Skip to main content

Engineering Therapeutic Cancer Vaccines That Activate Antitumor Immunity

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1218))

Abstract

Vaccination represents one the most effective methods of preventing disease. Because dendritic cells (DCs) are the most efficient antigen presenting cells, exploiting their plasticity is likely to yield improved therapeutic vaccines. Herein, we applied a novel DC-based vaccine (i.e., DC loaded with leukemia antigens that have been transfected with an IL-10 siRNA capable of coordinately activating DCs via TLR7/8) in a rat model of acute myeloid leukemia. Leukemic rats treated with this new vaccine had less leukemic cell mass in their bone marrows and less extramedullar dissemination of the leukemic disease examined postmortem compared with rats given the control vaccine. Collectively, the new strategy demonstrates the possible usefulness of dual siRNAs as an immunomodulatory drug with antileukemic properties.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Banchereau J, Paczesny S, Blanco P, Bennett L, Pascual V, Fay J et al (2003) Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Ann N Y Acad Sci 987:180–187

    Article  PubMed  CAS  Google Scholar 

  2. Blander JM, Medzhitov R (2006) On regulation of phagosome maturation and antigen presentation. Nat Immunol 7:1029–1035

    Article  PubMed  CAS  Google Scholar 

  3. Sioud M (2006) Innate sensing of self and non-self RNAs by Toll-like receptors. Trends Mol Med 12:167–176

    Article  PubMed  CAS  Google Scholar 

  4. Kabelitz D, Wesch D, Oberg HH (2006) Regulation of regulatory T cells: role of dendritic cells and toll-like receptors. Crit Rev Immunol 26:291–306

    Article  PubMed  CAS  Google Scholar 

  5. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Google Scholar 

  6. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  7. Sioud M (2004) Therapeutic siRNAs. Trends Pharmacol Sci 25:22–28

    Article  PubMed  CAS  Google Scholar 

  8. Sioud M (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 348:1079–1090

    Article  PubMed  CAS  Google Scholar 

  9. Furset G, Sioud M (2007) Design of bifunctional siRNAs: combining immuno-stimulation and gene-silencing in one single siRNA molecule. Biochem Biophys Res Commun 352:642–649

    Article  PubMed  CAS  Google Scholar 

  10. Iversen PO, Semaeva E, Sørensen DR, Wiig H, Sioud M (2009) Dendritic cells loaded with tumor antigens and a dual immunostimulatory and anti-interleukin 10-specific small interference RNA prime T lymphocytes against leukemic cells. Transl Oncol 2:242–246

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sioud M (2006) Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2′-hydroxyl uridines in immune responses. Eur J Immunol 36:1222–1230

    Article  PubMed  CAS  Google Scholar 

  12. Sioud M, Furset G, Cekaite L (2007) Suppression of immunostimulatory siRNA-driven innate immune activation by 2′-modified RNAs. Biochem Biophys Res Commun 361:122–126

    Article  PubMed  CAS  Google Scholar 

  13. Martens AC, van Bekkum DW, Hagenbeek A (1990) The BN acute myelocytic leukemia (BNML) (a rat model for studying human acute myelocytic leukemia (AML)). Leukemia 4:241–257

    PubMed  CAS  Google Scholar 

  14. Iversen PO, Sørensen DR, Tronstad KJ, Gudbrandsen OA, Rustan AC, Berge RK, Drevon CA (2006) A bioactively modified fatty acid improves survival and impairs metastasis in preclinical models of acute leukemia. Clin Cancer Res 12:3525–3531

    Article  PubMed  CAS  Google Scholar 

  15. Martens AC, Johnson RJ, Kaizer H, Hagenbeek A (1984) Characteristics of a monoclonal antibody (RM124) against acute myelocytic leukemia cells. Exp Hematol 2:667–671

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouldy Sioud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Iversen, P.O., Sioud, M. (2015). Engineering Therapeutic Cancer Vaccines That Activate Antitumor Immunity. In: Sioud, M. (eds) RNA Interference. Methods in Molecular Biology, vol 1218. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1538-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1538-5_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1537-8

  • Online ISBN: 978-1-4939-1538-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics