Skip to main content

Generation and Detection of S-Nitrosothiols

  • Protocol
  • First Online:
Book cover Redox-Mediated Signal Transduction

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 476))

Abstract

Nitric oxide (NO) plays a pivotal role in cellular signaling in many different organisms as the result of the modification of protein activities/functions by protein S-nitrosylation. This NO-dependent posttranslational modification is based on the attachment of NO to the sulfur moiety of cysteine residues. However, the instability of S-nitrosothiols makes it difficult to analyze this type of protein modification in vitro as well as in vivo. Jeffrey and colleagues developed a method—named the biotin switch method—that allows the detection and purification of S-nitrosylated proteins. The principle behind this technology is the substitution of the NO group by a biotin linker in a three-step procedure. First, the all free thiol groups are blocked with a thiol-reactive agent, followed by selective reduction of the S-nitrosylated cysteine residues using ascorbate. In the final step, the reduced thiol groups are labeled with a biotin linker, so that the previously S-nitrosylated cysteine residues are finally biotinylated. Afterwards, the biotinylated proteins can be detected with anti-biotin antibodies or can be purified by affinity chromatography on neutravidin agarose. In this chapter, we give a detailed description of the biotin switch method, which can be used for proteomics approach to identify candidates for protein S-nitrosylation as well as to analyse S-nitrosylation of selected proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tuteja, N., Chandra, M., Tuteja, R., and Misra, M. K. (2004) Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J Biomed Biotechnol 2004, 227–237.

    Article  PubMed  Google Scholar 

  2. Wendehenne, D., Durner, J., and Klessig, D. F. (2004) Nitric oxide: a new player in plant signaling and defence responses. Curr Opin Plant Biol 7, 449–455.

    Article  PubMed  CAS  Google Scholar 

  3. Shapiro, A. (2005) Nitric oxide signalling in plants. Vitam Horm 72, 339–398.

    Article  PubMed  CAS  Google Scholar 

  4. Bove, P. F., and van der Vliet, A. (2006) Nitric oxide and reactive nitrogen species in airway epithelial signaling and inflammation. Free Radic Biol Med 41, 515–527.

    Article  PubMed  CAS  Google Scholar 

  5. Cohen, R. A., and Adachi, T. (2006) Nitric-oxide-induced vasodilatation: regulation by physiologic S-glutathiolation and pathologic oxidation of the sarcoplasmic endoplasmic reticulum calcium ATPase. Trends Cardiovasc Med 16, 109–114.

    Article  PubMed  CAS  Google Scholar 

  6. Grun, S., Lindermayr, C., Sell, S., and Durner, J. (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57, 507–516.

    Article  PubMed  CAS  Google Scholar 

  7. Mannick, J. B. (2006) Immunoregulatory and antimicrobial effects of nitrogen oxides. Proc Am Thorac Soc 3, 161–165.

    Article  PubMed  CAS  Google Scholar 

  8. Moncada. S., Bolanos, J. P. (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97, 1676–1689.

    Article  PubMed  CAS  Google Scholar 

  9. Villalobo, A. (2006) Nitric oxide and cell proliferation. FEBS J 273, 2329–2344.

    Article  PubMed  CAS  Google Scholar 

  10. Russwurm, M., and Koesling, D. (2004) NO activation of guanylyl cyclase. EMBO J 23, 4443–4450.

    Article  PubMed  CAS  Google Scholar 

  11. Lane, P., Hao, G., and Gross, S. S. (2001) S-nitrosylation is emerging as a specific and fundamental posttranslational protein modification: head-to-head comparison with O-phosphorylation. Sci. STKE June 12(86), RE1.

    Google Scholar 

  12. Stamler, J. S., Lamas, S., and Fang, F. C. (2001) Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106, 675–683.

    Article  PubMed  CAS  Google Scholar 

  13. Gaston, B. M., Carver, J., Doctor, A., and Palmer, L. A. (2003) S-nitrosylation signaling in cell biology. Mol Interv 3, 253–263.

