Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving

This article has been updated

Abstract

Relapse to cocaine use after prolonged abstinence is an important clinical problem. This relapse is often induced by exposure to cues associated with cocaine use. To account for the persistent propensity for relapse, it has been suggested1 that cue-induced cocaine craving increases over the first several weeks of abstinence and remains high for extended periods. We and others identified an analogous phenomenon in rats that was termed ‘incubation of cocaine craving’: time-dependent increases in cue-induced cocaine-seeking over the first months after withdrawal from self-administered cocaine2,3,4. Cocaine-seeking requires the activation of glutamate projections that excite receptors for α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) in the nucleus accumbens5,6,7. Here we show that the number of synaptic AMPA receptors in the accumbens is increased after prolonged withdrawal from cocaine self-administration by the addition of new AMPA receptors lacking glutamate receptor 2 (GluR2). Furthermore, we show that these new receptors mediate the incubation of cocaine craving. Our results indicate that GluR2-lacking AMPA receptors could be a new target for drug development for the treatment of cocaine addiction. We propose that after prolonged withdrawal from cocaine, increased numbers of synaptic AMPA receptors combined with the higher conductance of GluR2-lacking AMPA receptors8,9 causes increased reactivity of accumbens neurons to cocaine-related cues, leading to an intensification of drug craving and relapse.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time-dependent increases in cue-induced cocaine-seeking (incubation of cocaine craving).
Figure 2: Accumbens GluR1 and GluR3 expression increase after withdrawal from cocaine self-administration.
Figure 3: GluR2-lacking AMPA receptors are detected in accumbens neurons after prolonged withdrawal from self-administration of cocaine.
Figure 4: Enhanced cue-induced cocaine-seeking after prolonged withdrawal from cocaine self-administration is inhibited by blockade of GluR2-lacking AMPA receptors.

Similar content being viewed by others

Change history

  • 03 July 2008

    In the AOP version of this paper, the sentence ‘Scaling-induced increases in GluR1 have been reported to occur through increased dendritic GluR1 synthesis26 as well as decreased GluR1 protein stability27.’ should have read ‘...as well as increased GluR1 protein stability27.’. This was corrected for print on 3 July 2008.

References

  1. Gawin, F. H. & Kleber, H. D. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clinical observations. Arch. Gen. Psychiatry 43, 107–113 (1986)

    Article  CAS  Google Scholar 

  2. Grimm, J. W., Hope, B. T., Wise, R. A. & Shaham, Y. Incubation of cocaine craving after withdrawal. Nature 412, 141–142 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Lu, L., Grimm, J. W., Hope, B. T. & Shaham, Y. Incubation of cocaine craving after withdrawal: a review of preclinical data. Neuropharmacology 47 (Suppl 1). 214–226 (2004)

    Article  CAS  Google Scholar 

  4. Neisewander, J. L. et al. Fos protein expression and cocaine-seeking behavior in rats after exposure to a cocaine self-administration environment. J. Neurosci. 20, 798–805 (2000)

    Article  CAS  Google Scholar 

  5. Cornish, J. L. & Kalivas, P. W. Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J. Neurosci. 20, RC89 (2000)

    Article  CAS  Google Scholar 

  6. Di Ciano, P., Cardinal, R. N., Cowell, R. A., Little, S. J. & Everitt, B. J. Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of pavlovian approach behavior. J. Neurosci. 21, 9471–9477 (2001)

    Article  CAS  Google Scholar 

  7. Suto, N. et al. Previous exposure to psychostimulants enhances the reinstatement of cocaine seeking by nucleus accumbens AMPA. Neuropsychopharmacology 29, 2149–2159 (2004)

    Article  CAS  Google Scholar 

  8. Cull-Candy, S., Kelly, L. & Farrant, M. Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond. Curr. Opin. Neurobiol. 16, 288–297 (2006)

    Article  CAS  Google Scholar 

  9. Liu, S. J. & Zukin, R. S. Ca2+-permeable AMPA receptors in synaptic plasticity and neuronal death. Trends Neurosci. 30, 126–134 (2007)

    Article  CAS  Google Scholar 

  10. Kalivas, P. W. & Volkow, N. D. The neural basis of addiction: a pathology of motivation and choice. Am. J. Psychiatry 162, 1403–1413 (2005)

    Article  Google Scholar 

  11. Kauer, J. A. & Malenka, R. C. Synaptic plasticity and addiction. Nature Rev. Neurosci. 8, 844–858 (2007)

    Article  CAS  Google Scholar 

  12. Wolf, M. E. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol. 54, 679–720 (1998)

    Article  CAS  Google Scholar 

  13. Boudreau, A. C. & Wolf, M. E. Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J. Neurosci. 25, 9144–9151 (2005)

    Article  CAS  Google Scholar 

  14. Boudreau, A. C., Reimers, J. M., Milovanovic, M. & Wolf, M. E. Cell surface AMPA receptors in the rat nucleus accumbens increase during cocaine withdrawal but internalize after cocaine challenge in association with altered activation of mitogen-activated protein kinases. J. Neurosci. 27, 10621–10635 (2007)

    Article  CAS  Google Scholar 

  15. Meredith, G. E. The synaptic framework for chemical signaling in nucleus accumbens. Ann. NY Acad. Sci. 877, 140–156 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Everitt, B. J. & Robbins, T. W. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neurosci. 8, 1481–1489 (2005)

    Article  CAS  Google Scholar 

  17. Robinson, T. E. & Kolb, B. Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47 (Suppl. 1). 33–46 (2004)

    Article  CAS  Google Scholar 

  18. Goto, Y. & Grace, A. A. Dopamine-dependent interactions between limbic and prefrontal cortical plasticity in the nucleus accumbens: disruption by cocaine sensitization. Neuron 47, 255–266 (2005)

    Article  CAS  Google Scholar 

  19. Kourrich, S., Rothwell, P. E., Klug, J. R. & Thomas, M. J. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J. Neurosci. 27, 7921–7928 (2007)

    Article  CAS  Google Scholar 

  20. Pierce, R. C., Bell, K., Duffy, P. & Kalivas, P. W. Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J. Neurosci. 16, 1550–1560 (1996)

    Article  CAS  Google Scholar 

  21. Yao, W. D. et al. Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 41, 625–638 (2004)

    Article  CAS  Google Scholar 

  22. Hollander, J. A. & Carelli, R. M. Cocaine-associated stimuli increase cocaine seeking and activate accumbens core neurons after abstinence. J. Neurosci. 27, 3535–3539 (2007)

    Article  CAS  Google Scholar 

  23. Mead, A. N., Zamanillo, D., Becker, N. & Stephens, D. N. AMPA-receptor GluR1 subunits are involved in the control over behavior by cocaine-paired cues. Neuropsychopharmacology 32, 343–353 (2007)

    Article  CAS  Google Scholar 

  24. Sutton, M. A. et al. Extinction-induced upregulation in AMPA receptors reduces cocaine-seeking behaviour. Nature 421, 70–75 (2003)

    Article  ADS  CAS  Google Scholar 

  25. Beveridge, T. J., Smith, H. R., Daunais, J. B., Nader, M. A. & Porrino, L. J. Chronic cocaine self-administration is associated with altered functional activity in the temporal lobes of non human primates. Eur. J. Neurosci. 23, 3109–3118 (2006)

    Article  Google Scholar 

  26. Ju, W. et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nature Neurosci. 7, 244–253 (2004)

    Article  CAS  Google Scholar 

  27. O’Brien, R. J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078 (1998)

    Article  Google Scholar 

  28. Bellone, C. & Luscher, C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nature Neurosci. 9, 636–641 (2006)

    Article  CAS  Google Scholar 

  29. Mameli, M., Balland, B., Lujan, R. & Luscher, C. Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science 317, 530–533 (2007)

    Article  ADS  CAS  Google Scholar 

  30. Tseng, K. Y. & O’Donnell, P. Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J. Neurosci. 24, 5131–5139 (2004)

    Article  CAS  Google Scholar 

  31. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Elsevier Academic, Amsterdam, 2005)

    Google Scholar 

  32. Bossert, J. M., Poles, G., Wihbey, K., Koya, U. & Shaham, Y. Differential effects of blockade of dopamine D1-family receptors in nucleus accumbens core or shell on reinstatement of heroin seeking induced by contextual and discrete cues. J. Neurosci. 27, 12655–12663 (2007)

    Article  CAS  Google Scholar 

  33. Lu, L., Uejima, J. L., Gray, S. M., Bossert, J. M. & Shaham, Y. Systemic and central amygdala injections of the mGluR2/3 agonist LY379268 attenuate the expression of incubation of cocaine craving. Biol. Psychiatry 61, 591–598 (2007)

    Article  CAS  Google Scholar 

  34. Takazawa, A. et al. Potent and long-lasting anticonvulsant effects of 1-naphthylacetyl spermine, an analogue of Joro spider toxin, against amygdaloid kindled seizures in rats. Brain Res. 706, 173–176 (1996)

    Article  CAS  Google Scholar 

  35. Noh, K. M. et al. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc. Natl Acad. Sci. USA 102, 12230–12235 (2005)

    Article  ADS  CAS  Google Scholar 

  36. Hall, R. A., Hansen, A., Andersen, P. H. & Soderling, T. R. Surface expression of the AMPA receptor subunits GluR1, GluR2, and GluR4 in stably transfected baby hamster kidney cells. J. Neurochem. 68, 625–630 (1997)

    Article  CAS  Google Scholar 

  37. Hall, R. A. & Soderling, T. R. Differential surface expression and phosphorylation of the N-methyl-d-aspartate receptor subunits NR1 and NR2 in cultured hippocampal neurons. J. Biol. Chem. 272, 4135–4140 (1997)

    Article  CAS  Google Scholar 

  38. Hall, R. A. & Soderling, T. R. Quantitation of AMPA receptor surface expression in cultured hippocampal neurons. Neuroscience 78, 361–371 (1997)

    Article  CAS  Google Scholar 

  39. Archibald, K., Perry, M. J., Molnar, E. & Henley, J. M. Surface expression and metabolic half-life of AMPA receptors in cultured rat cerebellar granule cells. Neuropharmacology 37, 1345–1353 (1998)

    Article  CAS  Google Scholar 

  40. Broutman, G. & Baudry, M. Involvement of the secretory pathway for AMPA receptors in NMDA-induced potentiation in hippocampus. J. Neurosci. 21, 27–34 (2001)

    Article  CAS  Google Scholar 

  41. Clayton, D. A., Grosshans, D. R. & Browning, M. D. Aging and surface expression of hippocampal NMDA receptors. J. Biol. Chem. 277, 14367–14369 (2002)

    Article  CAS  Google Scholar 

  42. Grosshans, D. R., Clayton, D. A., Coultrap, S. J. & Browning, M. D. LTP leads to rapid surface expression of NMDA but not AMPA receptors in adult rat CA1. Nature Neurosci. 5, 27–33 (2002)

    Article  CAS  Google Scholar 

  43. Grosshans, D. R., Clayton, D. A., Coultrap, S. J. & Browning, M. D. Analysis of glutamate receptor surface expression in acute hippocampal slices. Sci. STKE 137, PL8 (2002)

    Google Scholar 

  44. Gerges, N. Z. et al. Independent functions of hsp90 in neurotransmitter release and in the continuous synaptic cycling of AMPA receptors. J. Neurosci. 24, 4758–4766 (2004)

    Article  CAS  Google Scholar 

  45. Sans, N. et al. Aberrant formation of glutamate receptor complexes in hippocampal neurons of mice lacking the GluR2 AMPA receptor subunit. J. Neurosci. 23, 9367–9373 (2003)

    Article  CAS  Google Scholar 

  46. Wenthold, R. J., Petralia, R. S., Blahos, J. & Niedzielski, A. S. Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J. Neurosci. 16, 1982–1989 (1996)

    Article  CAS  Google Scholar 

  47. Bernard, V., Somogyi, P. & Bolam, J. P. Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J. Neurosci. 17, 819–833 (1997)

    Article  CAS  Google Scholar 

  48. Stefani, A. et al. Physiological and molecular properties of AMPA/kainate receptors expressed by striatal medium spiny neurons. Dev. Neurosci. 20, 242–252 (1998)

    Article  CAS  Google Scholar 

  49. Tseng, K. Y. & O’Donnell, P. D2 dopamine receptors recruit a GABA component for their attenuation of excitatory synaptic transmission in the adult rat prefrontal cortex. Synapse 61, 843–850 (2007)

    Article  CAS  Google Scholar 

  50. Balland, B., Lachamp, P., Strube, C., Kessler, J. P. & Tell, F. Glutamatergic synapses in the rat nucleus tractus solitarii develop by direct insertion of calcium-impermeable AMPA receptors and without activation of NMDA receptors. J. Physiol. (Lond.) 574, 245–261 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. J. Wenthold for help in establishing quantitative co-immunoprecipitation methods used in Supplementary Fig. 2. This work was supported by US Public Health Service grants DA09621, DA015835, DA00453 and NARSAD (M.E.W.), DA020654 (M.M.), predoctoral National Research Service Award DA021488 (K.L.C.), Rosalind Franklin University of Medicine and Science start-up funds (K.Y.T.) and the Intramural Research Program of the National Institute on Drug Abuse (Y.S.).

Author Contributions K.L.C., M.M. and M.E.W. were responsible for overall study design. K.L.C. conducted and analysed cocaine self-administration experiments (except the Naspm experiment) and protein crosslinking studies. M.M. trained K.L.C. in drug self-administration procedures and helped with these experiments. J.M.R. conducted and analysed co-immunoprecipitation experiments. K.Y.T. designed electrophysiological experiments, L.J.H. conducted them, and K.Y.T. analysed the data. Y.S. and K.L.C. designed the Naspm behavioural experiment, J.L.U. performed it, and Y.S. and J.L.U. analysed the data. K.L.C., Y.S. and M.E.W. wrote the paper with the help of the other authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina E. Wolf.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-8 and Legends; Supplementary Methods with additional references. The Supplementary Figures show additional experimental data in support of the manuscript's conclusions. The Supplementary Methods provide detailed descriptions of the procedures. (PDF 391 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, K., Tseng, K., Uejima, J. et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454, 118–121 (2008). https://doi.org/10.1038/nature06995

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06995

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing