Skip to main content

Targeting Cancer with Small-Molecular-Weight Kinase Inhibitors

  • Protocol
  • First Online:
Book cover Kinase Inhibitors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 795))

Abstract

Protein and lipid kinases fulfill essential roles in many signaling pathways that regulate normal cell functions. Deregulation of these kinase activities lead to a variety of pathologies ranging from cancer to inflammatory diseases, diabetes, infectious diseases, cardiovascular disorders, cell growth and survival. 518 protein kinases and about 20 lipid-modifying kinases are encoded by the human genome, and a much larger proportion of additional kinases are present in parasite, bacterial, fungal, and viral genomes that are susceptible to exploitation as drug targets. Since many human diseases result from overactivation of protein and lipid kinases due to mutations and/or overexpression, this enzyme class represents an important target for the pharmaceutical industry. Approximately one third of all protein targets under investigation in the pharmaceutical industry are protein or lipid kinases.

The kinase inhibitors that have been launched, thus far, are mainly in oncology indications and are directed against a handful of protein and lipid kinases. With one exception, all of these registered kinase inhibitors are directed toward the ATP-site and display different selectivities, potencies, and pharmacokinetic properties. At present, about 150 kinase-targeted drugs are in clinical development and many more in various stages of preclinical development. Kinase inhibitor drugs that are in clinical trials target all stages of signal transduction from the receptor protein tyrosine kinases that initiate intracellular signaling, through second-messenger-dependent lipid and protein kinases, and protein kinases that regulate the cell cycle.

This review provides an insight into protein and lipid kinase drug discovery with respect to achievements, binding modes of inhibitors, and novel avenues for the generation of second-generation kinase inhibitors to treat cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AML:

Acute myeloid leukemia

B-ALL:

B-cell acute lymphoblastic leukemia

CEL:

Chronic eosinophilic leukemia

CML:

Chronic myeloid leukemia

CMML:

Chronic myelomonocytic leukemia

RCC:

Renal cell cancer

NSCLC:

Non-small-cell lung cancer

GIST:

Gastrointestinal stromal cancer

CSF1R:

colony-stimulating factor 1 receptor

EGFR:

Epidermal growth factor receptor

FLT3:

FMS-related tyrosine kinase 3

GIST:

Gastrointestinal stromal tumor

NSCLC:

Non-small-cell lung cancer

PDGFR:

Platelet-derived growth factor receptor

RCC:

Renal cell carcinoma

Ph+:

Philadelphia chromosome positive

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Blume-Jensen, P., and Hunter, T. (2001) Oncogenic kinase signalling, Nature 411, 355–365.

    Article  PubMed  CAS  Google Scholar 

  2. Fabbro, D., Ruetz, S., Buchdunger, E., Cowan-Jacob, S. W., Fendrich, G., Liebetanz, J., Mestan, J., O’Reilly, T., Traxler, P., Chaudhuri, B., Fretz, H., Zimmermann, J., Meyer, T., Caravatti, G., Furet, P., and Manley, P. W. (2002) Protein kinases as targets for anticancer agents: from inhibitors to useful drugs, Pharmacol. Ther. 93, 79–98.

    Article  PubMed  CAS  Google Scholar 

  3. Hunter, T. (2000) Signaling--2000 and beyond, Cell 100, 113–127.

    Article  PubMed  CAS  Google Scholar 

  4. Weinstein, I. B. (2002) Cancer. Addiction to oncogenes--the Achilles heal of cancer, Science 297, 63–64.

    Article  PubMed  CAS  Google Scholar 

  5. Luo, J., Solimini, N. L., and Elledge, S. J. (2009) Principles of cancer therapy: oncogene and non-oncogene addiction, Cell 136, 823–837.

    Article  PubMed  CAS  Google Scholar 

  6. Hahn, W. C., and Weinberg, R. A. (2002) Modelling the molecular circuitry of cancer, Nat. Rev. Cancer 2, 331–341.

    Article  PubMed  CAS  Google Scholar 

  7. Hanahan, D., and Weinberg, R. A. (2000) The hallmarks of cancer, Cell 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  8. Bardelli, A., Parsons, D. W., Silliman, N., Ptak, J., Szabo, S., Saha, S., Markowitz, S., Willson, J. K., Parmigiani, G., Kinzler, K. W., Vogelstein, B., and Velculescu, V. E. (2003) Mutational analysis of the tyrosine kinome in colorectal cancers, Science 300, 949.

    Article  PubMed  CAS  Google Scholar 

  9. Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., Davies, H., Teague, J., Butler, A., Stevens, C., Edkins, S., O’Meara, S., Vastrik, I., Schmidt, E. E., Avis, T., Barthorpe, S., Bhamra, G., Buck, G., Choudhury, B., Clements, J., Cole, J., Dicks, E., Forbes, S., Gray, K., Halliday, K., Harrison, R., Hills, K., Hinton, J., Jenkinson, A., Jones, D., Menzies, A., Mironenko, T., Perry, J., Raine, K., Richardson, D., Shepherd, R., Small, A., Tofts, C., Varian, J., Webb, T., West, S., Widaa, S., Yates, A., Cahill, D. P., Louis, D. N., Goldstraw, P., Nicholson, A. G., Brasseur, F., Looijenga, L., Weber, B. L., Chiew, Y. E., DeFazio, A., Greaves, M. F., Green, A. R., Campbell, P., Birney, E., Easton, D. F., Chenevix-Trench, G., Tan, M. H., Khoo, S. K., Teh, B. T., Yuen, S. T., Leung, S. Y., Wooster, R., Futreal, P. A., and Stratton, M. R. (2007) Patterns of somatic mutation in human cancer genomes, Nature 446, 153–158.

    Article  PubMed  CAS  Google Scholar 

  10. Thomas, R. K., Baker, A. C., Debiasi, R. M., Winckler, W., Laframboise, T., Lin, W. M., Wang, M., Feng, W., Zander, T., MacConaill, L., Lee, J. C., Nicoletti, R., Hatton, C., Goyette, M., Girard, L., Majmudar, K., Ziaugra, L., Wong, K. K., Gabriel, S., Beroukhim, R., Peyton, M., Barretina, J., Dutt, A., Emery, C., Greulich, H., Shah, K., Sasaki, H., Gazdar, A., Minna, J., Armstrong, S. A., Mellinghoff, I. K., Hodi, F. S., Dranoff, G., Mischel, P. S., Cloughesy, T. F., Nelson, S. F., Liau, L. M., Mertz, K., Rubin, M. A., Moch, H., Loda, M., Catalona, W., Fletcher, J., Signoretti, S., Kaye, F., Anderson, K. C., Demetri, G. D., Dummer, R., Wagner, S., Herlyn, M., Sellers, W. R., Meyerson, M., and Garraway, L. A. (2007) High-throughput oncogene mutation profiling in human cancer, Nat. Genet. 39, 347–351.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang, J., Yang, P. L., Gray, N. S. (2009) Targeting cancer with small molecule kinase inhibitors, Nat. Rev. Cancer 9, 28–39.

    Article  PubMed  CAS  Google Scholar 

  12. Cohen, P. (2002) Protein kinases--the major drug targets of the twenty-first century?, Nat. Rev. Drug Discov. 1, 309–315.

    Article  PubMed  CAS  Google Scholar 

  13. Vieth, M., Higgs, R. E., Robertson, D. H., Shapiro, M., Gragg, E. A., and Hemmerle, H. (2004) Kinomics-structural biology and chemogenomics of kinase inhibitors and targets, Biochim. Biophys. Acta 1697, 243–257.

