Skip to main content

Do Calcium Channel Blockers Rescue Dying Photoreceptors in the Pde6b rd1 Mouse?

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 664))

Abstract

Retinitis pigmentosa (RP) is a genetically heterogeneous set of blinding diseases that affects more than a million people worldwide. In humans, ~5–8% of recessive and dominant RP cases are caused by nonsense mutations in the Pde6b gene coding for the ß-subunit of the rod photoreceptor cGMP phosphodiesterase 6 (PDE6-ß). The study of the disease has been greatly aided by the Pde6b rd1 (rd1) mouse model of RP carrying a null PDE6ß allele. Degenerating rd1 rods were found to experience a pathological increase in intracellular calcium concentration (‘Ca overload’) when they enter the apoptotic process at postnatal day 10. A 1999 study suggested that the Ca2+ channel antagonist D-cis diltiazem delays the kinetics of rd1 rod degeneration, conferring partial rescue of scotopic vision. Subsequent reports were mixed: whereas several studies failed to replicate the original results, others appeared to confirm the neuroprotective effects of Ca2+ channel antagonists such as diltiazem, nilvadipine and verapamil. We discuss the discrepancies between the results of different groups and suggest plausible causes for the discordant results. We also discuss potential involvement of recently identified Ca2+-dependent mechanisms that include protective calcium ATPase mechanisms, ryanodine and IP3 calcium stores, and store operated channels in Pde6b rd1 neurodegeneration.

The authors Peter Barabas and Carolee Cutler Peck equally contributed to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bollimuntha S, Ebadi M, Singh BB (2006) TRPC1 protects human SH-SY5Y cells against salsolinol-induced cytotoxicity by inhibiting apoptosis. Brain Res 1099:141–149

    Article  CAS  PubMed  Google Scholar 

  • Bowes C, Li T, Danciger M et al (1990) Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature 347:677–680

    Article  CAS  PubMed  Google Scholar 

  • Brostrom MA, Brostrom CO (2003) Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: implications for cell growth and adaptability. Cell Calcium 34:345–363

    Article  CAS  PubMed  Google Scholar 

  • Bush RA, Kononen L, Machida S et al (2000) The effect of calcium channel blocker diltiazem on photoreceptor degeneration in the rhodopsin Pro213His rat. Invest Ophthalmol Vis Sci 41:2697–2701

    CAS  PubMed  Google Scholar 

  • Carter-Dawson LD, LaVail MM, Sidman RL (1978) Differential effect of the rd mutation on rods and cones in the mouse retina. Invest Ophthalmol Vis Sci 17:489–498

    CAS  PubMed  Google Scholar 

  • Chiarini LB, Leal-Ferreira ML, de Freitas FG et al (2003) Changing sensitivity to cell death during development of retinal photoreceptors. J Neurosci Res 74:875–883

    Article  CAS  PubMed  Google Scholar 

  • Donovan M, Cotter TG (2002) Caspase-independent photoreceptor apoptosis in vivo and differential expression of apoptotic protease activating factor-1 and caspase-3 during retinal development. Cell Death Differ 9:1220–1231

    Article  CAS  PubMed  Google Scholar 

  • Doonan F, Donovan M, Cotter TG (2005) Activation of multiple pathways during photoreceptor apoptosis in the rd mouse. Invest Ophthalmol Vis Sci 46:3530–3538

    Article  PubMed  Google Scholar 

  • Edward DP, Lam TT, Shahinfar S et al (1991) Amelioration of light-induced retinal degeneration by a calcium overload blocker. Flunarizine. Arch Ophthalmol 109:554–562

    CAS  PubMed  Google Scholar 

  • Edward DP, Tso MO (2000) Rod photoreceptor rescue or degeneration. Nat Med 6:116

    Article  CAS  PubMed  Google Scholar 

  • Farber DB (1995) From mice to men: the cyclic GMP phosphodiesterase gene in vision and disease. The Proctor Lecture. Invest Ophthalmol Vis Sci 36:263–275

    CAS  PubMed  Google Scholar 

  • Farber DB, Lolley RN (1974) Cyclic guanosine monophosphate: elevation in degenerating photoreceptor cells of the C3H mouse retina. Science 186:449–451

    Article  CAS  PubMed  Google Scholar 

  • Fox DA, Poblenz AT, He L et al (2003) Pharmacological strategies to block rod photoreceptor apoptosis caused by calcium overload: a mechanistic target-site approach to neuroprotection. Eur J Ophthalmol 13(Suppl 3):S44–S56

    PubMed  Google Scholar 

  • Frasson M, Sahel JA, Fabre M et al (1999) Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat Med 5:1183–1187

