Skip to main content

Muscarinic Receptor Pharmacology and Circuitry for the Modulation of Cognition

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 208))

Abstract

The muscarinic cholinergic system constitutes an important part of the neuronal circuitry that modulates normal cognition. Muscarinic receptor antagonists are well known to produce or exacerbate impairments in attention, learning, and memory. Conversely, both direct-acting muscarinic receptor agonists and indirect-acting muscarinic cholinergic agonists, such as acetylcholinesterase inhibitors, have shown cognition-enhancing properties, including improvements in normal cognitive function, reversal of cognitive deficits induced by muscarinic receptor antagonists, and attenuation of cognitive deficits in psychiatric and neurological disorders, such as Alzheimer’s disease and schizophrenia. However, until recently, the lack of small molecule ligands that antagonize or activate specific muscarinic acetylcholine receptor (mAChR) subtypes with high selectivity has been a major obstacle in defining the relative contributions of individual mAChRs to different aspects of cognitive function and for the development of novel therapeutic agents. These limitations may be potentially overcome by the recent discovery of novel mAChR subtype-selective compounds, notably allosteric agonists and positive allosteric modulators, which exhibit greater selectivity for individual mAChR subtypes than previous mAChR orthosteric agonists. In preclinical studies, these novel ligands have shown promising efficacy in several models for the enhancement of cognition. In this chapter, we will review the muscarinic cholinergic circuitry and pharmacology of mAChR agonists and antagonists relevant to the modulation of different aspects of cognition in animals and clinical populations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AC:

Adenylyl cyclase

ACh:

Acetylcholine

AChEIs:

Acetylcholinesterase inhibitors

AD:

Alzheimer’s disease

ADAS-cog:

Alzheimer’s Disease assessment scale-cognitive

AMG:

Amygdala

BQCA:

Benzylquinolone carboxylic acid

cAMP:

Cyclic adenosine monophosphate

cc:

Corpus callosum

CGI:

Clinical Global Impression scale

CNS:

Central nervous system

CP:

Caudate-putamen

CSF:

Cerebrospinal fluid

DA:

Dopamine

DBB:

Diagonal band of Broca

EC:

Entorhinal cortex

EEG:

Electrocephalogram

EPSC:

Excitatory postsynaptic current

GABA:

γ-aminobutyric acid

HPC:

Hippocampus

IP3:

Inositol triphosphate

KO:

Knockout

LDTg:

Laterodorsal tegmental nucleus

M1–M5:

Muscarinic receptor subtypes M1 through M5

mAChRs:

Muscarinic acetylcholine receptors

(m)PFC:

(Medial) prefrontal cortex

NAM:

Negative allosteric modulator

NAS:

Nucleus accumbens

NBM:

Nucleus basalis of Meynert

NMDA:

N-methyl-d-aspartate

OB:

Olfactory bulb

PAM:

Positive allosteric modulator

PANSS:

Positive and negative syndrome scale

PLC:

Phospholipase C

PPI:

Prepulse inhibition

PPTg:

Pedunculopontine tegmental nucleus

SN:

Substantia nigra

TBPB:

1-(1’-2-methylbenzyl)-1,4’-bipiperidin-4-yl)-1H-benzo[d]imidazol-2(3H)-one

THAL:

Thalamus

VTA:

Ventral tegmental area

WT:

Wildtype

References

  • Agnoli A, Martucci N, Manna V, Conti L, Fioravanti M (1983) Effect of cholinergic and anticholinergic drugs on short-term memory in Alzheimer’s dementia: a neuropsychological and computerized electroencephalographic study. Clin Neuropharmacol 6:311–323

    PubMed  CAS  Google Scholar 

  • Aigner TG, Mishkin M (1986) The effects of physostigmine and scopolamine on recognition memory in monkeys. Behav Neural Biol 45:81–87

    PubMed  CAS  Google Scholar 

  • Anagnostaras SG, Maren S, Fanselow MS (1995) Scopolamine selectively disrupts the acquisition of contextual fear conditioning in rats. Neurobiol Learn Mem 64:191–194

    PubMed  CAS  Google Scholar 

  • Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6:51–58

    PubMed  CAS  Google Scholar 

  • Anagnostaras SG, Maren S, Sage JR, Goodrich S, Fanselow MS (1999) Scopolamine and Pavlovian fear conditioning in rats: dose-effect analysis. Neuropsychopharmacology 21(6):731–744

    PubMed  CAS  Google Scholar 

  • Amenta F, Parnetti L, Gallai V, Wallin A (2001) Treatment of cognitive dysfunction associated with Alzheimer’s disease with cholinergic precursors. Ineffective treatments or inappropriate approaches? Mech Ageing Dev 122:2025–2040

    PubMed  CAS  Google Scholar 

  • Andrews JS, Grützner M, Stephens DN (1992) Effects of cholinergic and non-cholinergic drugs on visual discrimination and delayed visual discrimination performance in rats. Psychopharmacology (Berl) 106:523–530

    CAS  Google Scholar 

  • Araya R, Noguchi T, Yuhki M, Kitamura N, Higuchi M, Saido TC, Seki K, Itohara S, Kawano M, Tanemura K, Takashima A, Yamada K, Kondoh Y, Kanno I, Wess J, Yamada M (2006) Loss of M5 muscarinic acetylcholine receptors leads to cerebrovascular and neuronal abnormalities and cognitive deficits in mice. Neurobiol Dis 24:334–344

    PubMed  CAS  Google Scholar 

  • Avlani VA, Langmead CJ, Guida E, Wood MD, Tehan BG, Herdon HJ, Watson JM, Sexton PM, Christopoulos A (2010) Orthosteric and allosteric modes of interaction of novel selective agonists of the M1 muscarinic acetylcholine receptor. Mol Pharmacol 78(1):94–104

    Google Scholar 

  • Barak S (2009) Modeling cholinergic aspects of schizophrenia: focus on the antimuscarinic syndrome. Behav Brain Res 204:335–351

    PubMed  CAS  Google Scholar 

  • Baron SP, Wright D, Wenger GR (1998) Effects of drugs of abuse and scopolamine on memory in rats: delayed spatial alternation and matching to position. Psychopharmacology 137:7–14

    PubMed  CAS  Google Scholar 

  • Barten DM, Albright CF (2008) Therapeutic strategies for Alzheimer’s disease. Mol Neurobiol 37:171–186

    PubMed  CAS  Google Scholar 

  • Bartolomeo AC, Morris H, Buccafusco JJ, Kille N, Rosenzweig-Lipson S, Husbands MG, Sabb AL, Abou-Gharbia M, Moyer JA, Boast CA (2000) The preclinical pharmacological profile of WAY-132983, a potent M1 preferring agonist. J Pharmacol Exp Ther 292:584–596

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL III, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–417

    PubMed  CAS  Google Scholar 

  • Basile AS, Fedorova I, Zapata A, Liu XG, Shippenberg T, Duttaroy A, Yamada M, Wess J (2002) Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci U S A 99:11452–11457

    PubMed  CAS  Google Scholar 

  • Bernard V, Normand E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12:3591–3600

    PubMed  CAS  Google Scholar 

  • Besheer J, Short KR, Bevins RA (2001) Dopaminergic and cholinergic antagonism in a novel-object detection task with rats. Behav Brain Res 126:211–217

    PubMed  CAS  Google Scholar 

  • Betz AJ, McLaughlin PJ, Burgos M, Weber SM, Salamone JD (2007) The muscarinic receptor antagonist tropicamide suppresses tremulous jaw movements in a rodent model of parkinsonian tremor: possible role of M4 receptors. Psychopharmacology 194:347–359

    PubMed  CAS  Google Scholar 

  • Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 25(1):CD005593

    Google Scholar 

  • Birks J, Flicker L (2006) Donepezil for mild cognitive impairment. Cochrane Database Syst Rev 3:CD006104

    PubMed  CAS  Google Scholar 

  • Bodick NC, Offen WW, Levey AI et al (1997a) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54:465–473

    PubMed  CAS  Google Scholar 

  • Bodick NC, Offen WW, Shannon HE et al (1997b) The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer disease. Alzheimer Dis Assoc Disord 11(Suppl 4):S16–S22

    PubMed  CAS  Google Scholar 

  • Bolam JP, Wainer BH, Smith AD (1984) Characterization of cholinergic neurons in the rat neostriatum: a combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience 12:711–718

    PubMed  CAS  Google Scholar 

  • Bolden C, Cusack B, Richelson E (1992) Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells. J Pharmacol Exp Ther 260:576–580

    PubMed  CAS  Google Scholar 

  • Bradley SR, Lameh J, Ohrmund L et al (2010) AC-260584, an orally bioavailable M(1) muscarinic receptor allosteric agonist, improves cognitive performance in an animal model. Neuropharmacology 58:365–373

    PubMed  CAS  Google Scholar 

  • Brandeis R, Dachir S, Sapir M, Levy A, Fisher A (1990) Reversal of age-related cognitive impairments by an M1 cholinergic agonist, AF102B. Pharmacol Biochem Behav 36:89–95

    PubMed  CAS  Google Scholar 

  • Brady AE, Jones CK, Bridges TM, Kennedy JP, Thompson AD, Heiman JU, Breininger ML, Gentry PR, Yin H, Jadhav SB, Shirey JK, Conn PJ, Lindsley CW (2008) Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharmacol Exp Ther 327:941–953

    PubMed  CAS  Google Scholar 

  • Brann MR, Buckley NJ, Bonner TI (1988) The striatum and cerebral cortex express different muscarinic receptor mRNAs. FEBS Lett 28:90–94

    Google Scholar 

  • Brockel BJ, Fowler SC (1995) Effects of chronic haloperidol on reaction time and errors in a sustained attention task: partial reversal by anticholinergics and by amphetamine. J Pharmacol Exp Ther 275:1090–1098

    PubMed  CAS  Google Scholar 

  • Bruno G, Mohr E, Gillespie M, Fedio P, Chase TN (1986) Muscarinic agonist therapy of Alzheimer’s disease. A clinical trial of RS-86. Arch Neurol 43:659–661

    PubMed  CAS  Google Scholar 

  • Buchanan KA, Petrovic MM, Chamberlain SE, Marrion NV, Mellor JR (2010) Facilitation of long-term potentiation by muscarinic M(1) receptors is mediated by inhibition of SK channels. Neuron 68:948–963

    PubMed  CAS  Google Scholar 

  • Buckley NJ, Bonner TI, Buckley CM, Brann MR (1989) Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol 35:469–476

    PubMed  CAS  Google Scholar 

  • Buresová O, Bolhuis JJ, Bures J (1986) Differential effects of cholinergic blockade on performance of rats in the water tank navigation task and in a radial water maze. Behav Neurosci 100:476–482

    PubMed  Google Scholar 

  • Bushnell PJ, Oshiro WM, Padnos BK (1997) Detection of visual signals by rats: effects of chlordiazepoxide and cholinergic and adrenergic drugs on sustained attention. Psychopharmacology (Berl) 134:230–241

    CAS  Google Scholar 

  • Bymaster FP, Heath I, Hendrix JC, Shannon HE (1993) Comparative behavioral and neurochemical activities of cholinergic antagonists in rats. J Pharmacol Exp Ther 267:16–24

    PubMed  CAS  Google Scholar 

  • Byun N, Lawson K, Gore JC, Conn PJ, Jones CK (2011) Antipsychotic-like profile and reversal of cognitive impairment with the positive allosteric modulator of the M4 muscarinic acetylcholine receptor VU0152100. Abstracts of the 13th International Congress on Schizophrenia Research (ICOSR). Schizophr Bull Suppl 1:1–342

    Google Scholar 

  • Callahan MJ, Kinsora JJ, Harbaugh RE, Reeder TM, Davis RE (1993) Continuous ICV infusion of scopolamine impairs sustained attention of rhesus monkeys. Neurobiol Aging 14:147–151

    PubMed  CAS  Google Scholar 

  • Carey GJ, Billard W, Binch H 3rd, Cohen-Williams M, Crosby G, Grzelak M, Guzik H, Kozlowski JA, Lowe DB, Pond AJ, Tedesco RP, Watkins RW, Coffin VL (2001) SCH 57790, a selective muscarinic M(2) receptor antagonist, releases acetylcholine and produces cognitive enhancement in laboratory animals. Eur J Pharmacol 431:189–200

    PubMed  CAS  Google Scholar 

  • Cayzac S, Delcasso S, Paz V, Jeantet Y, Cho YH (2011) Changes in striatal procedural memory coding correlate with learning deficits in a mouse model of Huntington disease. Proc Natl Acad Sci U S A 108:9280–9285

    PubMed  CAS  Google Scholar 

  • Chan WY, McKinzie DL, Bose S, Mitchell SN, Witkin JM, Thompson RC, Christopoulos A, Lazareno S, Birdsall NJ, Bymaster FP, Felder CC (2008) Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci U S A 105:10978–10983

    PubMed  CAS  Google Scholar 

  • Chaudhuri JD, Hiltunen M, Nykänen M, Ylä-Herttuala S, Soininen H, Miettinen R (2005) Localization of M2 muscarinic receptor protein in parvalbumin and calretinin containing cells of the adult rat entorhinal cortex using two complementary methods. Neuroscience 131:557–566

    PubMed  CAS  Google Scholar 

  • Chen KC, Baxter MG, Rodefer JS (2004) Central blockade of muscarinic cholinergic receptors disrupts affective and attentional set-shifting. Eur J Neurosci 20:1081–1088

    PubMed  Google Scholar 

  • Chouinard S, Sepehry AA, Stip E (2007) Oral cholinesterase inhibitor add-on therapy for cognitive enhancement in schizophrenia: a quantitative systematic re-view, part I. Clin Neuropharmacol 30:169–182

    PubMed  CAS  Google Scholar 

  • Christopoulos A (2002) Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat Rev Drug Discov 1:198–210

    PubMed  CAS  Google Scholar 

  • Christopoulos A, Mitchelson F (1997) Application of an allosteric ternary complex model to the technique of pharmacological resultant analysis. J Pharm Pharmacol 49:781–786

    PubMed  CAS  Google Scholar 

  • Clarke PB, Hommer DW, Pert A, Skirboll LR (1987) Innervation of substantia nigra neurons by cholinergic afferents from pedunculopontine nucleus in the rat: neuroanatomical and electrophysiological evidence. Neuroscience 23:1011–1019

    PubMed  CAS  Google Scholar 

  • Conn PJ, Jones CK, Lindsley CW (2009) Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol Sci 30:148–155

    PubMed  CAS  Google Scholar 

  • Cox CL, Huguenard JR, Prince DA (1997) Nucleus reticularis neurons mediate diverse inhibitory effects in thalamus. Proc Natl Acad Sci U S A 94:8854–8859

    PubMed  CAS  Google Scholar 

  • Cummings JL (2003) Use of cholinesterase inhibitors in clinical practice: evidence-based recommendations. Am J Geriatr Psychiatry 11:131–145

    PubMed  Google Scholar 

  • Datta S, Siwek DF (1997) Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep. J Neurophysiol 77(6):2975–2988

    PubMed  CAS  Google Scholar 

  • Dawson GR, Bayley P, Channell S, Iversen SD (1994) A comparison of the effects of the novel muscarinic receptor agonists L-689,660 and AF102B in tests of reference and working memory. Psychopharmacology 113(3–4):361–368

    PubMed  CAS  Google Scholar 

  • Dennes RP, Barnes JC (1993) Attenuation of scopolamine-induced spatial memory deficits in the rat by cholinomimetic and non-cholinomimetic drugs using a novel task in the 12-arm radial maze. Psychopharmacology (Berl) 111:435–441

    CAS  Google Scholar 

  • Dietrich H, Jenck F (2010) Intact learning and memory in rats following treat-ment with the dual orexin receptor antagonist almorexant. Psychopharmacology 212:145–154

    PubMed  CAS  Google Scholar 

  • Dillon GM, Shelton D, McKinney AP, Caniga M, Marcus JN, Ferguson MT, Kornecook TJ, Dodart JC (2009) Prefrontal cortex lesions and scopolamine impair attention performance of C57BL/6 mice in a novel 2-choice visual discrimination task. Behav Brain Res 204:67–76

    PubMed  CAS  Google Scholar 

  • Dodart JC, Mathis C, Ungerer A (1997) Scopolamine-induced deficits in a two-trial object recognition task in mice. Neuroreport 24:1173–1178

    Google Scholar 

  • Dörje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR (1991) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J Pharmacol Exp Ther 256:727–733

    PubMed  Google Scholar 

  • Domer FR, Schueler FW (1960) Investigations of the amnesic properties of scopolamine and related compounds. Arch Int Pharmacodyn Ther 127:449–458

    PubMed  CAS  Google Scholar 

  • Doods H, Entzeroth M, Ziegler H, Schiavi G, Engel W, Mihm G, Rudolf K, Eberlein W (1993) Characterization of BIBN 99: a lipophilic and selective muscarinic M2 receptor antagonist. Eur J Pharmacol 242:23–30

    PubMed  CAS  Google Scholar 

  • Drinkenburg WH, Sondag HN, Coenders CJ, Andrews JS, Vossen JM (1995) Effects of selective antagonism or depletion of the cholinergic system on visual discrimination performance in rats. Behav Pharmacol 6:695–702

    PubMed  CAS  Google Scholar 

  • Drachman D, Leavitt J (1974) Human memory and the cholinergic system. A relationship to aging? Arch Neurol 30:113–121

    PubMed  CAS  Google Scholar 

  • Dudchenko P, Sarter M (1992) Behavioral microanalysis of spatial delayed alternation performance: rehearsal through overt behavior, and effects of scopolamine and chlordiazepoxide. Psychopharmacology (Berl) 107:263–270

    CAS  Google Scholar 

  • Eckenstein FP, Baughman RW, Quinn J (1988) An anatomical study of cholinergic innervation in rat cerebral cortex. Neuroscience 25:457–474

    PubMed  CAS  Google Scholar 

  • Edelstein P, Schultz JR, Hirschowitz J et al (1981) Physostigmine and lithium in the schizophrenias. Am J Psychiatry 138:1078–1081

    PubMed  CAS  Google Scholar 

  • Ellis JR, Ellis KA, Bartholomeusz CF, Harrison BJ, Wesnes KA, Erskine FF, Vitetta L, Nathan PJ (2006) Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans. Int J Neuropsychopharmacol 9:175–189

    PubMed  CAS  Google Scholar 

  • Ennaceur A, Meliani K (1992) Effects of physostigmine and scopolamine on rats’ performances in object-recognition and radial-maze tests. Psychopharmacology (Berl) 109:321–330

    CAS  Google Scholar 

  • Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48:649–684

    PubMed  CAS  Google Scholar 

  • Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, LaRossa GN, Spinner ML, Klunk WE, Mathis CA, DeKosky ST, Morris JC, Holtzman DM (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59:512–519

    PubMed  CAS  Google Scholar 

  • Farlow MR, Cummings JL (2007) Effective pharmacologic management of Alzheimer’s disease. Am J Med 120:388–397

    PubMed  CAS  Google Scholar 

  • Feiro O, Gould TJ (2005) The interactive effects of nicotinic and muscarinic cholinergic receptor inhibition on fear conditioning in young and aged C57BL/6 mice. Pharmacol Biochem Behav 80:251–262

    PubMed  CAS  Google Scholar 

  • Fink-Jensen A, Fedorova I, Wörtwein G et al (2003) Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J Neurosci Res 74:91–96

    PubMed  CAS  Google Scholar 

  • Fisher A (2007) M1 muscarinic agonists target major hallmarks of Alzheimer’s disease – an update. Curr Alzheimer Res 4:577–580

    PubMed  CAS  Google Scholar 

  • Fisher A, Brandeis R, Karton I, Pittel Z, Gurwitz D, Haring R, Sapir M, Levy A, Heldman E (1991) (+−)-cis-2-methyl-spiro(1,3-oxathiolane-5,3′)quinuclidine, an M1 selective cholinergic agonist, attenuates cognitive dysfunctions in an animal model of Alzheimer’s disease. J Pharmacol Exp Ther 257:392–403

    PubMed  CAS  Google Scholar 

  • Fornari RV, Moreira KM, Oliveira MG (2000) Effects of the selective M1 muscarinic receptor antagonist dicyclomine on emotional memory. Learn Mem 7:287–292

    PubMed  CAS  Google Scholar 

  • Fredrickson A, Snyder PJ, Cromer J, Thomas E, Lewis M, Maruff P (2008) The use of effect sizes to characterize the nature of cognitive change in psychopharmacological studies: an example with scopolamine. Hum Psychopharmacol Clin Exp 23:425–436

    CAS  Google Scholar 

  • Galasko D, Chang L, Motter R, Clark CM, Kaye J, Knopman D, Thomas R, Kholodenko D, Schenk D, Lieberburg I, Miller B, Green R, Basherad R, Kertiles L, Boss MA, Seubert P (1998) High cerebrospinal fluid tau and low amyloid beta42 levels in the clinical diagnosis of Alzheimer disease and relation to apolipoprotein E genotype. Arch Neurol 55:937–945

    PubMed  CAS  Google Scholar 

  • Gerfen CR, Bolam JP (2010) The neuroanatomical organization of the basal ganglia. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Academic Press, London

    Google Scholar 

  • González I, Arévalo-Serrano J, Sanz-Anquela JM, Gonzalo-Ruiz A (2007) Effects of beta-amyloid protein on M1 and M2 subtypes of muscarinic acetylcholine receptors in the medial septum-diagonal band complex of the rat: relationship with cholinergic, GABAergic, and calcium-binding protein perikarya. Acta Neuropathol 113:637–651

    PubMed  Google Scholar 

  • Gonzalo-Ruiz A, Sanz-Anquela MJ, Lieberman AR (1995) Cholinergic projections to the anterior thalamic nuclei in the rat: a combined retrograde tracing and choline acetyl transferase immunohistochemical study. Anat Embryol (Berl) 192(4):335–49

    Google Scholar 

  • Gould E, Woolf NJ, Butcher LL (1989) Cholinergic projections to the substantia nigra from the pedunculopontine and laterodorsal tegmental nuclei. Neuroscience 28:611–623

    PubMed  CAS  Google Scholar 

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153:321–330

    PubMed  CAS  Google Scholar 

  • Green A, Ellis KA, Ellis J, Bartholomeusz CF, Ilic S, Croft RJ, Phan KL, Nathan PJ (2005) Muscarinic and nicotinic receptor modulation of object and spatial n-back working memory in humans. Pharmacol Biochem Behav 81:575–584

    PubMed  CAS  Google Scholar 

  • Green MF, Kern RS, Heaton RK (2004) Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr Res 72:41–51

    PubMed  Google Scholar 

  • Hagan JJ, Jansen JH, Broekkamp CL (1989) Hemicholinium-3 impairs spatial learning and the deficit is reversed by cholinomimetics. Psychopharmacology 98:347–356

    PubMed  CAS  Google Scholar 

  • Hájos N, Papp EC, Acsády L, Levey AI, Freund TF (1998) Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus. Neuroscience 82:355–376

    PubMed  Google Scholar 

  • Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH (1987) The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 262:105–124

    PubMed  CAS  Google Scholar 

  • Hamborg-Petersen B, Nielsen MM, Thordal C (1984) Toxic effect of scopolamine eye drops in children. Acta Ophthalmol 62:485–488

    CAS  Google Scholar 

  • Harries MH, Samson NA, Cilia J, Hunter AJ (1998) The profile of sabcomeline (SB-202026), a functionally selective M1 receptor partial agonist, in the marmoset. Br J Pharmacol 124:409–415

    PubMed  CAS  Google Scholar 

  • Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16(6):710–715

    PubMed  CAS  Google Scholar 

  • Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36(1):52–73

    PubMed  CAS  Google Scholar 

  • Hatcher JP, Loudon JM, Hagan JJ, Clark MS (1998) Sabcomeline (SB-202026), a functionally selective M1 receptor partial agonist, reverses delay-induced deficits in the T-maze. Psychopharmacology 138:275–282

    PubMed  CAS  Google Scholar 

  • Heinrich JN, Butera JA, Carrick T, Kramer A, Kowal D, Lock T, Marquis KL, Pausch MH, Popiolek M, Sun SC, Tseng E, Uveges AJ, Mayer SC (2009) Pharmacological comparison of muscarinic ligands: historical versus more recent muscarinic M1-preferring receptor agonists. Eur J Pharmacol 605:53–56

    PubMed  CAS  Google Scholar 

  • Hellendall RP, Godfrey DA, Ross CD, Armstrong DM, Price JL (1986) The distribution of choline acetyltransferase in the rat amygdaloid complex and adjacent cortical areas, as determined by quantitative micro-assay and immunohistochemistry. J Comp Neurol 249:486–498

    PubMed  CAS  Google Scholar 

  • Hersch SM, Levey AI (1995) Diverse pre- and post-synaptic expression of m1-m4 muscarinic receptor proteins in neurons and afferents in the rat neostriatum. Life Sci 56:931–938

    PubMed  CAS  Google Scholar 

  • Hersch SM, Gutekunst CA, Rees HD, Heilman CJ, Levey AI (1994) Distribution of m1-m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J Neurosci 14:3351–3363

    PubMed  CAS  Google Scholar 

  • Higgs S, Deacon RMJ, Rawlins JNP (2000) Effects of scopolamine on a novel choice serial reaction time task. Eur J Neurosci 12:1781–1788

    PubMed  CAS  Google Scholar 

  • Hock C, Maddalena A, Heuser I, Naber D, Oertel W, von der Kammer H, Wienrich M, Raschig A, Deng M, Growdon JH, Nitsch RM (2000) Treatment with the selective muscarinic agonist talsaclidine decreases cerebrospinal fluid levels of total amyloid beta-peptide in patients with Alzheimer’s disease. Ann N Y Acad Sci 920:285–291

    PubMed  CAS  Google Scholar 

  • Hock C, Maddalena A, Raschig A, Müller-Spahn F, Eschweiler G, Hager K, Heuser I, Hampel H, Müller-Thomsen T, Oertel W, Wienrich M, Signorell A, Gonzalez-Agosti C, Nitsch RM (2003) Treatment with the selective muscarinic m1 agonist talsaclidine decreases cerebrospinal fluid levels of A beta 42 in patients with Alzheimer’s disease. Amyloid 10:1–6

    PubMed  CAS  Google Scholar 

  • Hodges H, Peters S, Gray JA, Hunter AJ (1999) Counteractive effects of a partial (sabcomeline) and a full (RS86) muscarinic receptor agonist on deficits in radial maze performance induced by S-AMPA lesions of the basal forebrain and medial septal area. Behav Brain Res 99:81–92

    PubMed  CAS  Google Scholar 

  • Hunter AJ, Roberts FF (1988) The effect of pirenzepine on spatial learning in the Morris Water Maze. Pharmacol Biochem Behav 30:519–523

    PubMed  CAS  Google Scholar 

  • Ichikawa T, Hirata Y (1986) Organization of choline acetyltransferase-containing structures in the forebrain of the rat. J Neurosci 6:281–292

    PubMed  CAS  Google Scholar 

  • Ince E, Ciliax BJ, Levey AI (1997) Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse 27:357–366

    PubMed  CAS  Google Scholar 

  • Jacobson MA, Kreatsoulas C, Pascarella DM, O’Brien JA, Sur C (2010) The M1 muscarinic receptor allosteric agonists AC-42 and 1-[1′-(2-methylbenzyl)-1,4′-bipiperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one bind to a unique site distinct from the acetylcholine orthosteric site. Mol Pharmacol 78:648–657

    PubMed  CAS  Google Scholar 

  • Jäkälä P, Sirviö J, Jolkkonen J, Riekkinen P Jr, Acsady L, Riekkinen P (1992) The effects of p-chlorophenylalanine-induced serotonin synthesis inhibition and muscarinic blockade on the performance of rats in a 5-choice serial reaction time task. Behav Brain Res 51:29–40

    PubMed  Google Scholar 

  • Jo J, Son GH, Winters BL, Kim MJ, Whitcomb DJ, Dickinson BA, Lee YB, Futai K, Amici M, Sheng M, Collingridge GL, Cho K (2010) Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95. Nat Neurosci 13(10):1216–24

    Google Scholar 

  • Jones CK, Shannon HE (2000) Muscarinic cholinergic modulation of prepulse inhibition of the acoustic startle reflex. J Pharmacol Exp Ther 294:1017–1023

    PubMed  CAS  Google Scholar 

  • Jones CK, Eberle EL, Shaw DB, McKinzie DL, Shannon HE (2005) Pharmacologic interactions between the muscarinic cholinergic and dopaminergic systems in the modulation of prepulse inhibition in rats. J Pharmacol Exp Ther 312:1055–1063

    PubMed  CAS  Google Scholar 

  • Jones CK, Brady AE, Davis AA, Xiang Z, Bubser M, Tantawy MN, Kane AS, Bridges TM, Kennedy JP, Bradley SR, Peterson TE, Ansari MS, Baldwin RM, Kessler RM, Deutch AY, Lah JJ, Levey AI, Lindsley CW, Conn PJ (2008) Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J Neurosci 28:10422–10433

    PubMed  CAS  Google Scholar 

  • Jones DN, Higgins GA (1995) Effect of scopolamine on visual attention in rats. Psychopharmacology (Berl) 120:142–149

    CAS  Google Scholar 

  • Kane A (2008) The in vivo characterization of TBPB, a novel allosteric agonist of M1 muscarinic receptors: implications for the role of the M1 muscarinic receptor in treatment of schizophrenia. S08 NSC 296 Thesis Defense Vanderbilt University

    Google Scholar 

  • Kim MG, Bodor ET, Wang C, Harden TK, Kohn H (2003) C(8) substituted 1-azabicyclo[3.3.1]non-3-enes and C(8) substituted 1-azabicyclo[3.3.1]nonan-4-ones: novel muscarinic receptor antagonists. J Med Chem 46:2216–2226

    PubMed  CAS  Google Scholar 

  • Kimura H, McGeer PL, Peng F, McGeer EG (1980) Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry. Science 208:1057–1059

    PubMed  CAS  Google Scholar 

  • Klinkenberg I, Blokland A (2010) The validity of scopolamine as a pharmacological model for cognitive impairment. Neurosci Biobehav Rev 34:1307–1350

    PubMed  CAS  Google Scholar 

  • Kobayashi F, Yageta Y, Yamazaki T, Wakabayashi E, Inoue M, Segawa M, Matsuzawa S (2007) Pharmacological effects of imidafenacin (KRP-197/ONO-8025), a new bladder selective anti-cholinergic agent, in rats. Comparison of effects on urinary bladder capacity and contraction, salivary secretion and performance in the Morris water maze task. Arzneimittelforschung 57:147–154

    PubMed  CAS  Google Scholar 

  • Kozak R, Bruno JP, Sarter M (2006) Augmented prefrontal acetylcholine release during challenged attentional performance. Cereb Cortex 16:9–17

    PubMed  Google Scholar 

  • Lachowicz JE, Lowe D, Duffy RA, Ruperto V, Taylor LA, Guzik H, Brown J, Berger JG, Tice M, McQuade R, Kozlowski J, Clader J, Strader CD, Murgolo N (1999) SCH 57790: a novel M2 receptor selective antagonist. Life Sci 64:535–539

    PubMed  CAS  Google Scholar 

  • Langmead CJ, Austin NE, Branch CL, Brown JT, Buchanan KA, Davies CH, Forbes IT, Fry VA, Hagan JJ, Herdon HJ, Jones GA, Jeggo R, Kew JN, Mazzali A, Melarange R, Patel N, Pardoe J, Randall AD, Roberts C, Roopun A, Starr KR, Teriakidis A, Wood MD, Whittington M, Wu Z, Watson J (2008) Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br J Pharmacol 54:1104–1115

    Google Scholar 

  • Langmead CJ, Fry VA, Forbes IT, Branch CL, Christopoulos A, Wood MD, Herdon HJ (2006) Probing the molecular mechanism of interaction between 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the muscarinic M(1) receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol Pharmacol 69(1):236–46.

    Google Scholar 

  • Lazareno S, Buckley NJ, Roberts FF (1990) Characterization of muscarinic M4 binding sites in rabbit lung, chicken heart, and NG108-15 cells. Mol Pharmacol 38:805–815

    PubMed  CAS  Google Scholar 

  • Leach K, Loiacono RE, Felder CC et al (2010) Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology 35:855–869

    PubMed  CAS  Google Scholar 

  • Leaton RN, Kreindler M (1972) Effects of physostigmine and scopolamine on operant brightness discrimination in the rat. Physiol Behav 9:121–123

    PubMed  CAS  Google Scholar 

  • Lebois EP, Bridges TM, Lewis LM, Dawson ES, Kane AS, Xiang Z, Jadhav SB, Yin H, Kennedy JP, Meiler J, Niswender CM, Jones CK, Conn PJ, Weaver CD, Lindsley CW (2010) Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M1 receptor function in the central nervous system. ACS Chem Neurosci 1:104–121

    PubMed  CAS  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A, Boe AF, Boguski MS, Brockway KS, Byrnes EJ, Chen L, Chen L, Chen TM, Chin MC, Chong J, Crook BE, Czaplinska A, Dang CN, Datta S, Dee NR, Desaki AL, Desta T, Diep E, Dolbeare TA, Donelan MJ, Dong HW, Dougherty JG, Duncan BJ, Ebbert AJ, Eichele G, Estin LK, Faber C, Facer BA, Fields R, Fischer SR, Fliss TP, Frensley C, Gates SN, Glattfelder KJ, Halverson KR, Hart MR, Hohmann JG, Howell MP, Jeung DP, Johnson RA, Karr PT, Kawal R, Kidney JM, Knapik RH, Kuan CL, Lake JH, Laramee AR, Larsen KD, Lau C, Lemon TA, Liang AJ, Liu Y, Luong LT, Michaels J, Morgan JJ, Morgan RJ, Mortrud MT, Mosqueda NF, Ng LL, Ng R, Orta GJ, Overly CC, Pak TH, Parry SE, Pathak SD, Pearson OC, Puchalski RB, Riley ZL, Rockett HR, Rowland SA, Royall JJ, Ruiz MJ, Sarno NR, Schaffnit K, Shapovalova NV, Sivisay T, Slaughterbeck CR, Smith SC, Smith KA, Smith BI, Sodt AJ, Stewart NN, Stumpf KR, Sunkin SM, Sutram M, Tam A, Teemer CD, Thaller C, Thompson CL, Varnam LR, Visel A, Whitlock RM, Wohnoutka PE, Wolkey CK, Wong VY, Wood M, Yaylaoglu MB, Young RC, Youngstrom BL, Yuan XF, Zhang B, Zwingman TA, Jones AR (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445(7124):168–76

    Google Scholar 

  • Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR (1991) Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci 11:3218–3226

    PubMed  CAS  Google Scholar 

  • Levey AI, Edmunds SM, Heilman CJ, Desmond TJ, Frey KA (1994) Localization of muscarinic m3 receptor protein and M3 receptor binding in rat brain. Neuroscience 63:207–221

    PubMed  CAS  Google Scholar 

  • Levey AI, Edmunds SM, Hersch SM, Wiley RG, Heilman CJ (1995a) Light and electron microscopic study of m2 muscarinic acetylcholine receptor in the basal forebrain of the rat. J Comp Neurol 351:339–356

    PubMed  CAS  Google Scholar 

  • Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ (1995b) Expression of ml-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci 15:4077–4092

    PubMed  CAS  Google Scholar 

  • Li M, Yasuda RP, Wall SJ, Wellstein A, Wolfe BB (1991) Distribution of m2 muscarinic receptors in rat brain using antisera selective for m2 receptors. Mol Pharmacol 40:28–35

    PubMed  CAS  Google Scholar 

  • Loudon JM, Bromidge SM, Brown F, Clark MS, Hatcher JP, Hawkins J, Riley GJ, Noy G, Orlek BS (1997) SB 202026: a novel muscarinic partial agonist with functional selectivity for M1 receptors. J Pharmacol Exp Ther 283:1059–1068

    PubMed  CAS  Google Scholar 

  • Ma L, Seager MA, Wittmann M, Jacobson M, Bickel D, Burno M, Jones K, Graufelds VK, Xu G, Pearson M, McCampbell A, Gaspar R, Shughrue P, Danziger A, Regan C, Flick R, Pascarella D, Garson S, Doran S, Kreatsoulas C, Veng L, Lindsley CW, Shipe W, Kuduk S, Sur C, Kinney G, Seabrook GR, Ray WJ (2009) Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc Natl Acad Sci U S A 106:15950–15955

    PubMed  CAS  Google Scholar 

  • Marino PJ, Conn PJ (2002) Direct and indirect modulation of the N-methyl-D-aspartate receptor: potential for the development of novel antipsychotic therapies. Curr Drug Targets CNS Neurol Disord 1:1–16

    PubMed  CAS  Google Scholar 

  • Marino MJ, Rouse ST, Levey AI, Potter LT, Conn PJ (1998) Activation of the genetically defined ml muscarinicreceptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc Natl Acad Sci U S A 95:11465–11470

    PubMed  CAS  Google Scholar 

  • Matsuoka N, Maeda N, Ohkubo Y et al (1991) Differential effects of physostigmine and pilocarpine on the spatial memory deficits produced by two septo-hippocampal deafferentations in rats. Brain Res 559:233–240

    PubMed  CAS  Google Scholar 

  • McDonald AJ, Mascagni F (2010) Neuronal localization of m1 muscarinic receptor immunoreactivity in the rat basolateral amygdala. Brain Struct Funct 215:37–48

    PubMed  CAS  Google Scholar 

  • McDonough JH Jr (1982) Effects of anticholinergic drugs on DRL performance of rhesus monkeys. Pharmacol Biochem Behav 17:85–90

    PubMed  CAS  Google Scholar 

  • McGeer PL, McGeer EG, Kamo H, Wong K (1986) Positron emission tomography and the possible origins of cytopathology in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 10:501–818

    PubMed  CAS  Google Scholar 

  • Means LW, Holsten RD, Long M, High KM (1996) Scopolamine- and morphine-induced deficits in water maze alternation: failure to attenuate with glucose. Neurobiol Learn Mem 66:167–175

    PubMed  CAS  Google Scholar 

  • Mechawar N, Cozzari C, Descarries L (2000) Cholinergic innervation in adult rat cerebral cortex: a quantitative immunocytochemical description. J Comp Neurol 428:305–318

    PubMed  CAS  Google Scholar 

  • Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201

    PubMed  CAS  Google Scholar 

  • M’Harzi M, Palou AM, Oberlander C, Barzaghi F (1995) Antagonism of scopolamine-induced memory impairments in rats by the muscarinic agonist RU 35,926 (CI-979). Pharmacol Biochem Behav 51:119–124

    PubMed  Google Scholar 

  • Mirza NR, Stolerman IP (2000) The role of nicotinic and muscarinic acetylcholine receptors in attention. Psychopharmacology (Berl) 148:243–250

    CAS  Google Scholar 

  • Mishima K, Iwasaki K, Tsukikawa H, Matsumoto Y, Egashira N, Abe K, Egawa T, Fujiwara M (2000) The scopolamine-induced impairment of spatial cognition parallels the acetylcholine release in the ventral hippocampus in rats. Jpn J Pharmacol 84:163–173

    PubMed  CAS  Google Scholar 

  • Miyachi H, Kiyota H, Uchiki H, Segawa M (1999) Synthesis and antimuscarinic activity of a series of 4-(1-Imidazolyl)-2,2-diphenylbutyramides: discovery of potent and subtype-selective antimuscarinic agents. Bioorg Med Chem 7:1151–1161

    PubMed  CAS  Google Scholar 

  • Miyakawa T, Yamada M, Duttaroy A et al (2001) Hyperactivity and intact hippocampus-dependent learning in mice lacking the Ml muscarinic acetylcholine receptor. J Neurosci 21:5239–5250

    PubMed  CAS  Google Scholar 

  • Motter R, Vigo-Pelfrey C, Kholodenko D, Barbour R, Johnson-Wood K, Galasko D, Chang L, Miller B, Clark C, Green R et al (1995) Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 38:643–648

    PubMed  CAS  Google Scholar 

  • Myhrer T, Enger S, Aas P (2004) Cognitive side effects in rats caused by pharmacological agents used to prevent soman-induced lethality. Eur J Pharmacol 483:271–279

    PubMed  CAS  Google Scholar 

  • Nakahara N, Iga Y, Saito Y, Mizobe F, Kawanishi G (1989) Beneficial effects of FKS-508 (AF102B), a selective M1 agonist, on the impaired working memory in AF64A-treated rats. Jpn J Pharmacol 51:539–547

    PubMed  CAS  Google Scholar 

  • Nawaratne V, Leach K, Felder CC, Sexton PM, Christopoulos A (2010) Structural determinants of allosteric agonism and modulation at the M4 muscarinic acetylcholine receptor: identification of ligand-specific and global activation mechanisms. J Biol Chem 285:19012–19021

    PubMed  CAS  Google Scholar 

  • Newhouse PA, Sunderland T, Tariot PN, Weingartner H, Thomason K, Mellow AM et al (1988) The effects of acute scopolamine in geriatric depression. Arch Gen Psychiatry 45:906–912

    PubMed  CAS  Google Scholar 

  • Oakman SA, Faris PL, Kerr PE, Cozzari C, Hartman BK (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15:5859–5869

    PubMed  CAS  Google Scholar 

  • Oda S, Kuroda M, Kakuta S, Kishi K (2001) Differential immunolacalization of m2 and m3 muscarinic receptors in the anteroventral and anderodorsal thalamic nuclei of the rat. Brain Res 894:109–120

    PubMed  CAS  Google Scholar 

  • Oda S, Sato F, Okada A, Akahane S, Igarashi H, Yokofujita J, Yang J, Kuroda M (2007) Immunolocalization of muscarinic receptor subtypes in the reticular thalamic nucleus of rats. Brain Res Bull 74:376–384

    PubMed  CAS  Google Scholar 

  • Omelchenko N, Sesack SR (2006) Cholinergic axons in the rat ventral tegmental area synapse preferentially onto mesoaccumbens dopamine neurons. J Comp Neurol 494:863–875

    PubMed  Google Scholar 

  • O’Neill J, Fitten LJ, Siembieda D, Halgren E, Kim E, Fisher A, Perryman K (1998) Effects of AF102B and tacrine on delayed match-to-sample in monkeys. Prog Neuropsychopharmacol Biol Psychiatry 22:665–678

    PubMed  Google Scholar 

  • O’Neill J, Fitten LJ, Siembieda DW, Crawford KC, Halgren E, Fisher A, Refai D (1999) Divided attention-enhancing effects of AF102B and THA in aging monkeys. Psychopharmacology (Berl) 43:123–130

    Google Scholar 

  • O’Neill J, Siembieda DW, Crawford KC, Halgren E, Fisher A, Fitten LJ (2003) Reduction in distractibility with AF102B and THA in the macaque. Pharmacol Biochem Behav 76:301–306

    PubMed  Google Scholar 

  • Osterholm RK, Camoriano JK (1982) Transdermal scopolamine psychosis. JAMA 247:3081

    PubMed  CAS  Google Scholar 

  • Pakarinen ED, Moerschbaecher JM (1993) Comparison of the effects of scopolamine and methylscopolamine on the performance of a fixed-ratio discrimination in squirrel monkeys. Pharmacol Biochem Behav 44:815–819

    PubMed  CAS  Google Scholar 

  • Palacios JM, Bolliger G, Closse A, Enz A, Gmelin G, Malanowski J (1986) The pharmacological assessment of RS 86 (2-ethyl-8-methyl-2,8-diazaspiro-[4,5]-decan-1,3-dion hydrobromide). A potent, specific muscarinic acetylcholine receptor agonist. Eur J Pharmacol 125:45–62

    PubMed  CAS  Google Scholar 

  • Pazzagli A, Pepeu G (1965) Amnesic properties of scopolamine and brain acetylcholine in the rat. Int J Neuropharmacol 4:291–299

    PubMed  CAS  Google Scholar 

  • Pepeu G, Giovannini MG (2010) Cholinesterase inhibitors and memory. Chem Biol Interact 187:403–408

    PubMed  CAS  Google Scholar 

  • Persson CM, Wallin AK, Levander S, Minthon L (2009) Changes in cognitive domains during three years in patients with Alzheimer’s disease treated with donepezil. BMC Neurol 9:7

    PubMed  Google Scholar 

  • Phelps PE, Houser CR, Vaughn JE (1985) Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: a correlated light and electron microscopic study of cholinergic neurons and synapses. J Comp Neurol 238:286–307

    PubMed  CAS  Google Scholar 

  • Pinault D, Deschênes M (1998) Anatomical evidence for a mechanism of lateral inhibition in the rat thalamus. Eur J Neurosci 10:3462–3469

    PubMed  CAS  Google Scholar 

  • Pitsikas N, Rigamonti AE, Cella SG, Locatelli V, Sala M, Muller EE (2001) Effects of molsidomine on scopolamine-induced amnesia and hypermotility in the rat. Eur J Pharmacol 426:193–200

    PubMed  CAS  Google Scholar 

  • Plummer KL, Manning KA, Levey AI, Rees HD, Uhlrich DJ (1999) Muscarinic receptor subtypes in the lateral geniculate nucleus: a light and electron microscopic analysis. J Comp Neurol 404:408–425

    PubMed  CAS  Google Scholar 

  • Poulin B, Butcher A, McWilliams P et al (2010) The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc Natl Acad Sci U S A 107:9440–9445

    PubMed  CAS  Google Scholar 

  • Price JL, Stern R (1983) Individual cells in the nucleus basalis – diagonal band complex have restricted axonal projections to the cerebral cortex in the rat. Brain Res 269:352–356

    PubMed  CAS  Google Scholar 

  • Quirion R, Wilson A, Rowe W, Aubert I, Richard J, Doods H, Parent A, White N, Meaney MJ (1995) Facilitation of acetylcholine release and cognitive performance by an M(2)-muscarinic receptor antagonist in aged memory-impaired. J Neurosci 15:1455–1462

    PubMed  CAS  Google Scholar 

  • Riekkinen P Jr, Serviö J, Aaltonen M, Riekkinen P (1990) Effects of concurrent manipulations of nicotinic and muscarinic receptors on spatial avoidance learning. Pharmacol Biochem Behav 37:405–410

    PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ, Marston HM, Wilkinson J, Jones GH, Page KJ (1989a) Comparative effects of ibotenic acid- and quisqualic acid-induced lesions of the substantia innominata on attentional function in the rat: further implications for the role of the cholinergic neurons of the nucleus basalis in cognitive processes. Behav Brain Res 35:221–240

    PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ, Ryan CN, Marston HM, Jones GH, Page KJ (1989b) Comparative effects of quisqualic and ibotenic acid-induced lesions of the substantia innominata and globus pallidus on the acquisition of a conditional visual discrimination: differential effects on cholinergic mechanisms. Neuroscience 28:337–352

    PubMed  CAS  Google Scholar 

  • Rouse ST, Levey AI (1996) Expression of m1-m4 muscarinic acetylcholine receptor immunoreactivity in septohippocampal neurons and other identified hippocampal afferents. J Comp Neurol 375:406–416

    PubMed  CAS  Google Scholar 

  • Rouse ST, Levey AI (1997) Muscarinic acetylcholine receptor immunoreactivity after hippocampal commissural/associational pathway lesions: evidence for multiple presynaptic receptor subtypes. J Comp Neurol 380:382–394

    PubMed  CAS  Google Scholar 

  • Rouse ST, Levey AI (1998) Muscarinic acetylcholine receptor immunoreactivity after hippocampal commissural/associational pathway lesions: evidence for multiple presynaptic receptor subtypes. J Comp Neurol 380:382–394

    Google Scholar 

  • Rouse ST, Marino MJ, Potter LT, Conn PJ, Levey AI (1999) Muscarinic receptor subtypes involved in hippocampal circuits. Life Sci 64:501–509

    PubMed  CAS  Google Scholar 

  • Rouse ST, Edmunds SM, Yi H, Gilmor ML, Levey AI (2000) Localization of M(2) muscarinic acetylcholine receptor protein in cholinergic and non-cholinergic terminals in rat hippocampus. Neurosci Lett 284:182–186

    PubMed  CAS  Google Scholar 

  • Rowe WB, O’Donnell JP, Pearson D, Rose GM, Meaney MJ, Quirion R (2003) Long-term effects of BIBN-99, a selective muscarinic M2 receptor antagonist, on improving spatial memory performance in aged cognitively impaired rats. Behav Brain Res 145:171–178

    PubMed  CAS  Google Scholar 

  • Rudy JW (1996) Scopolamine administered before and after training impairs both contextual and auditory-cue fear conditioning. Neurobiol Learn Mem 65:73–81

    PubMed  CAS  Google Scholar 

  • Rupniak NM, Steventon MJ, Field MJ et al (1989) Comparison of the effects of four cholinomimetic agents on cognition in primates following disruption by scopolamine or by lists of objects. Psychopharmacology 99:189–195

    PubMed  CAS  Google Scholar 

  • Rupniak NM, Samson NA, Tye SJ, Field MJ, Iversen SD (1991) Evidence against a specific effect of cholinergic drugs on spatial memory in primates. Behav Brain Res 43:1–6

    PubMed  CAS  Google Scholar 

  • Rupniak NM, Tye SJ, Iversen SD (1992) Comparison of the effects of selective and nonselective muscarinic agonists on cognition and thermoregulation in primates. J Neurol Sci 110:222–227

    PubMed  CAS  Google Scholar 

  • Rusted JM, Warburton DM (1988) The effects of scopolamine on working memory in healthy young volunteers. Psychopharmacology 96:145–152

    PubMed  CAS  Google Scholar 

  • Saint-Cyr JA, Taylor AE, Lang AE (1988) Procedural learning and neostriatal dysfunction in man. Brain 111:941–959

    PubMed  Google Scholar 

  • Sams AG, Hentzer M, Mikkelsen GK, Larsen K, Bundgaard C, Plath N, Christoffersen CT, Bang-Andersen B (2010) Discovery of N-{1-[3-(3-oxo-2,3-dihydrobenzo[1,4]oxazin-4-yl)propyl]piperidin-4-yl}-2-phenylacetamide (Lu AE51090): an allosteric muscarinic M1 receptor agonist with unprecedented selectivity and procognitive potential. J Med Chem 53:6386–6397

    PubMed  CAS  Google Scholar 

  • Satoh K, Fibiger HC (1986) Cholinergic neurons of the laterodorsal tegmental nucleus: efferent and afferent connections. J Comp Neurol 253:277–302

    PubMed  CAS  Google Scholar 

  • Savage UC, Faust WB, Lambert P, Moerschbaecher JM (1996) Effects of scopolamine on learning and memory in monkeys. Psychopharmacology (Berl) 123(1):9–14

    CAS  Google Scholar 

  • Schäfer MK, Eiden LE, Weihe E (1998) Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. I. Central nervous system. Neuroscience 84:331–359

    PubMed  Google Scholar 

  • Schwarz RD, Callahan MJ, Coughenour LL, Dickerson MR, Kinsora JJ, Lipinski WJ, Raby CA, Spencer CJ, Tecle H (1999) Milameline (CI-979/RU35926): a muscarinic receptor agonist with cognition-activating properties: biochemical and in vivo characterization. J Pharmacol Exp Ther 291:812–822

    PubMed  CAS  Google Scholar 

  • Seeger T, Fedorova I, Zheng F et al (2004) M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. J Neurosci 24:10117–10127

    PubMed  CAS  Google Scholar 

  • Semba K, Reiner PB, Fibiger HC (1990) Single cholinergic mesopontine tegmental neurons project to both the pontine reticular formation and the thalamus in the rat. Neuroscience 38:643–654

    PubMed  CAS  Google Scholar 

  • Shannon HE, Love PL (2005) Effects of antiepileptic drugs on attention as assessed by a five-choice serial reaction time task in rats. Epilepsy Behav 7:620–628

    PubMed  Google Scholar 

  • Shannon HE, Eberle EL (2006) Effects of biasing the location of stimulus presentation, and the muscarinic cholinergic receptor antagonist scopolamine, on performance of a 5-choice serial reaction time attention task in rats. Behav Pharmacol 17:71–85

    PubMed  CAS  Google Scholar 

  • Sheffler DJ, Williams R, Bridges TM, Xiang Z, Kane AS, Byun NE, Jadhav S, Mock MM, Zheng F, Lewis LM, Jones CK, Niswender CM, Weaver CD, Lindsley CW, Conn PJ (2009) A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol Pharmacol 76:356–368

    PubMed  CAS  Google Scholar 

  • Shekhar A, Potter WZ, Lightfoot J et al (2008) Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 165:1033–1039

    PubMed  Google Scholar 

  • Sherman SJ, Atri A, Hasselmo ME, Stern CE, Howard MW (2003) Scopolamine impairs human recognition memory: data and modeling. Behav Neurosci 117:526–539

    PubMed  CAS  Google Scholar 

  • Shirey JK, Brady AE, Jones PJ et al (2009) A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J Neurosci 29:14271–14286

    PubMed  CAS  Google Scholar 

  • Sipos ML, Burchnell V, Galbicka G (2001) Effects of selected anticholinergics on acoustic startle response in rats. J Appl Toxicol 21(Suppl 1):S95–S101

    PubMed  CAS  Google Scholar 

  • Skjoldager P, Fowler SC (1991) Scopolamine attenuates the motor disruptions but not the attentional disturbances induced by haloperidol in a sustained attention task in the rat. Psychopharmacology (Berl) 105:93–100

    CAS  Google Scholar 

  • Smith RD, Kistler MK, Cohen-Williams M, Coffin VL (1996) Cholinergic improvement of a naturally-occurring memory deficit in the young rat. Brain Res 707:13–21. doi:10.1016/0006-8993(95)01207-9

    PubMed  CAS  Google Scholar 

  • Spalding TA, Trotter C, Skjaerbaek N, Messier TL, Currier EA, Burstein ES, Li D, Hacksell U, Brann MR (2002) Discovery of an ectopic activation site on the M(l) muscarinic receptor. Mol Pharmacol 61:1297–1302

    PubMed  CAS  Google Scholar 

  • Spalding TA, Ma JN, Ott TR, Friberg M, Bajpai A, Bradley SR, Davis RE, Brann MR, Burstein ES (2006) Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC-42, AC-260584, clozapine, and N-desmethylclozapine: evidence for three distinct modes of receptor activation. Mol Pharmacol 70:1974–1983

    PubMed  CAS  Google Scholar 

  • Spencer JP, Middleton LJ, Davies CH (2010) Investigation into the efficacy of the acetylcholinesterase inhibitor, donepezil, and novel procognitive agents to induce gamma oscillations in rat hippocampal slices. Neuropharmacology 59:437–443

    PubMed  CAS  Google Scholar 

  • Spinelli S, Ballard T, Feldon J, Higgins GA, Pryce CR (2006) Enhancing effects of nicotine and impairing effects of scopolamine on distinct aspects of performance in computerized attention and working memory tasks in marmoset monkeys. Neuropharmacology 51:238–250

    PubMed  CAS  Google Scholar 

  • Squire LR (1969) Effects of pretrial and posttrial administration of cholinergic and anticholinergic drugs on spontaneous alternation. J Comp Physiol Psychol 69:69–75

    PubMed  CAS  Google Scholar 

  • Stanhope KJ, Mirza NR, Bickerdike MJ, Bright JL, Harrington NR, Hesselink MB, Kennett GA, Lightowler S, Sheardown MJ, Syed R, Upton RL, Wadsworth G, Weiss SM, Wyatt A (2001) The muscarinic receptor agonist xanomeline has an antipsychotic-like profile in the rat. J Pharmacol Exp Ther 299:782–792

    PubMed  CAS  Google Scholar 

  • Steidl S, Yeomans JS (2009) M5 muscarinic receptor knockout mice show reduced morphine-induced locomotion but increased locomotion after cholinergic antagonism in the ventral tegmental area. J Pharmacol Exp Ther 328:263–275

    PubMed  CAS  Google Scholar 

  • Sunderland T, Linker G, Mirza N, Putnam KT, Friedman DL, Kimmel LH, Bergeson J, Manetti GJ, Zimmermann M, Tang B, Bartko JJ, Cohen RM (2003) Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 289:2094–2103

    PubMed  Google Scholar 

  • Sugaya K, Clamp C, Bryan D, McKinney M (1997) mRNA for the m4 muscarinic receptor subtype is expressed in adult rat brain cholinergic neurons. Brain Res Mol Brain Res 50:305–313

    PubMed  CAS  Google Scholar 

  • Sullivan NR, Leventhal L, Harrison J, Smith VA, Cummons TA, Spangler TB, Sun SC, Lu P, Uveges AJ, Strassle BW, Piesla MJ, Ramdass R, Barry A, Schantz J, Adams W, Whiteside GT, Adedoyin A, Jones PG (2007) Pharmacological characterization of the muscarinic agonist (3R,4R)-3-(3-hexylsulfanyl-pyrazin-2-yloxy)-1-aza-bicyclo[2.2.1]heptane (WAY-132983) in in vitro and in vivo models of chronic pain. J Pharmacol Exp Ther 322:1294–1304

    PubMed  CAS  Google Scholar 

  • Sunderland T, Tariot P, Weingartner H, Murphy D, Newhouse P, Mueller E et al (1986) Pharmacologic modeling of Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 10:599–610

    PubMed  CAS  Google Scholar 

  • Suratman S, Leach K, Sexton P et al (2011) Impact of species variability and ‘probe-dependence’ on the detection and in vivo validation of allosteric modulation at the M4 muscarinic acetylcholine receptor. Br J Pharmacol 162:1659–1670

    PubMed  CAS  Google Scholar 

  • Strauss ME, Reynolds KS, Jayaram G, Tune LE (1990) Effects of anticholinergic medication on memory in schizophrenia. Schiz Res 3:127–129

    Google Scholar 

  • Suzuki M, Yamaguchi T, Ozawa Y, Ohyama M, Yamamoto M (1995) Effects of (-)-S-2,8-dimethyl-3-methylene-1-oxa-8-azaspiro[4,5]decane L-tartrate monohydrate (YM796), a novel muscarinic agonist, on disturbance of passive avoidance learning behavior in drug-treated and senescence-accelerated mice. J Pharmacol Exp Ther 275(2):728–36.

    Google Scholar 

  • Terry AV Jr, Buccafusco JJ, Borsini F, Leusch A (2002) Memory-related task performance by aged rhesus monkeys administered the muscarinic M(1)-preferring agonist, talsaclidine.Psychopharmacology (Berl) 162(3):292–300

    Google Scholar 

  • Terry AV Jr, Parikh V, Gearhart DA, Pillai A, Hohnadel E, Warner S, Nasrallah HA, Mahadik SP (2006b) Time-dependent effects of haloperidol and ziprasidone on nerve growth factor, cholinergic neurons, and spatial learning in rats. J Pharmacol Exp Ther 318:709–724

    PubMed  CAS  Google Scholar 

  • Thienel R, Kellermann T, Schall U, Voss B, Reske M, Halfter S, Sheldrick AJ, Radenbach K, Habel U, Shah NJ, Kircher T (2009) Muscarinic antagonist effects on executive control of attention. Int J Neuropsychopharmacol 12:1307–1317

    PubMed  CAS  Google Scholar 

  • Thomsen M, Wess J, Fulton BS, Fink-Jensen A, Caine SB (2010) Modulation of prepulse inhibition through both M(1) and M (4) muscarinic receptors in mice. Psychopharmacology 208:401–416

    PubMed  CAS  Google Scholar 

  • Thomsen M, Woldbye DP, Wörtwein G, Fink-Jensen A, Wess J, Caine SB (2005) Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J Neurosci 25(36):8141–9

    Google Scholar 

  • Thomsen M, Wortwein G, Fink-Jensen A, Woldbye DP, Wess J, Caine SB (2007) Decreased prepulse inhibition and increased sensitivity to muscarinic, but not dopaminergic drugs in M5 muscarinic acetylcholine receptor knockout mice. Psychopharmacology (Berl) 192:97–110

    CAS  Google Scholar 

  • Tsai G, Coyle JT (2002) Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol 42:165–79

    Google Scholar 

  • Tzavara ET, Bymaster FP, Felder CC et al (2003) Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2, M4 and M2/M4 muscarinic receptor knockout mice. Mol Psychiatry 8:673–679

    PubMed  CAS  Google Scholar 

  • Tzavara ET, Bymaster FP, Davis RJ et al (2004) M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J 18:1410–1412

    PubMed  CAS  Google Scholar 

  • Ukai M, Okuda A, Mamiya T (2004) Effects of anticholinergic drugs selective for muscarinic receptor subtypes on prepulse inhibition in mice. Eur J Pharmacol 492:183–187

    PubMed  CAS  Google Scholar 

  • van der Zee EA, Keijser JN (2011) Localization of pre- and postsynaptic cholinergic markers in rodent forebrain: a brief history and comparison of rat and mouse. Behav Brain Res 221:356–366

    PubMed  Google Scholar 

  • van der Zee EA, Matsuyama T, Strosberg AD, Traber J, Luiten PG (1989) Demonstration of muscarinic acetylcholine receptor-like immunoreactivity in the rat forebrain and upper brainstem. Histochemistry 92:475–485

    PubMed  Google Scholar 

  • Vanover KE, Veinbergs I, Davis RE (2008) Antipsychotic-like behavioral effects and cognitive enhancement by a potent and selective muscarinic M-sub-1 receptor agonist, AC-260584. Behav Neurosci 122:570–575

    PubMed  CAS  Google Scholar 

  • Veroff AE, Bodick NC, Offen WW, Sramek JJ, Cutler NR (1998) Efficacy of xanomeline in Alzheimer disease: cognitive im-provement measured using the Computerized Neuro-psychological Test Battery (CNTB). Alzheimer Dis Assoc Disord 12:304–312

    PubMed  CAS  Google Scholar 

  • Vilaró MT, Palacios JM, Mengod G (1990) Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett 114:154–159

    PubMed  Google Scholar 

  • Vilaró MT, Wiederhold KH, Palacios JM, Mengod G (1991) Muscarinic cholinergic receptors in the rat caudate-putamen and olfactory tubercle belong predominantly to the m4 class: in situ hybridization and receptor autoradiography evidence. Neuroscience 40:159–167

    PubMed  Google Scholar 

  • Vilaró MT, Wiederhold KH, Palacios JM, Mengod G (1992) Muscarinic M2 receptor mRNA expression and receptor binding in cholinergic and non-cholinergic cells in the rat brain: a correlative study using in situ hybridization histochemistry and receptor autoradiography. Neuroscience 47:367–393

    PubMed  Google Scholar 

  • Waelbroeck M (2003) Allosteric drugs acting act muscarinic acetylcholine receptors. Neurochem Res 28:419–422

    PubMed  CAS  Google Scholar 

  • Wall SJ, Yasuda RP, Hory F, Flagg S, Martin BM, Ginns EI, Wolfe BB (1991) Production of antisera selective for m1 muscarinic receptors using fusion proteins: distribution oof m1 receptors in rat brain. Mol Pharmacol 39:643–649

    PubMed  CAS  Google Scholar 

  • Warburton EC, Koder T, Cho K, Massey PV, Duguid G, Barker GR, Aggleton JP, Bashir ZI, Brown MW (2003) Cholinergic neurotransmission is essential for perirhinal cortical plasticity and recognition memory. Neuron 38:987–996

    PubMed  CAS  Google Scholar 

  • Watson J, Brough S, Coldwell MC, Gager T, Ho M, Hunter AJ, Jerman J, Middlemiss DN, Riley GJ, Brown AM (1998) Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br J Pharmacol 125:1413–1420

    PubMed  CAS  Google Scholar 

  • Weiner DM, Levey AI, Brann MR (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc Natl Acad Sci U S A 87:7050–7054

    PubMed  CAS  Google Scholar 

  • Wienrich M, Ceci A, Ensinger HA, Gaida W, Mendla KD, Osugi T, Raschig A, Weiser T (2002) Talsaclidine (WAL 2014 FU), a muscarinic M1 receptor agonist for the treatment of Alzheimer’s disease. Drug Dev Res 56:321–334

    CAS  Google Scholar 

  • Woolf NJ, Hernit MC, Butcher LL (1986) Cholinergic and non-cholinergic projections from the rat basal forebrain revealed by combined choline acetyltransferase and Phaseolus vulgaris leucoagglutinin immunohistochemistry. Neurosci Lett 66:281–286

    PubMed  CAS  Google Scholar 

  • Wu MF, Jenden DJ, Fairchild MD, Siegel JM (1993) Cholinergic mechanisms in startle and prepulse inhibition: effects of the false cholinergic precursor N-aminodeanol. Behav Neurosci 107:306–316

    PubMed  CAS  Google Scholar 

  • Yamada M, Lamping KG, Duttaroy A et al (2001) Cholinergic dilation of cerebral blood vessels is abolished in M5 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci U S A 98:14096–14101

    PubMed  CAS  Google Scholar 

  • Yamada M, Basile AS, Fedorova I, Zhang W, Duttaroy A, Cui Y, Lamping KG, Faraci FM, Deng CX, Wess J (2003) Novel insights into M5 muscarinic acetylcholine receptor function by the use of gene targeting technology. Life Sci 74:345–353

    PubMed  CAS  Google Scholar 

  • Yamasaki M, Matsui M, Watanabe M (2010) Preferential localization of muscarinic M1 receptor on dendritic shaft and spine of cortical pyramidal cells and its anatomical evidence for volume transmission. J Neurosci 30:4408–4418

    PubMed  CAS  Google Scholar 

  • Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB (1993) Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol 43:149–157

    PubMed  CAS  Google Scholar 

  • Zang Z, Creese I (1997) Differential regulation of expression of rat hippocampal muscarinic receptor subtypes following fimbria-fornix lesion. Biochem Pharmacol 53:1379–1382

    PubMed  CAS  Google Scholar 

  • Zhang W, Basile AS, Gomeza J et al (2002) Characterization of central inhibitory muscarinic autoreceptors by the use of muscarinic acetylcholine receptor knock-out mice. J Neurosci 22:1709–1717

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie K. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bubser, M., Byun, N., Wood, M.R., Jones, C.K. (2012). Muscarinic Receptor Pharmacology and Circuitry for the Modulation of Cognition. In: Fryer, A., Christopoulos, A., Nathanson, N. (eds) Muscarinic Receptors. Handbook of Experimental Pharmacology, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23274-9_7

Download citation

Publish with us

Policies and ethics