Skip to main content
Log in

Mutational analysis of pea lectin. Substitution of Asn125 for Asp in the monosaccharide-binding site eliminates mannose/glucose-binding activity

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

As part of a strategy to determine the precise role of pea (Pisum sativum) lectin, Psl, in nodulation of pea by Rhizobium leguminosarum, mutations were introduced into the genetic determinant for pea lectin by site-directed mutagenesis using PCR. Introduction of a specific mutation, N125D, into a central area of the sugar-binding site resulted in complete loss of binding of Psl to dextran as well as of mannose/glucose-sensitive haemagglutination activity. As a control, substitution of an adjacent residue, A126V, did not have any detectable influence on sugar-binding activity. Both mutants appeared to represent normal Psl dimers with a molecular mass of about 55 kDa, in which binding of Ca2+ and Mn2+ ions was not affected. These results demonstrate that the NHD2 group of Asn125 is essential in sugar binding by Psl. To our knowledge, Psl N125D is the first mutant legume lectin which is unable to bind sugar residues. This mutant could be useful in the identification of the potential role of the lectin in the recognition of homologous symbionts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Becker JW, Reeke GNJr: Specific carbohydrate binding by Concanavalin A and favin. Trans Am Cryst Ass 25: 37–50 (1991).

    Google Scholar 

  2. Blum H, Beier H, Gross HJ: Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electroforesis 8: 93–99 (1987).

    Google Scholar 

  3. Boulter JM, Edwards GA, Gatehouse AMR, Gatehouse JA, Hilder VA: Additive protective effect of different plant derived insect resistance genes in transgenic tobacco plants. Crop Prot 9: 351–354 (1990).

    Google Scholar 

  4. Bourne Y, Abergel C, Cambillau C, Frey M, Rougé P, Fontecilla-Camps J-C: X-ray crystal structure determination and refinement at 1.9 Å resolution of isolectin I from the seeds of Lathyrus ochrus. J Mol Biol 214: 571–584 (1990).

    PubMed  Google Scholar 

  5. Bourne Y, Rougé P, Cambillau C: X-Ray structure of a (α-Man(1–3)β-Man(1–4)GlcNac)-lectin complex at 2.1 Å resolution. J Biol Chem 265: 18161–18165 (1990).

    PubMed  Google Scholar 

  6. Bourne Y, Roussel A, Frey M, Rougé P, Fontecilla-Camps J-C, Cambillau C: Three-dimensional structures of complexes of Lathyrus ochrus isolectin I with glucose and mannose: Fine specificity of the monosaccharide-binding site. Proteins: Structure, Function, and Genetics 8: 365–376 (1990).

    Google Scholar 

  7. Díaz CL, Lems-van Kan P, van derSchaal IAM, Kijne JW: Determination of pea (Pisum sativum L.) root lectin using an enzyme-linked immunoassay. Planta 161: 302–307 (1984).

    Google Scholar 

  8. Díaz CL, vanSpronsen PC, Bakhuizen R, Logman GJJ, Lugtenberg EJJ, Kijne JW: Correlation between infection by Rhizobium leguminosarum and lectin on the surface of Pisum sativum L. roots. Planta 168: 350–359 (1986).

    Google Scholar 

  9. Díaz CL: Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Ph.D. thesis, Leiden University, Netherlands (1989).

    Google Scholar 

  10. Díaz CL, Melchers LS, Hooykaas PJJ, Lugtenberg EJJ, Kijne JW: Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338: 579–581 (1989).

    Google Scholar 

  11. Einspahr H, Parks EH, Phillips SR, Suddath FL: Crystal structure studies of legume lectins. In: Bøg-Hansen TC, Freed DJJ (eds) Lectins: Biology, Biochemistry, Clinical Biochemistry, vol. 6, pp. 245–263. Sigma Chemical Company, St. Louis, MN (1988).

    Google Scholar 

  12. Einspahr H, Parks EH, Suguna K, Subramanian E, Suddath FL: The crystal structure of pea lectin at 3.0 Å resolution. J. Biol Chem 261: 16518–16527 (1986).

    PubMed  Google Scholar 

  13. Ey PL, Ashman LK: The use of alkaline phosphatase-conjugated anti-immunoglobulin with immunoblots for determining the specificity of monoclonal antibodies to protein mixtures. Meth Enzymol 121: 497–509 (1986).

    PubMed  Google Scholar 

  14. Goldstein IJ, Poretz RD: Isolation, physicochemical characterization and carbohydrate specificity of lectins. In: Liener IE, Sharon N, Goldstein IJ (eds), The Lectins: Properties, Functions, and Applications in Biology and Medicine, pp. 33–247. Academic Press, New York (1986).

    Google Scholar 

  15. Higgins TJV, Chandler PM, Zurawski G, Button SG, Spencer D: The biosynthesis and primary structure of pea seed lectin. J Biol Chem 258: 9544–9549 (1983).

    PubMed  Google Scholar 

  16. Higgins TJV, Chrispeels MJ, Chandler PM, Spencer D: Intracellular site of synthesis and processing of lectin in developing pea cotyledons. J Biol Chem 258: 9550–9552 (1983).

    PubMed  Google Scholar 

  17. Kijne JW, van derSchaal IAM, deVries GE: Pea lectins and the recognition of Rhizobium leguminosarum. Plant Sci Lett 18: 65–74 (1980).

    Google Scholar 

  18. Lauwereys M, vanDriessche E, Strosberg AD, Dejaegere R, Kanarek L: The α and β-subunits of pea lectin are the result of a post-translational cleavage of a precursor chain. In: Bøg-Hansen TC, Spengler GA (eds) Lectins: Biology, Biochemistry and Clinical Biochemistry, vol. 3, pp. 603–610. Walter de Gruyter, Berlin (1983).

    Google Scholar 

  19. Lis H, Sharon N: In: Marcus A (ed) The Biochemistry of Plants, vol. 6, pp. 372–449. Academic Press, Sydney (1981).

    Google Scholar 

  20. Lugtenberg BJJ, Meyers J, Peters R, van derHoek P, VanAlphen L: Electrophoretic resolution of the major outer membrane protein of Escherichia coli K12 into 4 bands. FEBS Lett. 58: 254–258 (1975).

    PubMed  Google Scholar 

  21. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning; A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  22. Messing J: New M13 vectors for cloning. Meth Enzymol 101: 20 (1983).

    PubMed  Google Scholar 

  23. Noel D, Nikaido K, Ferro-Luzzi Ames G: A single amino acid substitution in a histidine-transport protein drastically alters its mobility in sodium dodecyl sulphate-polyacrylamide gel eletrophoresis. Biochemistry 18: 4159–4165 (1979).

    PubMed  Google Scholar 

  24. Prasthofer T, Phillips SR, Suddath FL, Engler JM: Design, expression, and crystallization of recombinant lectin from the garden pea (Pisum sativum). J Biol Chem 264: 6793–6796 (1989).

    PubMed  Google Scholar 

  25. Pusztai A: Biological effects of dietary lectins. In: Huisman J, van derPoel AFB, Liener IE (eds) Recent Advances in Research in Antinutritional Factors in Legume Seeds, pp. 17–29, Pudoc, Wageningen, Netherlands (1989).

    Google Scholar 

  26. Reeke GNJr, Becker JW: Three dimensional structure of favin: saccharide binding-cyclic permutation in leguminous lectins. Science 234: 1108–1111 (1986).

    PubMed  Google Scholar 

  27. Reeke GNJr, Becker JW: Carbohydrate-binding sites in plant lectins. Curr Top Microbiol Immunol 139: 35–58 (1988).

    PubMed  Google Scholar 

  28. Rini JM, Hardman KD, Einspahr HM, Suddath FL, Carver P: Solution of a pea lectin-trimannoside complex by molecular replacement. Trans Am Cryst Ass 25: 51–63 (1991).

    Google Scholar 

  29. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  30. Sharon N, Lis H: Lectins, 127 pp. Chapman and Hall, London (1989).

    Google Scholar 

  31. Sharon N, Lis H: Legume lectins, a large family of homologous proteins. FASEB J 4: 3198–3208 (1990).

    PubMed  Google Scholar 

  32. Stubbs ME, Carver JP, Dunn RJ: Production of pea lectin in Escherichia coli. J Biol Chem 261: 6141–6144 (1986).

    PubMed  Google Scholar 

  33. Trowbridge IS: Isolation and chemical characterization of a mitogenic lectin from Pisum sativum. J Biol Chem 249: 6004–6012 (1974).

    PubMed  Google Scholar 

  34. van derSchaal IAM, Logman TJJ, Díaz CL, Kijne JW: An enzyme-linked binding assay for quantitative determination of lectin receptors. Anal Biochem 140: 548–553 (1984).

    PubMed  Google Scholar 

  35. vanDriessche E, Beeckmans S, Dejaegere R, Kanarek L: Isolation of the pea lectin precursor and characterization of its processing products. In: Bøg-Hansen TC, Freed DLJ (eds) Lectins: Biology Biochemistry, Clinical Biochemistry, vol. 6, pp. 355–362, Sigma Chemicals Co., St. Louis, MO (1988).

    Google Scholar 

  36. vanDriessche E: Structure and function of Leguminosae lectins. In: Franz H (ed) Advances in Lectin Research, vol. 1, pp. 73–134. Springer-Verlag, Berlin (1988).

    Google Scholar 

  37. vanDriessche E, Fouriers A, Strosberg AD, Kanarek L: N-terminal sequences of the α and β subunits of the lectin from the garden pea (Pisum sativum L.). FEBS Lett 71: 220–222 (1976).

    Article  PubMed  Google Scholar 

  38. VanWauwe JP, Loontiens FG, DeBruyne CK: Carbohydrate binding specificity of the lectin from the pea (Pisum sativum). Biochim Biophys Acta 379: 456–461 (1975).

    PubMed  Google Scholar 

  39. Wu AM, Sugii S, Herp A: A table of lectin carbohydrate specificities. In: Bøg-Hansen TC, Freed DLJ (eds) Lectins: Biology, Biochemistry, Clinical Biochemistry, vol. 6, pp. 723–740. Sigma Chemicals Co., St. Louis, MO (1988).

    Google Scholar 

  40. Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC 19 vectors. Gene 33: 103–119 (1985).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Eijsden, R.R., Hoedemaeker, F.J., Díaz, C.L. et al. Mutational analysis of pea lectin. Substitution of Asn125 for Asp in the monosaccharide-binding site eliminates mannose/glucose-binding activity. Plant Mol Biol 20, 1049–1058 (1992). https://doi.org/10.1007/BF00028892

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00028892

Key words

Navigation