    Article  CAS  PubMed  Google Scholar 

  • Hauck SM, Ekström PA, Ahuja-Jensen P et al (2005) Differential modification of phosducin protein in degenerating rd1 retina is associated with constitutively active Ca2+/calmodulin kinase II in rod outer segments. Mol Cell Proteomics 5:324–336

    Article  PubMed  Google Scholar 

  • He L, Poblenz AT, Medrano CJ et al (2000) Lead and calcium produce rod photoreceptor cell apoptosis by opening the mitochondrial permeability transition pore. J Biol Chem 275:12175–12184

    Article  CAS  PubMed  Google Scholar 

  • Jiménez AJ, García-Fernández JM, González B et al (1996) The spatio-temporal pattern of photoreceptor degeneration in the aged rd/rd mouse retina. Cell Tissue Res 284:193–202

    Article  PubMed  Google Scholar 

  • Koch KW, Kaupp UB (1985) Cyclic GMP directly regulates a cation conductance in membranes of bovine rods by a cooperative mechanism. J Biol Chem 260:6788–6800

    CAS  PubMed  Google Scholar 

  • Krizaj D, Huang H, Cutler-Peck C et al (2008b) Calcium signaling in rod and cone photoreceptor degeneration. Proc. XIIIth International Symposium on Retinal Degeneration, Sept 18–23, 2008; Emeishan, China

    Google Scholar 

  • Krizaj D, Morgans CW, Thoreson WH et al (2008a) TRPC6 modulates cone signals in the vertebrate retina. Proc. FASEB, Snowmass, CO

    Google Scholar 

  • Leconte L, Barnstable CJ (2000) Impairment of rod cGMP-gated channel alpha-subunit expression leads to photoreceptor and bipolar cell degeneration. Invest Ophthalmol Vis Sci 41: 917–926

    CAS  PubMed  Google Scholar 

  • Li JP, Edward DP, Lam TT et al (1991) Nimodipine, a voltage-sensitive calcium channel antagonist, fails to ameliorate light-induced retinal degeneration in rat. Res Commun Chem Pathol Pharmacol 72:347–352

    CAS  PubMed  Google Scholar 

  • Lin JH, Li H, Yasumura D et al (2007) IRE1 signaling affects cell fate during the unfolded protein response. Science 318:944–949

    Article  CAS  PubMed  Google Scholar 

  • Linden R, Rehen SK, Chiarini LB (1999) Apoptosis in developing retinal tissue. Prog Retin Eye Res 18:133–165

    Article  CAS  PubMed  Google Scholar 

  • Marasa BS, Rao JN, Zou T et al (2006) Induced TRPC1 expression sensitizes intestinal epithelial cells to apoptosis by inhibiting NF-kappaB activation through Ca2+ influx. Biochem J 397: 77–87

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin ME, Ehrhart TL, Berson EL et al (1995) Mutation spectrum of the gene encoding the beta subunit of rod phosphodiesterase among patients with autosomal recessive retinitis pigmentosa. Proc Natl Acad Sci U S A 92:3249–3253

    Article  CAS  PubMed  Google Scholar 

  • Paquet-Durand F, Azadi S, Hauck SM et al (2006) Calpain is activated in degenerating photoreceptors in the rd1 mouse. J Neurochem 96:802–814

    Article  CAS  PubMed  Google Scholar 

  • Pasantes-Morales H, Quiroz H, Quesada O (2002) Treatment with taurine, diltiazem, and vitamin E retards the progressive visual field reduction in retinitis pigmentosa: a 3-year follow-up study. Metab Brain Dis 17(3):183–197

    Article  CAS  PubMed  Google Scholar 

  • Pawlyk BS, Li T, Scimeca MS et al (2002) Absence of photoreceptor rescue with D-cis-diltiazem in the rd mouse. Invest Ophthalmol Vis Sci 43:1912–1915

    PubMed  Google Scholar 

  • Pearce-Kelling SE, Aleman TS, Nickle A et al (2001) Calcium channel blocker D-cis-diltiazem does not slow retinal degeneration in the PDE6B mutant rcd1 canine model of retinitis pigmentosa. Mol Vis 7:42–47

    CAS  PubMed  Google Scholar 

  • Pittler SJ, Keeler CE, Sidman RL, Baehr W (1993) PCR analysis of DNA from 70-year-old sections of rodless retina demonstrates indentity with the mouse rd defect. Proc Natl Acad Sci U S A 90:9616–9619

    Google Scholar 

  • Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12:44–52

    Article  CAS  PubMed  Google Scholar 

  • Read DS, McCall MA, Gregg RG (2002) Absence of voltage-dependent calcium channels delays photoreceptor degeneration in rd mice. Exp Eye Res 75:415–420

    Article  CAS  PubMed  Google Scholar 

  • Sahly I, Bar Nachum S, Suss-Toby E et al (1992) Calcium channel blockers inhibit retinal degeneration in the retinal-degeneration-B mutant of Drosophila. Proc Natl Acad Sci U S A 89:435–439

    Article  CAS  PubMed  Google Scholar 

  • Sanges D, Comitato A, Tammaro R et al (2006) Apoptosis in retinal degeneration involves cross-talk between apoptosis-inducing factor (AIF) and caspase-12 and is blocked by calpain inhibitors. Proc Natl Acad Sci U S A 103:17366–17371

    Article  CAS  PubMed  Google Scholar 

  • Sanyal S, Bal AK (1973) Comparative light and electron microscopic study of retinal histogenesis in normal and rd mutant mice. Z Anat Entwicklungsgesch 142:219–238

    Article  CAS  PubMed  Google Scholar 

  • Shan D, Marchase RB, Chatham JC (2008) Overexpression of TRPC3 increases apoptosis but not necrosis in response to ischemia-reperfusion in adult mouse cardiomyocytes. Am J Physiol Cell Physiol 294:C833–C841

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Rohrer B (2004) Calcium-induced calpain mediates apoptosis via caspase-3 in a mouse photoreceptor cell line. J Biol Chem 279:35564–35572

    Article  CAS  PubMed  Google Scholar 

  • Szikra T, Cusato K, Thoreson WB et al (2008) Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors. J Physiol 586:4859–4875

    Article  CAS  PubMed  Google Scholar 

  • Szikra T, Krizaj D (2009) Calcium signals in inner segments of photoreceptors. In: Tombran-Tink J, Barnstable C (eds) The visual transduction cascade: basic and clinical principles, Jumana Press, Totowa, NJ, pp 197–223

    Google Scholar 

  • Szikra T, Barabas P, Bartoletti TM, Huang W, Akopian A, Thoreson WB, Krizaj D (2009) Calcium homeostasis and cone signaling are regulated by interactons between calcium stores and plasma membrane ion channels. PLoS One 4(8):e6723

    Google Scholar 

  • Takano Y, Ohguro H, Dezawa M et al (2004) Study of drug effects of calcium channel blockers on retinal degeneration of rd mouse. Biochem Biophys Res Commun 313:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi K, Nakazawa M, Mizukoshi S (2008) Systemic administration of nilvadipine delays photoreceptor degeneration of heterozygous retinal degeneration slow (rds) mouse. Exp Eye Res 86:60–69

    Article  CAS  PubMed  Google Scholar 

  • Vallazza-Deschamps G, Cia D, Gong J et al (2005) Excessive activation of cyclic nucleotide-gated channels contributes to neuronal degeneration of photoreceptors. Eur J Neurosci 22:1013–1022

    Article  PubMed  Google Scholar 

  • Viczian A, Sanyal S, Toffenetti J et al (1992) Photoreceptor-specific mRNAs in mice carrying different allelic combinations at the rd and rds loci. Exp Eye Res 54:853–860

    Article  CAS  PubMed  Google Scholar 

  • Woodruff ML, Wang Z, Chung HY et al (2003) Spontaneous activity of opsin apoprotein is a cause of Leber congenital amaurosis. Nat Genet 35:158–164

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Wajima T, Hara Y et al (2007) Transient receptor potential channels in Alzheimer’s disease. Biochim Biophys Acta 1772:958–967

    CAS  PubMed  Google Scholar 

  • Yamazaki H, Ohguro H, Maeda T et al (2002) Preservation of retinal morphology and functions in royal college surgeons rat by nilvadipine, a Ca(2+) antagonist. Invest Ophthalmol Vis Sci 43:919–926

    PubMed  Google Scholar 

  • Yang LP, Wu LM, Guo XJ et al (2007) Activation of endoplasmic reticulum stress in degenerating photoreceptors of the rd1 mouse. Invest Ophthalmol Vis Sci 48:5191–5198

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Knights Templar Eye Foundation, International Retina Research Foundation, Moran TIGER award, the NIH (EY13870), Foundation Fighting Blindness and an unrestricted grant from Research to Prevent Blindness to the Moran Eye Institute. We thank Dr. Wolfgang Baehr for helpful comments. Dr. Barabas wishes to thank Dr. Julianna Kardos and the Chemical Research Center of the Hungarian Academy of Sciences for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Krizaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barabas, P., Cutler Peck, C., Krizaj, D. (2010). Do Calcium Channel Blockers Rescue Dying Photoreceptors in the Pde6b rd1 Mouse? . In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_56

Download citation

Publish with us

Policies and ethics