TABLE 1

GR

Receptor nomenclature NR3C1
Receptor code 4.10.1:GC:3:C1
Other names GCCR, GCR, GRL
Molecular information Hs: 777aa, P04150, chr. 5q31-q321
Rn: 795aa, P06536, chr. 18p122
Mm: 783aa, P06537, chr. 18 B33
DNA binding
   Structure Homodimer
   HRE core sequence GGTACANNNTGTTCT (GRE, half-site, palindrome)
Partners HSP90 (physical, functional): cellular localization46; HMGB (physical, functional): DNA binding7,8; AP-1 (physical, functional): transactivation911; NF-κB (physical, functional): transactivation12,13; 14-3-3σ (physical, functional): cellular localization, transactivation14
Agonists Dexamethasone (1–8 nM),* triamcinolone acetonide (6 nM),* prednisolone (15 nM), triamcinolone (20 nM), cortisol (10–50 nM),* corticosterone (60 nM),* desoxycorticosterone (70 nM) [IC50]1519
Antagonists RU-486 (0.4 nM)* [Kd]15,20
Coactivator CREBBP, NCOA2, MTI-II, NCOA6, PPARBP2227
Corepressor BAG128
Biologically important isoforms GRα {Hs, Mm, Rn}: main isoform1; GRβ {Hs}: widely expressed alternative splicing variant lacking ligand binding, associated with several diseases1,29; GR-A, B, C, D {Hs, Mm, Rn}: alternative translation initiation isoforms with distinct transcriptional activities and tissue distribution patterns30
Tissue distribution Ubiquitous {Hs, Mm, Rn} [Northern blot, Q-PCR, in situ hybridization, Western blot]1,3033
Functional assay Suppression of endogenous cortisol level by exogenous dexamethasone {Hs}34; apoptosis of thymocytes in the thymus {Rn}35; elevated blood glucose level by intravenous injection of glucocorticoids {Hs}36,37
Main target genes Activated: PEPCK-C {Hs},38 MKP-1 {Mm},39 lipocortin-1 {Hs},40,41; repressed: PEPCK-C {Hs},38 IL-8 {Hs},42 TNF-α {Hs}43
Mutant phenotype GR–/– mice die within hours because of respiratory failure; they have atelectatic lungs, impaired liver function, impaired HPA axis, increased plasma levels of ACTH and corticosterone and enlarged adrenal glands that produce no adrenaline {Mm} [knockout]44,45; mice expressing type II GR antisense RNA exhibit impaired T-cell function, disrupted HPA axis, increased plasma levels of ACTH and corticosterone, reduced GR binding, and alterations in thymocyte migration {Mm} [antisense oligonucleotide]46
Human disease Glucocorticoid resistance: due to various SNPs47,48; glucocorticoid hypersensitivity: due to an N363 polymorphism49; asthma: due to a receptor mutation50,51; acute childhood lymphoblastic leukemia: due to a receptor mutation52
  • aa, amino acids; chr., chromosome; HRE, hormone response element; RXR, retinoid X receptor; HMGB, chromosomal high-mobility group B; NK-κ B, nuclear factor-κ B; PPARBP, peroxisome proliferator-activated receptor binding protein; Q-PCR, quantitative polymerase chain reaction; HPA, hypothalamo-pituitary-adrenal; ACTH, adrenocorticotropin; SNP, single-nucleotide polymorphism; GRE, glucocorticoid response element; CREBBP, cAMP response element binding protein binding protein

  • * Radioligand

  • 1. Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, and Evans RM (1985) Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature (Lond) 318: 635-641

  • 2. Miesfeld R, Rusconi S, Godowski PJ, Maler BA, Okret S, Wikstrom AC, Gustafsson JA, and Yamamoto KR (1986) Genetic complementation of a glucocorticoid receptor deficiency by expression of cloned receptor cDNA. Cell 46: 389-399

  • 3. Danielsen M, Northrop JP, and Ringold GM (1986) The mouse glucocorticoid receptor: mapping of functional domains by cloning, sequencing and expression of wild-type and mutant receptor proteins. EMBO (Eur Mol Biol Organ) J 5: 2513-2522

  • 4. Pratt WB (1993) The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J Biol Chem 268: 21455-21458

  • 5. Pratt WB and Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18: 306-360

  • 6. Pratt WB, Galigniana MD, Morishima Y, and Murphy PJ (2004) Role of molecular chaperones in steroid receptor action. Essays Biochem 40: 41-58

  • 7. Boonyaratanakornkit V, Melvin V, Prendergast P, Altmann M, Ronfani L, Bianchi ME, Taraseviciene L, Nordeen SK, Allegretto EA, and Edwards DP (1998) High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol Cell Biol 18: 4471-4487

  • 8. Verrijdt G, Haelens A, Schoenmakers E, Rombauts W, and Claessens F (2002) Comparative analysis of the influence of the high-mobility group box 1 protein on DNA binding and transcriptional activation by the androgen, glucocorticoid, progesterone and mineralocorticoid receptors. Biochem J 361: 97-103

  • 9. Yang-Yen HF, Chambard JC, Sun YL, Smeal T, Schmidt TJ, Drouin J, and Karin M (1990) Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62: 1205-1215

  • 10. Schule R, Rangarajan P, Kliewer S, Ransone LJ, Bolado J, Yang N, Verma IM, and Evans RM (1990) Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell 62: 1217-1226

  • 11. Jonat C, Rahmsdorf HJ, Park KK, Cato AC, Gebel S, Ponta H, and Herrlich P (1990) Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62: 1189-1204

  • 12. Caldenhoven E, Liden J, Wissink S, Van de Stolpe A, Raaijmakers J, Koenderman L, Okret S, Gustafsson JA, and Van der Saag PT (1995) Negative cross-talk between RelA and the glucocorticoid receptor: a possible mechanism for the antiinflammatory action of glucocorticoids. Mol Endocrinol 9: 401-412

  • 13. Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, and Baldwin AS Jr (1995) Characterization of mechanisms involved in transrepression of NF-κ B by activated glucocorticoid receptors. Mol Cell Biol 15: 943-953

  • 14. Kino T, Souvatzoglou E, De Martino MU, Tsopanomihalu M, Wan Y, and Chrousos GP (2003) Protein 143-3σ interacts with and favors cytoplasmic subcellular localization of the glucocorticoid receptor, acting as a negative regulator of the glucocorticoid signaling pathway. J Biol Chem 278: 25651-25656

  • 15. Rupprecht R, Reul JM, van Steensel B, Spengler D, Soder M, Berning B, Holsboer F, and Damm K (1993) Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands. Eur J Pharmacol 247: 145-154

  • 16. Hellal-Levy C, Couette B, Fagart J, Souque A, Gomez-Sanchez C, and Rafestin-Oblin M (1999) Specific hydroxylations determine selective corticosteroid recognition by human glucocorticoid and mineralocorticoid receptors. FEBS Lett 464: 9-13

  • 17. Lind U, Greenidge P, Gillner M, Koehler KF, Wright A, and Carlstedt-Duke J (2000) Functional probing of the human glucocorticoid receptor steroid-interacting surface by site-directed mutagenesis: Gln-642 plays an important role in steroid recognition and binding. J Biol Chem 275: 19041-19049

  • 18. Giannopoulos G and Keichline D (1981) Species-related differences in steroid-binding specificity of glucocorticoid receptors in lung. Endocrinology 108: 1414-1419

  • 19. Yoneda Y, Han D, Ogita K, and Watanabe A (1995) Distinction between binding of [3H]triamcinolone acetonide to a ligand binding domain on the glucocorticoid receptor complex in cytosol fractions of brain and liver from the rat with intact adrenals. Brain Res 685: 105-116

  • 20. Heikinheimo O, Kontula K, Croxatto H, Spitz I, Luukkainen T, and Lahteenmaki P (1987) Plasma concentrations and receptor binding of RU 486 and its metabolites in humans. J Steroid Biochem 26: 279-284

  • 21. Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, et al. (1996) A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85: 403-414

  • 22. Hong H, Kohli K, Trivedi A, Johnson DL, and Stallcup MR (1996) GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc Natl Acad Sci USA 93: 4948-4952

  • 23. Voegel JJ, Heine MJ, Zechel C, Chambon P, and Gronemeyer H (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO (Eur Mol Biol Organ) J 15: 3667-3675

  • 24. Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, and Rosenfeld MG (1997) The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature (Lond) 387: 677-684

  • 25. Okamoto K and Isohashi F (2005) Macromolecular-translocation inhibitor-II (Zn2+-binding protein, parathymosin) interacts with the glucocorticoid receptor and enhances transcription in vivo. J Biol Chem 280: 36986-36993

  • 26. Lee SK, Anzick SL, Choi JE, Bubendorf L, Guan XY, Jung YK, Kallioniemi OP, Kononen J, Trent JM, Azorsa D, et al. (1999) A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo. J Biol Chem 274: 34283-34293

  • 27. Rachez C, Lemon BD, Suldan Z, Bromleigh V, Gamble M, Naar AM, Erdjument-Bromage H, Tempst P, and Freedman LP (1999) Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature (Lond) 398: 824-828

  • 28. Kullmann M, Schneikert J, Moll J, Heck S, Zeiner M, Gehring U, and Cato AC (1998) RAP46 is a negative regulator of glucocorticoid receptor action and hormone-induced apoptosis. J Biol Chem 273: 14620-14625

  • 29. Schaaf MJ and Cidlowski JA (2002) The glucocorticoid receptor β -isoform: a perspective on its relevance in human health and disease. Ernst Schering Res Found Workshop 197-211

  • 30. Lu NZ and Cidlowski JA (2005) Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol Cell 18: 331-342

  • 31. Cidlowski JA, Bellingham DL, Powell-Oliver FE, Lubahn DB, and Sar M (1990) Novel antipeptide antibodies to the human glucocorticoid receptor: recognition of multiple receptor forms in vitro and distinct localization of cytoplasmic and nuclear receptors. Mol Endocrinol 4: 1427-1437

  • 32. Oakley, R. H., Sar, M., and Cidlowski, J. A. (1996) The human glucocorticoid receptor β isoform: expression, biochemical properties, and putative function. J Biol Chem 271: 9550-9559

  • 33. Oakley RH, Webster JC, Sar M, Parker CR Jr, and Cidlowski JA (1997) Expression and subcellular distribution of the β -isoform of the human glucocorticoid receptor. Endocrinology 138: 5028-5038

  • 34. Jerjes WK, Cleare AJ, Wood PJ, and Taylor NF (2006) Assessment of subtle changes in glucocorticoid negative feedback using prednisolone: comparison of salivary free cortisol and urinary cortisol metabolites as endpoints. Clin Chim Acta 364: 279-286

  • 35. Cidlowski JA and Munck A (1976) Concanavalin A-induced glucocorticoid resistance in rat thymus cells: decreased cytoplasmic and nuclear receptor binding of dexamethasone. J Steroid Biochem 7: 1141-1145

  • 36. West KM (1959) Response of the blood glucose to glucocorticoids in man; determination of the hyperglycemic potencies of glucocorticoids. Diabetes 8: 22-28

  • 37. Segal HL and Gonzalezlopez C (1963) Early effects of glucocorticoids on precursor incorporation into glycogen. Nature (Lond) 200: 143-144

  • 38. Cassuto H, Kochan K, Chakravarty K, Cohen H, Blum B, Olswang Y, Hakimi P, Xu C, Massillon D, Hanson RW, et al. (2005) Glucocorticoids regulate transcription of the gene for phosphoenolpyruvate carboxykinase (GTP) in the liver via an extended glucocorticoid regulatory unit. J Biol Chem 280: 33873-33884

  • 39. Kassel O, Sancono A, Kratzschmar J, Kreft B, Stassen M, and Cato AC (2001) Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO (Eur Mol Biol Organ) J 20: 7108-7116

  • 40. Rothhut B, Cloix JF, and Russo-Marie F (1983) Dexamethasone induces the synthesis of `renocortins,' two antiphospholipase proteins in rat renomedullary interstitial cells in culture. Adv Prostaglandin Thromboxane Leukotriene Res 12: 51-56

  • 41. Mitchell MD, Lytton FD, and Varticovski L (1988) Paradoxical stimulation of both lipocortin and prostaglandin production in human amnion cells by dexamethasone. Biochem Biophys Res Commun 151: 137-141

  • 42. Tobler A, Meier R, Seitz M, Dewald B, Baggiolini M, and Fey MF (1992) Glucocorticoids downregulate gene expression of GM-CSF, NAP-1/IL-8, and IL-6, but not of M-CSF in human fibroblasts. Blood 79: 45-51

  • 43. Waage A (1987) Production and clearance of tumor necrosis factor in rats exposed to endotoxin and dexamethasone. Clin Immunol Immunopathol 45: 348-355

  • 44. Cole TJ, Blendy JA, Monaghan AP, Krieglstein K, Schmid W, Aguzzi A, Fantuzzi G, Hummler E, Unsicker K, and Schutz G (1995) Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev 9: 1608-1621

  • 45. Cole TJ, Myles K, Purton JF, Brereton PS, Solomon NM, Godfrey DI, and Funder JW (2001) GRKO mice express an aberrant dexamethasone-binding glucocorticoid receptor, but are profoundly glucocorticoid resistant. Mol Cell Endocrinol 173: 193-202

  • 46. Morale MC, Batticane N, Gallo F, Barden N, and Marchetti B (1995) Disruption of hypothalamic-pituitary-adrenocortical system in transgenic mice expressing type II glucocorticoid receptor antisense ribonucleic acid permanently impairs T cell function: effects on T cell trafficking and T cell responsiveness during postnatal development. Endocrinology 136: 3949-3960

  • 47. Bray PJ and Cotton RG (2003) Variations of the human glucocorticoid receptor gene (NR3C1): pathological and in vitro mutations and polymorphisms. Hum Mutat 21: 557-568

  • 48. Bronnegard M, Stierna P, and Marcus C (1996) Glucocorticoid resistant syndromes—molecular basis and clinical presentations. J Neuroendocrinol 8: 405-415

  • 49. Huizenga NA, Koper JW, De Lange P, Pols HA, Stolk RP, Burger H, Grobbee DE, Brinkmann AO, De Jong FH, and Lamberts SW (1998) A polymorphism in the glucocorticoid receptor gene may be associated with and increased sensitivity to glucocorticoids in vivo. J Clin Endocrinol Metab 83: 144-151

  • 50. Corrigan CJ, Brown PH, Barnes NC, Szefler SJ, Tsai JJ, et al. (1991) Glucocorticoid resistance in chronic asthma: Glucocorticoid pharmacokinetics, glucocorticoid receptor characteristics, and inhibition of peripheral blood T cell proliferation by glucocorticoids in vitro. Am Rev Respir Dis 144: 1016-1025

  • 51. Barnes PJ, Greening AP, and Crompton GK (1995) Glucocorticoid resistance in asthma. Am J Respir Crit Care Med 152: S125-S140

  • 52. Haarman EG, Kaspers GJ, Pieters R, Rottier MM, and Veerman AJ (2004) Glucocorticoid receptor α, β and γ expression vs in vitro glucocorticoid resistance in childhood leukemia. Leukemia 18: 530-537