Skip to main content

Self-Association of Arrestin Family Members

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 219))

Abstract

Mammals express four arrestin subtypes, three of which have been shown to self-associate. Cone photoreceptor-specific arrestin-4 is the only one that is a constitutive monomer. Visual arrestin-1 forms tetramers both in crystal and in solution, but the shape of its physiologically relevant solution tetramer is very different from that in the crystal. The biological role of the self-association of arrestin-1, expressed at very high levels in rod and cone photoreceptors, appears to be protective, reducing the concentration of cytotoxic monomers. The two nonvisual arrestin subtypes are highly homologous, and self-association of both is facilitated by IP6, yet they form dramatically different oligomers. Arrestin-2 apparently self-associates into “infinite” chains, very similar to those observed in IP6-soaked crystals, where IP6 connects the concave sides of the N- and C-domains of adjacent protomers. In contrast, arrestin-3 only forms dimers, in which IP6 likely connects the C-domains of two arrestin-3 molecules. Thus, each of the three self-associating arrestins does it in its own way, forming three different types of oligomers. The physiological role of the oligomerization of arrestin-1 and both nonvisual arrestins might be quite different, and in each case it remains to be definitively elucidated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Different systems of arrestin names are used in the field and in this book. We use the systematic names of arrestin proteins: arrestin-1 (historic names S-antigen, 48 kDa protein, visual or rod arrestin), arrestin-2 (β-arrestin or β-arrestin1), arrestin-3 (β-arrestin2 or hTHY-ARRX), and arrestin-4 (cone or X-arrestin; for unclear reasons its gene is called “arrestin 3” in the HUGO database).

References

  • Ahmed MR, Zhan X, Song X, Kook S, Gurevich VV, Gurevich EV (2011) Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination. Biochemistry 50:3749–3763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Altenbach C, Oh K-J, Trabanino RJ, Hideg K, Hubbell WL (2001) Estimation of inter-residue distances in spin labeled proteins at physiological temperatures: experimental strategies and practical limitations. Biochemistry 40:15471–15482

    Article  CAS  PubMed  Google Scholar 

  • Arshavsky VY, Burns ME (2012) Photoreceptor signaling: supporting vision across a wide range of light intensities. J Biol Chem 287:1620–1626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barak LS, Ferguson SS, Zhang J, Caron MG (1997) A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem 272:27497–27500

    Article  CAS  PubMed  Google Scholar 

  • Bayburt TH, Vishnivetskiy SA, McLean M, Morizumi T, Huang C-C, Tesmer JJ, Ernst OP, Sligar SG, Gurevich VV (2011) Rhodopsin monomer is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 286:1420–1428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baylor DA, Lamb TD, Yau KW (1979) Responses of retinal rods to single photons. J Physiol 288:613–634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boularan C, Scott MG, Bourougaa K, Bellal M, Esteve E, Thuret A, Benmerah A, Tramier M, Coppey-Moisan M, Labbé-Jullié C et al (2007) beta-arrestin 2 oligomerization controls the Mdm2-dependent inhibition of p53. Proc Natl Acad Sci USA 104:18061–18066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chan S, Rubin WW, Mendez A, Liu X, Song X, Hanson SM, Craft CM, Gurevich VV, Burns ME, Chen J (2007) Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice. Invest Ophthalmol Vis Sci 48:1968–1975

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen Q, Zhuo Y, Francis DJ, Vishnivetskiy SA, Hanson SM, Zhan X, Brooks EK, Iverson TI, Altenbach C, Hubbell WL et al (2013) The two non-visual arrestins form distinct oligomers. J Biol Chem 288, in review

    Google Scholar 

  • Coffa S, Breitman M, Spiller BW, Gurevich VV (2011) A single mutation in arrestin-2 prevents ERK1/2 activation by reducing c-Raf1 binding. Biochemistry 50:6951–6958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dinculescu A, McDowell JH, Amici SA, Dugger DR, Richards N, Hargrave PA, Smith WC (2002) Insertional mutagenesis and immunochemical analysis of visual arrestin interaction with rhodopsin. J Biol Chem 277:11703–11708

    Article  CAS  PubMed  Google Scholar 

  • Gimenez LE, Vishnivetskiy SA, Baameur F, Gurevich VV (2012a) Enhancing receptor specificity of non-visual arrestins by targeting receptor-discriminator residues. J Biol Chem 287:29495–29505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gimenez LE, Vishnivetskiy SA, Baameur F, Gurevich VV (2012b) Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins. J Biol Chem 287:29495–29505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383:447–450

    Article  CAS  PubMed  Google Scholar 

  • Granzin J, Wilden U, Choe HW, Labahn J, Krafft B, Buldt G (1998) X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391:918–921

    Article  CAS  PubMed  Google Scholar 

  • Gray JJ, Moughon S, Wang C, Schueler-Furman O, Kuhlman B, Rohl CA, Baker D (2003a) Protein–protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 331:281–299

    Article  CAS  PubMed  Google Scholar 

  • Gray JJ, Moughon SE, Kortemme T, Schueler-Furman O, Misura KM, Morozov AV, Baker D (2003b) Protein-protein docking predictions for the CAPRI experiment. Proteins 52:118–122

    Article  CAS  PubMed  Google Scholar 

  • Gray-Keller MP, Detwiler PB, Benovic JL, Gurevich VV (1997) Arrestin with a single amino acid sustitution quenches light-activated rhodopsin in a phosphorylation-independent fasion. Biochemistry 36:7058–7063

    Article  CAS  PubMed  Google Scholar 

  • Gurevich VV (1998) The selectivity of visual arrestin for light-activated phosphorhodopsin is controlled by multiple nonredundant mechanisms. J Biol Chem 273:15501–15506

    Article  CAS  PubMed  Google Scholar 

  • Gurevich VV, Benovic JL (1992) Cell-free expression of visual arrestin. Truncation mutagenesis identifies multiple domains involved in rhodopsin interaction. J Biol Chem 267:21919–21923

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin: sequential multisite binding ensures strict selectivity towards light-activated phosphorylated rhodopsin. J Biol Chem 268:11628–11638

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Benovic JL (1995) Visual arrestin binding to rhodopsin: diverse functional roles of positively charged residues within the phosphorylation-recignition region of arrestin. J Biol Chem 270:6010–6016

    Article  CAS  PubMed  Google Scholar 

  • Gurevich VV, Benovic JL (1997) Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding state. Mol Pharmacol 51:161–169

    CAS  PubMed  Google Scholar 

  • Gurevich EV, Gurevich VV (2006) Arrestins are ubiquitous regulators of cellular signaling pathways. Genome Biol 7:236

    Article  PubMed Central  PubMed  Google Scholar 

  • Gurevich VV, Richardson RM, Kim CM, Hosey MM, Benovic JL (1993) Binding of wild type and chimeric arrestins to the m2 muscarinic cholinergic receptor. J Biol Chem 268:16879–16882

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Dion SB, Onorato JJ, Ptasienski J, Kim CM, Sterne-Marr R, Hosey MM, Benovic JL (1995) Arrestin interaction with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, b2-adrenergic, and m2 muscarinic cholinergic receptors. J Biol Chem 270:720–731

    Article  CAS  PubMed  Google Scholar 

  • Gurevich VV, Pals-Rylaarsdam R, Benovic JL, Hosey MM, Onorato JJ (1997) Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity. J Biol Chem 272:28849–28852

    Article  CAS  PubMed  Google Scholar 

  • Gurevich EV, Benovic JL, Gurevich VV (2002) Arrestin2 and arrestin3 are differentially expressed in the rat brain during postnatal development. Neuroscience 109:421–436

    Article  CAS  PubMed  Google Scholar 

  • Gurevich EV, Benovic JL, Gurevich VV (2004) Arrestin2 expression selectively increases during neural differentiation. J Neurochem 91:1404–1416

    Article  CAS  PubMed  Google Scholar 

  • Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV (2011) The functional cycle of visual arrestins in photoreceptor cells. Prog Retin Eye Res 30:405–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C (2001) Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane translocation. Structure 9:869–880

    Article  CAS  PubMed  Google Scholar 

  • Hanson SM, Gurevich VV (2006) The differential engagement of arrestin surface charges by the various functional forms of the receptor. J Biol Chem 281:3458–3462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Francis DJ, Vishnivetskiy SA, Klug CS, Gurevich VV (2006a) Visual arrestin binding to microtubules involves a distinct conformational change. J Biol Chem 281:9765–9772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Francis DJ, Vishnivetskiy SA, Kolobova EA, Hubbell WL, Klug CS, Gurevich VV (2006b) Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc Natl Acad Sci USA 103:4900–4905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Cleghorn WM, Francis DJ, Vishnivetskiy SA, Raman D, Song S, Nair KS, Slepak VZ, Klug CS, Gurevich VV (2007a) Arrestin mobilizes signaling proteins to the cytoskeleton and redirects their activity. J Mol Biol 368:375–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Gurevich EV, Vishnivetskiy SA, Ahmed MR, Song X, Gurevich VV (2007b) Each rhodopsin molecule binds its own arrestin. Proc Natl Acad Sci USA 104:3125–3128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Van Eps N, Francis DJ, Altenbach C, Vishnivetskiy SA, Arshavsky VY, Klug CS, Hubbell WL, Gurevich VV (2007c) Structure and function of the visual arrestin oligomer. EMBO J 26:1726–1736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Dawson ES, Francis DJ, Van Eps N, Klug CS, Hubbell WL, Meiler J, Gurevich VV (2008a) A model for the solution structure of the rod arrestin tetramer. Structure 16:924–934

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanson SM, Vishnivetskiy SA, Hubbell WL, Gurevich VV (2008b) Opposing effects of inositol hexakisphosphate on rod arrestin and arrestin2 self-association. Biochemistry 47:1070–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 A crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97:257–269

    Article  CAS  PubMed  Google Scholar 

  • Huang SP, Brown BM, Craft CM (2010) Visual Arrestin 1 acts as a modulator for N-ethylmaleimide-sensitive factor in the photoreceptor synapse. J Neurosci 30:9381–9391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imamoto Y, Tamura C, Kamikubo H, Kataoka M (2003) Concentration-dependent tetramerization of bovine visual arrestin. Biophys J 85:1186–1195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeschke G (2002) Distance measurements in the nanometer range by pulse EPR. Chemphyschem 3:927–932

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Hanson SM, Vishnivetskiy SA, Song X, Cleghorn WM, Hubbell WL, Gurevich VV (2011) Robust self-association is a common feature of mammalian visual arrestin-1. Biochemistry 50:2235–2242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim M, Vishnivetskiy SA, Van Eps N, Alexander NS, Cleghorn WM, Zhan X, Hanson SM, Morizumi T, Ernst OP, Meiler J et al (2012) Conformation of receptor-bound visual arrestin. Proc Natl Acad Sci USA 109:18407–18412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhn H, Hall SW, Wilden U (1984) Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett 176:473–478

    Article  CAS  PubMed  Google Scholar 

  • Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SG, Caron MG, Barak LS (1999) The 2-adrenergic receptor/arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci USA 96:3712–3717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Makino CL, Wen XH, Lem J (2003) Piecing together the timetable for visual transduction with transgenic animals. Curr Opin Neurobiol 13:404–412

    Article  CAS  PubMed  Google Scholar 

  • Milano SK, Pace HC, Kim YM, Brenner C, Benovic JL (2002) Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry 41:3321–3328

    Article  CAS  PubMed  Google Scholar 

  • Milano SK, Kim YM, Stefano FP, Benovic JL, Brenner C (2006) Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding. J Biol Chem 281:9812–9823

    Article  CAS  PubMed  Google Scholar 

  • Moaven H, Koike Y, Jao CC, Gurevich VV, Langen R, Chen J (2013) Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina. Proc Natl Acad Sci USA 110:9463–9468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mogridge J (2004) Using light scattering to determine the stoichiometry of protein complexes. Methods Mol Biol 261:113–118

    CAS  PubMed  Google Scholar 

  • Nair KS, Hanson SM, Mendez A, Gurevich EV, Kennedy MJ, Shestopalov VI, Vishnivetskiy SA, Chen J, Hurley JB, Gurevich VV, Slepak VZ (2005) Light-dependent redistribution of arrestin in vertebrate rods is an energy-independent process governed by protein-protein interactions. Neuron 46:555–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nikonov SS, Brown BM, Davis JA, Zuniga FI, Bragin A, Pugh EN Jr, Craft CM (2008) Mouse cones require an arrestin for normal inactivation of phototransduction. Neuron 59:462–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohguro H, Palczewski K, Walsh KA, Johnson RS (1994) Topographic study of arrestin using differential chemical modifications and hydrogen/deuterium exchange. Protein Sci 3:2428–2434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pannier M, Veit S, Godt A, Jeschke G, Spiess HW (2000) Dead-time free measurement of dipole-dipole interactions between electron spins. J Magn Reson 142:331–340

    Article  CAS  PubMed  Google Scholar 

  • Peet JA, Bragin A, Calvert PD, Nikonov SS, Mani S, Zhao X, Besharse JC, Pierce EA, Knox BE, Pugh ENJ (2004) Quantification of the cytoplasmic spaces of living cells with EGFP reveals arrestin-EGFP to be in disequilibrium in dark adapted rod photoreceptors. J Cell Sci 117:3049–3059

    Article  CAS  PubMed  Google Scholar 

  • Pugh EN Jr, Lamb TD (2000) Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation. In: Stavenga DG, DeGrip WJ, Pugh EN Jr (eds) Handbook of biological physics molecular mechanisms in visual transduction. Elsevier, Amsterdam, pp 183–255

    Chapter  Google Scholar 

  • Pulvermuller A, Schroder K, Fischer T, Hofmann KP (2000) Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin. J Biol Chem 275:37679–37685

    Article  CAS  PubMed  Google Scholar 

  • Schubert C, Hirsch JA, Gurevich VV, Engelman DM, Sigler PB, Fleming KG (1999) Visual arrestin activity may be regulated by self-association. J Biol Chem 274:21186–21190

    Article  CAS  PubMed  Google Scholar 

  • Schueler-Furman O, Wang C, Bradley P, Misura K, Baker D (2005) Progress in modeling of protein structures and interactions. Science 310:638–642

    Article  CAS  PubMed  Google Scholar 

  • Scott MG, Le Rouzic E, Perianin A, Pierotti V, Enslen H, Benichou S, Marullo S, Benmerah A (2002) Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2. J Biol Chem 277:37693–37701

    Article  CAS  PubMed  Google Scholar 

  • Shears SB (2001) Assessing the omnipotence of inositol hexakisphosphate. Cell Signal 13:151–158

    Article  CAS  PubMed  Google Scholar 

  • Shilton BH, McDowell JH, Smith WC, Hargrave PA (2002) The solution structure and activation of visual arrestin studied by small-angle X-ray scattering. Eur J Biochem 269:3801–3809

    Article  CAS  PubMed  Google Scholar 

  • Singhal A, Ostermaier MK, Vishnivetskiy SA, Panneels V, Homan KT, Tesmer JJ, Veprintsev D, Deupi X, Gurevich VV, Schertler GF, Standfuss J (2013) Insights into congenital night blindness based on the structure of G90D rhodopsin. EMBO Rep 14:520–526

    Article  CAS  PubMed  Google Scholar 

  • Sommer ME, Hofmann KP, Heck M (2011) Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors. J Biol Chem 286:7359–7369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sommer ME, Hofmann KP, Heck M (2012) Distinct loops in arrestin differentially regulate ligand binding within the GPCR opsin. Nat Commun 3:995

    Article  PubMed Central  PubMed  Google Scholar 

  • Song X, Raman D, Gurevich EV, Vishnivetskiy SA, Gurevich VV (2006) Visual and both non-visual arrestins in their “inactive” conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm. J Biol Chem 281:21491–21499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Gurevich EV, Gurevich VV (2007) Cone arrestin binding to JNK3 and Mdm2: conformational preference and localization of interaction sites. J Neurochem 103:1053–1062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Vishnivetskiy SA, Gross OP, Emelianoff K, Mendez A, Chen J, Gurevich EV, Burns ME, Gurevich VV (2009) Enhanced arrestin facilitates recovery and protects rod photoreceptors deficient in rhodopsin phosphorylation. Curr Biol 19:700–705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV (2011) Arrestin-1 expression in rods: balancing functional performance and photoreceptor health. Neuroscience 174:37–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Song X, Seo J, Baameur F, Vishnivetskiy SA, Chen Q, Kook S, Kim M, Brooks EK, Altenbach C, Hong Y, et al (2013) Rapid degeneration of rod photoreceptors expressing self-association-deficient arrestin-1 mutant. Cell Signal 25:2613–2624

    Google Scholar 

  • Storez H, Scott MG, Issafras H, Burtey A, Benmerah A, Muntaner O, Piolot T, Tramier M, Coppey-Moisan M, Bouvier M et al (2005) Homo- and hetero-oligomerization of beta-arrestins in living cells. J Biol Chem 280:40210–40215

    Article  CAS  PubMed  Google Scholar 

  • Strissel KJ, Sokolov M, Trieu LH, Arshavsky VY (2006) Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin. J Neurosci 26:1146–1153

    Article  CAS  PubMed  Google Scholar 

  • Sutton RB, Vishnivetskiy SA, Robert J, Hanson SM, Raman D, Knox BE, Kono M, Navarro J, Gurevich VV (2005) Crystal structure of cone arrestin at 2.3Å: evolution of receptor specificity. J Mol Biol 354:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Tan E, Wang Q, Quiambao AB, Xu X, Qtaishat NM, Peachey NS, Lem J, Fliesler SJ, Pepperberg DR, Naash MI, Al-Ubaidi MR (2001) The relationship between opsin overexpression and photoreceptor degeneration. Invest Ophthalmol Vis Sci 42:589–600

    CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Hosey MM, Benovic JL, Gurevich VV (2004) Mapping the arrestin-receptor interface: structural elements responsible for receptor specificity of arrestin proteins. J Biol Chem 279:1262–1268

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV (2011) Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J Biol Chem 286:24288–24299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vishnivetskiy SA, Chen Q, Palazzo MC, Brooks EK, Altenbach C, Iverson TM, Hubbell WL, Gurevich VV (2013a) Engineering visual arrestin-1 with special functional characteristics. J Biol Chem 288:3394–3405

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Ostermaierm MK, Singhal A, Panneels V, Homan KT, Glukhova A, Sligar SG, Tesmer JJ, Schertler GF, Standfuss J, Gurevich VV (2013b) Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding. Cell Signal 25:2155–2162

    Article  CAS  PubMed  Google Scholar 

  • Wacker WB, Donoso LA, Kalsow CM, Yankeelov JA Jr, Organisciak DT (1977) Experimental allergic uveitis. Isolation, characterization, and localization of a soluble uveitopathogenic antigen from bovine retina. J Immunol 119:1949–1958

    CAS  PubMed  Google Scholar 

  • Wang P, Wu Y, Ge X, Ma L, Pei G (2003) Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J Biol Chem 278:11648–11653

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Schueler-Furman O, Baker D (2005) Improved side-chain modeling for protein-protein docking. Protein Sci 14:1328–1339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilden U, Hall SW, Kühn H (1986a) Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci USA 83:1174–1178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilden U, Wüst E, Weyand I, Kühn H (1986b) Rapid affinity purification of retinal arrestin (48 kDa protein) via its light-dependent binding to phosphorylated rhodopsin. FEBS Lett 207:292–295

    Article  CAS  PubMed  Google Scholar 

  • Zhan X, Gimenez LE, Gurevich VV, Spiller BW (2011) Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual arrestins. J Mol Biol 406:467–478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhuang T, Vishnivetskiy SA, Gurevich VV, Sanders CR (2010) Elucidation of IP6 and heparin interaction sites and conformational changes in arrestin-1 by solution NMR. Biochemistry 10473–10485

    Google Scholar 

  • Zhuang T, Chen Q, Cho M-K, Vishnivetskiy SA, Iverson TI, Gurevich VV, Hubbell WL (2013) Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Proc Natl Acad Sci USA 110:942–947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vsevolod V. Gurevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, Q. et al. (2014). Self-Association of Arrestin Family Members. In: Gurevich, V. (eds) Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41199-1_11

Download citation

Publish with us

Policies and ethics