Skip to main content

Understanding RAMPs Through Genetically Engineered Mouse Models

  • Chapter
Book cover RAMPs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 744))

Abstract

The family of Receptor Activity Modifying Proteins (RAMPs) consists of three members, RAMP1, 2 and 3, which are each encoded by a separate gene and have diverse spatiotemporal expression patterns. Biochemical and pharmacological studies in cultured cells have shown that RAMPs can modulate several aspects of G receptor (GPCR) signaling, including receptor trafficking, ligand binding affinity, second messenger signaling and receptor desensitization. Moreover, these studies have shown that RAMPs can interact with several GPCRs other than the canonical calcitonin receptor-like receptor (CLR), with which they were first identified. Given these expanding roles for RAMPs, it becomes interesting to question how these biochemical and pharmacological properties bear significance in normal or disease physiology. To this end, several gene targeted knockout and transgenic models have been generated and characterized in recent years. Fortunately, they have each supported important roles for RAMPs during embryonic development and adulthood. This chapter provides a comprehensive overview of the most recent findings from gene targeted knockout mouse models and transgenic over-expression models, and gives special consideration to how comparative phenotyping approaches and conditional deletion strategies can be highly beneficial. In the future, these genetically engineered mouse models will provide both insights and tools for the exploitation of RAMP-based therapies for the treatment of human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McLatchie LM, Fraser NJ, Main MJ et al.RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 1998; 393(6683):333–339.

    Article  PubMed  CAS  Google Scholar 

  2. Sexton PM, Morfis M, Tilakaratne N et al.Complexing receptor pharmacology: modulation of family B G protein-coupled receptor function by RAMPs. Ann NY Acad Sci 2006; 1070:90–104.

    Article  PubMed  CAS  Google Scholar 

  3. Bouschet T, Martin S, Henley JM. Receptor-activity-modifying proteins are required for forward trafficking of the calcium-sensing receptor to the plasma membrane. J Cell Sci 2005; 118(Pt 20):4709–4720.

    Article  PubMed  CAS  Google Scholar 

  4. Kunz TH, Mueller-Steiner S, Schwerdtfeger K et al. Interaction of receptor-activity-modifying protein1 with tubulin. Biochim Biophys Acta 2007; 1770(8):1145–1150.

    Article  PubMed  CAS  Google Scholar 

  5. Sexton PM, Poyner DR, Simms J Hay DL. et al. Modulating receptor function through RAMPs: can they represent drug targets in themselves? Drug Discov Today 2009; 14(7–8):413–419.

    Article  PubMed  CAS  Google Scholar 

  6. Morfis M, Tilakaratne N, Furness SG et al. Receptor activity-modifying proteins differentially modulate the G protein-coupling efficiency of amylin receptors. Endocrinology 2008; 149(11):5423–5431.

    Article  PubMed  CAS  Google Scholar 

  7. Hay DL, Poyner DR, Sexton PM. GPCR modulation by RAMPs. Pharmacol Ther 2006; 109(1–2):173–197.

    Article  Google Scholar 

  8. Kadmiel M, Fritz-Six K, Pacharne S et al. Haploinsufficiency of receptor activity-modifying protein-2 (RAMP2) causes reduced fertility, hyperprolactinemia, skeletal abnormalities, and endocrine dysfunction in mice. Mol Endocrinol 2011; 25(7):1244–1253.

    Article  PubMed  CAS  Google Scholar 

  9. Tsujikawa K, Yayama K, Hayashi T et al. Hypertension and dysregulated proinflammatory cytokine production in receptor activity-modifying protein 1-deficient mice. Proc Natl Acad Sci USA 2007; 104(42):16702–16707.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang Z, Winborn CS, Marquez de Prado B et al. Sensitization of calcitonin gene-related peptide receptors by receptor activity-modifying protein-1 in the trigeminal ganglion. J Neurosci 2007; 27(10):2693–2703.

    Article  Google Scholar 

  11. Chrissobolis S, Zhang Z, Kinzenbaw DA et al. Receptor activity-modifying protein-1 augments cerebrovascular responses to calcitonin gene-related peptide and inhibits angiotensin II-induced vascular dysfunction. Stroke 2010; 41(10):2329–2334.

    Article  PubMed  CAS  Google Scholar 

  12. Sabharwal R, Zhang Z, Lu Y et al. Receptor activity-modifying protein 1 increases baroreflex sensitivity and attenuates Angiotensin-induced hypertension. Hypertension 2010; 55(3):627–635.

    Article  PubMed  CAS  Google Scholar 

  13. Ichikawa-Shindo Y, Sakurai T, Kamiyoshi A et al. The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity. J Clin Invest 2008; 118(1):29–39.

    Article  PubMed  CAS  Google Scholar 

  14. Fritz-Six KL, Dunworth WP, Li M et al. Adrenomedullin signaling is necessary for murine lymphatic vascular development. J Clin Invest 2008; 118(1):40–50.

    Article  PubMed  CAS  Google Scholar 

  15. Dackor R, Fritz-Six K, Smithies O et al. Receptor activity-modifying proteins 2 and 3 have distinct physiological functions from embryogenesis to old age. J Biol Chem 2007; 282(25):18094–18099.

    Article  PubMed  CAS  Google Scholar 

  16. Caron KM, Smithies O. Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. Proc Natl Acad Sci USA 2001; 98(2):615–619.

    Article  PubMed  CAS  Google Scholar 

  17. Dackor RT, Fritz-Six K, Dunworth WP et al. Hydrops fetalis, cardiovascular defects and embryonic lethality in mice lacking the calcitonin receptor-like receptor gene. Mol Cell Biol 2006; 26(7):2511–2518.

    Article  PubMed  CAS  Google Scholar 

  18. Oliver G. Lymphatic vasculature development. Nat Rev Immunol 2004; 4(1):35–45.

    Article  PubMed  CAS  Google Scholar 

  19. Petrova TV, Makinen T, Makela TP et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J 2002; 21(17):4593–4599.

    Article  PubMed  CAS  Google Scholar 

  20. Hirakawa S, Hong YK, Harvey N et al. Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 2003; 162(2):575–586.

    Article  PubMed  CAS  Google Scholar 

  21. Podgrabinska S, Braun P, Velasco P et al. Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci USA 2002; 99(25):16069–16074.

    Article  PubMed  CAS  Google Scholar 

  22. Tammela T, Petrova TV, Alitalo K. Molecular lymphangiogenesis: new players. Trends Cell Biol 2005; 15(8):434–441.

    Article  Google Scholar 

  23. Kahn ML. Blood is thicker than lymph. J Clin Invest 2008; 118(1):23–26.

    Article  PubMed  CAS  Google Scholar 

  24. Li M, Yee D, Magnuson TR, et al. Reduced maternal expression of adrenomedullin disrupts fertility, placentation and fetal growth in mice. J Clin Invest 2006; 116(10):2653–2662.

    PubMed  CAS  Google Scholar 

  25. Li M, Wu Y, Caron KM. Haploinsufficiency for Adrenomedullin Reduces Pinopodes and Diminishes Uterine Receptivity in Mice. Biol Reprod 2008.

    Google Scholar 

  26. Tam CW, Husmann K, Clark NC et al. Enhanced vascular responses to adrenomedullin in mice overexpressing receptor-activity-modifying protein 2. Circ Res 2006; 98(2):262–270.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Caron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Kadmiel, M., Fritz-Six, K.L., Caron, K.M. (2012). Understanding RAMPs Through Genetically Engineered Mouse Models. In: Spielman, W.S., Parameswaran, N. (eds) RAMPs. Advances in Experimental Medicine and Biology, vol 744. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2364-5_5

Download citation

Publish with us

Policies and ethics