    Article  PubMed  CAS  Google Scholar 

  14. Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E., and Stamler, J. S. (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mo. Cell Biol 6, 150–166.

    Article  CAS  Google Scholar 

  15. Hausladen, A., Privalle, C. T., Keng, T., DeAngelo, J., and Stamler, J. S. (1996) Nitrosative stress: activaton of the transcription factor OxyR. Cell 86, 719–729.

    Article  PubMed  CAS  Google Scholar 

  16. Marshall, H. E., and Stamler, J. S. (2001) Inhibition of NF-kappa B by S-nitrosylation. Biochemistry 40, 1688–1693.

    Article  PubMed  CAS  Google Scholar 

  17. Hara, M. R., Agrawal, N., Kim, S. F., Cascio, M. B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J. H., Tankou, S. K., Hester, L. D., Ferris, C. D., Hayward, S. D., Snyder, S. H., and Sawa,A. (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7, 665–674.

    Article  PubMed  CAS  Google Scholar 

  18. Lindermayr, C., Saalbach, G., Bahnweg, G., and Durner, J. (2006) Differential inhibition of Arabidopsis methionine adenosyltransferases by protein s-nitrosylation. J Biol Chem 281, 4285–4291.

    Article  PubMed  CAS  Google Scholar 

  19. Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P., and Snyder, S. H. (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3, 193–197.

    Article  PubMed  CAS  Google Scholar 

  20. Jaffrey, S. R., and Snyder, S. H (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci. STKE June 12(86), PL1.

    Google Scholar 

  21. Kuncewicz, T., Sheta, E. A., Goldknopf, I. L., and Kone, B. C. (2003) Proteomic analysis of s-nitrosylated proteins in mesangial cells. Mol Cell Proteomics 2, 156–163.

    Article  PubMed  CAS  Google Scholar 

  22. Foster, M. W., and Stamler, J. S. (2004) New insights into protein S-nitrosylation: Mitochondria as a model system. J Biol Chem 279, 25891–25897.

    Article  PubMed  CAS  Google Scholar 

  23. Martinez-Ruiz, A., and Lamas, S. (2004) Detection and proteomic identification of S-nitrosylated proteins in endothelial cells. Arch Biochem Biophys 423, 192–199.

    Article  PubMed  CAS  Google Scholar 

  24. Lindermayr, C., Saalbach, G., and Durner, J. (2005) Proteomic identification of s-nitrosylated proteins in Arabidopsis. Plant Physiol 137, 921–930.

    Article  PubMed  CAS  Google Scholar 

  25. Rhee, K. Y., Erdjument-Bromage, H., Tempst, P., and Nathan, C. F. (2005) S-nitroso proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense. Proc Natl Acad Sci USA 102, 467–472.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang, Y., Keszler, A., Broniowska, K. A., and Hogg, N. (2005) Characterization and application of the biotin-switch assay for the identification of S-nitrosated proteins. Free Radic Biol Med 38, 874–881.

    Article  PubMed  CAS  Google Scholar 

  27. Huang, B., and Chen, C. (2006) An ascorbate-dependent artifact that interferes with the interpretation of the biotin switch assay. Free Radic Biol Med 41, 562–567.

    Article  PubMed  CAS  Google Scholar 

  28. Shi, Q., Chen, H. F., and Lou, Y. J. (2006) Further evidence that rat liver microsomal glutathione transferase 1 is not a cellular protein target for S-nitrosylation. Chem Biol Interact 162, 228–236.

    Article  PubMed  CAS  Google Scholar 

  29. Saville, B. (1958) A scheme for the colorimetric determination of microgram amounts of thiols. Analyst 83, 670–672.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lindermayr, C., Sell, S., Durner, J. (2008). Generation and Detection of S-Nitrosothiols. In: Hancock, J.T. (eds) Redox-Mediated Signal Transduction. Methods in Molecular Biology™, vol 476. Humana Press. https://doi.org/10.1007/978-1-59745-129-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-129-1_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-842-3

  • Online ISBN: 978-1-59745-129-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics