Skip to main content

Introduction to Adenosine Receptors as Therapeutic Targets

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 193))

Abstract

Adenosine acts as a cytoprotective modulator in response to stress to an organ or tissue. Although short-lived in the circulation, it can activate four subtypes of G protein-coupled adenosine receptors (ARs): A1, A2A, A2B, and A3. The alkylxanthines caffeine and theophylline are the prototypical antagonists of ARs, and their stimulant actions occur primarily through this mechanism. For each of the four AR subtypes, selective agonists and antagonists have been introduced and used to develop new therapeutic drug concepts. ARs are notable among the GPCR family in the number and variety of agonist therapeutic candidates that have been proposed. The selective and potent synthetic AR agonists, which are typically much longer lasting in the body than adenosine, have potential therapeutic applications based on their anti-inflammatory (A2A and A3), cardioprotective (preconditioning by A1 and A3 and postconditioning by A2B), cerebroprotective (A1 and A3), and antinociceptive (A1) properties. Potent and selective AR antagonists display therapeutic potential as kidney protective (A1), antifibrotic (A2A), neuroprotective (A2A), and antiglaucoma (A3) agents. AR agonists for cardiac imaging and positron-emitting AR antagonists are in development for diagnostic applications. Allosteric modulators of A1 and A3 ARs have been described. In addition to the use of selective agonists/antagonists as pharmacological tools, mouse strains in which an AR has been genetically deleted have aided in developing novel drug concepts based on the modulation of ARs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADHF:

Acute decompensated heart failure

ADP:

Adenosine diphosphate

AMP:

Adenosine 5-monophosphate

AMP579:

[1S-[1α, 2β, 3β, 4α(S*)]]-4-[7-[[1-[(3-Chlorothien-2-yl)methyl] propyl]amino]-3H-imidazo[4,5-b]pyrid-3-yl]-N-ethyl 2,3-dihydroxycyclopentanecarboxamide

AR:

Adenosine receptor

ATP:

Adenosine triphosphate

BAY 60–6583:

2-[6-Amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl] pyridin-2-ylsulfanyl]acetamide

BAY 68–4986:

6-Amino-2-(2-(4-chlorophenyl)thiazol-4-ylthio)-4-(4- (2-hydroxyethoxy)phenyl)-5-isocyanonicotinonitrile

BG9719:

1,3-Dipropyl-8-(2-(5,6-epoxy)norbornyl)xanthine

BG9928:

3-[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]oct-1-yl]-propionic acid

BIIB014:

3-(4-Amino-3-methylbenzyl)-7-(2-furyl)-3H- [1,2,3]triazolo [4,5-d ]pyrimidine-5-amine (V2006)

CD39:

Apyrase

CD73:

Ecto-5-nucleotidase

CF101:

N 6-(3-Iodobenzyl)-5-N-methylcarboxamidoadenosine (IB-MECA)

CF102:

2-Chloro-N 6-(3-iodobenzyl)-5-N-methylcarboxamidoadenosine (Cl-IB-MECA)

CP-608,039:

(2S, 3S, 4R, 5R)-3-Amino-5-{6-[5-chloro-2-(3-methylisoxazol-5-ylmethoxy)benzylamino]purin-9-yl-l- 4-hydroxytetrahydrofuran-2-carboxylic acid methylamide

CP-532,903:

(2S, 3S, 4R, 5R)-3-Amino-5-{6-[2,5-dichlorobenzylamino]purin-9-yl-l-4-hydroxytetrahydrofuran-2-carboxylic acid methylamide

CPFPX:

8-Cyclopentyl-1-propyl-3-(3-fluoropropyl)-xanthine

CVT-3146:

1-[6-Amino-9-[(2R, 3R, 4S, 5R)-3,4-dihydroxy- 5-(hydroxymethyl)oxolan-2-yl]purin-2-yl]-N-methylpyrazole- 4-carboxamide

CVT-6883:

3-Ethyl-1-propyl-8-[1-(3-trifluoromethylbenzyl)-1H-pyrazol- 4-yl]-3,7-dihydropurine-2,6-dione

EL:

Extracellular loop

ENT:

Equilibrative nucleoside transporter

E-NTPDase:

Ectonucleoside triphosphate diphosphohydrolase

ERK:

Extracellular receptor signal-induced kinase

FK 453:

\((+)\mbox{ -}(R)\)-(1-(E)-3-(2-Phenylpyrazolo(1,5-a)pyridin-3-yl)acryl)-2-piperidine ethanol

FR194921:

2-(1-Methyl-4-piperidinyl)-6-(2-phenylpyrazolo[1,5-a]pyridin- 3-yl)-3(2H)-pyridazinone

GPCRs:

G protein-coupled receptors

GR79236:

N 6-[(1S, 2S)-2-Hydroxycyclopentyl]adenosine

GRKs:

G-protein-coupled receptor kinases

IL:

Intracellular loop

KW3902:

8-(Noradamantan-3-yl)-1,3-dipropylxanthine

KW6002:

8-[(E)-2-(3,4-Dimethoxyphenyl)vinyl]-1,3-diethyl- 7-methylpurine-2,6-dione

L-97-1:

3-[2-(4-Aminophenyl)-ethyl]-8-benzyl-7-{2-ethyl-(2-hydroxy-ethyl)-amino]-ethyl}-1-propyl-3,7-dihydro-purine-2,6-dione

MAP:

Mitogen-activated protein

MAPK:

Mitogen-activated protein kinases

MRE0094:

2-[2-(4-Chlorophenyl)ethoxy]adenosine

MRE-0470:

2-[{Cyclohexylmethylene}hydrazino]adenosine (WRC-0470, binodenoson)

MRS5147:

\(({1}^{{\prime}}R,{2}^{{\prime}}R,{3}^{{\prime}}S,{4}^{{\prime}}R,{5}^{{\prime}}S)\mbox{ -}{4}^{{\prime}}\)-[2-Chloro-6-(3-bromobenzylamino)-purine]-2, 3-O-dihydroxybicyclo-[3.1.0]hexane

N-0861:

( ± )-N 6-Endonorbornan-2-yl-9-methyladenine

NNC-21-0136:

2-Chloro-N 6-[(R)-[(2-benzothiazolyl)thio]-2-propyl]-adenosine

OT-7999:

5-N-Butyl-8-(4-trifluoromethylphenyl)-3H-[1,2,4]triazolo-[5, 1-i]purine

PET:

Positron emission tomography

PI3K:

Phosphoinositide-3 kinase

T-62:

(2-Amino-4,5,6,7-tetrahydrobenzo[b]thiophen-3-yl)- (4-chlorophenyl)-methanone

SLV-320:

4-[(2-Phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]-trans-cyclohexanol

SDZ WAG94:

N 6-Cyclohexyl-2-O-methyl-adenosine

TM:

Transmembrane helix

VER6947:

2-Amino-N-benzyl-6-(furan-2-yl)-9H-purine-9-carboxamide

VER7835:

2-Amino-6-(furan-2-yl)-N-(thiophen-2-ylmethyl)-9H-purine- 9-carboxamide

V2006:

see BIIB014

WRC-0571:

8-(N-Methylisopropyl)amino-N 6-(5-endohydroxy- endonorbornan-2-yl-9-methyladenine

ZM241385:

4-2-[7-Amino-2-(2-furyl)-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-yl-amino]ethylphenol

References

  • Akaiwa K, Akashi H, Harada H, Sakashita H, Hiromatsu S, Kano T, Aoyagi S (2006) Moderate cerebral venous congestion induces rapid cerebral protection via adenosine A1 receptor activation. Brain Res 1122:47–55

    Article  CAS  PubMed  Google Scholar 

  • Arispe N, Ma J, Jacobson KA, Pollard HB (1998) Direct activation of cystic fibrosis transmembrane conductance regulator (CFTR) channels by CPX and DAX. J Biol Chem 273:5727–5734

    Article  CAS  PubMed  Google Scholar 

  • Auchampach JA, Jin X, Moore J, Wan TC, Kreckler LM, Ge ZD, Narayanan J, Whalley E, Kiesman W, Ticho B, Smits G, Gross GJ (2004) Comparison of three different A1 adenosine receptor antagonists on infarct size and multiple cycle ischemic preconditioning in anesthetized dogs. J Pharmacol Exp Ther 308:846–856

    Article  CAS  PubMed  Google Scholar 

  • Awad AS, Huang L, Ye H, Duong ET, Bolton WK, Linden J, Okusa MD (2006) Adenosine A2A receptor activation attenuates inflammation and injury in diabetic nephropathy. Am J Physiol Renal Physiol 290: F828–F837

    Article  CAS  PubMed  Google Scholar 

  • Baraldi PG, Tabrizi MA, Gessi S, Borea PA (2008) Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 108:238–263

    Article  CAS  PubMed  Google Scholar 

  • Baraldi PG, Tabrizi MA, Fruttarolo F, Romagnoli R, Preti D (2009) Recent improvements in the development of A2B adenosine receptor agonists. Purinergic Signal 4(4):287–303

    Article  Google Scholar 

  • Bar-Yehuda S, Stemmer SM, Madi L, Castel D, Ochaion A, Cohen S, Barer F, Zabutti A, Perez-Liz G, Del Valle L, Fishman P (2008) The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int J Oncol 33:287–295

    CAS  PubMed  Google Scholar 

  • Bauer A, Langen KJ, Bidmon H, Holschbach MH, Weber S, Olsson RA, Coenen HH, Zilles K (2005) 18F-CPFPX PET identifies changes in cerebral A1 adenosine receptor density caused by glioma invasion. J Nucl Med 46:450–454

    CAS  PubMed  Google Scholar 

  • Beldi G, Wu Y, Sun X, Imai M, Enjyoji K, Csizmadia E, Candinas D, Erb L, Robson SC (2008) Regulated catalysis of extracellular nucleotides by vascular CD39/ENTPD1 is required for liver regeneration. Gastroenterology 135:1751–1760

    Article  CAS  PubMed  Google Scholar 

  • Beukers MW, Chang LC, von Frijtag Drabbe Künzel JK, Mulder-Krieger T, Spanjersberg RF, Brussee J, IJzerman AP (2004) New, non-adenosine, high-potency agonists for the human adenosine A2B receptor with an improved selectivity profile compared to the reference agonist N-ethylcarboxamidoadenosine. J Med Chem 47:3707–3709

    Article  CAS  PubMed  Google Scholar 

  • Björklund O, Shang M, Tonazzini I, Daré E, Fredholm BB (2008) Adenosine A1 and A3 receptors protect astrocytes from hypoxic damage. Eur J Pharmacol 596:6–13

    Article  PubMed  Google Scholar 

  • Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira MD (2006) Advances in pharmacologic agents in imaging: new A2A receptor agonists. Curr Cardiol Rep 8:119–122

    Article  PubMed  Google Scholar 

  • Che J, Chan ES, Cronstein BN (2007) Adenosine A2A receptor occupancy stimulates collagen expression by hepatic stellate cells via pathways involving protein kinase A, Src, and extracellular signal-regulated kinases 1/2 signaling cascade or p38 mitogen-activated protein kinase signaling pathway. Mol Pharmacol 72:1626–1636

    Article  CAS  PubMed  Google Scholar 

  • Chen GJ, Harvey BK, Shen H, Chou J, Victor A, Wang Y (2006a) Activation of adenosine A3 receptors reduces ischemic brain injury in rodents. J Neurosci Res 84:1848–1855

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006b) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314:1792–1795

    Article  CAS  PubMed  Google Scholar 

  • Cohen MV, Downey JM (2008) Adenosine: trigger and mediator of cardioprotection. Basic Res Cardiol 103:203–215

    Article  CAS  PubMed  Google Scholar 

  • Costanzi S, Ivanov AA, Tikhonova IG, Jacobson KA (2007) Structure and function of G protein-coupled receptors studied using sequence analysis, molecular modeling, and receptor engineering: adenosine receptors. Front Drug Design Disc 3:63–79

    CAS  Google Scholar 

  • Cotter G, Dittrich HC, Weatherley BD, Bloomfield DM, O’Connor CM, Metra M, Massie BM, PROTECT Steering Committee, Investigators, and Coordinators (2008) The PROTECT pilot study: a randomized, placebo-controlled, dose-finding study of the adenosine A1 receptor antagonist rolofylline in patients with acute heart failure and renal impairment. J Cardiac Fail 14:631–640

    Google Scholar 

  • Desai A, Victor-Vega C, Gadangi S, Montesinos MC, Chu CC, Cronstein B (2005) Adenosine A2A receptor stimulation increases angiogenesis by down-regulating production of the antiangiogenic matrix protein thrombospondin 1. Mol Pharmacol 67:1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Dittrich HC, Gupta DK, Hack TC, Dowling T, Callahan J, Thomson S (2007) The effect of KW-3902, an adenosine A1 receptor antagonist, on renal function and renal plasma flow in ambulatory patients with heart failure and renal impairment. J Card Failure 13:609–617

    Article  CAS  Google Scholar 

  • Doggrell SA (2005) BG-9928 (Biogen Idec). Curr Opin Investig Drugs 6:962–968

    CAS  PubMed  Google Scholar 

  • Eckle T, Krahn T, Grenz A, Köhler D, Mittelbronn M, Ledent C, Jacobson MA, Osswald H, Thompson LF, Unertl K, Eltzschig HK (2007) Cardioprotection by ecto-5-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115:1581–1590

    Article  CAS  PubMed  Google Scholar 

  • Elzein E, Zablocki J (2008) A1 adenosine receptor agonists and their potential therapeutic applications. Expert Opin Investig Drugs 17:1901–1910

    Article  CAS  PubMed  Google Scholar 

  • Franco R, Casadó V, Mallol J, Ferrada C, Ferré S, Fuxe K, Cortés A, Ciruela F, Lluis C, Canela EI (2006) The two-state dimer receptor model: a general model for receptor dimers. Mol Pharmacol 69:1905–1912

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Jacobson KA (2009) John W. Daly and the early characterization of adenosine receptors. Heterocycles 79:73–83

    CAS  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    CAS  Google Scholar 

  • Fredholm BB, Chen JF, Masino SA, Vaugeois JM (2005) Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu Rev Pharmacol Toxicol 45:385–412

    Article  CAS  PubMed  Google Scholar 

  • Gao ZG, Kim SK, IJzerman AP, Jacobson KA (2005) Allosteric modulation of the adenosine family of receptors. Mini Rev Med Chem 5:545–553

    Article  CAS  PubMed  Google Scholar 

  • Gao ZG, Ye K, Göblyös A, IJzerman AP, Jacobson KA (2008) Flexible modulation of agonist efficacy at the human A3 adenosine receptor by an imidazoquinoline allosteric enhancer LUF6000 and its analogues. BMC Pharmacol 8:20

    Article  PubMed  Google Scholar 

  • Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117:123–140

    Article  CAS  PubMed  Google Scholar 

  • Gillespie RJ, Cliffe IA, Dawson CE, Dourish CT, Gaur S, Jordan AM, Knight AR, Lerpiniere J, Misra A, Pratt RM, Roffey J, Stratton GC, Upton R, Weiss SM, Williamson DS (2008) Antagonists of the human adenosine A2A receptor. Part 3: Design and synthesis of pyrazolo[3,4-d]pyrimidines, pyrrolo[2,3-d]pyrimidines and 6-arylpurines. Bioorg Med Chem 18:2924–2929

    Article  CAS  Google Scholar 

  • Giorgi I, Nieri P (2008) Therapeutic potential of A1 adenosine receptor ligands: a survey of recent patent literature. Expert Opin Ther Patents 18:677–691

    Article  CAS  Google Scholar 

  • Givertz MM, Massie BM, Fields TK, Pearson LL, Dittrich HC (2007) The effect of KW-3902, an adenosine A1-receptor antagonist, on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J Am Coll Cardiol 50:1551–1560

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb SS, Brater DC, Thomas I, Havranek E, Bourge R, Goldman S, Dyer F, Gomez M, Bennett D, Ticho B, Beckman E, Abraham WT (2002) BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation 105:1348–1353

    Article  CAS  PubMed  Google Scholar 

  • Greenberg B, Ignatius T, Banish D, Goldman S, Havranek E, Massie BM, Zhu Y, Ticho B, Abraham WT (2007). Effects of multiple oral doses of an A1 adenosine receptor antagonist, BG 9928, in patients with heart failure. J Am Coll Cardiol 50:600–606

    Article  CAS  PubMed  Google Scholar 

  • Guzman J, Yu JG, Suntres Z, Bozarov A, Cooke H, Javed N, Auer H, Palatini J, Hassanain HH, Cardounel AJ, Javed A, Grants I, Wunderlich JE, Christofi FL (2006) ADOA3R as a therapeutic target in experimental colitis: proof by validated high-density oligonucleotide microarray analysis. Inflamm Bowel Dis 12:766–789

    Article  PubMed  Google Scholar 

  • Haskó G, Linden J, Cronstein B, Pacher P (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770

    Article  PubMed  Google Scholar 

  • Hess S (2001) Recent advances in adenosine receptor antagonist research. Expert Opin Ther Patents 11:1533–1561

    Article  CAS  Google Scholar 

  • Hocher B, Fischer Y, Witte K, Ziegler D (2008) Use of adenosine A1 antagonists in radiocontrast media induced nephropathy. US Patent Appl 20080027082

    Google Scholar 

  • Holgate ST (2005) The identification of the adenosine A2B receptor as a novel therapeutic target in asthma. Br J Pharmacol 145:1009–1015

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa J, Mitani H, Bandoh T, Kimura M, Totsuka T, Hayashi S (1998) Hypoglycemic and hypotensive effects of 6-cyclohexyl-2-O-methyl-adenosine, an adenosine A1 receptor agonist, in spontaneously hypertensive rat complicated with hyperglycemia. Diab Res Clin Pract 39:3–9

    Article  CAS  Google Scholar 

  • Ishiwata K, Noguchi J, Wakabayashi S, Shimada J, Ogi N, Nariai T, Tanaka A, Endo K, Suzuki F, Senda M (2000) 11C-labeled KF18446: a potential central nervous system adenosine A2A receptor ligand. J Nucl Med 41:345–354

    CAS  PubMed  Google Scholar 

  • Ivanov AA, Jacobson KA (2008) Molecular modeling of a PAMAM-CGS21680 dendrimer bound to an A2A adenosine receptor homodimer. Bioorg Med Chem Lett 18:4312–4315

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AA, Baak D, Jacobson KA (2009) Evaluation of homology modeling of G protein-coupled receptors in light of the A2A adenosine receptor crystallographic structure. J Med Chem, doi: 10.1021/jm801533x

    Google Scholar 

  • Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EYT, Lane JR, IJzerman JR, Stevens RC (2008) The 2.6 Angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322(5905):1211–1217

    Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Disc 5:247–264

    Article  CAS  Google Scholar 

  • Jacobson KA, Kim HO, Siddiqi SM, Olah ME, Stiles GL, von Lubitz DKJE (1995) A3 adenosine receptors: design of selective ligands and therapeutic prospects. Drugs Future 20:689–699

    Google Scholar 

  • Ji XD, Jacobson KA (1999) Use of the triazolotriazine [3H]ZM 241385 as a radioligand at recombinant human A2B adenosine receptors. Drug Des Discov 16:217–226

    CAS  PubMed  Google Scholar 

  • Johansson B, Halldner L, Dunwiddie TV, Masino SA, Poelchen W, Giménez-Llort L, Escorihuela RM, Fernández-Teruel A, Wiesenfeld-Hallin Z, Xu XJ, Hårdemark A, Betsholtz C, Herlenius E, Fredholm BB (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci USA 98:9407–9412

    Article  CAS  PubMed  Google Scholar 

  • Jordan AM (2008) Science and serendipity: discovery of novel, orally bioavailable adenosine A2A antagonists for the treatment of Parkinson’s disease. Abstract MEDI-015, 236th ACS National Meeting, Philadelphia, PA, 17–21 Aug 2008

    Google Scholar 

  • Kiesewetter DO, Lang L, Ma Y, Bhattacharjee AK, Gao ZG, Joshi BV, Melman A, Castro S, Jacobson KA (2008) Synthesis and characterization of [76Br]-labeled high affinity A3 adenosine receptor ligands for positron emission tomography. Nucl Med Biol 36:3–10

    Article  Google Scholar 

  • Kiesman WF, Zhao J, Conlon PR, Dowling JE, Petter RC, Lutterodt F, Jin X, Smits G, Fure M, Jayaraj A, Kim J, Sullivan GW, Linden J (2006) Potent and orally bioavailable 8-bicyclo[2.2.2]octylxanthines as adenosine A1 receptor antagonists. J Med Chem 49:7119–7131

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Gao, ZG, Van Rompaey P, Gross AS, Chen A, Van Calenbergh S, Jacobson KA (2003) Modeling the adenosine receptors: comparison of binding domains of A2A agonist and antagonist. J Med Chem 46:4847–4859

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Hechler B, Klutz A, Gachet C, Jacobson KA (2008) Toward multivalent signaling across G protein-coupled receptors from poly(amidoamine) dendrimers. Bioconjugate Chem 19: 406–411

    Article  CAS  Google Scholar 

  • Klaasse EC, IJzerman AP, de Grip WJ, Beukers MW (2008) Internalization and desensitization of adenosine receptors. Purinergic Signal 4:21–37

    Article  CAS  PubMed  Google Scholar 

  • Klutz AM, Gao ZG, Lloyd J, Shainberg A, Jacobson KA (2008) Enhanced A3 adenosine receptor selectivity of multivalent nucleoside-dendrimer conjugates. J Nanobiotechnol 6:12

    Article  Google Scholar 

  • Knutsen LJ, Lau J, Petersen H, Thomsen C, Weis JU, Shalmi M, Judge ME, Hansen AJ, Sheardown MJ (1999) N-Substituted adenosines as novel neuroprotective A1 agonists with diminished hypotensive effects. J Med Chem 42:3463–3477

    Article  CAS  PubMed  Google Scholar 

  • Kolachala VL, Bajaj R, Chalasani M, Sitaraman SV (2008) Purinergic receptors in gastrointestinal inflammation. Am J Physiol Gastrointest Liver Physiol 294:G401–G410

    Article  CAS  PubMed  Google Scholar 

  • LeWitt PA, Guttman M, Tetrud JW, Tuite PJ, Mori A, Chaikin P, Sussman NM (2008) Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol 63:295–302

    Article  CAS  PubMed  Google Scholar 

  • Li X, Bantel C, Conklin D, Childers SR, Eisenach JC (2004) Repeated dosing with oral allosteric modulator of adenosine A1 receptor produces tolerance in rats with neuropathic pain. Anesthesiology 100:956–961

    Article  CAS  PubMed  Google Scholar 

  • Liang BT, Jacobson KA (1998) A physiological role of the adenosine A3 receptor: sustained cardioprotection. Proc Natl Acad Sci USA 95:6995–6999

    Article  CAS  PubMed  Google Scholar 

  • Lieu HD, Shryock JC, von Mering GO, Gordi T, Blackburn B, Olmsted AW, Belardinelli L, Kerensky RA (2007) Regadenoson, a selective A2A adenosine receptor agonist, causes dose-dependent increases in coronary blood flow velocity in humans. J Nucl Cardiol 14:514–520

    Article  PubMed  Google Scholar 

  • Madi L, Ochaion A, Rath-Wolfson L, Bar-Yehuda S, Erlanger A, Ohana G, Harish A, Merimski O, Barer F, Fishman P (2004) The A3 adenosine receptor is highly expressed in tumor versus normal cells: potential target for tumor growth inhibition. Clin Cancer Res 10:4472–4479

    Article  CAS  PubMed  Google Scholar 

  • Madi L, Cohen S, Ochayin A, Bar-Yehuda S, Barer F, and Fishman P (2007) Overexpression of A3 adenosine receptor in peripheral blood mononuclear cells in rheumatoid arthritis: involvement of nuclear factor-kappa B in mediating receptor level. J Rheumatol 34:20–26

    CAS  PubMed  Google Scholar 

  • Martin PL, Wysocki RJ Jr, Barrett RJ, May JM, Linden J (1996) Characterization of 8-(N-methylisopropyl)amino-N 6-(5-endohydroxy-endonorbornyl)-9-methyladenine (WRC-0571), a highly potent and selective, non-xanthine antagonist of A1 adenosine receptors. J Pharmacol Exp Ther 276:490–499

    CAS  PubMed  Google Scholar 

  • Martin L, Pingle SC, Hallam DM, Rybak LP, Ramkumar V (2006) Activation of the adenosine A3 receptor in RAW 264.7 cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-alpha release by reducing calcium-dependent activation of nuclear factor-kappaB and extracellular signal-regulated kinase 1/2. J Pharmacol Exp Ther 316:71–78

    Article  CAS  PubMed  Google Scholar 

  • McGaraughty S, Cowart M, Jarvis MF, Berman RF (2005) Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr Top Med Chem 5:43–58

    Article  CAS  PubMed  Google Scholar 

  • Melman A, Gao ZG, Kumar D, Wan TC, Gizewski E, Auchampach JA, Jacobson KA (2008a) Design of (N)-methanocarba adenosine 5-uronamides as species-independent A3 receptor-selective agonists. Bioorg Med Chem Lett 18:2813–2819

    Article  CAS  PubMed  Google Scholar 

  • Melman A, Wang B, Joshi BV, Gao ZG, de Castro S, Heller CL, Kim SK, Jeong LS, Jacobson KA (2008b) Selective A3 adenosine receptor antagonists derived from nucleosides containing a bicyclo[3.1.0]hexane ring system. Bioorg Med Chem 16:8546–8556

    Article  CAS  PubMed  Google Scholar 

  • Merkel LA, Hawkins ED, Colussi DJ, Greenland BD, Smits GJ, Perrone MH, Cox BF (1995) Cardiovascular and antilipolytic effects of the adenosine agonist GR 79236. Pharmacology 51:224–236

    Article  CAS  PubMed  Google Scholar 

  • Mittendorf J, Wuppertal D (2008) BAY 68–4986 (Capadenoson): the first non-purinergic adenosine A1 agonist for the oral treatment of stable angina pectoris. Fachgruppe Medizinische Chemie Annual Meeting, Regensburg, Germany, 2–5 March 2008, doi: 10.1002/cmdc.200800114

    Google Scholar 

  • Moresco RM, Todde S, Belloli S, Simonelli P, Panzacchi A, Rigamonti M, Galli-Kienle M, Fazio F (2005) In vivo imaging of adenosine A2A receptors in rat and primate brain using [11C]SCH442416. Eur J Nucl Med Mol Imag 32:405–413

    Article  CAS  Google Scholar 

  • Moro S, Gao ZG, Jacobson KA, Spalluto G (2006) Progress in pursuit of therapeutic adenosine receptor antagonists. Med Res Rev 26:131–159

    Article  CAS  PubMed  Google Scholar 

  • Mustafa SJ, Nadeem A, Fan M, Zhong H, Belardinelli L, Zeng D (2007) Effect of a specific and selective A2B adenosine receptor antagonist on adenosine agonist AMP and allergen-induced airway responsiveness and cellular influx in a mouse model of asthma. J Pharmacol Exp Ther 320:1246–1251

    Article  CAS  PubMed  Google Scholar 

  • Nakata H, Yoshioka K, Kamiya T, Tsuga H, Oyanagi K (2005) Functions of heteromeric association between adenosine and P2Y receptors. J Mol Neurosci 26:233–238

    Article  CAS  PubMed  Google Scholar 

  • Ochaion A, Bar-Yehuda S, Cohen S, Amital H, Jacobson KA, Joshi BV, Gao ZG, Barer F, Zabutti A, Del Valle L, Perez-Liz G, Fishman P (2008) The A3 adenosine receptor agonist CF502 inhibits the PI3K, PKB/Akt and NF-κB signaling pathways in synoviocytes from rheumatoid arthritis patients and in adjuvant induced arthritis. Biochem Pharmacol 76:482–494

    Article  CAS  PubMed  Google Scholar 

  • Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 41:916–920

    Article  Google Scholar 

  • Okamura T, Kurogi Y, Hashimoto K, Sato S, Nishikawa H, Kiryu K, Nagao Y (2004) Structure–activity relationships of adenosine A3 receptor ligands: new potential therapy for the treatment of glaucoma. Bioorg Med Chem Lett 14:3775–3779

    Article  CAS  PubMed  Google Scholar 

  • Palmer TM, Poucher SM, Jacobson KA, Stiles GL (1996) 125I-4-(2-[7-Amino-2-{furyl}{1,2,4} triazolo{2,3-a}{1,3,5}triazin-5-ylaminoethyl)phenol (125I-ZM241385), a high affinity antagonist radioligand selective for the A2A adenosine receptor. Mol Pharmacol 48:970–974

    Google Scholar 

  • Pascoe SJ, Knight H, Woessner R (2007) QAF805, an A2b/A3 adenosine receptor antagonist does not attenuate AMP challenge in subjects with asthma. Am J Resp Crit Care Med 175:A682

    Google Scholar 

  • Penn RB, Pascual RM, Kim YM, Mundell SJ, Krymskaya VP, Panettieri RA Jr, Benovic JL (2001) Arrestin specificity for G protein-coupled receptors in human airway smooth muscle. J Biol Chem 276:32648–32656

    Article  CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268

    Article  CAS  PubMed  Google Scholar 

  • Press NJ, Taylor RJ, Fullerton JD, Tranter P, McCarthy C, Keller TH, Brown L, Cheung R, Christie J, Haberthuer S, Hatto JD, Keenan M, Mercer MK, Press NE, Sahri H, Tuffnell AR, Tweed M, Fozard JR (2005) A new orally bioavailable dual adenosine A2B/A3 receptor antagonist with therapeutic potential. Bioorg Med Chem Lett 15:3081–3085

    Article  CAS  PubMed  Google Scholar 

  • Prinster SC, Hague C, Hall RA (2005) Heterodimerization of G protein-coupled receptors: specificity and functional significance. Pharmacol Rev 57:289–298

    Article  CAS  PubMed  Google Scholar 

  • Ryzhov S, Goldstein AE, Biaggioni I, Feoktistov I (2006) Cross-talk between G(s)- and G(q)-coupled pathways in regulation of interleukin-4 by A2B adenosine receptors in human mast cells. Mol Pharmacol 70:727–735

    Article  CAS  PubMed  Google Scholar 

  • Ryzhov S, Novitskiy SV, Zaynagetdinov R, Goldstein AE, Carbone DP, Biaggioni I, Dikov MM, Feoktistov I (2008) Host A2B adenosine receptors promote carcinoma growth. Neoplasia 10:987–995

    CAS  PubMed  Google Scholar 

  • Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15:813–827

    Article  CAS  PubMed  Google Scholar 

  • Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M (2006) Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci 29:647–54

    Article  CAS  PubMed  Google Scholar 

  • Terai T, Kita Y, Kusunoki T, Shimazaki T, Ando T, Horiai H, Akahane A, Shiokawa Y, Yoshida K (1995) A novel non-xanthine adenosine A1 receptor antagonist. Eur J Pharmacol 279:217–225

    Article  CAS  PubMed  Google Scholar 

  • Udelson JE, Heller GV, Wackers FJ, Chai A, Hinchman D, Coleman PS, Dilsizian V, DiCarli M, Hachamovitch R, Johnson JR, Barrett RJ, Gibbons RJ (2004) Randomized, controlled dose-ranging study of the selective adenosine A2a receptor agonist binodenoson for pharmacological stress as an adjunct to myocardial perfusion imaging. Circulation 109:457–464

    Article  CAS  PubMed  Google Scholar 

  • Vlok N, Malan SF, Castagnoli N Jr, Bergh JJ, Petzer JP (2006) Inhibition of monoamine oxidase B by analogues of the adenosine A2A receptor antagonist (E)-8-(3-chlorostyryl)caffeine (CSC). Bioorg Med Chem 14:3512–3521

    Article  CAS  PubMed  Google Scholar 

  • von Lubitz DKJE, Lin RC, Popik P, Carter MF, Jacobson KA (1994) Adenosine A3 receptor stimulation and cerebral ischemia. Eur J Pharmacol 263:59–67

    Article  Google Scholar 

  • Wadsak W, Mien LK, Shanab K, Ettlinger DE, Haeusler D, Sindelar K, Lanzenberger RR, Spreitzer H, Viernstein H, Keppler BK, Dudczak R, Kletter K, Mitterhauser M (2008) Preparation and first evaluation of [18F]FE@SUPPY: a new PET tracer for the adenosine A3 receptor. Nucl Med Biol 35:61–66

    Article  CAS  PubMed  Google Scholar 

  • Wan TC, Ge ZD, Tampo A, Mio Y, Bienengraeber MW, Tracey WR, Gross GJ, Kwok WM, Auchampach JA (2008) The A3 adenosine receptor agonist CP-532,903 [N 6-(2,5-dichlorobenzyl)-3-aminoadenosine-5-N-methylcarboxamide] protects against myocardial ischemia/reperfusion injury via the sarcolemmal ATP-sensitive potassium channel. J Pharmacol Exp Ther 324:234–243

    Article  CAS  PubMed  Google Scholar 

  • Wilson CN (2008) Adenosine receptors and asthma in humans. Br J Pharmacol 155:475–486

    Article  CAS  PubMed  Google Scholar 

  • Yan L Burbiel JC Maass A, Müller CE (2003) Adenosine receptor agonists: from basic medicinal chemistry to clinical development. Expert Opin Emerg Drugs 8:537–576

    Google Scholar 

  • Yang H, Avila MY, Peterson-Yantorno K, Coca-Prados M, Stone RA, Jacobson KA, Civan MM (2005) The cross-species A3 adenosine-receptor antagonist MRS 1292 inhibits adenosine-triggered human nonpigmented ciliary epithelial cell fluid release and reduces mouse intraocular pressure. Curr Eye Res 30:747–754

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Koupenova M, McCrann DJ, Kopeikina KJ, Kagan HM, Schreiber BM, Ravid K (2008) The A2b adenosine receptor protects against vascular injury. Proc Natl Acad Sci USA 105: 792–796

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Huang Z, Mariani J, Wang Y, Moskowitz M, Chen JF (2004) Selective inactivation or reconstitution of adenosine A2A receptors in bone marrow cells reveals their significant contribution to the development of ischemic brain injury. Nat Med 10:1081–1087

    Article  CAS  PubMed  Google Scholar 

  • Zezula J, Freissmuth M (2008) The A2A-adenosine receptor: a GPCR with unique features? Br J Pharmacol 153(Suppl 1):S184–S190

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Wang R, Zambraski E, Wu D, Jacobson KA, Liang BT (2007) A novel protective action of adenosine A3 receptors: attenuation of skeletal muscle ischemia and reperfusion injury. Am J Physiol Heart Circ Physiol 293:3685–3691

    Article  Google Scholar 

  • Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn–Schmiedeberg’s Arch Pharmacol 362:299–309

    Google Scholar 

Download references

Acknowledgements

Support from the Intramural Research Program of the NIH, National Institute of Diabetes and Digestive and Kidney Diseases is gratefully acknowledged. Dr. Andrei A. Ivanov, NIDDK, prepared the image shown in Fig. 2. Dr. Zhang-Guo Gao and Dr. Dale Kiesewetter are acknowledged for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Jacobson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jacobson, K.A. (2009). Introduction to Adenosine Receptors as Therapeutic Targets. In: Wilson, C., Mustafa, S. (eds) Adenosine Receptors in Health and Disease. Handbook of Experimental Pharmacology, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89615-9_1

Download citation

Publish with us

Policies and ethics