformans, and Microsporum gypseum (Piao et al., 2013). Yu et al. (2012) 

identified three novel polyketides woodylides A-C (Figure 11) from Southern China Sea sponge 

Plakortis simplex, collected from Xisha islands. Woodylides A and C displayed moderate 

antifungal effect towards fungi Cryptococcus neoformans with IC50 values of 3.67 and 10.85 

µg/mL, respectively. 

2. Antibacterial 

Erythromycin, belongs to macrolide class, is an established antibiotic drug for various infections 

with MIC values in the range of 0.25 to 2  g/mL against S. aureus (Champney, 2003). 

Difficidins, a class of polyketides, were derived from a heterotrophic Bacillus amyloliquefaciens 

MTCC12713 associated with the red macroalga Kappaphycus alvarezii. Difficidin analogues 

displayed antibacterial effect towards methicillin-resistant Staphylococcus aureus, vancomycin-
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resistant Enterococcus faecalis, and other drug-resistant strains, namely Pseudomonas 

aeruginosa and Klebsiella pneumonia with the MIC values in the range of 2-9 x 10
-3

 M 

(Chakraborty et al., 2021). The compound 5-methoxydihydrosterigmatocystin, extracted from 

Aspergillus versicolor MF359 associated with a marine sponge Hymeniacidon perleve, exhibited 

antibacterial effect against B. subtilis and S. aureus with MIC values of 3.125 and 12.5 μg/mL, 

respectively (Song et al., 2014b). A polyketide compound, produced by the filamentous 

actinomycete SCA-7 (Alkhobar marine region), exhibited bactericidal activity against Gram-

positive Enterococcus sp. (Almalki, 2020).  The compound α,2,5-trihydroxyacetophenone, an 

aromatic polyketide extracted from marine based fungus Pseudopithomyces maydicus PSU-

AMF350, exhibited bactericidal activity against Acinetobacter baumannii, S. aureus, and A. 

baumannii (MIC = 200 µg/mL) and methicillin-resistant S. aureus (MIC = 128 µg/mL) (Ningsih 

et al., 2022). 

Yao et al. (2014) isolated engyodontiumones A-H and eight known polyketides from the deep-

sea fungus Engyodontium album DFFSCS021. They found that engyodontiumones H, 

aspergillusone B, and AGI-B4 (Figure 12) inhibited the growth of B. subtilis and E. coli. 

Chemical investigation of deep-sea sediment derived fungus Emericella sp. SCSIO 05240 

yielded four new prenylxanthones, emerixanthones A-D, along with six known analogues. 

Emerixanthones A and C (Figure 12) were weakly active against Klebsiella pneumonia, Acineto 

bacterbaumannii, E. coli, S. aureus, Aeromonas hydrophila, and Enterococcus faecalis 

(Fredimoses et al., 2014). An anthraquinone compound, isorhodoptilometrin-1-methyl ether 

(extracted from A. versicolor) was active against three Gram-positive bacterial strains B. subtilis, 

B. cereus, and S. aureus (Hawas et al., 2012). Trichodermaquinone and trichodermaxanthone, 

along with eleven known compounds were identified from the marine based fungus Trichoderma 
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aureoviride PSU-F95. Among these compounds, coniothranthraquinone 1 (Figure 12) and 

emodin showed potent inhibitory effect towards methicillin-resistant S. aureus with MIC values 

of 8 and 4 µg/mL, respectively (Khamthong et al., 2012). 

3. Antiviral 

Acyclovir, structurally resembling to polyketide, is a drug used to treat chickenpox and herpes 

virus infections with IC50 values between 0.12 and 10.8 µg/mL against varicella zoster virus 

(FDA, 2019). Truncateol M, an isoprenylated cyclohexanols, was isolated from a sponge 

(Amphimedon sp.) derived fungus Truncatella angustata from South China Sea. It suppressed 

influenza virus by inhibiting H1N1 virus with an IC50 value of 8.8 µM (Zhao et al., 2015). 

Asteltoxins E and F, isolated from marine-derived fungus Aspergillus sp., displayed inhibitory 

activity towards H3N2 with the IC50 values of 6.2 and 8.9 µM, respectively, whereas Asteltoxin 

E showed antiviral property towards H1N1 with an IC50 value of 3.5 µM (Tian et al., 2015).  

Huang et al. (2018) isolated neoabyssomicin D from marine derived Streptomyces koyangensis 

exhibiting mild antiviral activity towards herpes simplex virus at a concentration of 10 µM. 

Pestalotiolide A, obtained from a marine based fungus Pestalotiopsis sp., displayed considerable 

anti-EV71 activity in vitro with an IC50 value of 27.7 µM (Jia et al., 2015). 

A weak in vitro antiviral activity was exhibited by coniochaetone J, extracted from a deep-sea 

derived sediment fungus Penicillium sp., against EV71 with an IC50 value of 81.6 µM (Liu et al., 

2017a).  Chemical investigation of deep-sea derived fungus Spiromastix sp. led to the discovery 

of several phenolic lactones such as spiromastilactones B, D-G, I-J and L. These compounds 

showed inhibitory activities against WSN influenza virus with IC50 values ranging from 6.0 to 

74.9 µM (Niu et al., 2016). Wailupemycin J and R-Wailupemycin K, purified from the cultures 
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of Streptomyces sp. associated with the marine green algae, Ulva prolifera (formerly 

Enteromorpha prolifera), suppressed the activity of H1N1 virus (Liu et al., 2017b). 

D. Polyphenols 

Polyphenols are secondary metabolites containing multiple phenol rings. Phenolics produce by 

marine organism display a wide array of biological activities including anticancer activity. Based 

on their chemical structures, they are classified into different groups, including flavonoids, 

phenolic acids, lignans, and stilbenes. 

1. Antibacterial 

Song et al. (2018) isolated penicipyrrodiether A, a phenol A derivative, from a marine associated 

fungus Penicillium sp. ZZ380 and examined their antibacterial activities. It was found that 

penicipyrrodiether A exhibited inhibitory activity against methicillin-resistant S. aureus with a 

MIC values of 5.0 μg/mL. 

2. Anticancer 

Excellent antioxidant property (radical scavenging) of the phenolics is responsible for their 

anticancer activity since reactive oxygen species (ROS) initiate the growth and proliferation of 

cancer cells (Aggarwal et al., 2019). In addition, alteration of the proliferation signal pathways 

and reduction of the telomerase expression are also included in the mechanisms of anticancer 

property of phenolic compounds (Mateos and Pérez-Correa, 2020). Different types of phenolic 

metabolites such as flavonoids, pholorotannins, coumarins, bromophenols, quinones, 

hydroquinones, and terpenophenolics exhibit anticancer activities. 

Investigation of fungus Penicillium chrysogenum cultured from a gorgonian Carijoa sp. (South 

China Sea) yielded a flavone, penimethavone A. This compound displayed anticancer activities 
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towards rhabdomyosarcoma and cervical cancer (HeLa) cell lines with IC50 values of 8.18 and 

8.41 μM, respectively (Hou et al., 2016). Phloroglucinol (pholorotannins), isolated from brown 

seaweeds, enhanced the anticancer effects of 5-fluorouracil towards HT29 colorectal cancer cell 

lines (Lopes-Costa et al., 2017). Two coumarin compounds, alternariol and alternariol methyl 

ether, were extracted from the fungus Alternaria alternata collected from soft coral Litophyton 

arboreum, collected from the Egyptian Red Sea coast.  Alternariol displayed antiproliferative 

activities verses leukemia cell lines such as L1210 and CCRF-CEM, while alternariol methyl 

ether showed antitumor activities towards the leukemia cell lines of H-125 and Colon-38 (Hawas 

et al., 2015). 

Qu et al. (2019) isolated four angucycline glycosides (quinones and hydroquinones) from 

marine-derived Streptomyces sp. OC1610.4 and investigated their cytotoxic activities. Among 

which, moromycin B, saquayamycin B1, and saquayamycin B exhibited potent antitumor 

activities towards breast cancer cells MCF-7, MDA-MB-231, and BT-474 with IC50 values in the 

range of 0.16–0.67 µM. Bis (2,3-dibromo-4,5-dihydroxy-phenyl)-methane, a bromophenol 

compound derived from marine algae, exhibited anticancer activity on different tumor cells such 

as RKO, HeLa, U87, Bel7402, and HCT116 with IC50 values of 11.37, 17.63, 23.69, 8.7, and 

10.58 µg/mL, respectively (Wu et al., 2015b). Laurebiphenyl, a terpenophenolic compound 

isolated from red macroalga Laurencia tristicha, showed moderate antiproliferative activity 

against stomach cancer (BGC-823), lung adenocarcinoma (A549), colon cancer (HCT-8), 

hepatoma (Bel 7402), and HeLa cell lines with IC50 values of 1.22, 1.68, 1.77, 1.91, and 1.61 

μg/mL, respectively (Sun et al., 2005). Anticancer activities of certain marine phenolics are 

depicted in Table 7. 
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Considering the in vivo studies, dieckols, isolated from seaweeds Eisenia bicyclis, Ecklonia cava, 

and Ecklonia stolonifera, were administered to ovarian carcinoma induced Bald/c athymic 

female nude mouse for four weeks. Results of the study showed that dieckols suppressed the 

tumor growth of ovarian cancer (Ahn et al., 2015). Similarly, Sadeeshkumar et al. (2017) showed 

that dieckols acted against N-nitrosodiethylamine-induced hepatocarcinogenesis in male albino 

Wistar rats through promotion of apoptosis and modulation of cell proliferation.  

E. Terpenoids 

Terpenoids (isoprenoid compounds), derived from five carbon isoprene units, are a large group 

of natural compounds present in nature. A wide range of terpenoid structures with varying 

structural properties are synthesized by marine organisms. Different classes of marine terpenoids 

include monoterpenes, sesquiterpenes, diterpenes, triterpenes, sesterterpenes, and meroterpenes 

(Gozari et al., 2021). 

1. Antifungal 

Asolkar and coworkers isolated marinocyanin A-F, bromo-phenazinone meroterpenoids, from the 

cultures of CNS-284 and CNY-960 strains of actinomycetes collected from the marine sediments 

of Solomon Islands. Among these compounds, marinocyanin A exhibited potent antifungal 

activity towards amphotericin resistant C. albicans with MIC value equal to 0.95 mM (Asolkar et 

al., 2017). Insuetolides A, a meroterpenoid extracted from cultures of fungi Aspergillus insuetus 

(OY-207) associated with Mediterranean sponge Psammocinia sp., showed moderate antifungal 

properties against Neurospora crassa with a MIC value of 140 mM (Cohen et al., 2011). 
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2. Antibacterial 

Micromonohalimane B, isolated from actinomycete Micromonospora sp. associated with 

ascidian, Symplegma brakenhielmi, displayed moderate antibacterial effect on methicillin-

resistant S. aureus with MIC value of 40 mg/mL (Zhang et al., 2016). Xiamycin B, indosespene, 

sespenine, and xiamycin A, extracted from Streptomyces sp. derived from mangrove, displayed 

antibacterial effect on methicillin-resistant S. aureus and vancomycin-resistant Enterococcus 

faecalis (Ding et al., 2010). Marine fungus Cochliobolus lunatus SCSIO41401yielded three new 

eremophilane sesquiterpenes dendryphiellins H-J. Among these compounds, dendryphiellin I 

exhibited potent antibacterial activity against S. aureus, Pasteurella multocida, and 

Erysipelothrix rhusiopathiae with MIC values of 1.5, 13, and 13 mg/mL, respectively (Fang et 

al., 2018). 

3. Antiviral 

Stachybonoid A, a meroterpenoid, was isolated from fungus Stachybotrys chartarum, derived 

from a crinoid (Himerometra magnipinna) from China. This compound inhibited the replication 

of dengue virus (DENV) (Zhang et al., 2017). Chrodrimanins K and N, meroterpenoids obtained 

from the cultures of Penicillium sp. associated with a marine worm, showed antiviral activity 

against H1N1 with IC50 values of 74 and 58 µM, respectively (Kong et al., 2017). Cao et al. 

(2019) discovered Talaromyolide D from a marine fungus Talaromyces sp. possessing inhibitory 

activity against pseudorabies virus. Xiamycin A, an indolosesquiterpene, isolated from 

mangrove-derived Streptomyces sp., exhibited selective anti-viral effect on HIV by blocking the 

R5 strain (Ding et al., 2010). 

Moreover, Stachybogrisephenone B, isolated from the sponge associated fungus Stachybotry sp., 

exhibited antiviral effect against EV71 (enterovirus 71) with an IC50 value of 30.1 µM (Qin et 
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al., 2015). Recently, investigated the anti-SARS-CoV-2 potency of sixty-eight antiviral 

terpenoids isolated from marine sources using an advanced molecular docking study. Among all 

tested terpenoids, brevione F and stachyflin displayed inhibitory activity towards 

SARS−CoV−M
pro

, while xiamycin, liouvilloside B, thyrsiferol, stachyflin, and liouvilloside A 

showed better docking scores towards SARS-CoV-2−RdRp (Sahoo et al., 2021). 

4. Anticancer 

Paclitaxel, a terpenoid compound, is a well-known chemotherapeutic agent marketed under the 

trade name Taxol, among others. The IC50 value of paclitaxel towards varying human tumor cell 

lines is in the range of 2.5 to 7.5 nm (Liebmann et al., 1993). This compound was also found in 

byproducts of hazelnuts (Hoffman and Shahidi, 2009). Cryptosphaerolide, a sesquiterpenoid 

derived from an ascidian-derived ascomycete strain, CNL-52, exhibited considerable cytotoxic 

effect towards HCT-116 cell line with IC50 values of 4.5 mM (Oh et al., 2010). Fermentation 

broth of a fungus Paraconiothyrium cf. Sporulosum isolated from sponge Ectyplasia perox 

(Lauro Club Reef, Dominica) yielded a meroterpenoid called Epoxyphomalins A-E. 

Epoxyphomalin D displayed cytotoxic effect on prostate PC3M and bladder BXF1218L cancer 

cell lines with IC50 values of 0.72 and 1.43 mM, respectively (Mohamed et al., 2010). 

Saccharoquinoline, a cytotoxic alkaloidal meroterpenoid, was extracted from the fermentation 

broth of marine-based bacteria Saccharomonospora sp. CNQ-490. This compound showed 

potent cytotoxic effect on HCT-116 cancerous cell line (Le et al., 2019). 

Chemical investigation of fermentation extract of Streptomyces sp. yielded a meroterpenoid, 

guanahanolide A, which found to have moderate cytotoxicity against HCT-116, HTB-26, and 

MCF-7 human cancer cell lines with IC50 values of 11.9, 10.1, and 7.8 μM, respectively 

(Marchbank et al., 2020). Pestalachloride B and E and a mixture of pestalalactone atropisomers 
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were extracted from fungus Pestalotiopsis heterocornis derived from sponge Phakellia fusca. 

These compounds exhibited cytotoxic activity towards human cancer cell lines such as BGC-

823, H460, PC-3, and SMMC-7721 with IC50 values in the range of 6.8–87.8 μM (Lei et al., 

2017). 

F. Steroids 

Steroids and sterols (steroid alcohol), a subgroup of steroids, are important class of organic 

compounds naturally occurring in marine sources. 

1. Antifungal 

Wang et al. (2013) isolated seven novel polyoxygenated steroids, along with seven known 

analogues from Sarcohyton sp., a soft coral from South China sea. Result of this study stated that 

these compounds exhibited varying antifungal activities against Microbotrym violcem and 

Septoria tritici in in vitro bioassays. Moreover, it is reported that 11 α-acetoxy group might 

contribute towards the antifungal activity. 

2. Antibacterial 

Investigation of dendronephthya soft coral collected from Zhejing province, China, resulted in 

the discovery of four novel steroids, dendronecholones A-D, and two known analogues nanjiol A 

and 12 β ,16 β ,20-trihydroxycholesta-1,4-dien-3-one 16-acetate. The antibacterial activities of 

these compounds were tested against thirteen pathogenic Vibrios. It was found that 

dendronecholones C and nanjiol A exhibited antibacterial activity against V. parahaemolyticus 

with MIC values of 8 µg/mL. Meanwhile, dendronecholones A, B, and nanjiol A showed 

inhibitory activities towards V. harveyi with MIC values of 32, 8, and 8 µg/mL, respectively and 

all the compounds inhibited the growth of V. scophthalmi with MIC values between 8 and 32 
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µg/mL (Wang et al., 2022b). Moreover, polyoxygenated steroids isolated from soft coral 

Sarcohyton sp. exhibited antibacterial activities against E. coli and B. megaerium (Wang et al., 

2013). 

3. Antiviral 

Comin et al. (1999) purified polyhydroxysteroids from the Brittle Star Astrotoma agassizzi. 

These compounds were shown to inhibit the growth of three human pathogenic viruses, 

namely junin virus, herpes simplex virus-2, and polio virus. Exploration of marine based fungus 

Penicillium sp. IMB17-046 resulted in the extraction of a new ergostane analogue, 3β-

hydroxyergosta-8,14,24(28)-trien-7-one. This molecule exhibited a wide range of inhibitory 

activities targeting different types of viruses such as HIV and influenza-A virus with IC50 values 

of 3.5 µM and 0.5 µM, respectively (Li et al., 2019b). 

Analysis of the extracts of Cladosporium sp., derived from marine sponge, yielded a highly 

oxygenated sterol Cladosporisteroid B, which displayed weak antiviral properties towards H3N2 

with an IC50 value of 16.2 µM [240]. A pregnane 3α-hydroxy-7-ene-6,20-dione, isolated from 

fungus Cladosporium sp. derived from a gorgonian Dichotella gemmacea (South China Sea), 

exhibited inhibitory activity towards the respiratory syncytial virus with the IC50 value of 0.12 

µM (Yu et al., 2018b). 

4. Anticancer 

Potential anticancer activity of seven steroids such as five 4α-methylated steroids and two 19-

oxygenated steroids, identified from soft coral Litophyton mollis, has been reported (Eissa et al., 

2023). Two isolated 19- oxygenated steroids showed strong cytotoxic effect towards MCF-7 

tumor cell lines with IC50 values 8.6 and 8.4 µM, respectively, and exhibited moderate activities 
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in NCI-1299 cancer cell lines with IC50 values of 15.7 and 15.1 µM, respectively. In addition, 

two compounds included in the group of 4α-methylated steroids displayed weak cytotoxic effect 

against MCF-7, NCI-1299, and HepG2 cancer cell lines with IC50 values between 34.7 - 37.5 and 

30.8 - 46.3 µM, respectively (Eissa et al., 2023). 

IV. Evolution of marine derived drugs 

There were several drugs derived from marine organisms that had been approved across various 

therapeutic areas or were in various stages of development. According to Malve (2016), marine 

pharmaceuticals undergoing clinical development include 13 compounds in various phases of 

clinical trials. Moreover, a substantial number of compounds and molecules derived from marine 

species are undergoing preclinical tastings. As of now, there are six distinct categories of 

approved therapeutic agents that can be regarded as derivatives of marine natural products. As 

mentioned in the introduction, two nucleosides, spongothymidine and spongouridine, were 

discovered from Caribbean sponge Tethya crypta in 1951. These compounds let to the synthesis 

of sugar modified nucleoside analog vidarabine and the related compound cytarabine, which 

were the first US FDA approved drugs derived from marine sources in the years of 1969 and 

1976, respectively. Cytarabine remains in current usage, whereas vidarabine has been 

discontinued both in US and Europe (Abdelmohsen et al., 2017). Additionally, these compounds 

can serve as templets for the development of antiviral drugs that that are commercially available 

(Shahriari et al., 2022). 

The first FDA-approved drug directly derived from a marine source is ω-conotoxin MVIIA 

ziconotide (Prialt), a peptide toxin isolated from cone snail venom, and it is used for pain control 

(Schroeder and Lewis, 2006). Similarly, ecteinascidin 743 (trabectedin, Yondelis), derived from 

the tunicate Ecteinascidia turbinate, was the first anticancer FDA approved drug directly isolated 
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from marine resources (Erba et al., 2001). Besides, examples of approved marine derived drugs 

include eribulin mesylate (a synthetic derivative of the polyketide halichondrin B), brentuximab 

vedotin, Lovaza (a mixture of two ethyl esters of fish-derived ω-3 polyunsaturated fatty 

acids), Vascepa (pure EPA ethyl ester ω-3 polyunsaturated fatty acid), and Epanova (mixture of 

three free ω-3 polyunsaturated fatty acids).  

Furthermore, the global clinical pipeline for marine pharmaceuticals comprises 23 compounds 

currently undergoing Phase III, II, or I stages of drug development. Compounds in phase III 

include plitidepsin, plinabulin, tetrodotoxin, and soblidotin (TZT 1027), while in phase II include 

DMXBA (GTS-21), gelmbatumumab vedotin, ellsidepsin, PM 1004, tasidotin, synthadotin (ILX-

651), and pseudopterpsins and phase I comprise of bryostatin 1, pinatuzumab vedotin (DCDT-

2980S) and (DCDS-4501A), hemiasterlin (E7974), HuMax®-TF-ADC, and marizomib. In 

addition, a large number of marine based compounds are in the preclinical testing pipelines such 

as chrysophaentin A, phenethylamine, floridosides, pulicatin A, dysidine, capnellane, hymenidin, 

dysideamine, callyspongidiol and among others (Malve, 2016). 

V. Challenges and future trends 

Despite the vast potential of marine organisms for the discovery of novel therapeutic compounds, 

the development of marine-derived pharmaceutical faces several challenges. For instance, 

environmental conditions of the ocean play a major role in the types of metabolites produced by 

the same organism each time, which vary with the fluctuating environmental conditions (Martins 

et al., 2014). The harvesting of rare or slow-growing marine organisms for pharmaceutical 

research could lead to the overexploitation and ecosystem disruption. Therefore, sustainable 

harvesting practices need to be developed to ensure the conservation of marine biodiversity. In 

terms of pharmaceutical study, few grams of the primary compound are required for preclinical 
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drug development and safety studies, however quantities in kilograms are needed for clinical 

study in different phases. Thus, availability of primary compound can be an issue because low 

abundance of such compound makes it technically difficult to isolate from the marine species. In 

such case, research and development of several extremely potential marine based novel 

pharmaceutical compounds in clinical studies are held back due to the lack of sustainable supply 

of the candidate compound (Molinski et al., 2009). 

To overcome this limitation, synthetic or hemisynthetic analogues of marine derivatives with 

desired pharmacological properties can be developed using biotechnological approaches, such as 

genetic engineering and synthetic biology. This can optimize and scale up the production of 

valuable pharmaceuticals from marine organisms (Papon et al., 2022). Furthermore, marine 

microorganisms are proven to be rich sources of marine derived natural products. Advances in 

metagenomics allow researchers to study the genetic material of entire microbial communities. 

Exploring the genetic material of microbiomes associated with marine organisms using advances 

in metagenomics could lead to the discovery of novel bioactive compounds with pharmaceutical 

potential (Dokania et al., 2023). Besides, marine organisms can be cultivated in controlled 

environments or through aquaculture to ensure a sustainable supply of key compounds with 

therapeutic potential, which can reduce the concern related to conservation of marine species.  

VI. Conclusion 

The marine environment is a rich source of both biological and chemical diversity. Over the past 

50 years, approximately 30,000 natural products have been reported from marine flora and fauna. 

The majority of these natural products have been obtained from sessile soft bodied invertebrates, 

such as sponges and tunicates. This diversity has been the source of unique chemical compounds 
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with the potential for industrial development as functional foods, nutraceuticals, and 

pharmaceuticals. Major factors for the increasing rate of mortality globally include cancer and 

microbial infection. Therefore, discovery of novel therapies to treat cancer and microbial 

infection is a crucial requirement. Marine natural products, namely bioactive peptides, 

polyphenols, polyketides, terpenoids, alkaloids, and sterols, exhibit promising antifungal, 

antibacterial, antiviral, and anticancer activities. Marine natural products are responsible for the 

genesis of 60% of cancer drugs and 75% of infectious disease treatments. This review emphases 

the role of marine bioactive compounds such as peptides, alkaloids, polyketides and polyphenols 

against fungal, bacterial, and viral infections and cancers. At present, most of the studies related 

to the health effects of marine natural products are carried out using in vitro and in vivo mouse 

models. Although few compounds are under clinical trials and several compounds are in the 

preclinical pipeline, the number of approved marine based drugs are very low. Therefore, the 

current screening for promising natural products and their research and development in the 

pharmaceutical industry should be increased along with a large-scale rapid screening method and 

large number of compounds undergoing pre-clinical and clinical studies. Moreover, efficient 

technologies are need for higher extraction efficiency, screening of individual component for a 

target function and their preservation. These novel technologies should be used to target 

optimally for marine drug research, development, approval, and marketing in commercial levels.  
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Figure captions: 

Figure 1. Total number of new marine natural products discovered in each year from 2008 to 

2021. 

Figure 2. Certain biological activities exhibited by bioactive compounds derived from marine 

resources. 

Figure 3. Schematic diagram of the different mechanisms of action of antifungal activity of 

secondary metabolites. 

Figure 4. Mechanisms of antibacterial activities of marine derived bioactive compounds. 

Figure 5. Mechanisms of anticancer activities of marine natural products. 

Figure 6. Chemical structures of demethylxestospongin C and xestospongin A, C, and D.       

Figure 7. Chemical structures of caerulomycin A, 5-bromo-8-methoxy-1-methyl-𝛽�-carboline, 

and nakijinamines A-C. 

Figure 8. Chemical structures of hyrtimomines A, B, F, G, and I, and fumigatosides E and F. 

Figure 9. Chemical structures of fumigatosides E and F and pyrrospirone C-F and I. 

Figure 10. Chemical structures of aurantoside A-I. 

Figure 11. Chemical structures of forazoline A, hippolachnin A, and woodylides A-C. 

Figure 12. Chemical structures of engyodontiumones H, aspergillusone B, AGI-B4, 

emerixanthones A and C, and coniothranthraquinone 1. 
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Table 1. Antibacterial activities of marine derive peptides. 

Peptide Source Antibacterial activity Reference 

Aurelin Mesoglea of a 

scyphoid jellyfish 

Aurelia aurita 

Activity towards Bacillus 

megaterium, strain B-392 (MIC = 

10 M) and Micrococcus luteus, 

strain Ac-2229 (MIC = 40 M). 

 Shenkarev 

et al., 2012 

Oreoch-1 Teleost fish, tilapia 

gills Oreochromis 

niloticus 

Active against Gram-positive 

bacteria like B. subtilis (MIC = 3 

M) and S. aureus (MIC = 5 M), 

Gram-negative bacteria like E. 

coli (MIC = 6.7 M) and P. 

aeruginosa (MIC = 35 M). 

 Acosta et 

al., 2013 
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Oreoch-2 Teleost fish, tilapia 

gills Oreochromis 

niloticus 

Activity versus B. subtilis (MIC = 

1.7 M), S. aureus (MIC = 5 

M), E. coli (MIC = 5 M), P. 

aeruginosa (MIC = 6.7 M) and 

E. tarda (MIC = 20 M). 

Acosta et 

al., 2013 

Myticusin-1 Hemolymph of 

Mytilus coruscus 

(Mussels) 

Activity against  S. aureus (MIC 

= 2.5-5 M), B. subtilis (MIC = 

1.2-2.5 M), E. coli (MIC = 6.7-

12.5 M), and Sarcina luteus 

(MIC = 1.2-2.5 M). 

 Liao et 

al., 2013 

Venerupis 

philippinarum 

defensin (VpDef) 

Clam Venerupis 

philippinarum 

Activity against Micrococcus 

luteus (MIC = 6.25-12.5 M) and 

Enterobacter aerogenes (MIC = 

12.5-25 M). 

 Zhang et 

al., 2015a 

Gageostatins A-C Marine bacterium B. 

subtilis 

Effect towards  B. subtilis, S. 

aureus, P. aeruginosa, and S. 

typhi with MIC ranging from 8 to 

64 g/mL. 

 Tareq et 

al., 2014b 

Mytimacin-AF Mollusks Achatina 

fulica snail 

Active versus S. aureus with MIC 

value of 1.9 g/mL. 

Zhong et 

al., 2013 

Cathelicidin (Hc-

CATH) 

Sea snake Hydrophis 

cyanocinctus 

Potent towards Shigella 

dysenteriae (MIC = 0.16 M) and 

Klebsiella 8 (MIC = 20.67 M). 

Wei et al., 

2015 

EC-hepcidin3 Marine fish 

Epinephelus coioides 

(Orange spotted 

Active against S. aureus (MIC = 

1.5-3 M) and Pseudomonas 

stutzeri (MIC < 1.5 M). 

Qu et al., 

2013 
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grouper) 

-defensins Atlantic cod 

Gadusmorhua 

Effect versus P. citreus NCIMB 

1493 (MIC = 0.4-0.8 M) and M. 

lutes ATCC 4698 (MIC = 25-50 

M). 

Ruangsri 

et al., 2013 

Mytichitin-CB Hemolymph of 

Mytilud coruscus 

Potent against  S. luteus, B. 

subtilis, B. megaterium, and S. 

aureus (MIC < 5 M). 

 Qin et al., 

2014 

Rock bream 

piscidin (Rbpisc) 

Fish Effect towards Vibrio 

alginolyticus, V. harveyi, S. iniae 

and V. ordalii with MIC values 

less than 0.9 M and V. vulnificus 

(3.9-7.8 M). 

Bae et al., 

2016 

SpHyastatin Crab Scylla 

paramamosain 

Effect versus Gram-positive 

bacteria (S. aureus, Micrococcus 

luteus, Micrococcusluteus, and 

Corynebacterium glutamicum) 

and Gram-negative bacteria 

(Pseudomonas stutzeri, 

Aeromonashydrophila, and P. 

fluorescens) with MIC values of 

0.63-2.5 M. 

Shan et al., 

2016 

TP3  Nile tilapia 

Oreochromis niloticus 

Effective against Gram-positive 

bacteria (S. agalactiae 819, S. 

agalactiae BCRC 10787, and E. 

faecalis BCRC 10066) and Gram-

negative (V. alginolyticus and V. 

 Peng et 

al., 2012 
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vulnificus 204) with MIC of 0.6-

20 g/mL. 

TP4 Nile tilapia 

Oreochromis niloticus 

Active towards Gram-positive (S. 

agalactiae 819, S. agalactiae 

BCRC 10787, and E. faecalis 

BCRC 10066) and Gram-negative 

(V. alginolyticus, V. vulnificus 

204, P. aeruginosa ATCC 19660, 

and A. hydrophila BCRC 13018). 

Peng et al., 

2012 

Sphistin Crab Scylla 

paramamosain 

Potent towards Gram-positive 

bacteria (B. subtilis, S. aureus, 

Micrococcus luteus, C. 

glutamicum, and M. lysodeikticus) 

and Gram-negative bacteria 

(Pseudomonas stutzeri, Shigella 

flexneri, and P. fluorescens) with 

MIC values less than 1.5 M. 

 Chen et 

al., 2015 

SMHEP1P Turbot Scophthalmus 

maximus 

Potent towards S. aureus (MIC = 

2 M) and M. luteus (MIC = 1 

M). 

 Zhang et 

al., 2014a 

SEHEP2P Turbot Scophthalmus 

maximus 

Active against E. tarda (MIC = 1 

M) and V. anguillarum (MIC = 2 

M). 

Zhang et 

al., 2014a 

YFGPA Yellowfin tuna 

Thunnus albacares 

Activity versus Gram-positive 

bacteria such as B. subtilis, 

Streptococcus iniae, and 

Micrococcus luteus with minimal 

 Seo et al., 

2012 
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effective concentrations (MECs) 

of 1.2–17.0 g/mL and Gram- 

negative bacteria like Vibrio 

parahaemolyticus, Aeromonas 

hydrophila, and E. coli D31 

(MECs = 3.1–12.0 g/mL). 

SA-hepcidin1 Spotted scat fish 

Scatophagus argus 

Active against S. aureus (MIC = 

50 M), Vibrio anguillarum (MIC 

= 50 M), V. alginolyticus (MIC 

= 50 M), V. fluvialis (MIC = 25 

M) and E. coli (MIC = 50 M). 

 Gui et al., 

2016 

SA-hepcidin2 Spotted scat fish 

Scatophagus argus 

Active against S. aureus (MIC = 

50 M), Vibrio anguillarum (MIC 

= 50 M) and V. alginolyticus 

(MIC = 50 M). 

 Gui et al., 

2016 

ecPis-2, ecPis-3, 

& ecPis-4 

Orange-spotted 

grouper Epinephelu 

scoioides 

Activity against  S. aureus, E. 

coli, and V. parahaemolyticus. 

Zhuang et 

al., 2017 

PaLEAP-2 Teleost fish 

Plecoglossus 

altivelis 

Activity against E. tarda and V. 

anguillarum with MIC value of 

6.25 g/ml and against E. coli 

DH5 with MIC of 50 g/ml. 

Also, active against P. putida, V. 

vulnificus, and V. alginolyticus 

(MIC = 100 g/mL). 

 Li et al., 

2015 

Acipensins1 Russian sturgeon 

Acipenser 

Effect towards E. coli ML35p 

(MIC = 0.7 M), L. 

Shamova 

et al., 2014 
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gueldenstaedtii monocytogenes EGD (MIC = 1.1 

M) and methicillin-resistant S. 

aureus ATCC 33591 (MIC = 0.9 

M). 

Acipensins2 Russian sturgeon 

Acipenser 

gueldenstaedtii 

Active against E. coli ML35p 

(MIC = 0.3 M), L. 

monocytogenes (MIC = 1 M) 

and methicillin-resistant S. aureus 

ATCC 33591 (MIC = 0.6 M). 

Shamova 

et al., 2014 

Acipensins6 Russian sturgeon 

Acipenser 

gueldenstaedtii 

Activity against E. coli ML35p 

(MIC = 2.5 M). 

Shamova 

et al., 2014 

MoroPC-NH2 Antarctic Fish 

Parachaenichthys 

charcoti 

Activity against Gram-positive S. 

aureus, L. monocytogenes, and 

Streptococcus pyogenes with 

MICs < 5 M and Gram-negative 

Psychrobacter sp., E. coli DH5, 

and Shigella sonnei with MICs < 

5 M. 

Shin et al., 

2017 

Lc-NK-lysin Yellow croaker 

Larimichthys crocea 

Active against V. harveyi, E. coli, 

and S. aureus with the MIC 

values of 12-24 M and against B. 

subtilis (MIC = 24-48 M). 

Zhou et 

al., 2016 

WB Piscidin 5 White bass Morone 

chrysops 

Effect towards S. aureus (MIC = 

4.52 M), E. faecalis (MIC = 4.52 

M), E. coli (MIC = 1.13 M), 

and Shigella flexneri (MIC = 

 Salger et 

al., 2016 
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1.13–2.26 M). 

EeCentrocin 1 Sea urchin Echinus 

esculentus 

Potent against Gram-positive 

bacteria S. aureus (MIC = 0.78 

M) and C. glutamicum (MIC = 

0.78 M) and against the Gram-

negative bacteria P. aeruginosa 

(MIC = 0.78 M) and E. coli 

(MIC = 0.1 M). 

Solstad et 

al., 2016 

SJGAP Skipjack tuna 

Katsuwonus pelamis 

Effect towards Gram-positive 

bacteria, namely M. luteus, B. 

subtilis, S. iniae, and S. aureus 

with MECs in the range of 1.2-

17.0 g/mL, and Gram-negative 

bacteria, such as E. coli D31, A. 

hydrophila, and V. 

parahaemolyticus (MECs = 3.1-

12.0 g/mL). 

Seo et al., 

2014 

Haliotisin Mollusk Haliotis 

tuberculate 

Active against B. subtilis (MIC = 

0.3-1 M) and E. carotovor (MIC 

= 1.6-2.6 M). 

 Zhuang et 

al., 2015 

PdBD-2 Chinese loach fish, 

Paramisgurnus 

dabryanus 

Activity against Gram-positive B. 

subtilis and Gram-negative 

bacteria A. hydrophila. 

Chen et 

al., 2013 

Chionodracine Icefish species 

Chionodraco hamatus 

Inhibit the growth of Gram-

positive B. cereus (MIC = 5 M), 

Gram-negative E. coli (MIC = 5 

M) and Antarctic psychrophilic 

Buonocore 

et al., 2012 
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bacteria strains Psychrobacter sp. 

TAD1 (MIC = 10 M) and 

Psychrobacter sp. TA144 (MIC = 

15 M). 

cgMolluscidin Pacific oyster 

Crassostrea giga 

Potent towards Gram-positive 

bacteria including S. aureus, B. 

subtilis, and M. luteus (MECs = 

1.3-31.3 g/mL), and Gram-

negative bacteria including S. 

enterica, E. coli, and V. 

parahaemolyticus (MECs = 0.4-

2.3 g/mL). 

Seo et al., 

2013 

 

 

 

 

 

Table 2. Antiviral activities of peptides derived from marine sources. 

Peptide Source Antiviral activity Reference 

Simplicilliumtides J Deep-sea-derived fungal 

strain Simplicillium 

obclavatum EIODSF 020 

Antiviral activity toward 

HSV-1 with IC50 values of 

14.0 μM. 

Liang et 

al., 2017 

Verlamelins A & B Deep-sea-derived fungal 

strain Simplicillium 

obclavatum EIODSF 020 

Antiviral activity toward 

HSV-1 with IC50 values of 

16.7 and 15.6 μM, 

respectively. 

Liang et 

al., 2017 

Divamide A Tunicate Didemnum molle 

E11-036 

Active against HIV-1 with 

IC50 value of 0.225 μM. 

Smith et 

al., 2018 
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Stellettapeptins A & 

B 

Sponge Stelletta sp., 

collected from 

northwestern Australia 

Decrease infection of human 

T-lymphoblastoid cells by 

HIV-1 with EC50 values of 23 

and 27 nM, respectively. 

Shin et 

al., 2015 

Myticin C Mollusk Mytilus 

galloprovincialis 

Antiviral activity against 

human herpes simplex 

viruses 1 (HSV-1) and 2 

(HSV-2). 

Novoa et 

al., 2016 

Asperterrestide A Endophytic fungus 

Aspergillus terreus 

Inhibitory effects on 

influenza virus strains H1N1 

and H3N2 with IC50 values 

of 20.2 and 0.41 µM, 

respectively. 

He et al., 

2013 

Mirabamides E-H  Sponge Stelletta clavosa, 

collected from the Torres 

Strait 

Potent inhibition of HIV-1 in 

a neutralization assay with 

IC50 values of 121, 62, 68, 

and 41 nM, respectively. 

Lu et al., 

2011 

Malformin C Endophytic fungus 

Aspergillus niger SCSIO 

Jcsw6F30 

Strongest anti-HIV-1 activity 

with IC50 of 1.4 ± 0.06 μM. 

Zhou et 

al., 2016 

Molleurea F Tunicate Didemnum 

molle  

Anti-HIV activity in an HIV 

integrase inhibition assay and 

a cytoprotective cell-based 

assay with IC50 values of 39 

and 78 μM, respectively. 

Lu et al., 

2012 

Pa-MAP Polar fish Pleuronectes 

americanus 

Inhibition of the simplex 

virus 1 (HSV-1), and Aichi 

Vilas 

Boas et 
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virus with a selectivity index 

of 5 and 3.4, respectively. 

al., 2017 

Aspergillipeptides D 

& E 

Marine gorgonian-derived 

fungus Aspergillus sp. 

SCSIO 41501 

Antiviral activity towards 

herpes simplex virus type 1 

(HSV-1) with IC50 values of 

9.5 and 19.8 µM, 

respectively. 

Ma et al., 

2017 

Acremonpeptides A 

& B 

Marine fungus 

Acremonium 

persicinum SCSIO 115 

Moderate antiviral activity 

against herpes simplex virus 

1 with EC50 values of 16 and 

8.7 μM, respectively. 

Luo et al., 

2019a 

Al(III)–

acremonpeptide D 

Marine fungus 

Acremonium 

persicinum SCSIO 115 

Moderate antiviral activity 

against herpes simplex virus 

1 with EC50 value of 14 μM. 

Luo et al., 

2019a 

Cyclo(L-Tyr-L-Pro) 

(diketopiperazine) 

Endophytic 

fungus Aspergillus 

versicolor, isolated from 

Red Sea black 

sponge Spongia 

officinalis  

Strong inhibitory activity 

towards Hepatitis C virus 

protease with IC50 value of 

8.2 μg/mL. 

Ahmed et 

al., 2017 
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Table 3. Examples of marine peptides possessing anticancer activities. 

Peptide Source Anticancer activity Reference 

Theopapuamides A−C  Marine sponge 

Siliquariaspongia 

mirabilis 

Cytotoxicity against 

human colon carcinoma 

(HCT-116) cells with 

IC50 values between 2.1 

and 4.0 μg/mL. 

Plaza et 

al., 2009 

Samoamide A Symploca sp. collected in 

American Samoa 

Potent cytotoxic activity 

versus H460 human 

non-small-cell lung 

cancer cells (IC50 = 1.1 

μM). 

Naman et 

al., 2017 

Apratoxin D Cyanobacterium 

Lyngbya majuscule 

Cytotoxicity against H-

460 lung cancer cells 

with IC50 value of 2.6 

nM. 

Gutiérrez 

et al., 2008 

Sansalvamide A Fusarium sp. derived Cytotoxic activity Vasko et 
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from marine plant 

Halodule wrightii 

towards several cell 

lines namely colon, 

pancreatic, prostrate, 

breast sarcoma, and 

melanoma cancer cell 

lines. 

al., 2010 

Azonazine Aspergillus insulicola, 

collected from Hawaiian 

marine sediments 

cytotoxic activity versus 

HCT-116 cell line with 

IC50 value < 15 ng/mL. 

Wu et al., 

2010 

Didemnin B Marine tunicate 

Trididemnum solidum 

Anti-tumor activity 

towards human prostatic 

cancer cell line with IC50 

value of 2 ng/mL in 

L1210 leukemia cell. 

Antiproliferative 

properties on B16 

melanoma and P388 

leukemia cells. 

Kotoku et 

al., 2006 

Scleritodermin A Marine sponge 

Scleritoderma nodosum 

In vitro anticancer 

activities towards 

different human cancer 

cell lines such as 

A2780 ovarian 

carcinoma, HCT116 

colon carcinoma, and 

SKBR3 breast 

carcinoma with IC50 

values of 0.94 µM, 1.92 

µM, and 0.97 µM, 

Liu et al., 

2008; 

Schmidt et 

al., 2004 
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respectively. 

Microsclerodermin A Sponge genus 

Amphibleptul 

Inhibit NFκB 

transcriptional activity. 

Cytotoxic activity 

against AsPC-1, BxPC-

3, MIA PaCa-2 and 

PANC-1 pancreatic 

cancer cell lines. 

Guzmán et 

al., 2015 

Urukthapelstatin A Thermoactinomycetaceae 

bacterium 

Mechercharimyces 

asporophorigenens 

YM11-542 

Cytotoxic activity 

against A549 lung 

carcinoma epithelial 

cells with IC50 value 

of 12 nM. 

Oberheide 

et al., 2019 

Lagunamide A & D Cyanobacterium 

Lyngbya majuscule 

Antiproliferative activity 

against A549 human 

lung adenocarcinoma 

cells. 

Luo et al., 

2019b 

Scopularides A & B Fungus Scopulariopsis 

brevicaulis 

Anticancer activities 

against the colon tumor 

cell line HT29 and 

pancreatic tumor cell 

lines Panc89 and 

Colo357. 

Yu et al., 

2008 

Desmethoxymajusculamide 

C 

Fijian cyanobacteria 

Lyngbya majuscula 

Activity against HCT-

116 human colon 

carcinoma cell line with 

Simmons 

et al., 2009 
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IC50 value of 20 nM. 

Rolloamides A & B  Dominican marine 

sponge Eurypon 

laughlini 

Cytotoxic activities 

against SKBR3 and 

A2780 with IC50 values 

in the range of 0.4–5.8 

µM. 

Williams 

et al., 2009 

 Diazonamide A Ascidian Diazona 

angulata 

Activity towards CA46, 

MCF7, PC3, and A549 

cancer cell lines with 

IC50 values of 2–5 nM. 

Cruz-

Monserrate 

et al., 

2003; 

Lachia and 

Moody, 

2008 

Kulokekahilide-2 Cephalaspidean 

mollusk, Philinopsis 

speciosa 

Cytotoxicity activity 

towards different cell 

lines such as P388, SK-

OV-3, MDA-MB-435, 

and A-10 (IC50 values = 

4.2 to 59.1 nM). 

Nakao et 

al., 2004 

Peptide YALRAH Half-fin anchovy 

(Setipinna taty) 

Antiproliferative activity 

against PC-3 cell line 

with an IC50 value of 

11.1 µM. 

Song et al., 

2014a 

Pardaxin Red Sea Moses 

sole, Pardachirus 

mamoratu 

Antiproliferative activity 

against HT1080 and 

induce apoptosis in 

HeLa cells. 

Hsu et all., 

2011 
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Table 4. Examples of marine based alkaloids exhibiting antifungal activities. 

Alkaloids Source Antifungal activity Reference 

Penicillatide B Non-identified 

Penicillium 

strain associated with a 

Red Sea tunicate 

Didemnum sp. 

Moderate activity against C. 

albicans. 

Youssef et 

al., 2018 

Lindgomycin Two Lindgomyces 

strains 

(LF327 and KF970) 

Activity against human 

pathogen C. albicans 

(Activity is four times less 

than by the control nystatin). 

Wu et al., 

2015a 

Brocapyrrozin A  

4-hydroxy-3-phenyl-

1H-pyrrol-2(5H)-one 

Fungus P. brocae MA-

231 associated 

with marine mangrove 

plant A. marina (China) 

Activities against Fusarium 

oxysporum with MIC values 

of 0.25 and 0.125 μgmL
−1

, 

respectively. 

Meng et 

al., 2017 

Didymellamide A Marine-derived fungus 

Stagonosporopsis 

cucurbitacearum 

Activity versus azole-

resistant C. albicans. 

Haga et 

al., 2013 

Varioxepine A Fungus Paecilomyces 

variotii, from a marine 

Activity versus Fusarium 

graminearum. 

Zhang et 

al., 2014b 
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red macroalga 

Grateloupia turuturu 

(Qingdao, China) 

Hyrtinadines C Sponge Hyrtios sp. 

(Okinawa, Japan) 

Inhibitory activity versus A. 

niger (IC50 = 32 µg/mL). 

Kubota et 

al., 2016 

Tyrokeradines G & H Marine sponge of the 

order Verongida 

(Okinawa, Japan) 

Effect towards A. niger 

(IC50 = 32 μg/mL for each). 

Tyrokeradine G was active 

against Cryptococcus 

neoformans (IC50 = 

16 μg/mL). 

Kubota et 

al., 2015 

Isoagelasine C, 

agelasine B, agelasine 

J, nemoechine G, 

isoagelasidine B,  

(-)-agelasidine C 

Sponge Agelas 

nakamurai 

(Xisha Islands, South 

China Sea) 

Effect towards C. albicans  

(MICs ranging from 0.59 to 

4.69 μg/ml). 

Zhu et al., 

2016 

Nakamurin B Sponge Agelas 

nakamurai 

(Xisha Islands, South 

China Sea) 

Weak activity against C. 

albicans (MIC = 60 mg/mL). 

Chu et al., 

2017 

Zamamidine D Okinawan marine 

sponge Amphimedon 

sp. 

Active against Cryptococcus 

neoformans IFM62681 and 

Trichophyton 

mentagrophytes IFM62679 

(IC50 = 2 and 8 μg/mL, 

respectively). 

Kubota et 

al., 2017 

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 7 October 2024 as DOI 10.1124/pharmrev.124.001227 This article

at A
SPE

T
 Journals on D

ecem
ber 24, 2024

pharm
rev.aspetjournals.org 

D
ow

nloaded from
 

http://pharmrev.aspetjournals.org


 98 

Fusaripyridines A & B Fungus Fusarium sp. 

LY019 associated with 

Red Sea 

sponge Suberea mollis 

Activity versus C. albicans 

with MIC value of 8.0 µM. 

Shaala et 

al., 2021 

Indolepyrazines A & B Marine based 

Acinetobacter sp. 

ZZ1275 

Activity against C. albicans 

with MIC value of 12–14 

μg/mL. 

Zhang et 

al., 2022 

Eutypellenoid B Arctic fungi 

Eutypella sp. D-1 

Inhibitory effect towards C. 

albicans, C. parapsilosis, C. 

tropicalis, and C. glabrata 

with MIC values of 8, 8, 32, 

and 16 μg/mL, respectively. 

Yu et al., 

2018a 

Ditalaromylectones A 

& B 

Fungus Talaromyces 

mangshanicus 

BTBU20211089 (South 

China Sea) 

Activity towards C. albicans 

with MIC value of 200 

μg/mL. 

Zhang et 

al., 2022 

Hemimycalins C–E  Red Sea sponge 

Hemimycale sp. 

Inhibitory activity against C. 

albicans with MIC value of 8 

μM. 

Shaala et 

al., 2021 

Emethacin C Marine-derived fungus 

Aspergillus 

terreus RA2905. 

Activity against C. albicans 

(MIC = 32 μg/mL). 

Wu et al., 

2020 

Demethylxestospongin 

C Xestospongin A, C, 

& D 

Australian marine 

sponge Xestospongia 

exigua 

Moderate inhibitory effect 

towards a fluconazole-

resistant C. albicans ATCC 

14503 (MIC = 100 μg/mL). 

Moon et 

al., 2002 
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Didymellamide A Marine based fungus 

Stagonosporopsis 

cucurbitacearum 

Effect against azole-resistant 

and -susceptible C. albicans, 

C. glabrata, and 

Cryptococcus neoformans 

(MIC = 1.6 or 3.1 μg/mL). 

Haga et 

al., 2013 

Didymellamide B Marine based fungus 

Stagonosporopsis 

cucurbitacearum 

Acted against C. neoformans 

(MIC = 6.3 μg/mL). 

Haga et 

al., 2013 

Caerulomycin A Marine actinomycete 

Actinoalloateichus 

cyanogriseus 

Inhibited two fluconazole-

resistant C. krusei GO3 and 

C. glabrata HO5 (MICs in 

the range of 0.39–1.56 

μg/mL). 

Ambavane 

et al., 

2014 

5-bromo-8-methoxy-1-

methyl-𝛽-carboline 

New Zealand bryozoan 

Pterocella vesiculosa 

Inhibitory effect against C. 

albicans and Trichophyton 

mentagrophytes (MID = 4-5 

𝜇g/mL). 

Till and 

Prinsep, 

2009 

Nakijinamine A Okinawan marine 

sponge Suberites sp. 

Action towards C. albicans 

(IC50 0.25 𝜇g/mL), 

Trichophyton 

mentagrophytes (IC50 = 0.25 

𝜇g/mL), and C. neoformans 

(IC50 0.5 𝜇g/mL). 

Takahashi 

et al., 

2012 

Nakijinamines B & C Okinawan marine 

sponge Suberites sp. 

Inhibited C. albicans (IC50 = 

8 𝜇g/mL). 

Takahashi 

et al., 

2012 

has not been copyedited and formatted. The final version may differ from this version. 
Pharmrev Fast Forward. Published on 7 October 2024 as DOI 10.1124/pharmrev.124.001227 This article

at A
SPE

T
 Journals on D

ecem
ber 24, 2024

pharm
rev.aspetjournals.org 

D
ow

nloaded from
 

http://pharmrev.aspetjournals.org


 100 

Hyrtimomine A Okinawan marine 

sponges Hyrtios spp. 

Inhibitory activity against A. 

niger (IC50 = 4.0 𝜇g/mL). 

Momose 

et al., 

2013; 

Tanaka et 

al., 2013a 

Hyrtimomines A & B Okinawan marine 

sponges Hyrtios spp. 

Active against C. neoformans 

(IC50 = 2.0 and 4.0 𝜇g/mL, 

respectively) and C. albicans 

(IC50 = 1.0 𝜇g/mL each). 

Momose 

et al., 

2013; 

Tanaka et 

al., 2013a 

Hyrtimomines F, G, & 

I 

Okinawan marine 

sponges Hyrtios spp. 

Effect towards Aspergillus 

niger (IC50 = 8.0 𝜇g/mL 

each). 

Tanaka et 

al., 2014 

Hyrtimomine I Okinawan marine 

sponges Hyrtios spp. 

Inhibited C. neoformans 

(IC50 = 4.0 𝜇g/mL). 

Tanaka et 

al., 2014 

Fumigatosides E Deep-sea fungus 

Aspergillus 

fumigatus SCSIO 

(Indian Ocean) 

Activity against Fussarium 

oxysporum sp. momordicae 

and moderate inhibitory 

effect towards F. oxysporum 

sp. cucumerinu. 

Limbadri 

et al., 

2018 

Tyrokeradines G & H Marine sponge of the 

order Verongida 

(Okinawa, Japan) 

Effect towards A. niger with 

IC50 value of 32 μg/mL for 

each. 

Kubota et 

al., 2015 

Tyrokeradines G Marine sponge of the 

order Verongida 

(Okinawa, Japan) 

Active against Cryptococcus 

neoformans (IC50 = 16 

μg/mL). 

Kubota et 

al., 2015 
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(−)-ageloxime D 

Ageloxime B  

Marine sponge Agelas 

mauritiana 

Activity against 

Cryptococcus neoformans 

with MIC values of 10.00 

μg/mL. 

Yang et 

al., 2012 

Nagelamide Z Marine 

sponge Agelas sp. 

Inhibitory activity 

against Candida 

albicans (IC50 = 0.25 

μg/mL). 

Tanaka et 

al., 2013b 

Ceratinadins A & B 

 

Okinawan marine 

sponge 

Pseudoceratina sp.  

 

Effect against Cryptococcus 

neoformans (MIC = 4 and 

8 μg/mL, respectively) 

and Candida albicans (MIC 

= 2 and 4 μg/mL, 

respectively). 

Kon et al., 

2010 
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Table 5. A list of alkaloid compounds with the potential antibacterial activities. 

Alkaloid Source Antibacterial activity Reference 

Pyranonigrin F Fungus Penicillium 

brocae MA-231 

associated with the 

marine mangrove-

derived plant Avicennia 

marina 

Activity against S. aureus 

(Gram-positive) and the Gram-

negative aqua-bacteria Vibrio 

harveyi and Vibrio 

parahemolyticus with MIC 

values of 0.5 μg/mL. 

Meng et 

al., 2015 

Pyrrospirone C–F & 

I 

Fungus Penicillium sp. 

ZZ380, derived from a 

wild crab 

(Pachygrapsus 

crassipes) 

Inhibition against E. coli 

(Gram-negative) and S. aureus 

(Gram-positive) with MIC 

values of 3.0 μg/mL and 1.7 

μg/mL, respectively. 

Song et 

al., 2019 

Brocapyrrozin A & 

B 

Fungus P. brocae MA-

231, derived from 

marine mangrove plant 

A. marina 

Activity against S. aureus (MIC 

value of 0.125 μg mL
−1 

for 

Brocapyrrozin A). 

Meng et 

al., 2017 

Dispyrrolopyridine 

A & B 

Predatory bacterium 

Tenacibaculum discolor 

sv11 

Strong activity versus B. subtilis 

DSM10, Mycobacterium 

smegmatis ATCC607, S. aureus 

ATCC25923, and L. 

monocytogenes DSM20600 

with MIC values ranging from 

0.5 to 4 μg/mL. 

Wang et 

al., 2022a 
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Dispyrrolopyridine 

A 

Predatory bacterium 

Tenacibaculum discolor 

sv11 

Potent activity against efflux 

pump deficient E. coli 

ATCC25922 (MIC = 8 μg/mL) 

and Caenorhabditis elegans N2 

(MIC = 32 μg/mL. 

Wang et 

al., 2022a 

Penijanthine C & D Penicillium 

janthinellum, living in 

the sediments of the 

Bohai Sea, China 

Inhibiting activities against 

Vibrio alginolyticus, V. 

anguillarum, and V. 

parahemolyticus with MIC 

values ranging from 3.1 to 50.0 

μM. 

Guo et al., 

2019 

19-

Hydroxypenitrem A 

Fungus Aspergillus 

nidulans EN-

330, isolated from the 

marine red macroalga 

Polysiphonia villum 

(formerly Polysiphonia 

scopulorum var. villum) 

Moderate antibacterial activity 

against human pathogens (S. 

aureus and E. coli) and aqua 

pathogens (Edwardsiella 

tarda and Vibrio anguillarum) 

with MIC values ranging from 

16 to 64 μg/mL. 

Zhang et 

al., 2015b 

Fumigatoside F Deep-sea sediment-

derived fungus 

Aspergillus fumigatus 

SCSIO41012 

Antibacterial activity against 

Acinetobacter baumannii 

ATCC 19606 with a MIC value 

of 6.25 µg/mL. 

Limbadri 

et al., 

2018 

2-(4 

hydroxybenzyl)-4-

(3-acetyl) 

quinazolin-one 

Aspergillus sydowii 

SW9 (China’s seawater) 

Activity against S. epidermidis, 

S. aureus, E. coli, and 

Streptococcus pneumoniae with 

MIC values in the range of 2.0 

to 16 μg/mL. 

Liu et al., 

2019b 
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Penicillatide B Penicillium strain 

associated with a Red 

Sea tunicate Didemnum 

sp. 

Potent inhibitory effect on V. 

anguillarum and moderated 

effect on S. aureus. 

Youssef et 

al., 2018 

Spirobrocazine C Fungus P. brocae MA-

231 associated with 

mangrove plant (A. 

marina) 

Antibacterial activity against E. 

coli, V. harveyi, and Aeromonas 

hydrophila with MIC value of 

32.0 μg/mL. 

Meng et 

al., 2016 

Acremolin C Antarctic-derived 

fungus A. sydowii SP-1 

Activity against methicillin-

resistant S. aureus, methicillin-

resistant S. epidermidis, S. 

aureus, and S. epidermidis. 

Li et al., 

2018 
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Table 6. Anticancer activities of some marine derived alkaloids. 

Alkaloid Source Anticancer activity Reference 

Discorhabdin and 

Discodermolide 

Sponge 

Latrunculia 

apicalis and L. 

biformis 

Cytotoxic activity towards HCT116 

cell line. 

Li et al., 

2019c 

Ascomylactam A  Mangrove 

endophytic fungus 

Ascomycota sp. 

Suppressed A549 and NCI-H460 

cancer cell lines (6 mg/kg/day). 

Wang et 

al., 2020 

(−)-Agelamide D Marine sponge 

Agelas sp. 

Improve the efficacy of radiation 

therapy in xenograft Hep3B cells. 

Choi et al., 

2020 

Neoamphimedine Marine sponge 

Xestospongia sp. 

Reduce the growth of KB and HCT-

116 tumors. 

Marshall 

et al., 

2003 

Crambescidine-816 Marine sponge 

Crambe crambe 

Reduce the tumor development in 

olorectal carcinoma (CRC) HTC-

116 cells in vivo in Zebrafish 

embryos. 

Roel et al., 

2016 

Isofistularin-3 Marine sponge 

Aplysina 

aerophoba 

Supress the development of 

neuroblastoma (15–25 µM) and 

prostate (20 and 25 µM) cancers. 

Florean et 

al., 2016 

Monanchoxymycalin 

C  

Marine sponge 

Monanchor 

pulchra  

Cytotoxicity against human prostate 

cancer through JNK1/2 activation 

and non-apoptotic cell death. 

Dyshlovoy 

et al., 

2020 
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Table 7. Marine based phenolics displaying anticancer activities. 

Phenolics Source Antifungal activity Reference 

Penimethavone A 

(flavone) 

Fungus Penicillium 

chrysogenum cultured 

from a 

gorgonian Carijoa sp. 

(South China Sea) 

Anticancer activities towards 

rhabdomyosarcoma and 

cervical cancer (HeLa) cell 

lines with IC50 values of 8.18 

and 8.41 μM, respectively. 

Hou et al., 

2016 

Phloroglucinol Brown seaweeds Enhanced the anticancer 

effects of 5-fluorouracil 

towards HT29 colorectal 

cancer cell lines. 

Lopes-

Costa et 

al., 2017 

Alternariol and 

(coumarin) 

Fungus Alternaria 

alternata collected from 

soft coral Litophyton 

arboreum 

Antiproliferative activities 

verses leukemia cell lines 

such as L1210 and CCRF-

CEM. 

Hawas et 

al., 2015 

Alternariol methyl 

ether 

Fungus Alternaria 

alternata collected from 

soft coral Litophyton 

arboreum 

antitumor activities towards 

the leukemia cell lines of H-

125 and Colon-38. 

Hawas et 

al., 2015 

Moromycin B, 

saquayamycin B1 

and B 

Marine derived 

Streptomyces sp. 

OC1610.4 

Antitumor activities towards 

breast cancer cells MCF-7, 

MDA-MB-231, and BT-474 

with IC50 values in the range 

of 0.16–0.67 µM. 

Qu et al. 

2019 

Bis (2,3-dibromo-

4,5-dihydroxy-

phenyl)-methane 

Marine algae Anticancer activity on 

different tumor cells such as 

RKO, HeLa, U87, Bel7402, 

Wu et al., 

2015b 
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(Bromophenol) and HCT116 with IC50 values 

of 11.37, 17.63, 23.69, 8.7, 

and 10.58 µg/mL, 

respectively. 

Laurebiphenyl 

(terpenophenolics) 

Red 

macroalga Laurencia 

tristicha 

Antiproliferative activity 

against stomach cancer 

(BGC-823), lung 

adenocarcinoma (A549), 

colon cancer (HCT-8), 

hepatoma (Bel 7402), and 

HeLa cell lines with 

IC50 values of 1.22, 1.68, 

1.77, 1.91, and 1.61 μg/mL, 

respectively. 

Sun et al., 

2005 

Fradimycin B Marine Streptomyces 

fradiae strain PTZ0025 

Activity against HCT-15, 

SW620 and C6 cancer cells 

with IC50 values of 0.13, 4.33 

and 0.47 µM, respectively. 

Xin et al., 

2012 

Fucodiphloroethol G Ecklonia cava (Marine 

brown macroalgae) 

Antitumor activity towards 

HeLa, A549, HT1080 and 

HT29 cancer cells (IC50 = 

298.2, 226.5, 242.5 and 228.5 

µM, respectively). 

Li et al., 

2011 

Galvaquinone B 

and lupinacidin A 

(anthraquinones) 

Sea anemone (Gyractis 

sesere) from Easter 

Island 

Active against Calu-3 and 

H2887 cancer cells with IC50 

values of 5.0 and 12.2 µM for 

Galvaquinone B and 8.8 and 

3.1 µM for lupinacidin A. 

Sottorff et 

al., 2019 
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Norhierridin B 

(hydroquinone) 

Marine 

picocyanobacterium 

Cyanobium sp. 

Antiproliferative activity 

against MDA-MB-231, 

SKBR3, MDA-MB-468, 

A375, Huh-7 and HCT116 

cancer cells (IC50 = 0.61, 

0.77, 0.68, 2.0, 0.61 and 3.2 

µM, respectively). 

Brandão 

et al., 

2020 

Diorcinol L Marine sponge-derived 

fungus Didymellaceae sp. 

SCSIO F46 

Anticancer activity towards 

Huh-7, DU145, HeLa and 

HL60 cancer cells (IC50 = 5.7, 

9.1, 7.1 and 9.6 µM). 

Tian et al., 

2018 

Plastoquinones Brown 

macroalga, Sargassum 

micracanthum 

Anticancer activity against 

murine colon 26-L5 

adenocarcinoma cell line 

(IC50 = 1.51 and 1.69 µg/mL. 

Mori et 

al., 2005 

Phlorofucofuroeckol  Brown macroalga 

Ecklonia cava 

Suppression of migration and 

invasion of breast cancer cells 

(MCF-7 and MDA-MB-231) 

by downregulation of Nf-κB 

and Toll-like receptor 4 

(TLR-4). 

Lee et al., 

2020 
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