    PubMed  CAS  Google Scholar 

  14. Vieth, M., Sutherland, J. J., Robertson, D. H., and Campbell, R. M. (2005) Kinomics: characterizing the therapeutically validated kinase space, Drug Discov. Today 10, 839–846.

    CAS  Google Scholar 

  15. Levitzki, A. (2003) Protein kinase inhibitors as a therapeutic modality, Acc. Chem. Res. 36, 462–469.

    Article  PubMed  CAS  Google Scholar 

  16. Fabbro, D., and Garcia-Echeverria, C. (2002) Targeting protein kinases in cancer therapy, Curr. Opin. Drug Discov. Devel.5, 701–712.

    Google Scholar 

  17. Cowan-Jacob, S. W. (2006) Structural biology of protein tyrosine kinases, Cell. Mol. Life Sci. 63, 2608–2625.

    Article  PubMed  CAS  Google Scholar 

  18. Garcia-Echeverria, C. (2009) Protein and lipid kinase inhibitors as targeted anticancer agents of the Ras/Raf/MEK and PI3K/PKB pathways, Purinergic Signal. 5, 117–125.

    Article  PubMed  CAS  Google Scholar 

  19. Garcia-Echeverria, C., and Sellers, W. R. (2008) Drug discovery approaches targeting the PI3K/Akt pathway in cancer, Oncogene 27, 5511–5526.

    Article  PubMed  CAS  Google Scholar 

  20. Maira, S. M., Voliva, C., and Garcia-Echeverria, C. (2008) Class IA phosphatidylinositol 3-kinase: from their biologic implication in human cancers to drug discovery, Expert Opin. Ther. Targets 12, 223–238.

    Article  PubMed  CAS  Google Scholar 

  21. Yuan, T. L., and Cantley, L. C. (2008) PI3K pathway alterations in cancer: variations on a theme, Oncogene 27, 5497–5510.

    Article  PubMed  CAS  Google Scholar 

  22. Malumbres, M., and Barbacid, M. (2009) Cell cycle, CDKs and cancer: a changing paradigm, Nat. Rev. Cancer 9, 153–166.

    Article  PubMed  CAS  Google Scholar 

  23. Fabbro, D., Fendrich, G., Guez V., Meyer T., Furet, P., Mestan, P., Griffin, J.D. Manley, P.W., and Cowan-Jacob, S.W. (2005) Targeted therapy with imatinib: An exception or a rule? Handbook of Experimental Pharmacology, Inhibitors of Protein Kinases and Protein Phosphates 167, 361–389..

    Article  CAS  Google Scholar 

  24. Pao, W., Miller, V. A., Politi, K. A., Riely, G. J., Somwar, R., Zakowski, M. F., Kris, M. G., and Varmus, H. (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain, PLoS Med. 2, e73.

    Article  PubMed  CAS  Google Scholar 

  25. Sawyers, C. (2004) Targeted cancer therapy, Nature 432, 294–297.

    Article  PubMed  CAS  Google Scholar 

  26. Wolf-Yadlin, A., Kumar, N., Zhang, Y., Hautaniemi, S., Zaman, M., Kim, H. D., Grantcharova, V., Lauffenburger, D. A., and White, F. M. (2006) Effects of HER2 overexpression on cell signaling networks governing proliferation and migration, Mol Syst Biol 2, 54.

    Article  PubMed  CAS  Google Scholar 

  27. Heinrich, M. C., Corless, C. L., Demetri, G. D., Blanke, C. D., von Mehren, M., Joensuu, H., McGreevey, L. S., Chen, C. J., Van den Abbeele, A. D., Druker, B. J., Kiese, B., Eisenberg, B., Roberts, P. J., Singer, S., Fletcher, C. D., Silberman, S., Dimitrijevic, S., and Fletcher, J. A. (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor, J. Clin. Oncol.21, 4342–4349.

    Google Scholar 

  28. Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Haserlat, S. M., Supko, J. G., Haluska, F. G., Louis, D. N., Christiani, D. C., Settleman, J., and Haber, D. A. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib, N. Engl. J. Med. 350, 2129–2139.

    Article  PubMed  CAS  Google Scholar 

  29. Gorre, M. E., Mohammed, M., Ellwood, K., Hsu, N., Paquette, R., Rao, P. N., and Sawyers, C. L. (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification, Science 293, 876–880.

    Article  PubMed  CAS  Google Scholar 

  30. Kobayashi, S., Boggon, T. J., Dayaram, T., Janne, P. A., Kocher, O., Meyerson, M., Johnson, B. E., Eck, M. J., Tenen, D. G., and Halmos, B. (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib, N. Engl. J. Med. 352, 786–792.

    Article  PubMed  CAS  Google Scholar 

  31. Ventura, J. J., and Nebreda, A. R. (2006) Protein kinases and phosphatases as therapeutic targets in cancer, Clin. Transl. Oncol. 8, 153–160.

    Article  PubMed  CAS  Google Scholar 

  32. Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., Lindeman, N., Gale, C. M., Zhao, X., Christensen, J., Kosaka, T., Holmes, A. J., Rogers, A. M., Cappuzzo, F., Mok, T., Lee, C., Johnson, B. E., Cantley, L. C., and Janne, P. A. (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling, Science 316, 1039–1043.

    Article  PubMed  CAS  Google Scholar 

  33. Takano, T., Ohe, Y., Sakamoto, H., Tsuta, K., Matsuno, Y., Tateishi, U., Yamamoto, S., Nokihara, H., Yamamoto, N., Sekine, I., Kunitoh, H., Shibata, T., Sakiyama, T., Yoshida, T., and Tamura, T. (2005) Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib ­sensitivity in patients with recurrent non-small-cell lung cancer, J. Clin. Oncol. 23, 6829–6837.

    Article  PubMed  CAS  Google Scholar 

  34. Ali, S., and Ali, S. (2007) Role of c-kit/SCF in cause and treatment of gastrointestinal stromal tumors (GIST), Gene 401, 38–45.

    Article  PubMed  CAS  Google Scholar 

  35. Engelman, J. A., Chen, L., Tan, X., Crosby, K., Guimaraes, A. R., Upadhyay, R., Maira, M., McNamara, K., Perera, S. A., Song, Y., Chirieac, L. R., Kaur, R., Lightbown, A., Simendinger, J., Li, T., Padera, R. F., Garcia-Echeverria, C., Weissleder, R., Mahmood, U., Cantley, L. C., and Wong, K. K. (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers, Nat. Med. 14, 1351–1356.

    Article  PubMed  CAS  Google Scholar 

  36. Weisberg, E., Manley, P. W., Breitenstein, W., Bruggen, J., Cowan-Jacob, S. W., Ray, A., Huntly, B., Fabbro, D., Fendrich, G., Hall-Meyers, E., Kung, A. L., Mestan, J., Daley, G. Q., Callahan, L., Catley, L., Cavazza, C., Azam, M., Neuberg, D., Wright, R. D., Gilliland, D. G., and Griffin, J. D. (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl, Cancer Cell 7, 129–141.

    Article  PubMed  CAS  Google Scholar 

  37. Quintas-Cardama, A., Kantarjian, H., and Cortes, J. (2007) Flying under the radar: the new wave of BCR-ABL inhibitors, Nat. Rev. Drug Discov. 6, 834–848.

    Article  PubMed  CAS  Google Scholar 

  38. Adrian, F. J., Ding, Q., Sim, T., Velentza, A., Sloan, C., Liu, Y., Zhang, G., Hur, W., Ding, S., Manley, P., Mestan, J., Fabbro, D., and Gray, N. S. (2006) Allosteric inhibitors of Bcr-abl-dependent cell proliferation, Nat. Chem. Biol. 2, 95–102.

    Article  PubMed  CAS  Google Scholar 

  39. Lombardo, L. J., Lee, F. Y., Chen, P., Norris, D., Barrish, J. C., Behnia, K., Castaneda, S., Cornelius, L. A., Das, J., Doweyko, A. M., Fairchild, C., Hunt, J. T., Inigo, I., Johnston, K., Kamath, A., Kan, D., Klei, H., Marathe, P., Pang, S., Peterson, R., Pitt, S., Schieven, G. L., Schmidt, R. J., Tokarski, J., Wen, M. L., Wityak, J., and Borzilleri, R. M. (2004) Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays, J. Med. Chem. 47, 6658–6661.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang, J., Adrian, F.J., Jahnke, W., Cowan-Jacob, S.W., Li, A.G., Iacob, R.E., Sim, T.,Powers, J. , Dierks, C. , Sun, F., Guo, G.R., Ding, Q., Okram, B. , Choi, Y.,Wojciechowski, A., Deng, X., Liu, G., Fendrich, G., Strauss, A., Vajpai, N., Grzesiek, S., Tuntland, T., Liu, Y., Bursulaya, B., Azam, M., Manley, P.W., Engen, J.R., Daley, G.Q., Warmuth, M., Gray, N.S. (2010) Targeting wild-type and T315I Bcr-Abl by combining allosteric with ATP-site inhibitors, Nature 463, 501–506.

    Article  PubMed  CAS  Google Scholar 

  41. Noble, M. E., Endicott, J. A., and Johnson, L. N. (2004) Protein kinase inhibitors: insights into drug design from structure, Science 303, 1800–1805.

    Article  PubMed  CAS  Google Scholar 

  42. Bogoyevitch, M. A., and Fairlie, D. P. (2007) A new paradigm for protein kinase inhibition: blocking phosphorylation without directly targeting ATP binding, Drug Discov. Today 12, 622–633.

    CAS  Google Scholar 

  43. Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., Zimmermann, J., and Lydon, N. B. (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells, Nat. Med. 2, 561–566.

    Article  PubMed  CAS  Google Scholar 

  44. Barker, A. J., Gibson, K. H., Grundy, W., Godfrey, A. A., Barlow, J. J., Healy, M. P., Woodburn, J. R., Ashton, S. E., Curry, B. J., Scarlett, L., Henthorn, L., and Richards, L. (2001) Studies leading to the identification of ZD1839 (IRESSA): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer, Bioorg. Med. Chem. Lett. 11, 1911–1914.

    Article  PubMed  CAS  Google Scholar 

  45. Perez-Soler, R. (2004) The role of erlotinib (Tarceva, OSI 774) in the treatment of non-small cell lung cancer, Clin. Cancer Res. 10, 4238s-4240s.

    Article  PubMed  CAS  Google Scholar 

  46. Moyer, J. D., Barbacci, E. G., Iwata, K. K., Arnold, L., Boman, B., Cunningham, A., DiOrio, C., Doty, J., Morin, M. J., Moyer, M. P., Neveu, M., Pollack, V. A., Pustilnik, L. R., Reynolds, M. M., Sloan, D., Theleman, A., and Miller, P. (1997) Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase, Cancer Res. 57, 4838–4848.

    PubMed  CAS  Google Scholar 

  47. Gaul, M. D., Guo, Y., Affleck, K., Cockerill, G. S., Gilmer, T. M., Griffin, R. J., Guntrip, S., Keith, B. R., Knight, W. B., Mullin, R. J., Murray, D. M., Rusnak, D. W., Smith, K., Tadepalli, S., Wood, E. R., and Lackey, K. (2003) Discovery and biological evaluation of potent dual ErbB-2/EGFR tyrosine kinase inhibitors: 6-thiazolylquinazolines, Bioorg. Med. Chem. Lett. 13, 637–640.

    Article  PubMed  CAS  Google Scholar 

  48. Lowinger, T. B., Riedl, B., Dumas, J., and Smith, R. A. (2002) Design and discovery of small molecules targeting raf-1 kinase, Curr. Pharm. Des. 8, 2269–2278.

    Article  PubMed  CAS  Google Scholar 

  49. Sun, L., Liang, C., Shirazian, S., Zhou, Y., Miller, T., Cui, J., Fukuda, J. Y., Chu, J. Y., Nematalla, A., Wang, X., Chen, H., Sistla, A., Luu, T. C., Tang, F., Wei, J., and Tang, C. (2003) Discovery of 5-(5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl)-2,4- ­dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase, J. Med. Chem. 46, 1116–1119.

    Article  PubMed  CAS  Google Scholar 

  50. Sternberg, C.N., Szcylik, C. Lee, E., Salman, P.V., Mardiak, J., Davis, I.D., Pandite, L., Chen M., McCann,L. and Hawkins, R. (2009) A Randomized, Double-blind Phase III Study of Pazopanib in Treatment-naive and Cytokine-pretreated Patients with Advanced Renal Cell Carcinoma (RCC), J. Clin. Oncol. 27, Abstract #5021.

    Google Scholar 

  51. Galanis, E., Buckner, J. C., Maurer, M. J., Kreisberg, J. I., Ballman, K., Boni, J., Peralba, J. M., Jenkins, R. B., Dakhil, S. R., Morton, R. F., Jaeckle, K. A., Scheithauer, B. W., Dancey, J., Hidalgo, M., and Walsh, D. J. (2005) Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study, J. Clin. Oncol. 23, 5294–5304.

    Article  PubMed  CAS  Google Scholar 

  52. Escudier, B. (2008) Phase-3 randomized trial of everolimus (RAD001) vs. placebo in metastatic renal cell carcinoma, European Society for Medical Oncology (ESMO) 33rd Congress.

    Google Scholar 

  53. Wang, X., and Sun, S. Y. (2009) Enhancing mTOR-targeted cancer therapy, Expert Opin. Ther. Targets 13, 1193–1203.

    Article  PubMed  CAS  Google Scholar 

  54. Pascual, J. (2006) Everolimus in clinical practice--renal transplantation, Nephrol. Dial. Transplant. 21 Suppl 3, iii18–23.

    Google Scholar 

  55. Trials. (2009) http://www.clinicaltrials.gov/ .

  56. Druker, B. J., Talpaz, M., Resta, D. J., Peng, B., Buchdunger, E., Ford, J. M., Lydon, N. B., Kantarjian, H., Capdeville, R., Ohno-Jones, S., and Sawyers, C. L. (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia, N. Engl. J. Med. 344, 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  57. Van Etten, R. A., and Shannon, K. M. (2004) Focus on myeloproliferative diseases and myelodysplastic syndromes, Cancer Cell 6, 547–552.

    Article  PubMed  Google Scholar 

  58. Demetri, G. D., von Mehren, M., Blanke, C. D., Van den Abbeele, A. D., Eisenberg, B., Roberts, P. J., Heinrich, M. C., Tuveson, D. A., Singer, S., Janicek, M., Fletcher, J. A., Silverman, S. G., Silberman, S. L., Capdeville, R., Kiese, B., Peng, B., Dimitrijevic, S., Druker, B. J., Corless, C., Fletcher, C. D., and Joensuu, H. (2002) Efficacy and safety of ­imatinib mesylate in advanced gastrointestinal stromal tumors, N. Engl. J. Med. 347, 472–480.

    Article  PubMed  CAS  Google Scholar 

  59. Siehl, J., and Thiel, E. (2007) C-kit, GIST, and imatinib, Recent Results Cancer Res. 176, 145–151.

    Article  PubMed  CAS  Google Scholar 

  60. Buchdunger, E., Cioffi, C. L., Law, N., Stover, D., Ohno-Jones, S., Druker, B. J., and Lydon, N. B. (2000) Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors, J. Pharmacol. Exp. Ther. 295, 139–145.

    PubMed  CAS  Google Scholar 

  61. Heinrich, M. C., Corless, C. L., Duensing, A., McGreevey, L., Chen, C. J., Joseph, N., Singer, S., Griffith, D. J., Haley, A., Town, A., Demetri, G. D., Fletcher, C. D., and Fletcher, J. A. (2003) PDGFRA activating mutations in gastrointestinal stromal tumors, Science 299, 708–710.

    Article  PubMed  CAS  Google Scholar 

  62. McArthur, G. A., Demetri, G. D., van Oosterom, A., Heinrich, M. C., Debiec-Rychter, M., Corless, C. L., Nikolova, Z., Dimitrijevic, S., and Fletcher, J. A. (2005) Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225, J. Clin. Oncol. 23, 866–873.

    Article  PubMed  CAS  Google Scholar 

  63. Apperley, J. F., Gardembas, M., Melo, J. V., Russell-Jones, R., Bain, B. J., Baxter, E. J., Chase, A., Chessells, J. M., Colombat, M., Dearden, C. E., Dimitrijevic, S., Mahon, F. X., Marin, D., Nikolova, Z., Olavarria, E., Silberman, S., Schultheis, B., Cross, N. C., and Goldman, J. M. (2002) Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta, N. Engl. J. Med. 347, 481–487.

    Article  PubMed  CAS  Google Scholar 

  64. Antoniu, S. A. (2009) Targeting platelet-derived growth factor with imatinib in idiopathic pulmonary arterial hypertension, Expert. Opin. Ther. Targets 13, 381–383.

    Article  PubMed  CAS  Google Scholar 

  65. Steinberg, M. (2007) Dasatinib: a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia and philadelphia ­chromosome-positive acute lymphoblastic leukemia, Clin. Ther. 29, 2289–2308.

    Article  PubMed  CAS  Google Scholar 

  66. Motzer, R. J., Hoosen, S., Bello, C. L., and Christensen, J. G. (2006) Sunitinib malate for the treatment of solid tumours: a review of current clinical data, Expert Opin. Investig. Drugs 15, 553–561.

    Article  PubMed  CAS  Google Scholar 

  67. Motzer, R. J., Rini, B. I., Bukowski, R. M., Curti, B. D., George, D. J., Hudes, G. R., Redman, B. G., Margolin, K. A., Merchan, J. R., Wilding, G., Ginsberg, M. S., Bacik, J., Kim, S. T., Baum, C. M., and Michaelson, M. D. (2006) Sunitinib in patients with metastatic renal cell carcinoma, Jama 295, 2516–2524.

    Article  PubMed  CAS  Google Scholar 

  68. Faivre, S., Demetri, G., Sargent, W., and Raymond, E. (2007) Molecular basis for sunitinib efficacy and future clinical development, Nat. Rev. Drug Discov. 6, 734–745.

    Article  PubMed  CAS  Google Scholar 

  69. Wilhelm, S., Carter, C., Lynch, M., Lowinger, T., Dumas, J., Smith, R. A., Schwartz, B., Simantov, R., and Kelley, S. (2006) Discovery and development of sorafenib: a multikinase inhibitor for treating cancer, Nat. Rev. Drug Discov. 5, 835–844.

    Article  PubMed  CAS  Google Scholar 

  70. Keating, G. M., and Santoro, A. (2009) Sorafenib: a review of its use in advanced hepatocellular carcinoma, Drugs 69, 223–240.

    Article  PubMed  CAS  Google Scholar 

  71. Hynes, N. E., and Lane, H. A. (2005) ERBB receptors and cancer: the complexity of targeted inhibitors, Nat. Rev. Cancer 5, 341–354.

    Article  PubMed  CAS  Google Scholar 

  72. Citri, A., and Yarden, Y. (2006) EGF-ERBB signalling: towards the systems level, Nat. Rev. Mol. Cell Biol. 7, 505–516.

    Article  PubMed  CAS  Google Scholar 

  73. Muhsin, M., Graham, J., and Kirkpatrick, P. (2003) Gefitinib, Nat. Rev. Drug Discov. 2, 515–516.

    Article  PubMed  CAS  Google Scholar 

  74. Dowell, J., Minna, J. D., and Kirkpatrick, P. (2005) Erlotinib hydrochloride, Nat. Rev. Drug Discov. 4, 13–14.

    Article  PubMed  CAS  Google Scholar 

  75. Moy, B., Kirkpatrick, P., Kar, S., and Goss, P. (2007) Lapatinib, Nat. Rev. Drug Discov. 6, 431–432.

    Article  PubMed  CAS  Google Scholar 

  76. Ma, W. W. J., A. (2007) Temsirolimus, Drugs Today 43, 659–669.

    Google Scholar 

  77. Atkins, M. B., Yasothan, U., and Kirkpatrick, P. (2009) Everolimus, Nat. Rev. Drug Discov. 8, 535–536.

    Article  PubMed  CAS  Google Scholar 

  78. Fabian, M. A., Biggs, W. H., 3rd, Treiber, D. K., Atteridge, C. E., Azimioara, M. D., Benedetti, M. G., Carter, T. A., Ciceri, P., Edeen, P. T., Floyd, M., Ford, J. M., Galvin, M., Gerlach, J. L., Grotzfeld, R. M., Herrgard, S., Insko, D. E., Insko, M. A., Lai, A. G., Lelias, J. M., Mehta, S. A., Milanov, Z. V., Velasco, A. M., Wodicka, L. M., Patel, H. K., Zarrinkar, P. P., and Lockhart, D. J. (2005) A small molecule-kinase interaction map for clinical kinase inhibitors, Nat. Biotechnol. 23, 329–336.

    Article  PubMed  CAS  Google Scholar 

  79. Karaman, M. W., Herrgard, S., Treiber, D. K., Gallant, P., Atteridge, C. E., Campbell, B. T., Chan, K. W., Ciceri, P., Davis, M. I., Edeen, P. T., Faraoni, R., Floyd, M., Hunt, J. P., Lockhart, D. J., Milanov, Z. V., Morrison, M. J., Pallares, G., Patel, H. K., Pritchard, S., Wodicka, L. M., and Zarrinkar, P. P. (2008) A quantitative analysis of kinase inhibitor selectivity, Nat. Biotechnol. 26, 127–132.

    Article  PubMed  CAS  Google Scholar 

  80. Melnick, J. S., Janes, J., Kim, S., Chang, J. Y., Sipes, D. G., Gunderson, D., Jarnes, L., Matzen, J. T., Garcia, M. E., Hood, T. L., Beigi, R., Xia, G., Harig, R. A., Asatryan, H., Yan, S. F., Zhou, Y., Gu, X. J., Saadat, A., Zhou, V., King, F. J., Shaw, C. M., Su, A. I., Downs, R., Gray, N. S., Schultz, P. G., Warmuth, M., and Caldwell, J. S. (2006) An efficient rapid system for profiling the cellular activities of molecular libraries, Proc. Natl. Acad. Sci. USA 103, 3153–3158.

    Article  PubMed  CAS  Google Scholar 

  81. Aklilu, M., Kindler, H. L., Donehower, R. C., Mani, S., and Vokes, E. E. (2003) Phase II study of flavopiridol in patients with advanced colorectal cancer, Ann. Oncol. 14, 1270–1273.

    Article  PubMed  CAS  Google Scholar 

  82. Morris, D. G., Bramwell, V. H., Turcotte, R., Figueredo, A. T., Blackstein, M. E., Verma, S., Matthews, S., and Eisenhauer, E. A. (2006) A Phase II Study of Flavopiridol in Patients With Previously Untreated Advanced Soft Tissue Sarcoma, Sarcoma 2006, 64374.

    Article  PubMed  CAS  Google Scholar 

  83. Scott, E. N., Meinhardt, G., Jacques, C., Laurent, D., and Thomas, A. L. (2007) Vatalanib: the clinical development of a tyrosine kinase inhibitor of angiogenesis in solid tumours, Expert Opin. Investig. Drugs 16, 367–379.

    Article  PubMed  CAS  Google Scholar 

  84. Tyagi, P. (2005) Vatalanib (PTK787/ZK 222584) in combination with FOLFOX4 versus FOLFOX4 alone as first-line treatment for colorectal cancer: preliminary results from the CONFIRM-1 trial, Clin. Colorectal Cancer 5, 24–26.

    Article  PubMed  Google Scholar 

  85. Cohen, P. (2001) The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture, Eur. J. Biochem. 268, 5001–5010.

    Article  PubMed  CAS  Google Scholar 

  86. Nolen, B., Taylor, S., and Ghosh, G. (2004) Regulation of protein kinases; controlling activity through activation segment conformation, Mol. Cell. 15, 661–675.

    Article  PubMed  CAS  Google Scholar 

  87. Liu, Y., Gray, N. S. (2006) Rational design of inhibitors that bind to inactive kinase conformations, Nat. Chem. Biol. 2, 358–364.

    Article  PubMed  CAS  Google Scholar 

  88. Scapin, G. (2006) Protein kinase inhibition: different approaches to selective inhibitor design, Curr. Drug Targets 7, 1443–1454.

    PubMed  CAS  Google Scholar 

  89. Traxler, P., Bold, G., Buchdunger, E., Caravatti, G., Furet, P., Manley, P., O’Reilly, T., Wood, J., and Zimmermann, J. (2001) Tyrosine kinase inhibitors: from rational design to clinical trials, Med. Res. Rev. 21, 499–512.

    Article  PubMed  CAS  Google Scholar 

  90. Kwak, E. L., Sordella, R., Bell, D. W., Godin-Heymann, N., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Driscoll, D. R., Fidias, P., Lynch, T. J., Rabindran, S. K., McGinnis, J. P., Wissner, A., Sharma, S. V., Isselbacher, K. J., Settleman, J., and Haber, D. A. (2005) Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib, Proc. Natl. Acad. Sci. USA 102, 7665–7670.

    Article  PubMed  CAS  Google Scholar 

  91. Rabindran, S. K., Discafani, C. M., Rosfjord, E. C., Baxter, M., Floyd, M. B., Golas, J., Hallett, W. A., Johnson, B. D., Nilakantan, R., Overbeek, E., Reich, M. F., Shen, R., Shi, X., Tsou, H. R., Wang, Y. F., and Wissner, A. (2004) Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase, Cancer Res. 64, 3958–3965.

    Article  PubMed  CAS  Google Scholar 

  92. Rastelli, G., Rosenfeld, R., Reid, R., and Santi, D. V. (2008) Molecular modeling and crystal structure of ERK2-hypothemycin complexes, J. Struct. Biol. 164, 18–23.

    Article  PubMed  CAS  Google Scholar 

  93. Heymach, J. V., Nilsson, M., Blumenschein, G., Papadimitrakopoulou, V., and Herbst, R. (2006) Epidermal growth factor receptor inhibitors in development for the treatment of non-small cell lung cancer, Clin. Cancer Res. 12, 4441s-4445s.

    Article  PubMed  CAS  Google Scholar 

  94. Felip, E., Santarpia, M., and Rosell, R. (2007) Emerging drugs for non-small-cell lung cancer, Expert Opin. Emerg. Drugs 12, 449–460.

    Article  PubMed  CAS  Google Scholar 

  95. Filippakopoulos, P., Kofler, M., Hantschel, O., Gish, G. D., Grebien, F., Salah, E., Neudecker, P., Kay, L. E., Turk, B. E., Superti-Furga, G., Pawson, T., and Knapp, S. (2008) Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation, Cell 134, 793–803.

    Article  PubMed  CAS  Google Scholar 

  96. Wissner, A., Fraser, H. L., Ingalls, C. L., Dushin, R. G., Floyd, M. B., Cheung, K., Nittoli, T., Ravi, M. R., Tan, X., and Loganzo, F. (2007) Dual irreversible kinase inhibitors: quinazoline-based inhibitors incorporating two independent reactive centers with each targeting different cysteine residues in the kinase domains of EGFR and VEGFR-2, Bioorg. Med. Chem. 15, 3635–3648.

    Article  PubMed  CAS  Google Scholar 

  97. Pan, Z., Scheerens, H., Li, S. J., Schultz, B. E., Sprengeler, P. A., Burrill, L. C., Mendonca, R. V., Sweeney, M. D., Scott, K. C., Grothaus, P. G., Jeffery, D. A., Spoerke, J. M., Honigberg, L. A., Young, P. R., Dalrymple, S. A., and Palmer, J. T. (2007) Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase, ChemMedChem. 2, 58–61.

    Article  PubMed  CAS  Google Scholar 

  98. Cohen, M. S., Hadjivassiliou, H., and Taunton, J. (2007) A clickable inhibitor reveals context-dependent autoactivation of p90 RSK, Nat. Chem. Biol. 3, 156–160.

    Article  PubMed  CAS  Google Scholar 

  99. Wymann, M. P., Bulgarelli-Leva, G., Zvelebil, M. J., Pirola, L., Vanhaesebroeck, B., Waterfield, M. D., and Panayotou, G. (1996) Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction, Mol. Cell. Biol. 16, 1722–1733.

    PubMed  CAS  Google Scholar 

  100. Ohren, J. F., Chen, H., Pavlovsky, A., Whitehead, C., Zhang, E., Kuffa, P., Yan, C., McConnell, P., Spessard, C., Banotai, C., Mueller, W. T., Delaney, A., Omer, C., Sebolt-Leopold, J., Dudley, D. T., Leung, I. K., Flamme, C., Warmus, J., Kaufman, M., Barrett, S., Tecle, H., and Hasemann, C. A. (2004) Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition, Nat. Struct. Mol. Biol. 11, 1192–1197.

    Article  PubMed  CAS  Google Scholar 

  101. Barnett, S. F., Defeo-Jones, D., Fu, S., Hancock, P. J., Haskell, K. M., Jones, R. E., Kahana, J. A., Kral, A. M., Leander, K., Lee, L. L., Malinowski, J., McAvoy, E. M., Nahas, D. D., Robinson, R. G., and Huber, H. E. (2005) Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors, Biochem. J. 385, 399–408.

    Article  PubMed  CAS  Google Scholar 

  102. Lindsley, C. W., Zhao, Z., Leister, W. H., Robinson, R. G., Barnett, S. F., Defeo-Jones, D., Jones, R. E., Hartman, G. D., Huff, J. R., Huber, H. E., and Duggan, M. E. (2005) Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors, Bioorg. Med. Chem. Lett. 15, 761–764.

    Article  PubMed  CAS  Google Scholar 

  103. McIntyre, K. W., Shuster, D. J., Gillooly, K. M., Dambach, D. M., Pattoli, M. A., Lu, P., Zhou, X. D., Qiu, Y., Zusi, F. C., and Burke, J. R. (2003) A highly selective inhibitor of I kappa B kinase, BMS-345541, blocks both joint inflammation and destruction in collagen-induced arthritis in mice, Arthritis Rheum. 48, 2652–2659.

    Article  PubMed  CAS  Google Scholar 

  104. Vanderpool, D., Johnson, T. O., Ping, C., Bergqvist, S., Alton, G., Phonephaly, S., Rui, E., Luo, C., Deng, Y. L., Grant, S., Quenzer, T., Margosiak, S., Register, J., Brown, E., and Ermolieff, J. (2009) Characterization of the CHK1 allosteric inhibitor binding site, Biochemistry 48, 9823–9830.

    Article  PubMed  CAS  Google Scholar 

  105. Converso, A., Hartingh, T., Garbaccio, R. M., Tasber, E., Rickert, K., Fraley, M. E., Yan, Y., Kreatsoulas, C., Stirdivant, S., Drakas, B., Walsh, E. S., Hamilton, K., Buser, C. A., Mao, X., Abrams, M. T., Beck, S. C., Tao, W., Lobell, R., Sepp-Lorenzino, L., Zugay-Murphy, J., Sardana, V., Munshi, S. K., Jezequel-Sur, S. M., Zuck, P. D., and Hartman, G. D. (2009) Development of thioquinazolinones, allosteric Chk1 kinase inhibitors, Bioorg. Med. Chem. Lett. 19, 1240–1244.

    Article  PubMed  CAS  Google Scholar 

  106. Wood, E. R., Truesdale, A. T., McDonald, O. B., Yuan, D., Hassell, A., Dickerson, S. H., Ellis, B., Pennisi, C., Horne, E., Lackey, K., Alligood, K. J., Rusnak, D. W., Gilmer, T. M., and Shewchuk, L. (2004) A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells, Cancer Res. 64, 6652–6659.

    Article  PubMed  CAS  Google Scholar 

  107. Schindler, T., Sicheri, F., Pico, A., Gazit, A., Levitzki, A., and Kuriyan, J. (1999) Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor, Mol. Cell 3, 639–648.

    Article  PubMed  CAS  Google Scholar 

  108. Levinson, N. M., Kuchment, O., Shen, K., Young, M. A., Koldobskiy, M., Karplus, M., Cole, P. A., and Kuriyan, J. (2006) A Src-like inactive conformation in the abl tyrosine kinase domain, PLoS Biol. 4, e144.

    Article  PubMed  CAS  Google Scholar 

  109. Hodous, B. L., Geuns-Meyer, S. D., Hughes, P. E., Albrecht, B. K., Bellon, S., Bready, J., Caenepeel, S., Cee, V. J., Chaffee, S. C., Coxon, A., Emery, M., Fretland, J., Gallant, P., Gu, Y., Hoffman, D., Johnson, R. E., Kendall, R., Kim, J. L., Long, A. M., Morrison, M., Olivieri, P. R., Patel, V. F., Polverino, A., Rose, P., Tempest, P., Wang, L., Whittington, D. A., and Zhao, H. (2007) Evolution of a highly selective and potent 2-(pyridin-2-yl)-1,3,5-triazine Tie-2 kinase inhibitor, J. Med. Chem. 50, 611–626.

    Article  PubMed  CAS  Google Scholar 

  110. Schroeder, G. M., Chen, X. T., Williams, D. K., Nirschl, D. S., Cai, Z. W., Wei, D., Tokarski, J. S., An, Y., Sack, J., Chen, Z., Huynh, T., Vaccaro, W., Poss, M., Wautlet, B., Gullo-Brown, J., Kellar, K., Manne, V., Hunt, J. T., Wong, T. W., Lombardo, L. J., Fargnoli, J., and Borzilleri, R. M. (2008) Identification of pyrrolo(2,1-f)(1,2,4)triazine-based inhibitors of Met kinase, Bioorg. Med. Chem. Lett. 18, 1945–1951.

    Article  PubMed  CAS  Google Scholar 

  111. Tummino, P. J., and Copeland, R. A. (2008) Residence time of receptor-ligand complexes and its effect on biological function, Biochemistry 47, 5481–5492.

    Article  PubMed  CAS  Google Scholar 

  112. Kufareva, I., and Abagyan, R. (2008) Type-II kinase inhibitor docking, screening, and ­profiling using modified structures of active kinase states, J. Med. Chem. 51, 7921–7932.

    Article  PubMed  CAS  Google Scholar 

  113. Grimsby, J., Sarabu, R., Corbett, W. L., Haynes, N. E., Bizzarro, F. T., Coffey, J. W., Guertin, K. R., Hilliard, D. W., Kester, R. F., Mahaney, P. E., Marcus, L., Qi, L., Spence, C. L., Tengi, J., Magnuson, M. A., Chu, C. A., Dvorozniak, M. T., Matschinsky, F. M., and Grippo, J. F. (2003) Allosteric activators of glucokinase: potential role in diabetes therapy, Science 301, 370–373.

    Article  PubMed  CAS  Google Scholar 

  114. Guertin, K. R., and Grimsby, J. (2006) Small molecule glucokinase activators as glucose lowering agents: a new paradigm for diabetes therapy, Curr. Med. Chem.13, 1839–1843.

    Google Scholar 

  115. Sanders, M. J., Ali, Z. S., Hegarty, B. D., Heath, R., Snowden, M. A., and Carling, D. (2007) Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family, J. Biol. Chem. 282, 32539–32548.

    Article  PubMed  CAS  Google Scholar 

  116. Hindie, V., Stroba, A., Zhang, H., Lopez-Garcia, L. A., Idrissova, L., Zeuzem, S., Hirschberg, D., Schaeffer, F., Jorgensen, T. J., Engel, M., Alzari, P. M., and Biondi, R. M. (2009) Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1, Nat. Chem. Biol. 5, 758–764.

    Article  PubMed  CAS  Google Scholar 

  117. Kaelin, W. G., Jr. (2005) The concept of synthetic lethality in the context of anticancer therapy, Nat. Rev. Cancer 5, 689–698.

    Article  PubMed  CAS  Google Scholar 

  118. Weinstein, I. B., Begemann, M., Zhou, P., Han, E. K., Sgambato, A., Doki, Y., Arber, N., Ciaparrone, M., and Yamamoto, H. (1997) Disorders in cell circuitry associated with multistage carcinogenesis: exploitable targets for cancer prevention and therapy, Clin. Cancer Res. 3, 2696–2702.

    PubMed  CAS  Google Scholar 

  119. Cappuzzo, F., Hirsch, F. R., Rossi, E., Bartolini, S., Ceresoli, G. L., Bemis, L., Haney, J., Witta, S., Danenberg, K., Domenichini, I., Ludovini, V., Magrini, E., Gregorc, V., Doglioni, C., Sidoni, A., Tonato, M., Franklin, W. A., Crino, L., Bunn, P. A., Jr., and Varella-Garcia, M. (2005) Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer, J. Natl. Cancer. Inst. 97, 643–655.

    Article  PubMed  CAS  Google Scholar 

  120. Mellinghoff, I. K., Wang, M. Y., Vivanco, I., Haas-Kogan, D. A., Zhu, S., Dia, E. Q., Lu, K. V., Yoshimoto, K., Huang, J. H., Chute, D. J., Riggs, B. L., Horvath, S., Liau, L. M., Cavenee, W. K., Rao, P. N., Beroukhim, R., Peck, T. C., Lee, J. C., Sellers, W. R., Stokoe, D., Prados, M., Cloughesy, T. F., Sawyers, C. L., and Mischel, P. S. (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors, N. Engl. J. Med. 353, 2012–2024.

    Article  PubMed  CAS  Google Scholar 

  121. Taron, M., Ichinose, Y., Rosell, R., Mok, T., Massuti, B., Zamora, L., Mate, J. L., Manegold, C., Ono, M., Queralt, C., Jahan, T., Sanchez, J. J., Sanchez-Ronco, M., Hsue, V., Jablons, D., Sanchez, J. M., and Moran, T. (2005) Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinib-treated chemorefractory lung adenocarcinomas, Clin. Cancer Res. 11, 5878–5885.

    Article  PubMed  CAS  Google Scholar 

  122. Riedemann, J., and Macaulay, V. M. (2006) IGF1R signalling and its inhibition, Endocr. Relat. Cancer 13 Suppl 1, S33-43.

    Article  PubMed  CAS  Google Scholar 

  123. Zwick, E., Bange, J., and Ullrich, A. (2002) Receptor tyrosine kinases as targets for anticancer drugs, Trends Mol. Med. 8, 17–23.

    Article  PubMed  CAS  Google Scholar 

  124. Fruman, D. A., Meyers, R. E., and Cantley, L. C. (1998) Phosphoinositide kinases, Annu. Rev. Biochem. 67, 481–507.

    Article  PubMed  CAS  Google Scholar 

  125. Chen, H. X., and Cleck, J. N. (2009) Adverse effects of anticancer agents that target the VEGF pathway, Nat. Rev. Clin. Onco.l 6, 465–477.

    Google Scholar 

  126. Ivy, S. P., Wick, J. Y., and Kaufman, B. M. (2009) An overview of small-molecule inhibitors of VEGFR signaling, Nat. Rev. Clin. Oncol. 6, 569–579.

    Article  PubMed  CAS  Google Scholar 

  127. Murakami, M., and Simons, M. (2008) Fibroblast growth factor regulation of neovascularization, Curr. Opin. Hematol. 15, 215–220.

    Article  PubMed  CAS  Google Scholar 

  128. Kaelin, W. G., Jr. (2004) Gleevec: prototype or outlier?, Sci. STKE 2004, pe12.

    Google Scholar 

  129. Dancey, J. E., and Chen, H. X. (2006) Strategies for optimizing combinations of molecularly targeted anticancer agents, Nat. Rev. Drug. Discov. 5, 649–659.

    Article  PubMed  CAS  Google Scholar 

  130. Force, T., Krause, D. S., and Van Etten, R. A. (2007) Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition, Nat. Rev. Cancer. 7, 332–344.

    Article  PubMed  CAS  Google Scholar 

  131. Olaharski, A. J., Gonzaludo, N., Bitter, H., Goldstein, D., Kirchner, S., Uppal, H., and Kolaja, K. (2009) Identification of a kinase profile that predicts chromosome damage induced by small molecule kinase inhibitors, PLoS Comput. Biol. 5, e1000446.

    Article  PubMed  CAS  Google Scholar 

  132. Goldstein, D. M., Gray, N. S., and Zarrinkar, P. P. (2008) High-throughput kinase profiling as a platform for drug discovery, Nat. Rev. Drug Discov. 7, 391–397.

    Article  PubMed  CAS  Google Scholar 

  133. Seeliger, M. A., Nagar, B., Frank, F., Cao, X., Henderson, M. N., and Kuriyan, J. (2007) c-Src binds to the cancer drug imatinib with an inactive Abl/c-Kit conformation and a distributed thermodynamic penalty, Structure 15, 299–311.

    Article  PubMed  CAS  Google Scholar 

  134. Nagar, B., Hantschel, O., Young, M. A., Scheffzek, K., Veach, D., Bornmann, W., Clarkson, B., Superti-Furga, G., and Kuriyan, J. (2003) Structural basis for the autoinhibition of c-Abl tyrosine kinase, Cell 112, 859–871.

    Article  PubMed  CAS  Google Scholar 

  135. Dar, A. C., Lopez, M. S., and Shokat, K. M. (2008) Small molecule recognition of c-Src via the Imatinib-binding conformation, Chem. Biol. 15, 1015–1022.

    Article  PubMed  CAS  Google Scholar 

  136. Xu, W., Harrison, S. C., and Eck, M. J. (1997) Three-dimensional structure of the tyrosine kinase c-Src, Nature 385, 595–602.

    Article  PubMed  CAS  Google Scholar 

  137. Szakacs, G., Paterson, J. K., Ludwig, J. A., Booth-Genthe, C., and Gottesman, M. M. (2006) Targeting multidrug resistance in cancer, Nat. Rev. Drug Discov. 5, 219–234.

    Article  PubMed  CAS  Google Scholar 

  138. Fletcher, J. A., and Rubin, B. P. (2007) KIT mutations in GIST, Curr. Opin. Genet. Dev. 17, 3–7.

    Article  PubMed  CAS  Google Scholar 

  139. Cools, J., Mentens, N., Furet, P., Fabbro, D., Clark, J. J., Griffin, J. D., Marynen, P., and Gilliland, D. G. (2004) Prediction of resistance to small molecule FLT3 inhibitors: implications for molecularly targeted therapy of acute leukemia, Cancer Res. 64, 6385–6389.

    Article  PubMed  CAS  Google Scholar 

  140. Cools, J., Stover, E. H., Boulton, C. L., Gotlib, J., Legare, R. D., Amaral, S. M., Curley, D. P., Duclos, N., Rowan, R., Kutok, J. L., Lee, B. H., Williams, I. R., Coutre, S. E., Stone, R. M., DeAngelo, D. J., Marynen, P., Manley, P. W., Meyer, T., Fabbro, D., Neuberg, D., Weisberg, E., Griffin, J. D., and Gilliland, D. G. (2003) PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRalpha-induced myeloproliferative disease, Cancer Cell 3, 459–469.

    Article  PubMed  CAS  Google Scholar 

  141. Blencke, S., Zech, B., Engkvist, O., Greff, Z., Orfi, L., Horvath, Z., Keri, G., Ullrich, A., and Daub, H. (2004) Characterization of a conserved structural determinant controlling protein kinase sensitivity to selective inhibitors, Chem. Biol. 11, 691–701.

    Article  PubMed  CAS  Google Scholar 

  142. Daub, H., Specht, K., and Ullrich, A. (2004) Strategies to overcome resistance to targeted protein kinase inhibitors, Nat. Rev. Drug Discov. 3, 1001–1010.

    Article  PubMed  CAS  Google Scholar 

  143. Bishop, A. C. (2004) A hot spot for protein kinase inhibitor sensitivity, Chem. Biol. 11, 587–589.

    Article  PubMed  CAS  Google Scholar 

  144. Graham, S. M., Jorgensen, H. G., Allan, E., Pearson, C., Alcorn, M. J., Richmond, L., and Holyoake, T. L. (2002) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro, Blood 99, 319–325.

    Article  PubMed  CAS  Google Scholar 

  145. le Coutre, P., Tassi, E., Varella-Garcia, M., Barni, R., Mologni, L., Cabrita, G., Marchesi, E., Supino, R., and Gambacorti-Passerini, C. (2000) Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification, Blood 95, 1758–1766.

    PubMed  Google Scholar 

  146. O’Hare, T., Shakespeare, W. C., Zhu, X., Eide, C. A., Rivera, V. M., Wang, F., Adrian, L. T., Zhou, T., Huang, W. S., Xu, Q., Metcalf, C. A., 3rd, Tyner, J. W., Loriaux, M. M., Corbin, A. S., Wardwell, S., Ning, Y., Keats, J. A., Wang, Y., Sundaramoorthi, R., Thomas, M., Zhou, D., Snodgrass, J., Commodore, L., Sawyer, T. K., Dalgarno, D. C., Deininger, M. W., Druker, B. J., and Clackson, T. (2009) AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance, Cancer Cell 16, 401–412.

    Article  PubMed  CAS  Google Scholar 

  147. Gumireddy, K., Reddy, M. V., Cosenza, S. C., Boominathan, R., Baker, S. J., Papathi, N., Jiang, J., Holland, J., and Reddy, E. P. (2005) ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent, Cancer Cell 7, 275–286.

    Article  PubMed  CAS  Google Scholar 

  148. Fabbro, D., Manley, P.W., Jahnke, W., Liebetanz, J., Szyttenholm, A., Fendrich, G., Strauss, A., Zhang, J., Gray, N.S., Adrian, F., Warmuth, M. , Pelle, X., Grotzfeld, R., Berst, F., Marzinzik, A., Furet, P., Cowan-Jacob, S.W., Mestan, J. (2010) Inhibitors of the Abl kinase directed at either the ATP- or myristate-binding site Biochem. Biophys. Acta 1804, 454–462.

    CAS  Google Scholar 

  149. Gorre, M. E., Ellwood-Yen, K., Chiosis, G., Rosen, N., and Sawyers, C. L. (2002) ­BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90, Blood 100, 3041–3044.

    Article  PubMed  CAS  Google Scholar 

  150. Copland, M., Pellicano, F., Richmond, L., Allan, E. K., Hamilton, A., Lee, F. Y., Weinmann, R., and Holyoake, T. L. (2008) BMS-214662 potently induces apoptosis of chronic myeloid leukemia stem and progenitor cells and synergizes with tyrosine kinase inhibitors, Blood 111, 2843–2853.

    Article  PubMed  CAS  Google Scholar 

  151. Steiner, L., Blum, G., Friedmann, Y., and Levitzki, A. (2007) ATP non-competitive IGF-1 receptor kinase inhibitors as lead anti-neoplastic and anti-papilloma agents, European Journal of Pharmacology 562, 1–11.

    Article  PubMed  CAS  Google Scholar 

  152. Biondi, R. M., and Nebreda, A. R. (2003) Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions, Biochem. J. 372, 1–13.

    Article  PubMed  CAS  Google Scholar 

  153. Sheridan, D. L., Kong, Y., Parker, S. A., Dalby, K. N., and Turk, B. E. (2008) Substrate discrimination among mitogen-activated protein kinases through distinct docking sequence motifs, J. Biol. Chem. 283, 19511–19520.

    Article  PubMed  CAS  Google Scholar 

  154. Robert, C., Soria, J. C., Spatz, A., Le Cesne, A., Malka, D., Pautier, P., Wechsler, J., Lhomme, C., Escudier, B., Boige, V., Armand, J. P., and Le Chevalier, T. (2005) Cutaneous side-effects of kinase inhibitors and blocking antibodies, Lancet Oncol. 6, 491–500.

    Article  PubMed  CAS  Google Scholar 

  155. Hur, W., Velentza, A., Kim, S., Flatauer, L., Jiang, X., Valente, D., Mason, D. E., Suzuki, M., Larson, B., Zhang, J., Zagorska, A., Didonato, M., Nagle, A., Warmuth, M., Balk, S. P., Peters, E. C., and Gray, N. S. (2008) Clinical stage EGFR inhibitors irreversibly alkylate Bmx kinase, Bioorg Med. Chem. Lett. 18(22), 5916–5919.

    Article  PubMed  CAS  Google Scholar 

  156. Walker, E. H., Pacold, M. E., Perisic, O., Stephens, L., Hawkins, P. T., Wymann, M. P., and Williams, R. L. (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine, Mol. Cell. 6(4), 909–919.

    Article  PubMed  CAS  Google Scholar 

  157. Wood, E. R., Shewchuk, L. M., Ellis, B., Brignola, P., Brashear, R. L., Caferro, T. R., Dickerson S. H., Dickson, H. D., Donaldson, K. H., Gaul, M., Griffin, R. J., Hassell A. M., Keith, B., Mullin, R., Petrov, K. G., Reno, M. J., Rusnak, D. W., Tadepalli, S. M., Ulrich, J. C., Wagner, C. D., Vanderwall, D. E., Waterson, A. G., Williams, J. D., White, W. L., and Uehling, D. E. (2008) 6-Ethynylthieno[3,2-d]- and 6-ethynylthieno[2,3-d]pyrimidin-4-anilines as tunable covalent modifiers of ErbB kinases, Proc. Natl. Acad. Sci. USA 105(8), 2773–2778.

    Article  PubMed  CAS  Google Scholar 

  158. Ohori, M., Kinoshita, T., Yoshimura, S., Warizaya, M., Nakajima, H., and Miyake, H. (2007) Role of a cysteine residue in the active site of ERK and the MAPKK family, Biochem Biophys Res. Commun. 353(3), 633–637.

    Article  PubMed  CAS  Google Scholar 

  159. Elling, R. A., Fucini, R. V., and Romanowski, M. J. (2008) Structures of the wild-type and activated catalytic domains of Brachydanio rerio Polo-like kinase 1 (Plk1): changes in the active-site conformation and interactions with ligands, Acta. Crystallogr. D. Biol. Crystallogr. 64(Pt 9), 909–918.

    Article  PubMed  CAS  Google Scholar 

  160. Michalczyk, A., Klüter, S., Rode, H. B., Simard, J. R., Grütter, C., Rabiller, M., and Rauh, D. (2008) Structural insights into how irreversible inhibitors can overcome drug resistance in EGFR, Bioorg. Med. Chem. 16(7), 3482–3488. Epub 2008 Feb 20.

    Article  PubMed  CAS  Google Scholar 

  161. Blair, J. A., Rauh, D., Kung, C., Yun, C. H., Fan, Q. W., Rode, H., Zhang, C., Eck, M. J., Weiss, W. A., and Shokat, K. M. (2007) Structure-guided development of affinity probes for tyrosine kinases using chemical genetics, Nat. Chem. Biol. 3(4), 229–238. Epub 2007 Mar 4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doriano Fabbro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fabbro, D., Cowan-Jacob, S.W., Möbitz, H., Martiny-Baron, G. (2012). Targeting Cancer with Small-Molecular-Weight Kinase Inhibitors. In: Kuster, B. (eds) Kinase Inhibitors. Methods in Molecular Biology, vol 795. Humana Press. https://doi.org/10.1007/978-1-61779-337-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-337-0_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-336-3

  • Online ISBN: 978-1-61779-337-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics