Skip to main content

Hyperhydroxylation: A New Strategy for Neuronal Targeting by Venomous Marine Molluscs

  • Chapter
Book cover Molluscs

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 43))

Abstract

Venomous marine molluscs belonging to the genus Conus (cone snails) utilize a unique neurochemical strategy to capture their prey. Their venom is composed of a complex mixture of highly modified peptides (conopeptides) that interact with a wide range of neuronal targets. In this chapter, we describe a set of modifications based upon the hydroxylation of polypeptidic chains that are defining within the neurochemical strategy used by cone snails to capture their prey. In particular, we present a differential hydroxylation strategy that affects the neuronal targeting of a new set of α-conotoxins, mini-M conotoxins, conophans, and γ-hydroxyconophans. Differential hydroxylation, preferential hydroxylation and hyperhydroxylation have been observed in these conopeptide families as a means of augmenting the venom arsenal used by cone snails for neuronal targeting and prey capture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams DJ, Alewood PF, Craik DJ, Drinkwater RD, Lewis RJ (1999) Conotoxins and their potential pharmaceutical applications. Drug Dev Res 46:219–234

    Article  CAS  Google Scholar 

  • Adams DJ, Smith AB, Schroeder CI, Yasuda T, Lewis RJ (2003) ω-Conotoxin CVID inhibits a pharmacologically distinct voltage-sensitive calcium channel associated with transmitter release from preganglionic nerve terminals. J Biol Chem 278:4057–4062

    Article  PubMed  CAS  Google Scholar 

  • Al-Sabi A, et al. (2004) κM-conotoxin RIIIK, structural and functional novelty in a K+ channel antagonist. Biochemistry 43:8625–8635

    Article  PubMed  CAS  Google Scholar 

  • Amiche M, Sagan S, Mor A, Delfour A, Nicolas P (1989) Dermenkephalin (Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2) – a potent and fully specific agonist for the δ-opioid receptor. Mol Pharmacol 35:774–779

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay PK, Colledge CJ, Walker CS, Zhou L-M, Hillyard DR, Olivera BM (1998) Conantokin-G precursor and its role in γ-carboxylation by a vitamin K-dependent carboxylase from a Conus snail. J Biol Chem 273:5447–5450

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay PK, Garrett JE, Shetty RP, Keate T, Walker CS, Olivera BM (2002) γ-Glutamyl carboxylation: an extracellular post-translational modification that antedates the divergence of molluscs, arthropods, and chordates. Proc Natl Acad Sci USA 99:1264–1269

    Article  PubMed  CAS  Google Scholar 

  • Barbara TM (1994) Cylindrical demagnetization fields and microprobe design in highresolution NMR. J Magn Reson Ser A 109:265–269

    Article  CAS  Google Scholar 

  • Barbara TM, Bronnimann CE (1999) Target field design for magic angle gradient coils. J Magn Reson 140:285–288

    Article  PubMed  CAS  Google Scholar 

  • Brennan SO, Shaw J, Allen J, George PM (1992) β141-Leu is not deleted in the unstable hemoglobin Atlanta–Coventry but is replaced by a novel amino-acid of mass 129 daltons. Br J Haematol 81:99–103

    Article  PubMed  CAS  Google Scholar 

  • Brennan SO, Shaw JG, George PM, Huisman THJ (1993) Post-translational modification of β141 Leu associated with the β75(E19)Leu-Pro mutation in Hb Atlanta. Hemoglobin 17:1–7

    Article  PubMed  CAS  Google Scholar 

  • Buczek O, Yoshikami D, Bulaj G, Jimenez EC, Olivera BM (2005) Post-translational amino acid isomerization: a functionally important D-amino acid in an excitatory peptide. J Biol Chem 280:4247– 4253

    Article  PubMed  CAS  Google Scholar 

  • Chen JS, Fan CX, Hu KP, Wei KH, Zhong MN (1999) Studies on conotoxins of Conus betulinus. J Nat Toxins 8:341–349

    PubMed  CAS  Google Scholar 

  • Corpuz GP, et al. (2005) Definition of the M-conotoxin superfamily: characterization of novel peptides from molluscivorous Conus venoms. Biochemistry 44:8176–8186

    Article  PubMed  CAS  Google Scholar 

  • Craig AG, Bandyopadhyay P, Olivera BM (1999a) Post-translationally modified neuropeptides from Conus venoms. Eur J Biochem 264:271–275

    Article  PubMed  CAS  Google Scholar 

  • Craig AG, et al. (1999b) Contulakin-G, an O-glycosylated invertebrate neurotensin. J Biol Chem 274:13752–13759

    Article  PubMed  CAS  Google Scholar 

  • Craig AG, Park M, Fischer WH, Kang J, Compain P, Piller F (2001) Enzymatic glycosylation of contulakin-G, a glycopeptide isolated from Conus venom, with a mammalian ppGalNAc-transferase. Toxicon 39:809–815

    Article  PubMed  CAS  Google Scholar 

  • Cui J, Wang Y, Lin C, Zeng L (2000) Polyhydroxylated sterols with biological activities in marine organism. Tianran Chanwu Yanjiu Yu Kaifa 12:94–100

    CAS  Google Scholar 

  • Czerwiec E, et al. (2002) Expression and characterization of recombinant vitamin Kdependent γ-glutamyl carboxylase from an invertebrate, Conus textile. Eur J Biochem 269:6162–6172

    Article  PubMed  CAS  Google Scholar 

  • Danieli B, Riva S (1994) Enzyme-mediated regioselective acylation of polyhydroxylated natural products. Pure Appl Chem 66:2215–2218

    Article  CAS  Google Scholar 

  • Duda TF, Palumbi SR (1999) Developmental shifts and species selection in gastropods. Proc Natl Acad Sci USA 96:10272–10277

    Article  PubMed  CAS  Google Scholar 

  • Dutton JL, Craik DJ (2001) α-Conotoxins: nicotinic acetylcholine receptor antagonists as pharmacological tools and potential drug leads. Curr Med Chem 8:327–344

    PubMed  CAS  Google Scholar 

  • Ellison M, McIntosh JM, Olivera BM (2003) α-Conotoxins ImI and ImII – similar alpha 7 nicotinic receptor antagonists act at different sites. J Biol Chem 278:757–764

    Article  PubMed  CAS  Google Scholar 

  • Fainzilber M, et al. (1995) A new cysteine framework in sodium-channel blocking conotoxins. Biochemistry 34:8649–8656

    Article  PubMed  CAS  Google Scholar 

  • Fegan D, Andresen D (1997) Conus geographus envenomation. Lancet 349:1672

    Article  CAS  Google Scholar 

  • Ferber M, et al. (2003) A novel Conus peptide ligand for K+ channels. J Biol Chem 278:2177–2183

    Article  PubMed  CAS  Google Scholar 

  • Filmer RM (2001) A catalogue of nomenclature and taxonomy in the living Conidae 1758–1998. Backhuys, Leiden

    Google Scholar 

  • Fujii N (2002) D-Amino acids in living higher organisms. Origins Life Evol B 32:103–127

    Article  CAS  Google Scholar 

  • Haading JJ, Crabbe MJC (1992) Post-translational modifications of proteins. CRC Press, Boca Raton, FL

    Google Scholar 

  • Harvey AL (2002) Toxins ‘R’ Us: more pharmacological tools from nature’s superstore. Trends Pharmacol Sci 23:201–203

    Article  PubMed  CAS  Google Scholar 

  • Heading C (1999) Ziconotide Neurex Corp. Curr Opin Cent Peripheral Nerv Syst Invest Drugs 1:153–166

    CAS  Google Scholar 

  • Heading CE (2001) Ziconotide (Elan Pharmaceuticals). IDrugs 4:339–350

    PubMed  CAS  Google Scholar 

  • Heading CE (2002) Conus peptides and neuroprotection. Curr Opin Invest Drugs 3:915–920

    CAS  Google Scholar 

  • Heck SD, et al. (1994) Functional consequences of posttranslational isomerization of Ser(46) in a calcium-channel toxin. Science 266:1464

    Article  CAS  Google Scholar 

  • Heck SD, Faraci WS, Kelbaugh PR, Saccomano NA, Thadeio PF, Volkmann RA (1996) Post-translational amino acid epimerization: enzyme-catalyzed isomerization of amino acid residues in peptide chains. Proc Natl Acad Sci USA 93:4036–4039

    Article  PubMed  CAS  Google Scholar 

  • Hernandez ILC, Godinho MJL, Magalhaes A, Schefer AB, Ferreira AG, Berlinck RGS (2000) N-Acetyl-gamma-hydroxyvaline lactone, an unusual amino acid derivative from marine streptomycete. J Nat Prod 63:664–665

    Article  PubMed  CAS  Google Scholar 

  • Hopkins C, et al. (1995) A new family of Conus peptides targeted to the nicotinic acetylcholine-receptor. J Biol Chem 270:22361–22367

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen R, et al. (1997) Differential targeting of nicotinic acetylcholine receptors by novel αA-conotoxins. J Biol Chem 272:22531–22537

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen R, et al. (1998) The contryphans, a D-tryptophan-containing family of Conus peptides: interconversion between conformers. J Pept Res 51:173–179

    Article  PubMed  CAS  Google Scholar 

  • Jimenez EC, Olivera BM, Gray WR, Cruz LJ (1996) Contryphan is a D-tryptophancontaining Conus peptide. J Biol Chem 271:28002–28005

    Article  PubMed  CAS  Google Scholar 

  • Jimenez EC, Watkins M, Juszczak LJ, Cruz LJ, Olivera BM (2001) Contryphans from Conus textile venom ducts. Toxicon 39:803–808

    Article  PubMed  CAS  Google Scholar 

  • Lewis RJ, et al. (2000) Novel ω-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes. J Biol Chem 275:35335–35344

    Article  PubMed  CAS  Google Scholar 

  • Li RA, Tomaselli GF (2004) Using the deadly μ-conotoxins as probes of voltage-gated sodium channels. Toxicon 44:117–122

    Article  PubMed  Google Scholar 

  • Livett BG, Gayler KR, Khalil Z (2004) Drugs from the sea: conopeptides as potential therapeutics. Curr Med Chem 11:1715–1723

    PubMed  CAS  Google Scholar 

  • Mari F, Fields GB (2003) Conopeptides: unique pharmacological agents that challenge current peptide methodologies. Chim Oggi 21:43–48

    CAS  Google Scholar 

  • McDougal OM, Poulter CD (2004) Three-dimensional structure of the mini-M conotoxin mr3a. Biochemistry 43:425–429

    Article  PubMed  CAS  Google Scholar 

  • McGahren WJ, Morton GO, Kunstmann MP, Ellestad GA (1977) C-13 nuclear magneticresonance studies on a new antitubercular peptide antibiotic Ll-Bm547beta. J Org Chem 42:1282–1286

    Article  PubMed  CAS  Google Scholar 

  • McIntosh JM, Jones RM (2001) Cone venom – from accidental stings to deliberate injection. Toxicon 39:1447–1451

    Article  PubMed  CAS  Google Scholar 

  • McIntosh JM, et al. (1994) A nicotinic acetylcholine-receptor ligand of unique specificity, α-conotoxin-ImI. J Biol Chem 269:16733–16739

    PubMed  CAS  Google Scholar 

  • McIntosh JM, Olivera BM, Cruz LJ (1999) Conus peptides as probes for ion channels. Methods Enzymol 294:605–624

    Article  PubMed  CAS  Google Scholar 

  • McIntosh JM, Dowell C, Watkins M, Garrett JE, Yoshikami D, Olivera BM (2002) α-Conotoxin GIC from Conus geographus, a novel peptide antagonist of nicotinic acetylcholine receptors. J Biol Chem 277:33610–33615

    Article  PubMed  CAS  Google Scholar 

  • Mignogna G, Simmaco M, Kreil G, Barra D (1993) Antibacterial and hemolytic peptides containing D-alloisoleucine from the skin of Bombina variegata. EMBO J 12:4829–4832

    PubMed  CAS  Google Scholar 

  • Miljanich GP (2004) Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem 11:3029–3040

    PubMed  CAS  Google Scholar 

  • Millard EL, Daly NL, Craik DJ (2004) Structure–activity relationships of α-conotoxins targeting neuronal nicotinic acetylcholine receptors. Eur J Biochem 271:2320–2326

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JBO, Smith J (2003) D-Amino acid residues in peptides and proteins. Proteins Struct Funct Genet 50:563–571

    Article  PubMed  CAS  Google Scholar 

  • Mor A, et al. (1989) Isolation of dermenkephalin from amphibian skin, a high-affinity δ-selective opioid heptapeptide containing a D-amino-acid residue. FEBS Lett 255:269-274

    Article  PubMed  CAS  Google Scholar 

  • Morita H, Kayashita T, Uchida A, Takeya K, Itokawa H (1997) Cyclic peptides from higher plants 33. Delavayins A–C, three new cyclic peptides from Stellaria delavayi. J Nat Prod 60:212–215

    Article  CAS  Google Scholar 

  • Myers RA, Cruz LJ, Rivier JE, Olivera BM (1993) Conus peptides as chemical probes for receptors and ion channels. Chem Rev 93:1923–1936

    Article  CAS  Google Scholar 

  • Newcomb R, Miljanich G (2002) Neurotoxins of cone snail venoms. Handb Neurotoxicol 1:617–651

    CAS  Google Scholar 

  • Nicke A, et al. (2003) Isolation, structure, and activity of GID, a novel α4/7-conotoxin with an extended N-terminal sequence. J Biol Chem 278:3137–3144

    Article  PubMed  CAS  Google Scholar 

  • Nicke A, Wonnacott S, Lewis RJ (2004) α-Conotoxins as tools for the elucidation of structure and function of neuronal nicotinic acetylcholine receptor subtypes. Eur J Biochem 271:2305–2319

    Article  PubMed  CAS  Google Scholar 

  • Olivera BM (2002) Conus venom peptides: reflections from the biology of clades and species. Annu Rev Ecol Sys 33:25–47

    Article  Google Scholar 

  • Olivera BM, et al. (1990) Diversity of Conus neuropeptides. Science 249:257–263

    Article  PubMed  CAS  Google Scholar 

  • Pallaghy PK, Melnikova AP, Jimenez EC, Olivera BM, Norton RS (1999) Solution structure of contryphan-R, a naturally occurring disulfide-bridged octapeptide containing Dtryptophan: comparison with protein loops. Biochemistry 38:11553–11559

    Article  PubMed  CAS  Google Scholar 

  • Papov VV, Diamond TV, Biemann K, Waite JH (1995) Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. J Biol Chem 270:20183–20192

    Article  PubMed  CAS  Google Scholar 

  • Perret S, et al. (2001) Unhydroxylated triple helical collagen I produced in transgenic plants provides new clues on the role of hydroxyproline in collagen folding and fibril formation. J Biol Chem 276:43693–43698

    Article  PubMed  CAS  Google Scholar 

  • Petsko GA (1992) On the other hand. Science 256:1403–1404

    Article  PubMed  CAS  Google Scholar 

  • Pisarewicz K, Mora D, Pflueger FC, Fields GB, Mari F (2005) Polypeptide chains containing D-γ-hydroxyvaline. J Am Chem Soc 127:6207–6215

    Article  PubMed  CAS  Google Scholar 

  • Pollard JK, Sondheimer E, Steward FC (1958) Hydroxyvaline in Kalanchoe daigremontiana. Nature 182:1356–1358

    Article  PubMed  CAS  Google Scholar 

  • Sandall DW, et al. (2003) A novel α-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 42:6904–6911

    Article  PubMed  CAS  Google Scholar 

  • Santos AD, McIntosh JM, Hillyard DR, Cruz LJ, Olivera BM (2004) The A-superfamily of conotoxins – structural and functional divergence. J Biol Chem 279:17596–17606

    Article  PubMed  CAS  Google Scholar 

  • Sharpe IA, et al. (2001) Two new classes of conopeptides inhibit the α1-adrenoceptor and noradrenaline transporter. Nat Neurosci 4:902–907

    Article  PubMed  CAS  Google Scholar 

  • Shoji J, Hinoo H (1975) Antibiotics from the genus Bacillus. II. Chemical characterization of new antibiotics, cerexins A and B. J Antibiot 28:60–63

    PubMed  CAS  Google Scholar 

  • Shon KJ, et al. (1997) A noncompetitive peptide inhibitor of the nicotinic acetylcholine receptor from Conus purpurascens venom. Biochemistry 36:9581–9587

    Article  PubMed  CAS  Google Scholar 

  • Sidler W, Kumpf B, Suter F, Morisset W, Wehrmeyer W, Zuber H (1983) Structural studies on cryptomonad biliprotein subunits. Two different α-subunits in Chroomonas phycocyanin-645 and Cryptomonas phycoerythrin-545. Biol Chem Hoppe-Seyler 366:233–244

    Article  CAS  Google Scholar 

  • Smith MT, Cabot PJ, Ross FB, Robertson AD, Lewis RJ (2002) The novel N-type calcium channel blocker AM336 produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits substance P release in rat spinal cord slices. Pain 96:119–127

    Article  PubMed  CAS  Google Scholar 

  • Soyez D, Toullec JY, Ollivaux C, Geraud G (2000) L to D amino acid isomerization in a peptide hormone is a late post-translational event occurring in specialized neurosecretory cells. J Biol Chem 275:37870–37875

    Article  PubMed  CAS  Google Scholar 

  • Terui Y, Nishikawa J, Hinoo H, Kato T, Shoji J (1990) Structures of cepafungins I, II and III. J Antibiot 43:788–795

    PubMed  CAS  Google Scholar 

  • Walker CS, et al. (2001) On a potential global role for vitamin K-dependent γ-carboxylation in animal systems – evidence for a γ-glutamyl carboxylase in Drosophila. J Biol Chem 276:7769–7774

    Article  PubMed  CAS  Google Scholar 

  • Watson AA, Fleet GWJ, Asano N, Molyneux RJ, Nash RJ (2001) Polyhydroxylated alkaloids: natural occurrence and therapeutic applications. Phytochemistry 56: 265–295

    Article  PubMed  CAS  Google Scholar 

  • Zeng L, et al. (1999) Search for new compounds and biologically active substances from Chinese marine organisms. Pure Appl Chem 71:1147–1151

    Article  CAS  Google Scholar 

  • Zhao TY, Cao Y, Dai XD, Fan CX, Chen JS (2005) Purification, sequence and disulfide bonding pattern of a novel conotoxin BtIIIB. Acta Chim Sin 63:163–168

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Franco, A., Pisarewicz, K., Moller, C., Mora, D., Fields, G.B., Marí, F. (2006). Hyperhydroxylation: A New Strategy for Neuronal Targeting by Venomous Marine Molluscs. In: Cimino, G., Gavagnin, M. (eds) Molluscs. Progress in Molecular and Subcellular Biology, vol 43. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30880-5_4

Download citation

Publish with us

Policies and ethics