Skip to main content

Tumor-inhibiting bis(β-Diketonato) metal complexes. Budotitane, cis-diethoxybis(1-phenylbutane-1,3-dionato)titanium(IV)

The first transition metal complex after platinum to qualify for clinical trials

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 78))

Abstract

Cisplatin, cis-diamminedichloroplatinum(II), and carboplatin, cis-diammine(cyclobutane-1,1-dicarboxylato)platinum(II), are the first drugs from inorganic chemistry to have come under routine clinical use in medical oncology. Their antitumor activity ranges from testicular carcinomas, ovarian carcinomas, and tumors of the head and neck to bladder tumors. However, the spectrum of indication is fairly limited. There is no or only insufficient antitumor activity in tumors which account for the major share of cancer mortality today, e.g. lung tumors and gastrointestinal tumors. Direct derivatives of cisplatin such as carboplatin have only led to a limited reduction or change in drug toxicity. In most cases, the toxicity pattern has changed from nephrotoxicity to myelotoxicity. New metal complexes are now being developed which are designed to supplement the spectrum of indication of platinum complexes. Among non-platinum complexes, budotitane (INN), cis-diethoxybis(1-phenylbutane-1,3-dionato)titanium(IV), is among the most advanced. It is undergoing clinical trials today. Extensive investigations into structure-activity relations have clearly shown a dependence of the activity on the central metal and the diketonato ligand. The tumor-inhibiting effect decreases in the order titanium > zirconium > hafnium > molybdenum > tin > germanium. Antitumor activity is also highly dependent on the nature of the diketonate used. Ligands substituted with planar aromatic ring systems such as the phenyl groups in budotitane are advantageous. Most of the tumor-inhibiting bis(β-diketonato) complexes are cis-configurated. The cis-configurated compounds with an unsymmetrically substituted β-diketonate as ligand are in an equilibrium between three possible cis-isomers in solution at room temperature, due to the fact that the diketonate can rotate via a twist mechanism. The easily hydrolizable group in these complexes does not play a major role in antitumor activity, but it is important for the galenic formulation in the clinic. The ethoxy group as leaving group in budotitane hydrolizes at a slower rate than the corresponding halides.

The best antitumor effects could be obtained with titanium and a diketonato ligand substituted with phenyl groups. Budotitane is highly active in several transplantable tumors and shows promising effects in an autochthonous colorectal tumor model, which is highly predictive for the clinical situation. Side-effects include mild hepatotoxicity and nephrotoxicity. These findings have been confirmed in clinical phase I studies. A phase II study is now in preparation. If preclinical antitumor activity in colorectal tumors can be confirmed in the clinic, this would lead a considerable step forward in the chemotherapy of cancer.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crooke ST, Mirabelli CK (1983) Am J Med 109: 113

    Google Scholar 

  2. Lewis AJ, Walz DT (1982) In: Ellis GP, West GB (eds) Progress in Medicinal Chem, vol 19, Elsevier Biomedical, New York, p 2

    Google Scholar 

  3. Peyrone M: Annalen der Chemie und Pharmacie, LI, 1 (1844)

    Google Scholar 

  4. Rosenberg B: Interdisciplinary Science Reviews, 3, 2, 134–147 (1978)

    CAS  Google Scholar 

  5. Rosenberg B, VanCamp L: Nature, 222, 385–386 (1969)

    CAS  Google Scholar 

  6. Knebel N, Schiller Cl.-D, Schneider MR, Schönenberger H, von Angerer E: Eur J Cancer Clin Oncol, 25, 2, 293–299 (1989)

    Article  CAS  Google Scholar 

  7. Klenner T, Wingen F, Keppler BK, Krempien B, Schmähl D (1990) J Cancer Res Clin Oncol, 116: 341

    Article  CAS  Google Scholar 

  8. Keppler BK, Henn M, Juhl UM, Berger MR, Niebl RE, Wagner FE: Progress in Clin Biochemistry and Medicine, 10, 41–69 (1989)

    CAS  Google Scholar 

  9. Alessio E, Mestroni G, Nardin G, Attia WM, Calligaris M, Sava G, Zorzet S: Inorg Chem. 27, 23, 4099–4106 (1988)

    Article  Google Scholar 

  10. Clarke MJ: Metal Ions in Biological Systems, Ed by H Sigel, Vol 11, Metal Complexes as Anticancer Agents, Marcel Dekker, New York, 231–276 (1980)

    Google Scholar 

  11. Ruisi G, Silvestri A, Lo Giudice MT, Barbieri R, Atassi G, Huber F, Grätz K, Lamartina L: J Inorg Biochem 25, 229–245 (1985)

    Article  CAS  Google Scholar 

  12. Crowe AJ, Smith PJ, Atassi G: Chem. Biol Interactions, 32, 171–178 (1980)

    Article  CAS  Google Scholar 

  13. Gielen M, Willem R, Delmotte A, Joosen E, Meriem A, Melotte M, Vanbellinghen C, Mahieu B, Lelieveld P, de Vos D, Attasi G: Main Group Metal Chemistry, 12, 1, 55–72 (1989)

    CAS  Google Scholar 

  14. Berners-Price SJ, Mirabelli CK, Johnson RK, Mattern MR, McCabe FL, Faucette LF, Chiu-Mei Sung, Shau-Ming Mong, Sadler PJ, Crooke ST: Cancer Res., 46, 5486–5493 (1986)

    CAS  Google Scholar 

  15. Berners-Price SJ, Sadler PJ: Front Bioinorgan Chem, Xavier, AV (Ed), VCH Publ, Weinheim, FRG, 376–388 (1985 [Publ 1986])

    Google Scholar 

  16. Garzon FT, Berger MR, Keppler BK, Schmähl D: Cancer Chemotherapy and Pharmacology, 19, 347–349 (1987)

    Article  CAS  Google Scholar 

  17. Keppler BK, Heim ME: Drugs of the Future, Vol 13, No 5–6, 637–652 (1988)

    Google Scholar 

  18. Heim ME, Keppler BK: Progress in Clin Biochemistry and Medicine, 10, 217–223 (1989)

    Google Scholar 

  19. Köpf-Maier P, Köpf H: Structure and Bonding, 70, 105–181 (1988)

    Google Scholar 

  20. Keller HJ, Keppler BK, Schmähl D: Arzneim.-Forsch./Drug Res, 32 (II), 8, 806–807 (1982)

    CAS  Google Scholar 

  21. Keller HJ, Keppler BK, Schmähl D: J Cancer Res Clin Oncol, 105, 109–110 (1983)

    Article  CAS  Google Scholar 

  22. Bischoff H, Berger MR, Keppler BK, Schmähl D: J Cancer Res Clin Oncol, 113, 446–450 (1987)

    Article  CAS  Google Scholar 

  23. Garzon FT, Berger MR, Keppler BK, Schmähl D: Cancer Letters, 34, 325–330 (1987)

    Article  CAS  Google Scholar 

  24. Keppler BK, Michels K: Arzneim: Forsch./Drug Res, 35 (II), 12, 1837–1839 (1985)

    CAS  Google Scholar 

  25. Keppler BK, Schmähl D: Arzneim.-Forsch./Drug Res, 36 (II), 12, 1822–1828 (1986)

    CAS  Google Scholar 

  26. Keppler BK, Diez A, Seifried V: Arzneim.-Forsch./Drug Res. 35 (II), 12, 1832–1836 (1985)

    CAS  Google Scholar 

  27. Keppler BK, Bischoff H, Berger MR, Heim ME, Reznik G, Schmähl D: ISPCC 1987, Padua; Ed by M Nicolini, Proc 5th Int Symp on Platinum and other Metal Coordination Complexes in Cancer Chemotherapy, Martinus Nijhoff Publishing, Boston, 684–694 (1988)

    Google Scholar 

  28. Thompson DW: Structure and Bonding, 9, 27–47 (1971)

    CAS  Google Scholar 

  29. Faller JW, Davison A: Inorg Chem, 6, 182 (1967)

    Article  CAS  Google Scholar 

  30. Pinnavaia TJ, Fay RC: Inorg Chem, 7, 502 (1968)

    Article  CAS  Google Scholar 

  31. Bradley DC, Holloway CE: Chem Comm, 284 (1965)

    Google Scholar 

  32. Wilkie CA, Lin GY, Haworth DT: J Inorg Nucl Chem., 40, 1009 (1978)

    Article  CAS  Google Scholar 

  33. Serpone N, Bird PH, Somogyvari A, Bickley DG: Inorg Chem, 16, 9, 2381 (1977)

    Article  CAS  Google Scholar 

  34. Jones jr, RW, Fay RC: Inorg Chem, 12, 2599 (1973)

    Article  CAS  Google Scholar 

  35. Fay RC, Serpone N: J Am Chem Soc, 90, 5701 (1968)

    Article  CAS  Google Scholar 

  36. Lingafelter EC, Braun RL: J Am Chem Soc, 88, 2951 (1966)

    Article  CAS  Google Scholar 

  37. Collman JP: Angew Chem, 77, 154 (1966)

    Google Scholar 

  38. Calvin M, Wilson KW: J Am Chem Soc, 67, 2003 (1945)

    Article  CAS  Google Scholar 

  39. Martell RE, Calvin M: Die Chemie der Metallverbindungen Verlag Chemie Weinheim (1958)

    Google Scholar 

  40. Bayer E: Angew Chem, 3, 325 (1964)

    Article  Google Scholar 

  41. Bayer E: Angew Chem, 76, 76 (1964)

    CAS  Google Scholar 

  42. Collman JP, Moss RA, Maltz H, Heindel CC: J Am Chem Soc, 83, 531 (1961)

    Article  CAS  Google Scholar 

  43. Kluiber RW: J Am Chem Soc, 82, 4839 (1960)

    Article  CAS  Google Scholar 

  44. Kluiber RW: J Am Chem Soc, 83, 3030 (1961)

    Article  CAS  Google Scholar 

  45. Collman JP, Marshall RL, Young (III) WL, Sears jr CT: J Org Chem., 28, 1449 (1963)

    CAS  Google Scholar 

  46. Collman JP, Marshall RL, Young WL, Goldby SD: Inorg Chem 1, 704 (1962)

    Article  CAS  Google Scholar 

  47. Barker RH, Collman JP, Marshall RL: J Org Chem., 29, 3216 (1964)

    CAS  Google Scholar 

  48. Djoidjeric L, Lewis J, Nyholm RS: Chem Ind., 122 (1959)

    Google Scholar 

  49. Bock B, Flatau K, Junge H, Kuhr M, Musso H: Angew Chem, 7, 83, Jahrg, 239–249 (1971)

    Google Scholar 

  50. Hon P.-H, Belford RL, Pfluger CE: Inorg Chem., 5, 516 (1966)

    Article  CAS  Google Scholar 

  51. Bradley DC, Holloway CE: J Chem Soc (A), 282 (1969)

    Google Scholar 

  52. Serpone N, Fay RC: Inorg Chem., 8, 11, 2379 (1969)

    Article  Google Scholar 

  53. Krüger U, Kukat B, Keppler BK: - unpublished results

    Google Scholar 

  54. Smith GD, Caughlan CN, Campbell JA: Inorg Chem 11, 2989 (1972)

    Article  CAS  Google Scholar 

  55. Keppler BK, Berger MR, Klenner T, Heim ME: Advances in Drug Research, 19, 243–310 (1990)

    CAS  Google Scholar 

  56. Keppler BK, Heim ME, Flechtner H, Wingen F, Pool B: Arzneim.-Forsch./Drug Res, 39 (I), 6, 706–709 (1989)

    CAS  Google Scholar 

  57. Heim ME, Flechtner H, Keppler BK, Queißer W: Contrib Oncol, 37, Queißer, W., Fiebig, HH (Eds) Karger, Basel, 168–175 (1989)

    Google Scholar 

  58. Keppler BK: Nachr Chem Tech Lab, 35, 10, 1029–1036 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag

About this chapter

Cite this chapter

Keppler, B.K., Friesen, C., Moritz, H.G., Vongerichten, H., Vogel, E. (1991). Tumor-inhibiting bis(β-Diketonato) metal complexes. Budotitane, cis-diethoxybis(1-phenylbutane-1,3-dionato)titanium(IV). In: Bioinorganic Chemistry. Structure and Bonding, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-54261-2_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-54261-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54261-2

  • Online ISBN: 978-3-540-47535-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics