Skip to main content

Ca2+ Signalling by IP3 Receptors

  • Chapter
  • First Online:
Book cover Phosphoinositides II: The Diverse Biological Functions

Part of the book series: Subcellular Biochemistry ((SCBI,volume 59))

Abstract

The Ca2 + signals evoked by inositol 1,4,5-trisphosphate (IP3) are built from elementary Ca2 + release events involving progressive recruitment of IP3 receptors (IP3R), intracellular Ca2 + channels that are expressed in almost all animal cells. The smallest events (‘blips’) result from opening of single IP3R. Larger events (‘puffs’) reflect the near-synchronous opening of a small cluster of IP3R. These puffs become more frequent as the stimulus intensity increases and they eventually trigger regenerative Ca2 + waves that propagate across the cell. This hierarchical recruitment of IP3R is important in allowing Ca2 + signals to be delivered locally to specific target proteins or more globally to the entire cell. Co-regulation of IP3R by Ca2 + and IP3, the ability of a single IP3R rapidly to mediate a large efflux of Ca2 + from the endoplasmic reticulum, and the assembly of IP3R into clusters are key features that allow IP3R to propagate Ca2 + signals regeneratively. We review these properties of IP3R and the structural basis of IP3R behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adkins CE, Taylor CW (1999) Lateral inhibition of inositol 1,4,5-trisphosphate receptors by cytosolic Ca2 +. Curr Biol 9:1115–1118

    Article  PubMed  CAS  Google Scholar 

  • Adkins CE, Morris SA, De Smedt H, Török K, Taylor CW (2000) Ca2 +-calmodulin inhibits Ca2 + release mediated by type-1, -2 and -3 inositol trisphosphate receptors. Biochem J 345:357–363

    Article  PubMed  CAS  Google Scholar 

  • Alam A, Shi N, Jiang Y (2007) Structural insight into Ca2 + specificity in tetrameric cation channels. Proc Natl Acad Sci U S A 104:15334–15339

    Article  PubMed  CAS  Google Scholar 

  • Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812–1815

    Article  PubMed  CAS  Google Scholar 

  • Amador FJ, Liu S, Ishiyama N, Plevin MJ, Wilson A, Maclennan DH, Ikura M (2009) Crystal structure of type I ryanodine receptor amino-terminal b-trefoil domain reveals a disease-associated mutation “hot spot” loop. Proc Natl Acad Sci U S A 106:11040–11044

    Article  PubMed  CAS  Google Scholar 

  • Ando H, Mizutani A, Kiefer H, Tsuzurugi D, Michikawa T, Mikoshiba K (2006) IRBIT suppresses IP3 receptor activity by competing with IP3 for the common binding site on the IP3 receptor. Mol Cell 22:795–806

    Article  PubMed  CAS  Google Scholar 

  • Balla T, Wymann M, York J (2011) Phosphoinositides. Springer, Heidelberg

    Google Scholar 

  • Benevolensky D, Moraru II, Watras J (1994) Micromolar calcium decreases the affinity of inositol trisphosphate receptor in vascular smooth muscle. Biochem J 299:631–636

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1983) Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem J 212:849–858

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1987) Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–193

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Physiol 499:291–306

    PubMed  CAS  Google Scholar 

  • Berridge MJ (2005) Unlocking the secrets of cell signaling. Annu Rev Physiol 67:1–21

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (2007) Inositol trisphosphate and calcium oscillations. Biochem Soc Symp 74:1–7

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol trisphosphate a novel second messenger in cellular signal transduction. Nature 312:315–321

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  • Betzenhauser MJ, Wagner LE 2nd, Iwai M, Michikawa T, Mikoshiba K, Yule DI (2008) ATP modulation of Ca2 + release by type-2 and type-3 Insp3R: differing ATP sensitivities and molecular determinants of action. J Biol Chem 283:21579–21587

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny I, Ehrlich BE (1994) Inositol (1,4,5)-trisphosphate (Insp3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium. J Gen Physiol 104:821–856

    Article  PubMed  CAS  Google Scholar 

  • Blondel O, Takeda J, Janssen H, Seino S, Bell GI (1993) Sequence and functional characterization of a third inositol trisphosphate receptor subtype, IP3R-3, expressed in pancreatic islets, kidney, gastrointestinal tract, and other tissues. J Biol Chem 268:11356–11363

    PubMed  CAS  Google Scholar 

  • Blunck R, Cordero-Morales JF, Cuello LG, Perozo E, Bezanilla F (2006) Detection of the opening of the bundle crossing in KcsA with fluorescence lifetime spectroscopy reveals the existence of two gates for ion conduction. J Gen Physiol 128:569–581

    Article  PubMed  CAS  Google Scholar 

  • Boehning D, Joseph SK (2000) Direct association of ligand-binding and pore domains in homo- and heterotetrameric inositol 1,4,5-trisphosphate receptors. EMBO J 19:5450–5459

    Article  PubMed  CAS  Google Scholar 

  • Boehning D, Joseph SK, Mak DO, Foskett JK (2001a) Single-channel recordings of recombinant inositol trisphosphate receptors in mammalian nuclear envelope. Biophys J 81:117–124

    Article  CAS  Google Scholar 

  • Boehning D, Mak D-O, D, Foskett JK, Joseph SK (2001b) Molecular determinants of ion permeation and selectivity in inositol 1,4,5-trisphosphate receptor Ca2 + channels. J Biol Chem 276:13509–13512

    CAS  Google Scholar 

  • Bootman MD, Berridge MJ (1995) The elemental principles of calcium signaling. Cell 83:675–678

    Article  PubMed  CAS  Google Scholar 

  • Bootman MD, Berridge MJ, Taylor CW (1992) All-or-nothing Ca2 + mobilization from the intracellular stores of single histamine-stimulated HeLa cells. J Physiol 450:163–178

    PubMed  CAS  Google Scholar 

  • Bootman MD, Niggli E, Berridge MJ, Lipp P (1997) Imaging the hierarchical Ca2 + signalling system in HeLa cells. J Physiol 499:307–314

    PubMed  CAS  Google Scholar 

  • Bosanac I, Alattia J-R, Mal TK, Chan J, Talarico S, Tong FK, Tong KI, Yoshikawa F, Furuichi T, Iwai M, Michikawa T, Mikoshiba K, Ikura M (2002) Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420:696–700

    Article  PubMed  CAS  Google Scholar 

  • Bosanac I, Yamazaki H, Matsu-ura T, Michikawa M, Mikoshiba K, Ikura M (2005) Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol Cell 17:193–203

    Article  PubMed  CAS  Google Scholar 

  • Brelidze TI, Niu X, Magleby KL (2003) A ring of eight conserved negatively charged amino acids doubles the conductance of BK channels and prevents inward rectification. Proc Natl Acad Sci U S A 100:9017–9022

    Article  PubMed  CAS  Google Scholar 

  • Brown GR, Sayers LG, Kirk CJ, Michell RH, Michelangeli F (1992) The opening of the inositol 1,4,5-trisphosphate-sensitive Ca2 + channel in rat cerebellum is inhibited by caffeine. Biochem J 282:309–312

    PubMed  CAS  Google Scholar 

  • Burgen ASV (1981) Conformational changes and drug action. Fed Proc 40:2723–2728

    PubMed  CAS  Google Scholar 

  • Burgess GM, McKinney JS, Fabiato A, Leslie BA, Putney JW Jr (1983) Calcium pools in saponin-permeabilized guinea pig hepatocytes. J Biol Chem 258:15336–15345

    PubMed  CAS  Google Scholar 

  • Cardy TJA, Taylor CW (1998) A novel role for calmodulin: Ca2 +-independent inhibition of type-1 inositol trisphosphate receptors. Biochem J 334:447–455

    PubMed  CAS  Google Scholar 

  • Caroppo R, Colella M, Colasuonno A, DeLuisi A, Debellis L, Curci S, Hofer AM (2003) A reassessment of the effects of luminal [Ca2 +] on inositol 1,4,5-trisphosphate-induced Ca2 + release from internal stores. J Biol Chem 278:39503–39508

    Article  PubMed  CAS  Google Scholar 

  • Celio MR, Pauls TL, Schwaller B (1996) Guidebook to the calcium-binding proteins. Oxford University Press, Oxford

    Google Scholar 

  • Chalmers M, Schell MJ, Thorn P (2006) Agonist-evoked inositol trisphosphate receptor (IP3R) clustering is not dependent on changes in the structure of the endoplasmic reticulum. Biochem J 394:57–66

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Whitten AE, Jeffries CM, Bosanac I, Mal TK, Ito J, Porumb H, Michikawa T, Mikoshiba K, Trewhella J, Ikura M (2007) Ligand-induced conformational changes via flexible linkers in the amino-terminal region of the inositol 1,4,5-trisphosphate receptor. J Mol Biol 373:1269–1280

    Article  PubMed  CAS  Google Scholar 

  • Chan J, Yamazaki H, Ishiyama N, Seo MD, Mal TK, Michikawa T, Mikoshiba K, Ikura M (2010) Structural studies of inositol 1,4,5-trisphosphate receptor: coupling ligand binding to channel gating. J Biol Chem 285:36092–36099

    Google Scholar 

  • Cheung KH, Mei L, Mak DO, Hayashi I, Iwatsubo T, Kang DE, Foskett JK (2010) Gain-of-function enhancement of IP3 receptor modal gating by familial Alzheimer’s disease-linked presenilin mutants in human cells and mouse neurons. Sci Signal 3:ra22

    Article  PubMed  CAS  Google Scholar 

  • Choe C, Ehrlich BE (2006) The inositol 1,4,5-trisphosphate receptor (IP3R) and its regulators: sometimes good and sometimes bad teamwork. Sci STKE re15

    Google Scholar 

  • Combettes L, Claret M, Champeil P (1992) Do submaximal Insp3 concentrations only induce partial release discharge of permeabilized hepatocyte calcium pools because of the concomitant reduction of intraluminal Ca2 + concentration? FEBS Lett 301:287–290

    Article  PubMed  CAS  Google Scholar 

  • Combettes L, Claret M, Champeil P (1993) Calcium control of Insp3-induced discharge of calcium from permeabilised hepatocyte pools. Cell Calcium 14:279–292

    Article  PubMed  CAS  Google Scholar 

  • Combettes L, Cheek TR, Taylor CW (1996) Regulation of inositol trisphosphate receptors by luminal Ca2 + contributes to quantal Ca2 + mobilization. EMBO J 15:2086–2093

    PubMed  CAS  Google Scholar 

  • Cordero-Morales JF, Cuello LG, Zhao Y, Jogini V, Cortes DM, Roux B, Perozo E (2006) Molecular determinants of gating at the potassium-channel selectivity filter. Nat Struct Mol Biol 13:311–318

    Article  PubMed  CAS  Google Scholar 

  • Cruttwell C, Bernard J, Hilly M, Nicolas V, Tunwell RE, Mauger JP (2005) Dynamics of the Ins(1,4,5)P3 receptor during polarization of MDCK cells. Biol Cell 97:699–707

    Article  PubMed  CAS  Google Scholar 

  • da Fonseca PCA, Morris SA, Nerou EP, Taylor CW, Morris EP (2003) Domain organisation of the type 1 inositol 1,4,5-trisphosphate receptor as revealed by single-particle analysis. Proc Natl Acad Sci U S A 100:3936–3941

    Article  PubMed  CAS  Google Scholar 

  • Danoff SK, Supattapone S, Snyder SH (1988) Characterization of a membrane protein from brain mediating the inhibition of inositol 1,4,5-trisphosphate receptor binding by calcium. Biochem J 254:701–705

    PubMed  CAS  Google Scholar 

  • Dasso LLT, Taylor CW (1991) Heparin and other polyanions uncouple α1-adrenoceptors from G-proteins. Biochem J 280:791–795

    PubMed  CAS  Google Scholar 

  • DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW Jr (2009) TRPC channels function independently of STIM1 and Orai1. J Physiol 587:2275–2298

    Article  PubMed  CAS  Google Scholar 

  • del Camino D, Holmgren M, Liu Y, Yellen G (2000) Blocker protection in the pore of a voltage-gated K + channel and its structural implications. Nature 403:321–325

    Article  PubMed  CAS  Google Scholar 

  • Dellis O, Dedos S, Tovey SC, Rahman T-U, Dubel SJ, Taylor CW (2006) Ca2 + entry through plasma membrane IP3 receptors. Science 313:229–233

    Article  PubMed  CAS  Google Scholar 

  • Dellis O, Rossi AM, Dedos SG, Taylor CW (2008) Counting functional IP3 receptors into the plasma membrane. J Biol Chem 283:751–755

    Article  PubMed  CAS  Google Scholar 

  • deSouza N, Cui J, Dura M, McDonald TV, Marks AR (2007) A function for tyrosine phosphorylation of type 1 inositol 1,4,5-trisphosphate receptor in lymphocyte activation. J Cell Biol 179:923–934

    Article  PubMed  CAS  Google Scholar 

  • Di Capite J, Ng SW, Parekh AB (2009) Decoding of cytoplasmic Ca2 + oscillations through the spatial signature drives gene expression. Curr Biol 19:853–858

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  PubMed  CAS  Google Scholar 

  • Dick IE, Tadross MR, Liang H, Tay LH, Yang W, Yue DT (2008) A modular switch for spatial Ca2 + selectivity in the calmodulin regulation of Cav channels. Nature 451:830–834

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA (2004) Structural changes during ion channel gating. Trends Neurosci 27:298–302

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K + conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Dufour J-F, Arias IM, Turner TJ (1997) Inositol 1,4,5-trisphosphate and calcium regulate the calcium channel function of the hepatic inositol 1,4,5-trisphosphate receptor. J Biol Chem 272:2675–2681

    Article  PubMed  CAS  Google Scholar 

  • Echevarria W, Leite MF, Guerra MT, Zipfel WR, Nathanson MH (2003) Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum. Nat Cell Biol 5:440–446

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich BE, Kaftan E, Bezprozvannaya S, Bezprozvanny I (1994) The pharmacology of intracellular Ca2 +-release channels. Trends Pharmacol Sci 15:145–149

    Article  PubMed  CAS  Google Scholar 

  • Fain JN, Berridge MJ (1979) Relationship between phosphatidylinositol synthesis and recovery of 5-hydroxtryphtamine-responsive Ca2 + flux in blowfly salivary glands. Biochem J 180:655–661

    PubMed  CAS  Google Scholar 

  • Ferreri-Jacobia M, Mak D-O, D, Foskett JK (2005) Translational mobility of the type 3 inositol 1,4,5-trisphosphate receptor Ca2 + release channel in endoplasmic reticulum membrane. J Biol Chem 280:3824–3831

    Article  PubMed  CAS  Google Scholar 

  • Ferris CD, Huganir RL, Supattapone S, Snyder SH (1989) Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342:87–89

    Article  PubMed  CAS  Google Scholar 

  • Ferris CD, Cameron AM, Huganir RL, Snyder SH (1992) Quantal calcium release by purified reconstituted inositol 1,4,5-trisphosphate receptors. Nature 356:350–352

    Article  PubMed  CAS  Google Scholar 

  • Finch EA, Turner TJ, Goldin SM (1991) Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science 252:443–446

    Article  PubMed  CAS  Google Scholar 

  • Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2 + release channels. Physiol Rev 87:593–658

    Article  PubMed  CAS  Google Scholar 

  • Fritsch RM, Saur D, Kurjak M, Oesterle D, Schlossmann J, Geiselhoringer A, Hofmann F, Allescher HD (2004) Insp3R-associated cGMP kinase substrate (IRAG) is essential for nitric oxide-induced inhibition of calcium signaling in human colonic smooth muscle. J Biol Chem 279:12551–12559

    Article  PubMed  CAS  Google Scholar 

  • Furuichi T, Yoshikawa S, Miyawaki A, Wada K, Maeda M, Mikoshiba K (1989) Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342:32–38

    Article  PubMed  CAS  Google Scholar 

  • Gafni J, Munsch JA, Lam TH, Catlin MC, Costa LG, Molinski TF, Pessah IN (1997) Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-trisphosphate receptor. Neuron 19:723–733

    Article  PubMed  CAS  Google Scholar 

  • Galvan DL, Borrego-Diaz E, Perez PJ, Mignery GA (1999) Subunit oligomerization, and topology of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 274:29483–29492

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Balshaw D, Xu L, Tripathy A, Xin C, Meissner G (2000) Evidence for a role of the lumenal M3-M4 loop in skeletal muscle Ca2 + release channel (ryanodine receptor) activity and conductance. Biophys J 79:828–840

    Article  PubMed  CAS  Google Scholar 

  • Gerasimenko OV, Gerasimenko JV, Tepikin AV, Petersen OH (1995) ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2 + from the nuclear envelope. Cell 80:439–444

    Article  PubMed  CAS  Google Scholar 

  • Gerasimenko OV, Gerasimenko JV, Belan PV, Petersen OH (1996) Inositol trisphosphate and cyclic ADP-ribose-mediated release of Ca2 + from single isolated pancreatic zymogen granules. Cell 84:473–480

    Article  PubMed  CAS  Google Scholar 

  • Gillespie D, Fill M (2008) Intracellular calcium release channels mediate their own countercurrent: the ryanodine receptor case study. Biophys J 95:3706–3714

    Article  PubMed  CAS  Google Scholar 

  • Goto J, Suzuki AZ, Ozaki S, Matsumoto N, Nakamura T, Ebisui E, Fleig A, Penner R, Mikoshiba K (2010) Two novel 2-aminoethyl diphenylborinate (2-APB) analogues differentially activate and inhibit store-operated Ca2 + entry via STIM proteins. Cell Calcium 47:1–10

    Article  PubMed  CAS  Google Scholar 

  • Györke I, Györke S (1998) Regulation of the cardiac ryanodine receptor channel by luminal Ca2 + involves luminal Ca2 + sensing sites. Biophys J 75:2801–2810

    Article  PubMed  Google Scholar 

  • Hagar RE, Burgstahler AD, Nathanson MH, Ehrlich BE (1998) Type III Insp3 receptor channel stays open in the presence of increased calcium. Nature 296:81–84

    Article  CAS  Google Scholar 

  • Hajnóczky G, Thomas AP (1997) Minimal requirements for calcium oscillations driven by the IP3 receptor. EMBO J 16:3533–3543

    Article  PubMed  Google Scholar 

  • Hamada K, Mikoshiba K (2002) Two-state conformational changes in inositol 1,4,5-trisphosphate receptor regulated by calcium. J Biol Chem 277:21115–21118

    Article  PubMed  CAS  Google Scholar 

  • Hamada K, Terauchi A, Mikoshiba K (2003) Three-dimensional rearrangements with inositol 1,4,5-trisphosphate receptor by calcium. J Biol Chem 278:52881–52889

    Article  PubMed  CAS  Google Scholar 

  • Haynes LP, Tepikin AV, Burgoyne RD (2004) Calcium-binding protein 1 is an inhibitor of agonist-evoked, inositol 1,4,5-trisphosphate-mediated calcium signaling. J Biol Chem 279:547–555

    Article  PubMed  CAS  Google Scholar 

  • Higo T, Hattori M, Nakamura T, Natsume T, Michikawa T, Mikoshiba K (2005) Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell 120:85–98

    Article  PubMed  CAS  Google Scholar 

  • Hirota J, Michikawa T, Miyawaki A, Furuichi T, Okura I, Mikoshiba K (1995) Kinetics of calcium release by immunoaffinity-purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles. J Biol Chem 270:19046–19051

    Article  PubMed  CAS  Google Scholar 

  • Hirota J, Michikawa T, Natsume T, Furuichi T, Mikoshiba K (1999) Calmodulin inhibits inositol 1,4,5-trisphosphate-induced calcium release through the purified and reconstituted inositol 1,4,5-trisphosphate receptor type 1. FEBS Lett 456:322–326

    Article  PubMed  CAS  Google Scholar 

  • Hokin MR, Hokin LE (1953) Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J Biol Chem 203:967–977

    PubMed  CAS  Google Scholar 

  • Horne JH, Meyer T (1995) Luminal calcium regulates the inositol trisphosphate receptor of rat basophilic leukemia cells at the cytosolic side. Biochemistry 34:12738–12746

    Article  PubMed  CAS  Google Scholar 

  • Horne JH, Meyer T (1997) Elementary calcium-release units induced by inositol trisphosphate. Science 276:1690–1694

    Article  PubMed  CAS  Google Scholar 

  • Iino M (1987) Calcium dependent inositol trisphosphate-induced calcium release in the guinea-pig taenia caeci. Biochem Biophys Res Commun 142:47–52

    Article  PubMed  CAS  Google Scholar 

  • Iino M (1990) Biphasic Ca2 + dependence of inositol 1,4,5-trisphosphate-induced Ca2 + release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95:1103–1122

    Article  PubMed  CAS  Google Scholar 

  • Ionescu L, Cheung KH, Vais H, Mak DO, White C, Foskett JK (2006) Graded recruitment and inactivation of single Insp3 receptor Ca2 +-release channels: implications for quantal Ca2 + release. J Physiol 573:645–662

    Article  PubMed  CAS  Google Scholar 

  • Irvine RF (1990) “Quantal” Ca2 + release and the control of Ca2 + entry by inositol phosphates—a possible mechanism. FEBS Lett 262:5–9

    Article  Google Scholar 

  • Irvine RF (2003) 20 yrs of Ins(1,4,5)P3, and 40 yrs before. Nat Rev Mol Cell Biol 4:586–590

    PubMed  CAS  Google Scholar 

  • Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2:327–338

    Article  PubMed  CAS  Google Scholar 

  • Islam MO, Yoshida Y, Koga T, Kojima M, Kanagawa K, Imai S (1996) Isolation and characterization of vascular smooth muscle inositol 1,4,5-trisphosphate receptor. Biochem J 316:295–302

    PubMed  CAS  Google Scholar 

  • Iwai M, Tateishi Y, Hattori M, Mizutani A, Nakamura T, Futatsugi A, Inoue T, Furuichi T, Michikawa T, Mikoshiba K (2005) Molecular cloning of mouse type 2 and type 3 inositol 1,4,5-trisphosphate receptors and identification of a novel type 2 receptor splice variant. J Biol Chem 280:10305–10317

    Article  PubMed  CAS  Google Scholar 

  • Iwai M, Michikawa T, Bosanac I, Ikura M, Mikoshiba K (2007) Molecular basis of the isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate receptors. J Biol Chem 282:12755–12764

    Article  PubMed  CAS  Google Scholar 

  • Jiang Q-X, Thrower EC, Chester DW, Ehrlich BE, Sigworth FJ (2002a) Three-dimensional structure of the type 1 inositol 1,4,5-trisphosphate receptor at 24 Å resolution. EMBO J 21:3575–3581

    Article  CAS  Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002b) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522

    Article  CAS  Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002c) The open pore conformation of potassium channels. Nature 417:523–526

    Article  CAS  Google Scholar 

  • Jiang D, Chen W, Xiao J, Wang R, Kong H, Jones PP, Zhang L, Fruen B, Chen SR (2008) Reduced threshold for luminal Ca2 + activation of RyR1 underlies a causal mechanism of porcine malignant hyperthermia. J Biol Chem 283:20813–20820

    Article  PubMed  CAS  Google Scholar 

  • Jones PP, Meng X, Xiao B, Cai S, Bolstad J, Wagenknecht T, Liu Z, Chen SR (2008) Localization of PKA phosphorylation site, Ser2030, in the three-dimensional structure of cardiac ryanodine receptor. Biochem J 410:261–270

    Article  PubMed  CAS  Google Scholar 

  • Joseph SK (1994) Biosythesis of the inositol trisphosphate receptor in WB rat liver epithelial cells. J Biol Chem 269:5673–5679

    PubMed  CAS  Google Scholar 

  • Joseph SK, Brownell S, Khan MT (2005) Calcium regulation of inositol 1,4,5-trisphosphate receptors. Cell Calcium 38:539–546

    Article  PubMed  CAS  Google Scholar 

  • Khan MT, Wagner L 2nd, Yule DI, Bhanumathy C, Joseph SK (2006) Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 281:3731–3737

    Article  PubMed  CAS  Google Scholar 

  • Kiselyov K, Mignery GA, Zhu MX, Muallem S (1999) The N-terminal domain of the IP3 receptor gates store-operated hTrp3 channels. Mol Cell 4:423–429

    Article  PubMed  CAS  Google Scholar 

  • Kretsinger RH (1977) Evolution of the informational role of calcium in eukaryotes. In: Wasserman R, Corradino R, Carafoli E, Kretsinger RH, MacLennan D, Siegel F (eds) Calcium binding proteins and calcium function. Elsevier/North Holland, Amsterdam, pp 63–72

    Google Scholar 

  • Krinke O, Novotna Z, Valentova O, Martinec J (2007) Inositol trisphosphate receptor in higher plants: is it real? J Exp Bot 58:361–376

    Article  PubMed  CAS  Google Scholar 

  • Kuno M, Gardner P (1987) Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326:301–304

    Article  PubMed  CAS  Google Scholar 

  • Laude AJ, Tovey SC, Dedos S, Potter BVL, Lummis SCR, Taylor CW (2005) Rapid functional assays of recombinant IP3 receptors. Cell Calcium 38:45–51

    Article  PubMed  CAS  Google Scholar 

  • Launikonis BS, Zhou J, Royer L, Shannon TR, Brum G, Rios E (2006) Depletion “skraps” and dynamic buffering inside the cellular calcium store. Proc Natl Acad Sci U S A 103:2982–2987

    Article  PubMed  CAS  Google Scholar 

  • Laver DR (2009) Luminal Ca2 + activation of cardiac ryanodine receptors by luminal and cytoplasmic domains. Eur J Biophys 39:19–26

    Article  CAS  Google Scholar 

  • Li C, Wang X, Vais H, Thompson CB, Foskett JK, White C (2007) Apoptosis regulation by Bcl-xL modulation of mammalian inositol 1,4,5-trisphosphate receptor channel isoform gating. Proc Natl Acad Sci U S A 104:12565–12570

    Article  PubMed  CAS  Google Scholar 

  • Lin C, Widjaja J, Joseph SK (2000) The interaction of calmodulin with alternatively spliced isoforms of the type-I inositol trisphosphate receptor. J Biol Chem 275:2305–2311

    Article  PubMed  CAS  Google Scholar 

  • Lipp P, Niggli E (1996) A hierarchical concept of cellular and subcellular Ca2 +-signalling. Prog Biophys Mol Biol 65:265–296

    Article  PubMed  CAS  Google Scholar 

  • Lobo PA, Van Petegem F (2009) Crystal structures of the N-terminal domains of cardiac and skeletal muscle ryanodine receptors: insights into disease mutations. Structure 17:1505–1514

    Article  PubMed  CAS  Google Scholar 

  • Lu T, Nguyen B, Zhang X, Yang J (1999) Architecture of a K + channel inner pore revealed by stoichiometric covalent modification. Neuron 22:571–580

    Article  PubMed  CAS  Google Scholar 

  • Ludtke SJ, Serysheva II, Hamilton SL, Chiu W (2005) The pore structure of the closed RyR1 channel. Structure 13:1203–1211

    Article  PubMed  CAS  Google Scholar 

  • Lupu VD, Kaznacheyeva E, Krishna UM, Falck JR, Bezprozvanny I (1998) Functional coupling of phosphatidylinositol 4,5-bisphosphate to inositol 1,4,5-trisphosphate receptors. J Biol Chem 273:14067–14070

    Article  PubMed  CAS  Google Scholar 

  • Mak D-O, D, Foskett JK (1994) Single channel inositol 1,4,5-trisphosphate receptor currents revealed by patch clamp of isolated Xenopus oocyte nuclei. J Biol Chem 269:29375–29378

    PubMed  CAS  Google Scholar 

  • Mak DO, Foskett JK (1998) Effects of divalent cations on single-channel conduction properties of Xenopus IP3 receptor. Am J Physiol 275: C179–188

    PubMed  CAS  Google Scholar 

  • Mak D-O, D, McBride S, Foskett JK (1998) Inositol 1,4,5-tris-phosphate activation of inositol tris-phosphate receptor Ca2 + channel by ligand tuning of Ca2 + inhibition. Proc Natl Acad Sci U S A 95:15821–15825

    Article  PubMed  CAS  Google Scholar 

  • Mak D-O, McBride S, Foskett JK (2001) Regulation by Ca2 + and inositol 1,4,5-trisphosphate (Insp3) of single recombinant type 3 Insp3 receptor channels: Ca2 + activation uniquely distinguishes types 1 and 3 Insp3 receptors. J Gen Physiol 117:435–446

    Article  PubMed  CAS  Google Scholar 

  • Mak D-O, McBride SMJ, Petrenko NB, Foskett JK (2003) Novel regulation of calcium inhibition of the inositol 1,4,5-trisphosphate receptor calcium-release channel. J Gen Physiol 122:569–581

    Article  PubMed  CAS  Google Scholar 

  • Mak DO, Pearson JE, Loong KP, Datta S, Fernandez-Mongil M, Foskett JK (2007) Rapid ligand-regulated gating kinetics of single inositol 1,4,5-trisphosphate receptor Ca2 + release channels. EMBO Rep 8:1044–1051

    Article  PubMed  CAS  Google Scholar 

  • Marchant JS, Taylor CW (1997) Cooperative activation of IP3 receptors by sequential binding of IP3 and Ca2 + safeguards against spontaneous activity. Curr Biol 7:510–518

    Article  PubMed  CAS  Google Scholar 

  • Marchant J, Callamaras N, Parker I (1999) Initiation of IP3-mediated Ca2 + waves in Xenopus oocytes. EMBO J 18:5285–5299

    Article  PubMed  CAS  Google Scholar 

  • Marchenko SM, Yarotskyy VV, Kovalenko TN, Kostyuk PG, Thomas RC (2005) Spontaneously active and Insp3-activated ion channels in cell nuclei from rat cerebellar Purkinje and granule neurones. J Physiol 565:897–910

    Article  PubMed  CAS  Google Scholar 

  • Marshall ICB, Taylor CW (1993) Biphasic effects of cytosolic calcium on Ins(1,4,5)P3-stimulated Ca2 + mobilization in hepatocytes. J Biol Chem 268:13214–13220

    PubMed  CAS  Google Scholar 

  • Marshall ICB, Taylor CW (1994) Two calcium-binding sites mediate the interconversion of liver inositol 1,4,5-trisphosphate receptors between three conformational states. Biochem J 301:591–598

    PubMed  CAS  Google Scholar 

  • Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2 + release. J Biochem 122:498–505

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML (2006) Glutamate receptors at atomic resolution. Nature 440:456–462

    Article  PubMed  CAS  Google Scholar 

  • Meyer T, Stryer L (1990) Transient calcium release induced by successive increments of inositol 1,4,5-trisphosphate. Proc Natl Acad Sci U S A 87:3841–3845

    Article  PubMed  CAS  Google Scholar 

  • Michelangeli F, Mezna M, Tovey S, Sayers LG (1995) Pharmacological modulators of the inositol 1,4,5-trisphosphate receptor. Neuropharmacology 34:1111–1122

    Article  PubMed  CAS  Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415:81–147

    Article  PubMed  CAS  Google Scholar 

  • Michell RH (2008) Inositol derivatives: evolution and functions. Nat Rev Mol Cell Biol 9:151–161

    Article  PubMed  CAS  Google Scholar 

  • Michell RH (2009) First came the link between phosphoinositides and Ca2 + signalling, and then a deluge of other phosphoinositide functions. Cell Calcium 45:521–526

    Article  PubMed  CAS  Google Scholar 

  • Michell RH, Kirk CJ, Jones LM, Downes CP, Creba JA (1981) The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions. Philos Trans R Soc Lond B 296:123–137

    Article  CAS  Google Scholar 

  • Michikawa T, Hirota J, Kawano S, Hiraoka M, Yamada M, Furuichi T, Mikoshiba K (1999) Calmodulin mediates calcium-dependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor. Neuron 23:799–808

    Article  PubMed  CAS  Google Scholar 

  • Mignery GA, Südhof TC, Takei K, De Camilli P (1989) Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342:192–195

    Article  PubMed  CAS  Google Scholar 

  • Mikoshiba K (2007) IP3 receptor/Ca2 + channel: from discovery to new signaling concepts. J Neurochem 102:1426–1446

    Article  PubMed  CAS  Google Scholar 

  • Missiaen L, Taylor CW, Berridge MJ (1992) Luminal Ca2 + promoting spontaneous Ca2 + release from inositol trisphosphate-sensitive stores of rat hepatocytes. J Physiol 455:623–640

    PubMed  CAS  Google Scholar 

  • Missiaen L, De Smedt H, Parys JB, Casteels R (1994) Co-activation of inositol trisphosphate-induced Ca2 + release by cytosolic Ca2 + is loading-dependent. J Biol Chem 269:7238–7242

    PubMed  CAS  Google Scholar 

  • Missiaen L, Parys JB, Weidema AF, Sipma H, Vanlingen S, De Smet P, Callewaert G, De Smedt H (1999) The bell-shaped Ca2 +-dependence of the inositol 1,4,5-trisphosphate induced Ca2 + release is modulated by Ca2 +/calmodulin. J Biol Chem 274:13748–13751

    Article  PubMed  CAS  Google Scholar 

  • Missiaen L, De Smedt H, Bultynck G, Vanlingen S, De Smet P, Callewaert G, Parys J (2000) Calmodulin increases the sensitivity of type 3 inositol 1,4,5-trisphosphate receptors to Ca2 + inhibition in human bronchial mucosal cells. Mol Pharmacol 57:564–567

    PubMed  CAS  Google Scholar 

  • Miyakawa T, Mizushima A, Hirose K, Yamazawa T, Bezprozvanny I, Kurosaki T, Iino M (2001) Ca2 +-sensor region of IP3 receptor controls intracellular Ca2 + signaling. EMBO J 20:1674–1680

    Article  PubMed  CAS  Google Scholar 

  • Muallem S, Pandol SJ, Beeker TG (1989) Hormone-evoked calcium release from intracellular stores is a quantal process. J Biol Chem 264:205–212

    PubMed  CAS  Google Scholar 

  • Nadif Kasri N, Bultynck G, Sienaert I, Callewaert G, Erneux C, Missiaen L, Parys JB, De Smedt H (2002) The role of calmodulin for inositol 1,4,5-trisphosphate receptor function. Biochim Biophys Acta 1600:19–31

    Article  PubMed  CAS  Google Scholar 

  • Nadif Kasri N, Holmes AM, Bultynck G, Parys JB, Bootman MD, Rietdorf K, Missiaen L, McDonald F, De Smedt H, Conway SJ, Holmes AB, Berridge MJ, Roderick HL (2004) Regulation of Insp3 receptor activity by neuronal Ca2 +-binding proteins. EMBO J 23:312–321

    Article  CAS  Google Scholar 

  • Nadif Kasri N, Torok K, Galione A, Garnham C, Callewaert G, Missiaen LJ, BP, De Smedt H (2006) Endogenously bound calmodulin is essential for the function of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 281:8332–8338

    Article  CAS  Google Scholar 

  • Neher E (1998) Vesicle pools and Ca2 + microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20:389–399

    Article  PubMed  CAS  Google Scholar 

  • Nosyreva E, Miyakawa T, Wang Z, Glouchankova L, Iino M, Bezprozvanny I (2002) The high-affinity calcium-calmodulin-binding site does not play a role in the modulation of type 1 inositol 1,4,5-trisphosphate receptor function by calcium and calmodulin. Biochem J 365:659–667

    PubMed  CAS  Google Scholar 

  • Nunn DL, Taylor CW (1992) Luminal Ca2 + increases the sensitivity of Ca2 + stores to inositol 1,4,5-trisphosphate. Mol Pharmacol 41:115–119

    PubMed  CAS  Google Scholar 

  • Obejero-Paz CA, Gray IP, Jones SW (2004) Y3 + block demonstrates an intracellular activation gate for the alpha1G T-type Ca2 + channel. J Gen Physiol 124:631–640

    Article  PubMed  CAS  Google Scholar 

  • Oda T, Yano M, Yamamoto T, Tokuhisa T, Okuda S, Doi M, Ohkusa T, Ikeda Y, Kobayashi S, Ikemoto N, Matsuzaki M (2005) Defective regulation of interdomain interactions within the ryanodine receptor plays a key role in the pathogenesis of heart failure. Circulation 111:3400–3410

    Article  PubMed  CAS  Google Scholar 

  • Oldershaw KA, Taylor CW (1993) Luminal Ca2 + increases the affinity of inositol 1,4,5-trisphosphate for its receptor. Biochem J 292:631–633

    PubMed  CAS  Google Scholar 

  • Oldershaw KA, Nunn DL, Taylor CW (1991) Quantal Ca2 + mobilization stimulated by inositol 1,4,5-trisphosphate in permeabilized hepatocytes. Biochem J 278:705–708

    PubMed  CAS  Google Scholar 

  • Orlova EV, Serysheva II, Heel M van, Hamilton SL, Chiu W (1996) Two structural configurations of the skeletal muscle calcium release channel. Nat Struct Biol 3:547–552

    Article  PubMed  CAS  Google Scholar 

  • Pantazaka E, Taylor CW (2010) Targeting of inositol 1,4,5-trisphosphate receptor to the endoplasmic reticulum by its first transmembrane domain. Biochem J 425:61–69

    Article  CAS  Google Scholar 

  • Pantazaka E, Taylor CW (2011) Differential distribution, clustering and lateral diffusion of subtypes of inositol 1,4,5-trisphosphate receptor. J Biol Chem 286:23378–23387

    Google Scholar 

  • Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS (2009) STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136:876–890

    Article  PubMed  CAS  Google Scholar 

  • Parker I, Ivorra I (1991) Caffeine inhibits inositol trisphosphate-mediated liberation of intracellular calcium in Xenopus oocytes. J Physiol 433:229–240

    PubMed  CAS  Google Scholar 

  • Parker I, Smith IF (2010) Recording single-channel activity of inositol trisphosphate receptors in intact cells with a microscope, not a patch clamp. J Gen Physiol 136:119–127

    Article  PubMed  CAS  Google Scholar 

  • Parker I, Yao Y (1996) Ca2 + transients associated with openings of inositol trisphosphate-gated channels in Xenopus oocytes. J Physiol 491 3:663–668

    Google Scholar 

  • Parker AKT, Gergely FV, Taylor CW (2004) Targeting of inositol 1,4,5-trisphosphate receptors to the endoplasmic reticulum by multiple signals within their transmembrane domains. J Biol Chem 279:23797–23805

    Article  PubMed  CAS  Google Scholar 

  • Parys JB, Sernett SW, DeLisle S, Snyder PM, Welsh MJ, Campbell KP (1992) Isolation, characterization, and localization of the inositol 1,4,5-trisphosphate receptor protein in Xenopus laevis oocytes. J Biol Chem 267:18776–18782

    PubMed  CAS  Google Scholar 

  • Parys JB, Missiaen L, De Smedt H, Casteels R (1993) Loading dependence of inositol 1,4,5-trisphosphate-induced Ca2 + release in the clonal cell line A7r5. J Biol Chem 268:25206–25212

    PubMed  CAS  Google Scholar 

  • Patel S, Morris SA, Adkins CE, O’Beirne G, Taylor CW (1997) Ca2 +-independent inhibition of inositol trisphosphate receptors by calmodulin: redistribution of calmodulin as a possible means of regulating Ca2 + mobilization. Proc Natl Acad Sci U S A 94:11627–11632

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Marchant JS, Brailoiu E (2010) Two-pore channels: regulation by NAADP and customized roles in triggering calcium signals. Cell Calcium 47:480–490

    Article  PubMed  CAS  Google Scholar 

  • Patterson RL, Boehning D, Snyder SH (2004) Inositol 1,4,5-trisphosphate receptors as signal integrators. Annu Rev Biochem 73:437–465

    Article  PubMed  CAS  Google Scholar 

  • Perez PJ, Ramos-Franco J, Fill M, Mignery GA (1997) Identification and functional reconstitution of the type 2 inositol 1,4,5-trisphosphate receptor from ventricular cardiac myocytes. J Biol Chem 272:23961–23969

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH, Burdakov D, Tepikin AV (1999) Polarity in intracellular calcium signalling. Bioessays 21:851–860

    Article  PubMed  CAS  Google Scholar 

  • Pinton P, Pozzan T, Rizzuto R (1998) The Golgi apparatus is an inositol 1,4,5-trisphosphate-sensitive Ca2 + store, with functional properties distinct from those of the endoplasmic reticulum. EMBO J 17:5298–5308

    Article  PubMed  CAS  Google Scholar 

  • Putney JW Jr (1997) Capacitative calcium entry. R.G. Landes Company, Austin

    Book  Google Scholar 

  • Qu W, Moorhouse AJ, Chandra M, Pierce KD, Lewis TM, Barry PH (2006) A single P-loop glutamate point mutation to either lysine or arginine switches the cation-anion selectivity of the CNGA2 channel. J Gen Physiol 127:375–389

    Article  PubMed  CAS  Google Scholar 

  • Rahman T, Taylor CW (2009) Dynamic regulation of IP3 receptor clustering and activity by IP3. Channels 3:336–332

    Article  CAS  Google Scholar 

  • Rahman T, Taylor CW (2010) Nuclear patch-clamp recording from inositol 1,4,5-trisphosphate receptors. In: Whittaker M (ed) Calcium in living cells. Elsevier, Amsterdam, pp 199–224.

    Chapter  Google Scholar 

  • Rahman TU, Skupin A, Falcke M, Taylor CW (2009) Clustering of IP3 receptors by IP3 retunes their regulation by IP3 and Ca2 +. Nature 458:655–659

    Article  Google Scholar 

  • Ramos-Franco J, Galvan D, Mignery GA, Fill M (1999) Location of the permeation pathway in the recombinant type-1 inositol 1,4,5-trisphosphate receptor. J Gen Physiol 114:243–250

    Article  PubMed  CAS  Google Scholar 

  • Ramos-Franco J, Bare D, Caenepeel S, Nani A, Fill M, Mignery G (2000) Single-channel function of recombinant type 2 inositol 1,4,5-trisphosphate receptor. Biophys J 79:1388–1399

    Article  PubMed  CAS  Google Scholar 

  • Richardson A, Taylor CW (1993) Effects of Ca2 + chelators on purified inositol 1,4,5-trisphosphate (Insp3) receptors and Insp3-stimulated Ca2 + mobilization. J Biol Chem 268:11528–11533

    PubMed  CAS  Google Scholar 

  • Rong YP, Aromolaran AS, Bultynck G, Zhong F, Li X, McColl K, Matsuyama S, Herlitze S, Roderick HL, Bootman MD, Mignery GA, Parys JB, De Smedt H, Distelhorst CW (2008) Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2’s inhibition of apoptotic calcium signals. Mol Cell 31:255–265

    Article  PubMed  CAS  Google Scholar 

  • Rose HJ, Dargan S, Shuai J, Parker I (2006) ‘Trigger’ events precede calcium puffs in Xenopus oocytes. Biophys J 91:4024–4032

    Article  PubMed  CAS  Google Scholar 

  • Rossi AM, Riley AM, Tovey SC, Rahman T, Dellis O, Taylor EJA, Veresov VG, Potter BVL, Taylor CW (2009) Synthetic partial agonists reveal key steps in IP3 receptor activation. Nat Chem Biol 5:631–639

    Article  PubMed  CAS  Google Scholar 

  • Rossi AM, Riley AM, Potter BVL, Taylor CW (2010) Adenophostins: high-affinity agonists of IP3 receptors. Curr Top Membr 66:209–233

    Article  CAS  Google Scholar 

  • Roux B, MacKinnon R (1999) The cavity and pore helices in the KcsA K + channel: electrostatic stabilization of monovalent cations. Science 285:100–102

    Article  PubMed  CAS  Google Scholar 

  • Roux B, Berneche S, Im W (2000) Ion channels, permeation, and electrostatics: insight into the function of KcsA. Biochemistry 39:13295–13306

    Article  PubMed  CAS  Google Scholar 

  • Samso M, Wagenknecht T, Allen PD (2005) Internal structure and visualization of transmembrane domains of the RyR1calcium release channel by cryo-EM. Nat Struct Mol Biol 6:539–544

    Article  CAS  Google Scholar 

  • Samso M, Feng W, Pessah IN, Allen PD (2009) Coordinated movement of cytoplasmic and transmembrane domains of RyR1 upon gating. PLoS Biol 7:e85

    Article  PubMed  CAS  Google Scholar 

  • Sato C, Hamada K, Ogura T, Miyazawa A, Iwasaki K, Hiroaki Y, Tani K, Terauchi A, Fujiyoshi Y, Mikoshiba K (2004) Inositol 1,4,5-trisphosphate receptor contains multiple cavities and L-shaped ligand-binding domains. J Mol Biol 336:155–164

    Article  PubMed  CAS  Google Scholar 

  • Schug ZT, Joseph SK (2006) The role of the S4-S5 linker and C-terminal tail in inositol 1,4,5-trisphosphate receptor function. J Biol Chem 281:24431–24440

    Article  PubMed  CAS  Google Scholar 

  • Schug ZT, da Fonseca PC, Bhanumathy CD, Wagner L 2nd, Zhang X, Bailey B, Morris EP, Yule DI, Joseph SK (2008) Molecular characterization of the inositol 1,4,5-trisphosphate receptor pore-forming segment. J Biol Chem 283:2939–2948

    Article  PubMed  CAS  Google Scholar 

  • Serysheva I (ed) (2010) Structure and function of calcium release channels. Academic Press, San Diego

    Google Scholar 

  • Serysheva II, Bare DJ, Ludtke SJ, Kettlun CS, Chiu W, Mignery GA (2003) Structure of the type 1 inositol 1,4,5-trisphosphate receptor revealed by cryomicroscopy. J Biol Chem 278:21319–21322

    Article  PubMed  CAS  Google Scholar 

  • Serysheva II, Hamilton SL, Chiu W, Ludtke SJ (2005) Structure of a Ca2 + release channel at 14 Å resolution. J Struct Biol 345:427–431

    CAS  Google Scholar 

  • Shuai J, Rose HJ, Parker I (2006) The number and spatial distribution of IP3 receptors underlying calcium puffs in Xenopus oocytes. Biophys J 91:4033–4044

    Article  PubMed  CAS  Google Scholar 

  • Shuttleworth TJ (1992) Ca2 + release from inositol trisphosphate-sensitive stores is not modulated by intraluminal [Ca2 +]. J Biol Chem 267:3573–3576

    PubMed  CAS  Google Scholar 

  • Sienaert I, De Smedt H, Parys JB, Missiaen L, Vanlingen S, Sipma H, Casteels R (1996) Characterization of a cytosolic and a luminal Ca2 + binding site in the type I inositol 1,4,5-trisphosphate receptor. J Biol Chem 271:27005–27012

    Article  PubMed  CAS  Google Scholar 

  • Sienaert I, Missiaen L, De Smedt H, Parys JB, Sipma H, Casteels R (1997) Molecular and functional evidence for multiple Ca2 +-binding domains on the type 1 inositol 1,4,5-trisphosphate receptor J Biol Chem 272:25899–25906

    Article  PubMed  CAS  Google Scholar 

  • Sienaert I, Kasri NN, Vanlingen S, Parys J, Callewaert G, Missiaen L, De Smedt H (2002) Localization and function of a calmodulin/apocalmodulin binding domain in the N-terminal part of the type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 365:269–277

    Article  PubMed  CAS  Google Scholar 

  • Smith IF, Parker I (2009) Imaging the quantal substructure of single IP3R channel activity during Ca2 + puffs in intact mammalian cells. Proc Natl Acad Sci U S A 106:6404–6409

    Article  PubMed  CAS  Google Scholar 

  • Smith IF, Wiltgen SM, Shuai J, Parker I (2009) Ca2 + puffs originate from preestablished stable clusters of inositol trisphosphate receptors. Sci Signal 2:ra77

    Article  PubMed  Google Scholar 

  • Solovyova N, Fernyhough P, Glazner G, Verkhratsky A (2002) Xestospongin C empties the ER calcium store but does not inhibit Insp3-induced Ca2 + release in cultured dorsal root ganglia neurones. Cell Calcium 32:49–52

    Article  PubMed  CAS  Google Scholar 

  • Srikanth S, Wang Z, Hasan G, Bezprozvanny I (2004) Functional properties of a pore mutant in the Drosophila melanogaster inositol 1,4,5-trisphosphate receptor. FEBS Lett 575:95–98

    Article  PubMed  CAS  Google Scholar 

  • Stehno-Bittel L, Luckhoff A, Clapham DE (1995) Calcium release from the nucleus by Insp3 receptor channels. Neuron 14:163–167

    Article  PubMed  CAS  Google Scholar 

  • Streb H, Irvine RF, Berridge MJ, Schulz I (1983) Release of Ca2 + from a nonmitochondrial store of pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306:67–69

    Article  PubMed  CAS  Google Scholar 

  • Striggow F, Ehrlich BE (1996) The inositol 1,4,5-trisphosphate receptor of cerebellum. Mn2 + permeability and regulation by cytosolic Mn2 +. J Gen Physiol 108:115–124

    Article  PubMed  CAS  Google Scholar 

  • Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175–195

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Taylor CW (2008) A calmodulin antagonist reveals a calmodulin-independent interdomain interaction essential for activation of inositol 1,4,5-trisphosphate receptors. Biochem J 416:243–253

    Article  PubMed  CAS  Google Scholar 

  • Sun X-P, Callamaras N, Marchant JS, Parker I (1998) A continuum of Insp3-mediated elementary Ca2 + signalling events in Xenopus oocytes. J Physiol 509:67–80

    Article  PubMed  CAS  Google Scholar 

  • Sureshan KM, Riley AM, Rossi AM, Tovey SC, Dedos SG, Taylor CW, Potter BVL (2009) Activation of IP3 receptors by synthetic bisphosphate ligands. Chem Commun 14:1204–1206

    Article  CAS  Google Scholar 

  • Szado T, Vanderheyden V, Parys JB, De Smedt H, Rietdorf K, Kotelevets L, Chastre E, Khan F, Landegren U, Soderberg O, Bootman MD, Roderick HL (2008) Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2 + release and apoptosis. Proc Natl Acad Sci U S A 105:2427–2432

    Article  PubMed  CAS  Google Scholar 

  • Szlufcik K, Bultynck G, Callewaert G, Missiaen L, Parys JB, De Smedt H (2006) The suppressor domain of inositol 1,4,5-trisphosphate receptor plays an essential role in the protection against apoptosis. Cell Calcium 39:325–336

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX (2001) Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. J Biol Chem 276:21303–21310

    Article  PubMed  CAS  Google Scholar 

  • Tanimura A, Turner RJ (1996) Calcium release in HSY cells conforms to a steady-state mechanism involving regulation of the inositol 1,4,5-trisphosphate receptor Ca2 + channel by luminal [Ca2 +]. J Cell Biol 132:607–616

    Article  PubMed  CAS  Google Scholar 

  • Tanimura A, Tojyo Y, Turner RJ (2000) Evidence that type I, II and III inositol-trisphosphate receptors can occur as integral membrane proteins. J Biol Chem 275:27488–27498

    PubMed  CAS  Google Scholar 

  • Tateishi Y, Hattori M, Nakayama T, Iwai M, Bannai H, Nakamura T, Michikawa T, Inoue T, Mikoshiba K (2005) Cluster formation of inositol 1,4,5-trisphosphate receptor requires its transition to open state. J Biol Chem 280:6816–6822

    Article  PubMed  CAS  Google Scholar 

  • Tateishi H, Yano M, Mochizuki M, Suetomi T, Ono M, Xu X, Uchinoumi H, Okuda S, Oda T, Kobayashi S, Yamamoto T, Ikeda Y, Ohkusa T, Ikemoto N, Matsuzaki M (2009) Defective domain-domain interactions within the ryanodine receptor as a critical cause of diastolic Ca2 + leak in failing hearts. Cardiovasc Res 81:536–545

    Article  PubMed  CAS  Google Scholar 

  • Taylor CW, Dellis O (2006) Plasma membrane IP3 receptors. Biochem Soc Trans 34:910–912

    Article  PubMed  CAS  Google Scholar 

  • Taylor CW, Laude AJ (2002) IP3 receptors and their regulation by calmodulin and cytosolic Ca2 +. Cell Calcium 32:321–334

    Article  PubMed  CAS  Google Scholar 

  • Taylor CW, Potter BVL (1990) The size of inositol 1,4,5-trisphosphate-sensitive Ca2 + stores depends on inositol 1,4,5-trisphosphate concentration. Biochem J 266:189–194

    PubMed  CAS  Google Scholar 

  • Taylor CW, Genazzani AA, Morris SA (1999) Expression of inositol trisphosphate receptors. Cell Calcium 26:237–251

    Article  PubMed  CAS  Google Scholar 

  • Taylor CW, da Fonseca PCA, Morris EP (2004) IP3 receptors: the search for structure. Trends Biochem Sci 29:210–219

    Article  PubMed  CAS  Google Scholar 

  • Taylor CW, Rahman T, Tovey SC, Dedos SG, Taylor EJA, Velamakanni S (2009) IP3 receptors: some lessons from DT40 cells. Immunol Rev 231:23–44

    Article  PubMed  CAS  Google Scholar 

  • Terentyev D, Nori A, Santoro M, Viatchenko-Karpinski S, Kubalova Z, Gyorke I, Terentyeva R, Vedamoorthyrao S, Blom NA, Valle G, Napolitano C, Williams SC, Volpe P, Priori SG, Gyorke S (2006) Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death. Circ Res 98:1151–1158

    Article  PubMed  CAS  Google Scholar 

  • Thomas D, Lipp P, Berridge MJ, Bootman MD (1998) Hormone-evoked elementary Ca2 + signals are not stereotypic, but reflect activation of different size channel clusters and variable recruitment of channels within a cluster. J Biol Chem 273:27130–27136

    Article  PubMed  CAS  Google Scholar 

  • Thomas D, Lipp P, Tovey SC, Berridge MJ, Li W, Tsien RY, Bootman MD (2000) Microscopic properties of elementary Ca2 + release sites in non-excitable cells. Curr Biol 10:8–15

    Article  PubMed  CAS  Google Scholar 

  • Thrower EC, Mobasheri H, Dargen S, Marius P, Lea EJA, Dawson AP (2000) Interaction of luminal calcium and cytosolic ATP in the control of type 1 inositol (1,4,5)-trisphosphate receptor channels. J Biol Chem 275:36049–36055

    Article  PubMed  CAS  Google Scholar 

  • Tinker A, Williams AJ (1993) Probing the structure of the conduction pathway of the sheep cardiac sarcoplasmic reticulum calcium-release channel with permeant and impermeant organic cations. J Gen Physiol 102:1107–1129

    Article  PubMed  CAS  Google Scholar 

  • Tinker A, Williams AJ (1995) Measuring the length of the pore of the sheep cardiac sarcoplasmic reticulum calcium-release channel using related trimethylammonium ions as molecular calipers. Biophys J 68:111–120

    Article  PubMed  CAS  Google Scholar 

  • Tojyo Y, Morita T, Nezu A, Tanimura A (2008) The clustering of inositol 1,4,5-trisphosphate (IP3) receptors is triggered by IP3 binding and facilitated by depletion of the Ca2 + store. J Pharm Sci 107:138–150

    Article  CAS  Google Scholar 

  • Tovey SC, De Smet P, Lipp P, Thomas D, Young KW, Missiaen L, De Smedt H, Parys J, Berridge MJ, Thuring J, Holmes A, Bootman MD (2001) Calcium puffs are generic Insp3-activated elementary calcium signals and are downregulated by prolonged hormonal stimulation to inhibit cellular calcium responses. J Cell Sci 114:3979–3989

    PubMed  CAS  Google Scholar 

  • Tovey S, Dedos SG, Taylor EJA, Church JE, Taylor CW (2008) Selective coupling of type 6 adenylyl cyclase with type 2 IP3 receptors mediates a direct sensitizaton of IP3 receptors by cAMP. J Cell Biol 183:297–311

    Article  PubMed  CAS  Google Scholar 

  • Tovey SC, Dedos SG, Rahman T, Taylor EJA, Pantazaka E, Taylor CW (2010) Regulation of inositol 1,4,5-trisphosphate receptors by cAMP independent of cAMP-dependent protein kinase. J Biol Chem 285:12979–12989

    Article  PubMed  CAS  Google Scholar 

  • Tu H, Nosyreva E, Miyakawa T, Wang Z, Mizushima A, Iino M, Bezprozvanny I (2003) Functional and biochemical analysis of the type 1 inositol (1,4,5)-trisphosphate receptor calcium sensor. Biophys J 85:290–299

    Article  PubMed  CAS  Google Scholar 

  • Tu H, Wang Z, Bezprozvanny I (2005a) Modulation of mammalian inositol 1,4,5-trisphosphate receptor isoforms by calcium: a role of calcium sensor region. Biophys J 88:1056–1069

    Article  CAS  Google Scholar 

  • Tu H, Wang Z, Nosyreva E, De Smedt H, Bezprozvanny I (2005b) Functional characterization of mammalian inositol 1,4,5-trisphosphate receptor isoforms. Biophys J 88:1046–1055

    Article  CAS  Google Scholar 

  • Uchida K, Miyauchi H, Furuichi T, Michikawa T, Mikoshiba K (2003) Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 278:16551–16560

    Article  PubMed  CAS  Google Scholar 

  • Vais H, Siebert AP, Ma Z, Fernandez-Mongil M, Foskett JK, Mak DO (2010) Redox-regulated heterogeneous thresholds for ligand recruitment among Insp3R Ca2 +-release channels. Biophys J 99:407–416

    Article  PubMed  CAS  Google Scholar 

  • Put FHMM van de, De Pont JJHHM, Willems PHGM (1994) Heterogeneity between intracellular Ca2 + stores as the underlying principle of quantal Ca2 + release by inositol 1,4,5-trisphosphate in permeabilized pancreatic acinar cells. J Biol Chem 269:12438–12443

    PubMed  Google Scholar 

  • Rossum DB van, Patterson RL, Kiselyov K, Boehning D, Barrow RK, Gill DL, Snyder SH (2004) Agonist-induced Ca2 + entry determined by inositol 1,4,5-trisphosphate recognition. Proc Natl Acad Sci U S A 101:2323–2327

    Article  PubMed  CAS  Google Scholar 

  • Wagner LE 2nd, Joseph SK, Yule DI (2008) Regulation of single inositol 1,4,5-trisphosphate receptor channel activity by protein kinase A phosphorylation. J Physiol 586:3577–3596

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Zhang L, Bolstad J, Diao N, Brown C, Ruest L, Welch W, Williams AJ, Chen SR (2003) Residue Gln4863 within a predicted transmembrane sequence of the Ca2 + release channel (ryanodine receptor) is critical for ryanodine interaction. J Biol Chem 278:51557–51565

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Chen W, Cai S, Zhang J, Bolstad J, Wagenknecht T, Liu Z, Chen SR (2007) Localization of an NH2-terminal disease-causing mutation hot spot to the “clamp” region in the three-dimensional structure of the cardiac ryanodine receptor. J Biol Chem 282:17785–17793

    Article  PubMed  CAS  Google Scholar 

  • Watras J, Bezprozvanny I, Ehrlich BE (1991) Inositol 1,4,5-trisphosphate-gated channels in cerebellum: presence of multiple conductance states. J Neurosci 11:3239–3245

    PubMed  CAS  Google Scholar 

  • Wheeler GL, Brownlee C (2008) Ca2 + signalling in plants and green algae—changing channels. Trends Plant Sci 13:506–514

    Article  PubMed  CAS  Google Scholar 

  • Williams AJ, West DJ, Sitsapesan R (2001) Light at the end of the Ca2 +-release channel tunnel: structures and mechanisms involved in ion translocation in ryanodine receptor channels. Q Rev Biophys 34:61–104

    Article  PubMed  CAS  Google Scholar 

  • Willoughby D, Cooper DM (2007) Organization and Ca2 + regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87:965–1010

    Article  PubMed  CAS  Google Scholar 

  • Wilson BS, Pfeiffer JR, Smith AJ, Oliver JM, Oberdorf JA, Wojcikiewicz RJH (1998) Calcium-dependent clustering of inositol 1,4,5-trisphosphate receptors. Mol Biol Cell 9:1465–1478

    PubMed  CAS  Google Scholar 

  • Wolfram F, Morris E, Taylor CW (2010) Three-dimensional structure of recombinant type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 428:483–489

    Article  PubMed  CAS  Google Scholar 

  • Woods NM, Cuthbertson KSR, Cobbold PH (1986) Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature 319:600–602

    Article  PubMed  CAS  Google Scholar 

  • Worley PF, Baraban JM, Supattapone S, Wilson VS, Snyder SH (1987) Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium. J Biol Chem 262:12132–12136

    PubMed  CAS  Google Scholar 

  • Xi Q, Adebiyi A, Zhao G, Chapman KE, Waters CM, Hassid A, Jaggar JH (2008) IP3 constricts cerebral arteries via IP3 receptor-mediated TRPC3 channel activation and independently of sarcoplasmic reticulum Ca2 + release. Circ Res 102:1118–11126

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Miyawaki A, Saito K, Yamamoto-Hino M, Ryo Y, Furuichi T, Mikoshiba K (1995) The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 308:83–88

    PubMed  CAS  Google Scholar 

  • Yamasaki-Mann M, Demuro A, Parker I (2010) Modulation of ER Ca2 + store filling by cADPR promotes IP3-evoked Ca2 + signals. J Biol Chem 285:25053–25061

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki H, Chan J, Ikura M, Michikawa T, Mikoshiba K (2010) Tyr-167/Trp-168 in type1/3 inositol 1,4,5-trisphosphate receptor mediates functional coupling between ligand binding and channel opening. J Biol Chem 285:36081–36091

    Google Scholar 

  • Yang J, Ellinor PT, Sather WA, Zhang J-F, Tsien RW (1993) Molecular determinants of Ca2 + selectivity and ion permeation in L-type Ca2 + channels. Nature 366:158–161

    Article  PubMed  CAS  Google Scholar 

  • Yang J, McBride S, Mak D-O, D, Vardi N, Palczewski K, Haeseleer F, Foskett JK (2002) Identification of a family of calcium sensors as protein ligands of the inositol trisphosphate receptor Ca2 + release channels. Proc Natl Acad Sci U S A 99:7711–7716

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Shcheynikov N, Zeng W, Ohana E, So I, Ando H, Mizutani A, Mikoshiba K, Muallem S (2009) IRBIT coordinates epithelial fluid and HCO3− secretion by stimulating the transporters pNBC1 and CFTR in the murine pancreatic duct. J Clin Invest 119:193–202

    PubMed  CAS  Google Scholar 

  • Yellen G (2002) The voltage-gated potassium channels and their relatives. Nature 419:35–42

    Article  PubMed  CAS  Google Scholar 

  • Yule DI, Betzenhauser MJ, Joseph SK (2010) Linking structure to function: recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis. Cell Calcium 47:469–479

    Article  PubMed  CAS  Google Scholar 

  • Zeng W, Mak DD, Li Q, Shin DM, Foskett JK, Muallem S (2003) A new mode of Ca2 + signaling by G protein-coupled receptors: gating of IP3 receptor Ca2 + release channels by Gβg Curr Biol 13:872–876

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Joseph SK (2001) Effect of mutation of a calmodulin-binding sites on Ca2 + regulation of inositol trisphosphate receptors. Biochem J 360:395–400

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Tang J, Tikunova S, Johnson JD, Chen Z, Qin N, Dietrich A, Stefani E, Birnbaumer L, Zhu MX (2001) Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc Natl Acad Sci U S A 98:3168–3173

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Yarov-Yarovoy V, Scheuer T, Catterall WA (2004) A gating hinge in Na + channels; a molecular switch for electrical signaling. Neuron 41:859–865

    Article  PubMed  CAS  Google Scholar 

  • Zhao G, Neeb ZP, Leo MD, Pachuau J, Adebiyi A, Ouyang K, Chen J, Jaggar JH (2010) Type 1 IP3 receptors activate BKCa channels via local molecular coupling in arterial smooth muscle cells. J Gen Physiol 136:283–291

    Article  PubMed  CAS  Google Scholar 

  • Zhen XG, Xie C, Fitzmaurice A, Schoonover CE, Orenstein ET, Yang J (2005) Functional architecture of the inner pore of a voltage-gated Ca2 + channel. J Gen Physiol 126:193–204

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R (2001) Chemistry of ion coordination and hydration revealed by a K + channel-Fab complex at 2.0 Å resolution. Nature 414:43–48

    CAS  Google Scholar 

  • Zhu MX, Ma J, Parrington J, Calcraft PJ, Galione A, Evans AM (2010) Calcium signaling via two-pore channels: local or global, that is the question. Am J Physiol 298:C430–C441

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Wellcome Trust, Medical Research Council UK and Biotechnology and Biological Sciences Research Council UK. DLP is a Meres Senior Research Associate of St John’s College, Cambridge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin W. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Taylor, C.W., Prole, D.L. (2012). Ca2+ Signalling by IP3 Receptors. In: Balla, T., Wymann, M., York, J. (eds) Phosphoinositides II: The Diverse Biological Functions. Subcellular Biochemistry, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3015-1_1

Download citation

Publish with us

Policies and ethics