RT Journal Article SR Electronic T1 International Union of Pharmacology. XXIII. The Angiotensin II Receptors JF Pharmacological Reviews JO Pharmacol Rev FD American Society for Pharmacology and Experimental Therapeutics SP 415 OP 472 VO 52 IS 3 A1 de Gasparo, M. A1 Catt, K. J. A1 Inagami, T. A1 Wright, J. W. A1 Unger, Th. YR 2000 UL http://pharmrev.aspetjournals.org/content/52/3/415.abstract AB The cardiovascular and other actions of angiotensin II (Ang II) are mediated by AT1 and AT2 receptors, which are seven transmembrane glycoproteins with 30% sequence similarity. Most species express a single autosomal AT1 gene, but two related AT1A and AT1B receptor genes are expressed in rodents. AT1 receptors are predominantly coupled to Gq/11, and signal through phospholipases A, C, D, inositol phosphates, calcium channels, and a variety of serine/threonine and tyrosine kinases. Many AT1-induced growth responses are mediated by transactivation of growth factor receptors. The receptor binding sites for agonist and nonpeptide antagonist ligands have been defined. The latter compounds are as effective as angiotensin converting enzyme inhibitors in cardiovascular diseases but are better tolerated. The AT2receptor is expressed at high density during fetal development. It is much less abundant in adult tissues and is up-regulated in pathological conditions. Its signaling pathways include serine and tyrosine phosphatases, phospholipase A2, nitric oxide, and cyclic guanosine monophosphate. The AT2 receptor counteracts several of the growth responses initiated by the AT1 and growth factor receptors. The AT4 receptor specifically binds Ang IV (Ang 3–8), and is located in brain and kidney. Its signaling mechanisms are unknown, but it influences local blood flow and is associated with cognitive processes and sensory and motor functions. Although AT1 receptors mediate most of the known actions of Ang II, the AT2 receptor contributes to the regulation of blood pressure and renal function. The development of specific nonpeptide receptor antagonists has led to major advances in the physiology, pharmacology, and therapy of the renin-angiotensin system.