Skip to main content

The Importance of Company: Na+ and Cl Influence Substrate Interaction with SLC6 Transporters and Other Proteins

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 175))

Abstract

SLC6 transporters, which include transporters for γ-aminobutyric acid (GABA), norepinephrine, dopamine, serotonin, glycine, taurine, L-proline, creatine, betaine, and neutral cationic amino acids, require Na+ and Cl for their function, and this review covers the interaction between transporters of this family with Na+ and Cl from a structure-function standpoint. Because detailed structure-function information regarding ion interactions with SLC6 transporters is limited, we cover other proteins cotransporting Na+ or Cl with substrate (SLC1A2, PutP, SLC5A1, melB), or ion binding to proteins in general (rhodanese, ATPase, LacY, thermolysine, angiotensin-converting enzyme, halorhodopsin, CFTR). Residues can be involved in directly binding Na+ or Cl, in coupling ion binding to conformational changes in transporter, in coupling Na+ or Cl movement to transport, or in conferring ion selectivity. Coordination of ions can involve a number of residues, and portions of the substrate and coupling ion binding sites can be distal in space in the tertiary structure of the transporter, with other portions that are close in space thought to be crucial for the coupling process. The reactivity with methanethiosulfonate reagents of cysteines placed in strategic positions in the transporter provides a readout for conformational changes upon ion or substrate binding. More work is needed to establish the relationships between ion interactions and oligomerization of SLC6 transporters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  PubMed  CAS  Google Scholar 

  • Amejdki-Chab N, Benmansour S, Costentin J, Bonnet JJ (1992a) Effects of several cations on the neuronal uptake of dopamine and the specific binding of [3H]GBR 12783: attempts to characterize the Na+ dependence of the neuronal transport of dopamine. J Neurochem 59:1795–1804

    PubMed  CAS  Google Scholar 

  • Amejdki-Chab N, Costentin J, Bonnet JJ (1992b) Kinetic analysis of the chloride dependence of the neuronal uptake of dopamine and effect of anions on the ability of substrates to compete with the binding of the dopamine uptake inhibitor GBR 12783. J Neurochem 58:793–800

    PubMed  CAS  Google Scholar 

  • Barker EL, Moore KR, Rakhshan F, Blakely RD (1999) Transmembrane domain I contributes to the permeation pathway for serotonin and ions in the serotonin transporter. J Neurosci 19:4705–4717

    PubMed  CAS  Google Scholar 

  • Baucum II AJ, Rau KS, Hanson JE, Fleckenstein AE (2003) Neurotoxic regimens of methamphetamine increase dopamine transporter oligomer formation. Soc Neurosci Abstr 29:253.13

    Google Scholar 

  • Bendahan A, Armon A, Madani N, Kavanaugh MP, Kanner BI (2000) Arginine-447 plays a pivotal role in substrate interactions in a neuronal glutamate transporter. J Biol Chem 275:37436–37442

    Article  PubMed  CAS  Google Scholar 

  • Braiman MS, Walter TJ, Briercheck DM (1994) Infrared spectroscopic detection of light-induced change in chloride-arginine interaction in halorhodopsin. Biochemistry 33:1629–1635

    Article  PubMed  CAS  Google Scholar 

  • Bunning P, Riordan JF (1987) Sulfate potentiation of the chloride activation of angiotensin converting enzyme. Biochemistry 26:3374–3377

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Li M, Mager S, Lester HA (1998) Amino acid residues that control pH modulation of transport-associated current in mammalian serotonin transporters. J Neurosci 18:7739–7749

    PubMed  CAS  Google Scholar 

  • Chen N, Sun L, Reith MEA (2002) Cationic interactions at the human dopamine transporter reveal binding conformations for dopamine distinguishable from those for the cocaine analog 2 beta-carbomethoxy-3 beta (4-fluorophenyl)tropane. J Neurochem 81:1383–1393

    Article  PubMed  CAS  Google Scholar 

  • Chen N, Rickey J, Berfield JL, Reith MEA (2004a) Aspartate 345 of the dopamine transporter is critical for conformational changes in substrate translocation and cocaine binding. J Biol Chem 279:5508–5519

    Article  PubMed  CAS  Google Scholar 

  • Chen N, Zhen J, Reith MEA (2004b) Mutation of Trp84 and Asp313 of the dopamine transporter reveals similar mode of binding interaction for GBR 12909 and benztropine as opposed to cocaine. J Neurochem 89:853–864

    Article  PubMed  CAS  Google Scholar 

  • Chen NH, Reith MEA, Quick MW (2003) Synaptic uptake and beyond: the sodium-and chloride-dependent neurotransmitter transporter family SLC6. Pflugers Arch 447:519–531

    Article  PubMed  CAS  Google Scholar 

  • Collins KD (2004) Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34:300–311

    Article  PubMed  CAS  Google Scholar 

  • Dean M, White MB, Amos J, Gerrard B, Stewart C, Khaw KT, Leppert M (1990) Multiple mutations in highly conserved residues are found in mildly affected cystic fibrosis patients. Cell 61:863–870

    Article  PubMed  CAS  Google Scholar 

  • Deguchi Y, Yamato I, Anraku Y (1990) Nucleotide sequence of gltS, the Na+/glutamate symport carrier gene of Escherichia coli B. J Biol Chem 265:21704–21708

    PubMed  CAS  Google Scholar 

  • Di Stasio E (2004) Anionic regulation of biological systems: the special role of chloride in the coagulation cascade. Biophys Chem 112:245–252

    Article  PubMed  CAS  Google Scholar 

  • Diez-Sampedro A, Loo DD, Wright EM, Zampighi GA, Hirayama BA (2004) Coupled sodium/glucose cotransport by SGLT1 requires a negative charge at position 454. Biochemistry 43:13175–13184

    Article  PubMed  CAS  Google Scholar 

  • Earles C, Schenk JO (1999) Multisubstrate mechanism for the inward transport of dopamine by the human dopamine transporter expressed in HEK cells and its inhibition by cocaine. Synapse 33:230–238

    Article  PubMed  CAS  Google Scholar 

  • Eliasof S, Jahr CE (1996) Retinal glial cell glutamate transporter is coupled to an anionic conductance. Proc Natl Acad Sci U S A 93:4153–4158

    Article  PubMed  CAS  Google Scholar 

  • Grossman TR, Nelson N (2003) Effect of sodium lithium and proton concentrations on the electrophysiological properties of the four mouse GABA transporters expressed in Xenopus oocytes. Neurochem Int 43:431–443

    Article  PubMed  CAS  Google Scholar 

  • Gu H, Wall SC, Rudnick G (1994) Stable expression of biogenic amine transporters reveals differences in inhibitor sensitivity, kinetics, and ion dependence. J Biol Chem 269:7124–7130

    PubMed  CAS  Google Scholar 

  • Hanada K, Yoshida T, Yamato I, Anraku Y (1992) Sodium ion and proline binding sites in the Na+/proline symport carrier of Escherichia coli. Biochim Biophys Acta 1105:61–66

    Article  PubMed  CAS  Google Scholar 

  • Hastrup H, Karlin A, Javitch JA (2001) Symmetrical dimer of the human dopamine transporter revealed by cross-linking Cys-306 at the extracellular end of the sixth transmembrane segment. Proc Natl Acad Sci U S A 98:10055–10060

    Article  PubMed  CAS  Google Scholar 

  • Hastrup H, Sen N, Javitch JA (2003) The human dopamine transporter forms a tetramer in the plasma membrane: cross-linking of a cysteine in the fourth transmembrane segment is sensitive to cocaine analogs. J Biol Chem 278:45045–45048

    Article  PubMed  CAS  Google Scholar 

  • Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins. Pflugers Arch 447:465–468

    Article  PubMed  CAS  Google Scholar 

  • Jung H (2002) The sodium/substrate symporter family: structural and functional features. FEBS Lett 529:73–77

    Article  PubMed  CAS  Google Scholar 

  • Kanai Y, Hediger MA (2004) The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch 447:469–479

    Article  PubMed  CAS  Google Scholar 

  • Kavanaugh MP, Bendahan A, Zerangue N, Zhang Y, Kanner BI (1997) Mutation of an amino acid residue influencing potassium coupling in the glutamate transporter GLT-1 induces obligate exchange. J Biol Chem 272:1703–1708

    Article  PubMed  CAS  Google Scholar 

  • Kilic F, Rudnick G (2000) Oligomerization of serotonin transporter and its functional consequences. Proc Natl Acad Sci U S A 97:3106–3111

    Article  PubMed  CAS  Google Scholar 

  • Kooystra PJ, Kalk KH, Hol WG (1988) Soaking in Cs2SO4 reveals a caesium-aromatic interaction in bovine-liver rhodanese. Eur J Biochem 177:345–349

    Article  PubMed  CAS  Google Scholar 

  • Leff P (1995) The two-state model of receptor activation. Trends Pharmacol Sci 16:89–97

    Article  PubMed  CAS  Google Scholar 

  • Li LB, Reith MEA (1999) Modeling of the interaction of Na+ and K+ with the binding of dopamine and [3H]WIN 35,428 to the human dopamine transporter. J Neurochem 72:1095–1109

    Article  PubMed  CAS  Google Scholar 

  • Li LB, Cui XN, Reith MEA (2002) Is Na(+) required for the binding of dopamine, amphetamine, tyramine, and octopamine to the human dopamine transporter? Naunyn Schmiedebergs Arch Pharmacol 365:303–311

    Article  PubMed  CAS  Google Scholar 

  • Lijk LJ, Torfs CA, Kalk KH, De Maeyer MC, Hol WG (1984) Differences in the binding of sulfate, selenate and thiosulfate ions to bovine liver rhodanese, and a description of a binding site for ammonium and sodium ions. An X-ray diffraction study. Eur J Biochem 142:399–408

    Article  PubMed  CAS  Google Scholar 

  • Lo B, Silverman M (1998a) Cysteine scanning mutagenesis of the segment between putative transmembrane helices IV and V of the high affinity Na+/Glucose cotransporter SGLT1. Evidence that this region participates in the Na+ and voltage dependence of the transporter. J Biol Chem 273:29341–29351

    Article  PubMed  CAS  Google Scholar 

  • Lo B, Silverman M (1998b) Replacement of Ala-166 with cysteine in the high affinity rabbit sodium/glucose transporter alters transport kinetics and allows methanethiosulfonate ethylamine to inhibit transporter function. J Biol Chem 273:903–909

    Article  PubMed  CAS  Google Scholar 

  • Loland CJ, Norregaard L, Gether U (1999) Defining proximity relationships in the tertiary structure of the dopamine transporter. Identification of a conserved glutamic acid as a third coordinate in the endogenous Zn(2+)-binding site. J Biol Chem 274:36928–36934

    Article  PubMed  CAS  Google Scholar 

  • Loland CJ, Norregaard L, Litman T, Gether U (2002) Generation of an activating Zn(2+) switch in the dopamine transporter: mutation of an intracellular tyrosine constitutively alters the conformational equilibrium of the transport cycle. Proc Natl Acad Sci U S A 99:1683–1688

    Article  PubMed  CAS  Google Scholar 

  • Loland CJ, Granas C, Javitch JA, Gether U (2004) Identification of intracellular residues in the dopamine transporter critical for regulation of transporter conformation and cocaine binding. J Biol Chem 279:3228–3238

    Article  PubMed  CAS  Google Scholar 

  • Mager S, Kleinberger-Doron N, Keshet GI, Davidson N, Kanner BI, Lester HA (1996) Ion binding and permeation at the GABA transporter GAT1. J Neurosci 16:5405–5414

    PubMed  CAS  Google Scholar 

  • Mager S, Cao Y, Lester HA (1998) Measurement of transient currents from neurotransmitter transporters expressed in Xenopus oocytes. Methods Enzymol 296:551–566

    Article  PubMed  CAS  Google Scholar 

  • McElvain JS, Schenk JO (1992) A multisubstrate mechanism of striatal dopamine uptake and its inhibition by cocaine. Biochem Pharmacol 43:2189–2199

    Article  PubMed  CAS  Google Scholar 

  • Meinild AK, Loo DD, Hirayama BA, Gallardo E, Wright EM (2001) Evidence for the involvement of Ala 166 in coupling Na(+) to sugar transport through the human Na(+)/glucose cotransporter. Biochemistry 40:11897–11904

    Article  PubMed  CAS  Google Scholar 

  • Parmentier ML, Prezeau L, Bockaert J, Pin JP (2002) A model for the functioning of family 3 GPCRs. Trends Pharmacol Sci 23:268–274

    Article  PubMed  CAS  Google Scholar 

  • Penado KM, Rudnick G, Stephan MM (1998) Critical amino acid residues in transmembrane span 7 of the serotonin transporter identified by random mutagenesis. J Biol Chem 273:28098–28106

    Article  PubMed  CAS  Google Scholar 

  • Pirch T, Quick M, Nietschke M, Langkamp M, Jung H (2002) Sites important for Na+ and substrate binding in the Na+/proline transporter of Escherichia coli, a member of the Na+/solute symporter family. J Biol Chem 277:8790–8796

    Article  PubMed  CAS  Google Scholar 

  • Povlock SL, Schenk JO (1997) A multisubstrate kinetic mechanism of dopamine transport in the nucleus accumbens and its inhibition by cocaine. J Neurochem 69:1093–1105

    Article  PubMed  CAS  Google Scholar 

  • Quick M, Jung H (1997) Aspartate 55 in the Na+/proline permease of Escherichia coli is essential for Na+-coupled proline uptake. Biochemistry 36:4631–4636

    Article  PubMed  CAS  Google Scholar 

  • Quick M, Jung H (1998) A conserved aspartate residue, Asp187, is important for Na+-dependent proline binding and transport by the Na+/proline transporter of Escherichia coli. Biochemistry 37:13800–13806

    Article  PubMed  CAS  Google Scholar 

  • Quick M, Tebbe S, Jung H (1996) Ser57 in the Na+/proline permease of Escherichia coli is critical for high-affinity proline uptake. Eur J Biochem 239:732–736

    Article  PubMed  CAS  Google Scholar 

  • Quick M, Stolting S, Jung H (1999) Role of conserved Arg40 and Arg117 in the Na+/praline transporter of Escherichia coli. Biochemistry 38:13523–13529

    Article  PubMed  CAS  Google Scholar 

  • Quick M, Loo DD, Wright EM (2001) Neutralization of a conserved amino acid residue in the human Na+/glucose transporter (hSGLT1) generates a glucose-gated H+ channel. J Biol Chem 276:1728–1734

    Article  PubMed  CAS  Google Scholar 

  • Rudnick G (2002) Mechanisms of biogenic amine neurotransmitter transporters. In: Reith M (ed) Neurotransmitter transporters: structure, function, and regulation. Humana Press, Totowa, pp 25–52

    Google Scholar 

  • Seidel S, Singer EA, Just H, Farhan H, Scholze P, Kudlacek O, Holy M, Koppatz K, Krivanek P, Freissmuth M, Sitte HH (2005) Amphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol Pharmacol 67:140–151

    PubMed  CAS  Google Scholar 

  • Shapiro R, Riordan JF (1983) Critical lysine residue at the chloride binding site of angiotensin converting enzyme. Biochemistry 22:5315–5321

    Article  PubMed  CAS  Google Scholar 

  • Sitte HH, Farhan H, Javitch JA (2004) Sodium-dependent neurotransmitter transporters: oligomerization as a determinant of transporter function and trafficking. Mol Interv 4:38–47

    Article  PubMed  CAS  Google Scholar 

  • Syringas M, Janin F, Mezghanni S, Giros B, Costentin J, Bonnet JJ (2000) Structural domains of chimeric dopamine-Noradrenaline human transporters involved in the Na(+)-and Cl(−)-dependence of dopamine transport. Mol Pharmacol 58:1404–1411

    PubMed  CAS  Google Scholar 

  • Syringas M, Janin F, Giros B, Costentin J, Bonnet JJ (2001) Involvement of the NH2 terminal domain of catecholamine transporters in the Na(2+) and Cl()-dependence of a [3H]-dopamine uptake. Br J Pharmacol 133:387–394

    Article  PubMed  CAS  Google Scholar 

  • Torres GE, Carneiro A, Seamans K, Fiorentini C, Sweeney A, Yao WD, Caron MG (2003) Oligomerization and trafficking of the human dopamine transporter. Mutational analysis identifies critical domains important for the functional expression of the transporter. J Biol Chem 278:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Vayro S, Lo B, Silverman M (1998) Functional studies of the rabbit intestinal Na+/glucose carrier (SGLT1) expressed in COS-7 cells: evaluation of the mutant A166C indicates this region is important for Na+-activation of the carrier. Biochem J 332:119–125

    PubMed  CAS  Google Scholar 

  • Veenhoff LM, Heuberger EH, Poolman B (2001) The lactose transport protein is a cooperative dimer with two sugar translocation pathways. EMBO J 20:3056–3062

    Article  PubMed  CAS  Google Scholar 

  • Wade SM, Lan K, Moore DJ, Neubig RR (2001) Inverse agonist activity at the alpha(2A)-adrenergic receptor. Mol Pharmacol 59:532–542

    PubMed  CAS  Google Scholar 

  • Wall SC, Innis RB, Rudnick G (1993) Binding of the cocaine analog 2 beta-carbomethoxy-3 beta-(4-[125I]iodophenyl)tropane to serotonin and dopamine transporters: different ionic requirements for substrate and 2 beta-carbomethoxy-3 beta-(4-[125I]iodophenyl) tropane binding. Mol Pharmacol 43:264–270

    PubMed  CAS  Google Scholar 

  • Wilbanks SM, McKay DB (1995) How potassium affects the activity of the molecular chaperone Hsc70. II. Potassium binds specifically in the ATPase active site. J Biol Chem 270:2251–2257

    Article  PubMed  CAS  Google Scholar 

  • Williams AC, Auld DS (1986) Kinetic analysis by stopped-flow radiationless energy transfer studies: effect of anions on the activity of carboxypeptidase A. Biochemistry 25:94–100

    Article  PubMed  CAS  Google Scholar 

  • Wilson TH, Ding PZ (2001) Sodium-substrate cotransport in bacteria. Biochim Biophys Acta 1505:121–130

    Article  PubMed  CAS  Google Scholar 

  • Wright EM (2001) Renal Na(+)-glucose cotransporters. Am J Physiol Renal Physiol 280:F10–F18

    PubMed  CAS  Google Scholar 

  • Wright EM, Turk E (2004) The sodium/glucose cotransport family SLC5. Pflugers Arch 447:510–518

    Article  PubMed  CAS  Google Scholar 

  • Yamato I, Kotani M, Oka Y, Anraku Y (1994) Site-specific alteration of arginine 376, the unique positively charged amino acid residue in the mid-membrane-spanning regions of the proline carrier of Escherichia coli. J Biol Chem 269:5720–5724

    PubMed  CAS  Google Scholar 

  • Yang JJ, Artis DR, Van Wart HE (1994) Differential effect of halide anions on the hydrolysis of different dansyl substrates by thermolysin. Biochemistry 33:6516–6523

    Article  PubMed  CAS  Google Scholar 

  • Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431:811–818

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Kanner BI (1999) Two serine residues of the glutamate transporter GLT-1 are crucial for coupling the fluxes of sodium and the neurotransmitter. Proc Natl Acad Sci U S A 96:1710–1715

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Bendahan A, Zarbiv R, Kavanaugh MP, Kanner BI (1998) Molecular determinant of ion selectivity of a (Na+ + K+)-coupled rat brain glutamate transporter. Proc Natl Acad Sci U S A 95:751–755

    Article  PubMed  CAS  Google Scholar 

  • Zottola RJ, Cloherty EK, Coderre PE, Hansen A, Hebert DN, Carruthers A (1995) Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization. Biochemistry 34:9734–9747

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reith, M.E.A., Zhen, J., Chen, N. (2006). The Importance of Company: Na+ and Cl Influence Substrate Interaction with SLC6 Transporters and Other Proteins. In: Sitte, H.H., Freissmuth, M. (eds) Neurotransmitter Transporters. Handbook of Experimental Pharmacology, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29784-7_4

Download citation

Publish with us

Policies and ethics