Skip to main content

Modeling Nicotine Addiction in Rats

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 829))

Abstract

Among the human population, 15% of drug users develop a pathological drug addiction. This figure increases substantially with nicotine, whereby more than 30% of those who try smoking develop a nicotine addiction. Drug addiction is characterized by compulsive drug-seeking and drug-taking behaviors (craving), and loss of control over intake despite impairment in health, social, and occupational functions. This behavior can be accurately modeled in the rat using an intravenous self-administration (IVSA) paradigm. Initial attempts at establishing nicotine self-administration had been problematic, yet in recent times increasingly reliable models of nicotine self-administration have been developed. The present article reviews different characteristics of the nicotine IVSA model that has been developed to examine nicotine reinforcing and motivational properties in rats.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Picciotto, M. R., Addy, N. A., Mineur, Y. S., and Brunzell, D. H. (2008) It is not “either/or”: activation and desensitization of nicotinic acetylcholine receptors both contribute to behaviors related to nicotine addiction and mood, Prog Neurobiol 84, 329–342.

    Article  PubMed  CAS  Google Scholar 

  2. David, V., Besson, M., Changeux, J. P., Granon, S., and Cazala, P. (2006) Reinforcing effects of nicotine microinjections into the ventral tegmental area of mice: dependence on cholinergic nicotinic and dopaminergic D1 receptors, Neuropharmacology 50, 1030–1040.

    Article  PubMed  CAS  Google Scholar 

  3. Rose, J. E., and Corrigall, W. A. (1997) Nicotine self-administration in animals and humans: similarities and differences, Psychopharmacology (Berl) 130, 28–40.

    Article  CAS  Google Scholar 

  4. Coen, K. M., Adamson, K. L., and Corrigall, W. A. (2009) Medication-related pharmacological manipulations of nicotine self-administration in the rat maintained on fixed- and progressive-ratio schedules of reinforcement, Psychopharmacology (Berl) 201, 557–568.

    Article  CAS  Google Scholar 

  5. Corrigall, W. A., Coen, K. M., and Adamson, K. L. (1994) Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area, Brain Res 653, 278–284.

    Article  PubMed  CAS  Google Scholar 

  6. Le Foll, B., Chefer, S. I., Kimes, A. S., Shumway, D., Stein, E. A., Mukhin, A. G., and Goldberg, S. R. (2009) Baseline expression of alpha4beta2* nicotinic acetylcholine receptors predicts motivation to self-administer nicotine, Biol Psychiatry 65, 714–716.

    Article  PubMed  Google Scholar 

  7. Corrigall, W. A., and Coen, K. M. (1989) Nicotine maintains robust self-administration in rats on a limited-access schedule, Psychopharmacology (Berl) 99, 473–478.

    Article  CAS  Google Scholar 

  8. Goldberg, S. R., Spealman, R. D., and Goldberg, D. M. (1981) Persistent behavior at high rates maintained by intravenous self-administration of nicotine, Science 214, 573–575.

    Article  PubMed  CAS  Google Scholar 

  9. Henningfield, J. E., and Goldberg, S. R. (1983) Nicotine as a reinforcer in human subjects and laboratory animals, Pharmacol Biochem Behav 19, 989–992.

    Article  PubMed  CAS  Google Scholar 

  10. George, O., Grieder, T. E., Cole, M., and Koob, G. F. (2010) Exposure to chronic intermittent nicotine vapor induces nicotine dependence, Pharmacol Biochem Behav 96, 104–107.

    Article  PubMed  CAS  Google Scholar 

  11. Small, E., Shah, H. P., Davenport, J. J., Geier, J. E., Yavarovich, K. R., Yamada, H., Sabarinath, S. N., Derendorf, H., Pauly, J. R., Gold, M. S., and Bruijnzeel, A. W. (2009) Tobacco smoke exposure induces nicotine dependence in rats, Psychopharmacology (Berl) 208, 143–158.

    Article  Google Scholar 

  12. Caille, S., Guillem, K., Cador, M., Manzoni, O., and Georges, F. (2009) Voluntary nicotine consumption triggers in vivo potentiation of cortical excitatory drives to midbrain dopaminergic neurons, J Neurosci 29, 10410–10415.

    Article  PubMed  CAS  Google Scholar 

  13. Adriani, W., Deroche-Gamonet, V., Le Moal, M., Laviola, G., and Piazza, P. V. (2006) Preexposure during or following adolescence differently affects nicotine-rewarding properties in adult rats, Psychopharmacology (Berl) 184, 382–390.

    Article  CAS  Google Scholar 

  14. Belluzzi, J. D., Lee, A. G., Oliff, H. S., and Leslie, F. M. (2004) Age-dependent effects of nicotine on locomotor activity and conditioned place preference in rats, Psychopharmacology (Berl) 174, 389–395.

    Article  CAS  Google Scholar 

  15. Belluzzi, J. D., Wang, R., and Leslie, F. M. (2005) Acetaldehyde enhances acquisition of nicotine self-administration in adolescent rats, Neuropsychopharmacology 30, 705–712.

    Article  PubMed  CAS  Google Scholar 

  16. Donny, E. C., Caggiula, A. R., Knopf, S., and Brown, C. (1995) Nicotine self-administration in rats, Psychopharmacology (Berl) 122, 390–394.

    Article  CAS  Google Scholar 

  17. Fortmann, S. P., and Killen, J. D. (1994) Who shall quit? Comparison of volunteer and population-based recruitment in two minimal-contact smoking cessation studies, Am J Epidemiol 140, 39–51.

    CAS  Google Scholar 

  18. O’Hara, P., Portser, S. A., and Anderson, B. P. (1989) The influence of menstrual cycle changes on the tobacco withdrawal syndrome in women, Addict Behav 14, 595–600.

    Article  PubMed  Google Scholar 

  19. Rose, J. E., Behm, F. M., and Levin, E. D. (1993) Role of nicotine dose and sensory cues in the regulation of smoke intake, Pharmacol Biochem Behav 44, 891–900.

    Article  PubMed  CAS  Google Scholar 

  20. Cox, B. M., Goldstein, A., and Nelson, W. T. (1984) Nicotine self-administration in rats, Br J Pharmacol 83, 49–55.

    PubMed  CAS  Google Scholar 

  21. Park, M. K., Belluzzi, J. D., Han, S. H., Cao, J., and Leslie, F. M. (2007) Age, sex and early environment contribute to individual differences in nicotine/acetaldehyde-induced behavioral and endocrine responses in rats, Pharmacol Biochem Behav 86, 297–305.

    Article  PubMed  CAS  Google Scholar 

  22. Donny, E. C., Caggiula, A. R., Rowell, P. P., Gharib, M. A., Maldovan, V., Booth, S., Mielke, M. M., Hoffman, A., and McCallum, S. (2000) Nicotine self-administration in rats: estrous cycle effects, sex differences and nicotinic receptor binding, Psychopharmacology (Berl) 151, 392–405.

    Article  CAS  Google Scholar 

  23. Kenny, P. J., and Markou, A. (2006) Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity, Neuropsycho-pharmacology 31, 1203–1211.

    PubMed  CAS  Google Scholar 

  24. Shoaib, M., Schindler, C. W., and Goldberg, S. R. (1997) Nicotine self-administration in rats: strain and nicotine pre-exposure effects on acquisition, Psychopharmacology (Berl) 129, 35–43.

    Article  CAS  Google Scholar 

  25. Brower, V. G., Fu, Y., Matta, S. G., and Sharp, B. M. (2002) Rat strain differences in nicotine self-administration using an unlimited access paradigm, Brain Res 930, 12–20.

    Article  PubMed  CAS  Google Scholar 

  26. Fu, Y., Matta, S. G., Brower, V. G., and Sharp, B. M. (2001) Norepinephrine secretion in the hypothalamic paraventricular nucleus of rats during unlimited access to self-administered nicotine: An in vivo microdialysis study, J Neurosci 21, 8979–8989.

    PubMed  CAS  Google Scholar 

  27. O’Dell, L. E., Chen, S. A., Smith, R. T., Specio, S. E., Balster, R. L., Paterson, N. E., Markou, A., Zorrilla, E. P., and Koob, G. F. (2007) Extended access to nicotine self-administration leads to dependence: Circadian measures, withdrawal measures, and extinction behavior in rats, J Pharmacol Exp Ther 320, 180–193.

    Article  PubMed  Google Scholar 

  28. Paterson, N. E., and Markou, A. (2004) Prolonged nicotine dependence associated with extended access to nicotine self-administration in rats, Psychopharmacology (Berl) 173, 64–72.

    Article  CAS  Google Scholar 

  29. LeSage, M. G., Keyler, D. E., Shoeman, D., Raphael, D., Collins, G., and Pentel, P. R. (2002) Continuous nicotine infusion reduces nicotine self-administration in rats with 23-h/day access to nicotine, Pharmacol Biochem Behav 72, 279–289.

    Article  PubMed  CAS  Google Scholar 

  30. Valentine, J. D., Hokanson, J. S., Matta, S. G., and Sharp, B. M. (1997) Self-administration in rats allowed unlimited access to nicotine, Psychopharmacology (Berl) 133, 300–304.

    Article  CAS  Google Scholar 

  31. Chiamulera, C. (2005) Cue reactivity in nicotine and tobacco dependence: a “multiple-action” model of nicotine as a primary reinforcement and as an enhancer of the effects of smoking-associated stimuli, Brain Res Brain Res Rev 48, 74–97.

    Article  PubMed  CAS  Google Scholar 

  32. Clemens, K. J., Caille, S., and Cador, M. (2010) The effects of response operandum and prior food training on intravenous nicotine self-administration in rats, Psychopharmacology (Berl) 211, 43–54.

    Article  CAS  Google Scholar 

  33. Kenny, P. J., Chartoff, E., Roberto, M., Carlezon, W. A., Jr., and Markou, A. (2009) NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala, Neuropsychopharmacology 34, 266–281.

    Article  PubMed  CAS  Google Scholar 

  34. LeSage, M. G., Perry, J. L., Kotz, C. M., Shelley, D., and Corrigall, W. A. (2010) Nicotine self-administration in the rat: effects of hypocretin antagonists and changes in hypocretin mRNA, Psychopharmacology (Berl) 209, 203–212.

    Article  CAS  Google Scholar 

  35. Paterson, N. E., Semenova, S., and Markou, A. (2008) The effects of chronic versus acute desipramine on nicotine withdrawal and nicotine self-administration in the rat, Psychopharmacology (Berl) 198, 351–362.

    Article  CAS  Google Scholar 

  36. Diergaarde, L., de Vries, W., Raaso, H., Schoffelmeer, A. N., and De Vries, T. J. (2008) Contextual renewal of nicotine seeking in rats and its suppression by the cannabinoid-1 receptor antagonist Rimonabant (SR141716A), Neuropharmacology 55, 712–716.

    Article  PubMed  CAS  Google Scholar 

  37. Villegier, A. S., Lotfipour, S., McQuown, S. C., Belluzzi, J. D., and Leslie, F. M. (2007) Tranylcypromine enhancement of nicotine self-administration, Neuropharmacology 52, 1415–1425.

    Article  PubMed  CAS  Google Scholar 

  38. Donny, E. C., Caggiula, A. R., Mielke, M. M., Jacobs, K. S., Rose, C., and Sved, A. F. (1998) Acquisition of nicotine self-administration in rats: the effects of dose, feeding schedule, and drug contingency, Psychopharmacology (Berl) 136, 83–90.

    Article  CAS  Google Scholar 

  39. Palmatier, M. I., Levin, M. E., Mays, K. L., Donny, E. C., Caggiula, A. R., and Sved, A. F. (2009) Bupropion and nicotine enhance responding for nondrug reinforcers via dissociable pharmacological mechanisms in rats, Psychopharmacology (Berl) 207, 381–390.

    Article  CAS  Google Scholar 

  40. Cabeza de Vaca, S., and Carr, K. D. (1998) Food restriction enhances the central rewarding effect of abused drugs, J Neurosci 18, 7502–7510.

    PubMed  CAS  Google Scholar 

  41. Watkins, S. S., Epping-Jordan, M. P., Koob, G. F., and Markou, A. (1999) Blockade of nicotine self-administration with nicotinic antagonists in rats, Pharmacol Biochem Behav 62, 743–751.

    Article  PubMed  CAS  Google Scholar 

  42. Corrigall, W. A., Coen, K. M., Zhang, J., and Adamson, K. L. (2001) GABA mechanisms in the pedunculopontine tegmental nucleus influence particular aspects of nicotine self-administration selectively in the rat, Psychopharmacology (Berl) 158, 190–197.

    Article  CAS  Google Scholar 

  43. Depoortere, R. Y., Li, D. H., Lane, J. D., and Emmett-Oglesby, M. W. (1993) Parameters of self-administration of cocaine in rats under a progressive-ratio schedule, Pharmacol Biochem Behav 45, 539–548.

    Article  PubMed  CAS  Google Scholar 

  44. Donny, E. C., Caggiula, A. R., Mielke, M. M., Booth, S., Gharib, M. A., Hoffman, A., Maldovan, V., Shupenko, C., and McCallum, S. E. (1999) Nicotine self-administration in rats on a progressive ratio schedule of reinforcement, Psychopharmacology (Berl) 147, 135–142.

    Article  CAS  Google Scholar 

  45. Clemens, K. J., Caille, S., Stinus, L., and Cador, M. (2009) The addition of five minor tobacco alkaloids increases nicotine-induced hyperactivity, sensitization and intravenous self-administration in rats, Int J Neuropsychopharmacol 12, 1355–1366.

    Article  PubMed  CAS  Google Scholar 

  46. O’Dell, L. E., and Koob, G. F. (2007) ‘Nicotine deprivation effect’ in rats with intermittent 23-hour access to intravenous nicotine self-administration, Pharmacol Biochem Behav 86, 346–353.

    Article  PubMed  Google Scholar 

  47. Chiamulera, C., Borgo, C., Falchetto, S., Valerio, E., and Tessari, M. (1996) Nicotine reinstatement of nicotine self-administration after long-term extinction, Psychopharmacology (Berl) 127, 102–107.

    Article  CAS  Google Scholar 

  48. Dravolina, O. A., Zakharova, E. S., Shekunova, E. V., Zvartau, E. E., Danysz, W., and Bespalov, A. Y. (2007) mGlu1 receptor blockade attenuates cue- and nicotine-induced reinstatement of extinguished nicotine self-administration behavior in rats, Neuropharmacology 52, 263–269.

    Article  PubMed  CAS  Google Scholar 

  49. Caggiula, A. R., Donny, E. C., White, A. R., Chaudhri, N., Booth, S., Gharib, M. A., Hoffman, A., Perkins, K. A., and Sved, A. F. (2001) Cue dependency of nicotine self-administration and smoking, Pharmacol Biochem Behav 70, 515–530.

    Article  PubMed  CAS  Google Scholar 

  50. Diergaarde, L., Pattij, T., Poortvliet, I., Hogenboom, F., de Vries, W., Schoffelmeer, A. N., and De Vries, T. J. (2008) Impulsive choice and impulsive action predict vulnerability to distinct stages of nicotine seeking in rats, Biol Psychiatry 63, 301–308.

    Article  PubMed  CAS  Google Scholar 

  51. Cohen, S., and Lichtenstein, E. (1990) Perceived stress, quitting smoking, and smoking relapse, Health Psychol 9, 466–478.

    Article  PubMed  CAS  Google Scholar 

  52. Kassel, J. D., Stroud, L. R., and Paronis, C. A. (2003) Smoking, stress, and negative affect: correlation, causation, and context across stages of smoking, Psychol Bull 129, 270–304.

    Article  PubMed  Google Scholar 

  53. Koob, G. F., and Le Moal, M. (1997) Drug abuse: hedonic homeostatic dysregulation, Science 278, 52–58.

    Article  PubMed  CAS  Google Scholar 

  54. Shaham, Y., Shalev, U., Lu, L., De Wit, H., and Stewart, J. (2003) The reinstatement model of drug relapse: history, methodology and major findings, Psychopharmacology (Berl) 168, 3–20.

    Article  CAS  Google Scholar 

  55. Buczek, Y., Le, A. D., Wang, A., Stewart, J., and Shaham, Y. (1999) Stress reinstates nicotine seeking but not sucrose solution seeking in rats, Psychopharmacology (Berl) 144, 183–188.

    Article  CAS  Google Scholar 

  56. Zislis, G., Desai, T. V., Prado, M., Shah, H. P., and Bruijnzeel, A. W. (2007) Effects of the CRF receptor antagonist D-Phe CRF(12–41) and the alpha2-adrenergic receptor agonist clonidine on stress-induced reinstatement of nicotine-seeking behavior in rats, Neuropharmacology 53, 958–966.

    Article  PubMed  CAS  Google Scholar 

  57. Guillem, K., Vouillac, C., Azar, M. R., Parsons, L. H., Koob, G. F., Cador, M., and Stinus, L. (2005) Monoamine oxidase inhibition dramatically increases the motivation to self-administer nicotine in rats, J Neurosci 25, 8593–8600.

    Article  PubMed  CAS  Google Scholar 

  58. Guillem, K., Vouillac, C., Azar, M. R., Parsons, L. H., Koob, G. F., Cador, M., and Stinus, L. (2006) Monoamine oxidase A rather than monoamine oxidase B inhibition increases nicotine reinforcement in rats, Eur J Neurosci 24, 3532–3540.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Caille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Caille, S., Clemens, K., Stinus, L., Cador, M. (2012). Modeling Nicotine Addiction in Rats. In: Kobeissy, F. (eds) Psychiatric Disorders. Methods in Molecular Biology, vol 829. Humana Press. https://doi.org/10.1007/978-1-61779-458-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-458-2_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-457-5

  • Online ISBN: 978-1-61779-458-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics