Skip to main content
Log in

Genetic instability as a consequence of inappropriate entry into and Progression through S-phase

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Summary

The stability of the mammalian genome depends on the proper function of G1 and G2 cell cycle control mechanisms. Two tumor suppressors, p53 and retinoblastoma (Rb), play key roles in progression from G1 into S-phase. We address the mechanisms by which these proteins mediate a G1 arrest in response to DNA damage and limiting metabolic conditions. Gamma-irradiation induced a prolonged, p53-dependent G1 arrest associated with a long-term increase in the levels of the cdk-inhibitor p21WAF1/Cip1 (p21). Microinjection of linear plasmid DNA also caused a G1 arrest. The p53-dependent arrest induced by inhibitors of UMP biosynthesis was reversible and occurred in the absence of detectable DNA damage. Both arrest mechanisms contribute to limiting the formation and propagation of damaged genomes. Cells containing mutant p53 but wild-type Rb do not generate methotrexate (Mtx) resistant variants. However, pre-treatment with DNA damaging agents prior to drug selection resulted in resistant clones containing amplified dihydrofolate reductase (DHFR) genes, suggesting that DNA breakage is a rate limiting step for gene amplification. The Mtx-induced arrest did not occur in cells with non-functional Rb. Rb acts as a negative regulator of the E2F transcription factors, and Rb-deficient primary mouse embryo fibroblasts (MEFs) produced elevated levels of mRNA and protein for key E2F target genes. Failure to prevent entry into S-phase in Rb−/- MEFs exposed to DNA-damaging or nutrient limiting conditions caused apoptosis and correlated with p53 induction. Taken together, these findings indicate a link between p53 and Rb function and suggest that their coordination insures correct entry into S-phase, minimizing the emergence of genetic variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB: Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 89: 7491–7495, 1992

    Google Scholar 

  2. Lane DP: Cancer. p53, guardian of the genome. Nature 358: 15–16, 1992

    Google Scholar 

  3. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM: Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70: 937–948, 1992

    Google Scholar 

  4. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD: Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70: 923–935, 1992

    Google Scholar 

  5. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW: Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304–6311, 1991

    Google Scholar 

  6. Di Leonardo A, Linke SP, Yin Y, Wahl GM: Cell cycle regulation of gene amplification. Cold Spring Harbor Symp Qaunt Biol 58: 655–667, 1994

    Google Scholar 

  7. Windle BE, Wahl GM: Molecular dissection of mammalian gene amplification: new mechanistic insights revealed by analyses of very early events. Mutat Res 276: 199–224, 1992

    Google Scholar 

  8. Denko NC, Giaccia AJ, Stringer JR, Stambrook PJ: The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc Natl Acad Sci USA 91: 5124–5128, 1994

    Google Scholar 

  9. Stark GR: Regulation and mechanisms of mammalian gene amplification. Adv Cancer Res 61: 87–113, 1993

    Google Scholar 

  10. Schaefer DI, Livanos EM, White AE, Tlsty TD: Multiple mechanisms of N-(phosphonoacetyl)-L-aspartate drug resistance in SV40-infected precrisis human fibroblasts. Cancer Res 53: 4946–4951, 1993

    Google Scholar 

  11. Tlsty TD: Normal diploid human and rodent cells lack a detectable frequency of gene amplification. Proc Natl Acad Sci USA 87: 3132–3136, 1990

    Google Scholar 

  12. Wright JA, Smith HS, Watt FM, Hancock MC, Hudson DL, Stark GR: DNA amplification is rare in normal human cells. Proc Natl Acad Sci USA 87: 1791–1795, 1990

    Google Scholar 

  13. Blount PL, Meltzer SJ, Yin J, Huang Y, Krasna MJ, Reid BJ: Clonal ordering of 17p and 5q allelic losses in Barrett dysplasia and adenocarcinoma. Proc Natl Acad Sci USA 90: 3221–3225, 1993

    Google Scholar 

  14. Maltzman W, Czyzyk L: UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4: 1689–1694, 1984

    Google Scholar 

  15. Hall PA, McKee PH, Menage HD, Dover R, Lane DP: High levels of p53 protein in UV-irradiated normal human skin. Oncogene 8: 203–207, 1993

    Google Scholar 

  16. Fritsche M, Haessler C, Brandner G: Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene 8: 307–318, 1993

    Google Scholar 

  17. Donehower LA, Bradley A: The tumor suppressor p53. Biochim Biophys Acta 1155: 181–205, 1993

    Google Scholar 

  18. Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D: p21 is a universal inhibitor of cyclin kinases. Nature 366: 701–704, 1993

    Google Scholar 

  19. Xiong Y, Zhang H, Beach D: Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev 7: 1572–1583, 1993

    Google Scholar 

  20. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75: 805–816, 1993

    Google Scholar 

  21. El-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, Wiman KG, Mercer WE, Kastan MB, Kohn KW, Elledge SJ, Kinzler KW, Vogelstein B: WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54: 1169–1174, 1994

    Google Scholar 

  22. Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, Elledge SJ, Reed SI: p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76: 1013–1023, 1994

    Google Scholar 

  23. Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA: Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70: 993–1006, 1992

    Google Scholar 

  24. Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J, Livingston DM: Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 73: 487–497, 1993

    Google Scholar 

  25. Dowdy SF, Hinds PW, Louie K, Reed SI, Arnold A, Weinberg RA: Physical interaction of the retinoblastoma protein with human D cyclins. Cell 73: 499–511, 1993

    Google Scholar 

  26. Dulic V, Drullinger LF, Lees E, Reed SI, Stein GH: Altered regulation of G1 cyclins in senescent human diploid fibroblasts: accumulation of inactive cyclin E-Cdk2 and cyclin D1-Cdk2 complexes. Proc Natl Acad Sci USA 90: 11034–11038, 1993

    Google Scholar 

  27. Koff A, Ohtsuki M, Polyak K, Roberts JM, Massague J: Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-beta. Science 260: 536–539, 1993

    Google Scholar 

  28. Sherr CJ: Mammalian G1 cyclins. Cell 73: 1059–1065, 1993

    Google Scholar 

  29. Xiong Y, Zhang H, Beach D: D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71: 504–514, 1992

    Google Scholar 

  30. Li R, Waga S, Hannon GJ, Beach D, Stillman B: Differential effects of the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 371: 534–537, 1994

    Google Scholar 

  31. Dyson N, Howley PM, Munger K, Harlow E: The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243: 934–937, 1989

    Google Scholar 

  32. Whyte P, Williamson NM, Harlow E: Cellular targets for transformation by the adenovirus E1A proteins. Cell 56: 67–75, 1989

    Google Scholar 

  33. DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E, Livingston DM: SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54: 275–283, 1988

    Google Scholar 

  34. Bagchi S, Weinmann R, Raychaudhuri P: The retinoblastoma protein copurifies with E2F-1, an E1A-regulated inhibitor of the transcription factor E2F. Cell 65: 1063–1072, 1991

    Google Scholar 

  35. Chittenden T, Livingston DM, Kaelin WJ: The T/E1A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein. Cell 65: 1073–1082, 1991

    Google Scholar 

  36. Johnson DG, Schwarz JK, Cress WD, Nevins JR: Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365: 349–352, 1993

    Google Scholar 

  37. Farnham PJ, Slansky JE, Kollmar R: The role of E2F in the mammalian cell cycle. Biochim Biophys Acta 1155: 125–131, 1993

    Google Scholar 

  38. Nevins JR: E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258: 424–429, 1992

    Google Scholar 

  39. Means AL, Farnham PJ: Transcriptional initiation from the dihydrofolate reductase promoter is positioned by HIP-1 binding at the initiation site. Mol Cell Biol 10: 653–661, 1990

    Google Scholar 

  40. Slansky JE, Li Y, Kaelin WG, Farnham PJ: A protein synthesis-dependent increase in E2F1 mRNA correlates with growth regulation of the dihydrofolate reductase promoter. Mol Cell Biol 13: 1610–1618, 1993

    Google Scholar 

  41. Blake MC, Azizkhan JC: Transcription factor E2F is required for efficient expression of the hamster dihydrofolate reductase genein vitro andin vivo. Mol Cell Biol 9: 4994–5002, 1989

    Google Scholar 

  42. Johnson LF: Postranscriptional regulation of thymidylate synthase gene expression. J Cell Biochem 54: 387–392, 1994

    Google Scholar 

  43. Nevins JR: Cell cycle targets of the DNA tumor viruses. Curr Op Genet Dev 4: 130–134, 1994

    Google Scholar 

  44. Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K, Lee WH, Bradley A: Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359: 288–294, 1992

    Google Scholar 

  45. Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA: Effects of an Rb mutation in the mouse. Nature 359: 295–300, 1992

    Google Scholar 

  46. Clarke AR, Maandag ER, Van RM, van der Lugt NM, van der Valk M, Hooper ML, Berns A, te Riele H: Requirement for a functional Rb-1 gene in murine development. Nature 359: 328–330, 1992

    Google Scholar 

  47. Hartwell LH, Weinert TA: Checkpoints: controls that ensure the order of cell cycle events. Science 246: 629–634, 1989

    Google Scholar 

  48. Di Leonardo A, Linke SP, Clarkin K, Wahl GM: DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8: 2540–2551, 1994

    Google Scholar 

  49. Nelson WG, Kastan MB: DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol 14: 1815–1823, 1994

    Google Scholar 

  50. Noda A, Ning Y, Venable SF, Pereira-Smith OM, Smith JR: Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 211: 90–98, 1994

    Google Scholar 

  51. Shay JW, Wright WE, Werbin H: Defining the molecular mechanisms of human cell immortalization. Biochim Biophys Acta 1072: 1–7, 1991

    Google Scholar 

  52. Hall EJ:In: Radiobiology for the Radiobiologist (J.P. Lippicott Co., Philadelphia) 1994

    Google Scholar 

  53. Swyryd EA, Seaver SS, Stark GR: N-(phosphonacetyl)-Laspartate, a potent transition state analog inhibitor of aspartate transcarbamylase, blocks proliferation of mammalian cells in culture. J Biol Chem 249: 6945–6950, 1974

    Google Scholar 

  54. White AE, Livanos EM, Tlsty TD: Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev 8: 666–677, 1994

    Google Scholar 

  55. Ardalan B, Ucar A, Reddy R, Livingstone AS, Markoe A, Schwade J, Richman SP, Donofrio K: Phase I trial of low dose N-phosphonacetyl-L-aspartic acid and high dose 5-fluorouracil administered concomitantly with radiation therapy for unresectable localized adenocarcinoma of the pancreas. Cancer 74: 1869–1873, 1994

    Google Scholar 

  56. Seiter K, Kemeny N, Martin D, Schneider A, Williams L, Colofiore J, Sawyer R: Uridine allows dose escalation of 5-fluorouracil when given with N-phosphonacetyl-L-aspartate, methotrexate, and leucovorin. Cancer 71: 1875–1881, 1993

    Google Scholar 

  57. Slebos RJ, Lee MH, Plunkett BS, Kessis TD, Williams BO, Jacks T, Hedrick L, Kastan MB, Cho KR: p53-dependent G1 arrest involves pRB-related proteins and is disrupted by the human papillomavirus 16 E7 oncoprotein. Proc Natl Acad Sci USA 91: 5320–5324, 1994

    Google Scholar 

  58. Pardee AB: G1 events and regulation of cell proliferation. Science 246: 603, 1989

    Google Scholar 

  59. Dulic V, Lees E, Reed SI: Association of human cyclin E with a periodic G1-S phase protein kinase. Science 257: 1958–1961, 1992

    Google Scholar 

  60. Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledge S, Nishimoto T, Morgan DO, Franza BR, Roberts JM: Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257: 1689–1694, 1992

    Google Scholar 

  61. Ewen ME, Ludlow JW, Marsilio E, DeCaprio JA, Millikan RC, Cheng SH, Paucha E, Livingston DM: An N-terminal transformation-governing sequence of SV40 large T antigen contributes to the binding of both p110Rb and a second cellular protein, p120. Cell 58: 257–267, 1989

    Google Scholar 

  62. Cobrinik D, Whyte P, Peeper DS, Jacks T, Weinberg RA: Cell cycle-specific association of E2F with the p130 E1A-binding protein. Genes Dev 7: 2392–2404, 1993

    Google Scholar 

  63. Hannon GJ, Demetrick D, Beach D: Isolation of the Rb-related p130 through its interaction with CDK2 and cyclins. Genes Dev 7: 2378–2391, 1993

    Google Scholar 

  64. Li Y, Graham C, Lacy S, Duncan AM, Whyte P: The adenovirus E1A-associated 130-kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dev 7: 2366–2377, 1993

    Google Scholar 

  65. Almasan A, Yin Y, Kelly RE, Lee EY, Bradley A, Wahl GM: pRb deficiency leads to inappropriate entry into S phase, activation of E2F responsive genes and apoptosis. Proc Natl Acad Sci USA: in press, 1995

  66. Gaudray P, Trotter J, Wahl G: Fluorescent methotrexate labeling and flow cytometric analysis of cells containing low levels of dihydrofolate reductase. J Bio Chem 261: 6285–6292, 1986

    Google Scholar 

  67. Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH: Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 849–852, 1993

    Google Scholar 

  68. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T: p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362: 847–849, 1993

    Google Scholar 

  69. Lowe SW, Ruley HE, Jacks T, Housman DE: p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967, 1993

    Google Scholar 

  70. Kaminskas E: Effects of methotrexate on ribonucleotide pools in growing and in growth-arrested tumor cells and antagonism by RNA synthesis inhibitors. J Biol Chem 257: 4279–4284, 1982

    Google Scholar 

  71. Unger C, Kress S, Buchmann A, Schwarz M: Gamma-irradiation-induced micronuclei from mouse hepatoma cells accumulate high levels of the tumor suppressor protein p53. Cancer Res 54: 3651–3655, 1994

    Google Scholar 

  72. Howes KA, Ransom N, Papermaster DS, Lasudry JGH, Albert DM, Windle JJ: Apoptosis or retinoblastoma: alternative fates of photoreceptors expressing the HPV-16 E7 gene in the presence or absence of p53. Genes Dev 8: 1300–1310, 1994

    Google Scholar 

  73. Pan H, Griep AE: Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: Implications for tumor supressor gene function in development. Genes Dev 8: 1285–1299, 1994

    Google Scholar 

  74. Morgenbesser SD, Williams BO, Jacks T, DePinho RA: p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371: 72–74, 1994

    Google Scholar 

  75. Lee EY, Hu N, Yuan SS, Cox LA, Bradley A, Lee WH, Herrup K: Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes Dev 8: 2008–2021, 1994

    Google Scholar 

  76. Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T: p53-dependent apoptosis supresses tumor growth and progressionin vivo. Cell 78: 703–711, 1994

    Google Scholar 

  77. Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB: Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89: 10114–10118, 1992

    Google Scholar 

  78. Greider CW: Telomeres, telomerase and senescence. Bioessays 12: 363–369, 1990

    Google Scholar 

  79. Rathmell WK, Chu G: Involvement of the Ku autoantigen in the cellular response to DNA double-strand breaks. Proc Natl Acad Sci USA 91: 7623–7627, 1994

    Google Scholar 

  80. Lees MS, Chen YR, Anderson CW: Human cells contain a DNA-activated protein kinase that phosphorylates simian virus 40 T antigen, mouse p53, and the human Ku autoantigen. Mol Cell Biol 10: 6472–6481, 1990

    Google Scholar 

  81. Bakalkin G, Yakovleva T, Selivanova G, Magnusson KP, Szekely L, Kiseleva E, Klein G, Terenius L, Wiman KG: p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc Natl Acad Sci USA 91: 413–417, 1994

    Google Scholar 

  82. Caelles C, Helmberg A, Karin M: p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370: 220–223, 1994

    Google Scholar 

  83. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B: WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825, 1993

    Google Scholar 

  84. Tokina T, Thiagalingam S, El-Deiry W, Waldman T, Kinzler K, Vogelstein B: p53 tagged sites from human genomic DNA Hum Mol Genet 3: 1537–1542, 1994

    Google Scholar 

  85. Lukas J, Pagano M, Staskova Z, Draetta G, Bartek J: Cyclin D1 protein oscillates and is essential for cell cycle progression in human tumour cell lines. Oncogene 9: 707–718, 1994

    Google Scholar 

  86. Musgrove EA, Lee CS, Buckley MF, Sutherland RL: Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc Natl Acad Sci USA 91: 8022–8026, 1994

    Google Scholar 

  87. Resnitzky D, Gossen M, Bujard H, Reed SI: Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol 14: 1669–1679, 1994

    Google Scholar 

  88. Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Bar SD, Roussel MF, Sherr CJ: Overexpression of mouse D-type cyclins accelerates G1 phase in rodent fibroblasts. Genes Dev 7: 1559–1571, 1993

    Google Scholar 

  89. Khatib ZA, Matsushime H, Valentine M, Shapiro DN, Sherr CJ, Look AT: Coamplification of the CDK4 gene with MDM2 and GLI in human sarcomas. Cancer Res 53: 5535–5541, 1993

    Google Scholar 

  90. Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP: Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res 53: 2736–2739, 1993

    Google Scholar 

  91. Reifenberger G, Reifenberger J, Ichimura K, Meltzer PS, Collins VP: Amplification of multiple genes from chromosomal region 12q13-14 in human malignant gliomas: preliminary mapping of the amplicons shows preferential involvement of CDK4, SAS, and MDM2. Cancer Res 54: 4299–4303, 1994

    Google Scholar 

  92. Foster PL, Trimarchi JM: Adaptive reversion of a frameshift mutation in Escherichia coli by simple base deletions in homopolymeric runs. Science 265: 407–409, 1994

    Google Scholar 

  93. Rosenberg SM, Longerich S, Gee P, Harris RS:Adaptive mutation by deletions in small mononucleotide repeats. Science 265: 405–407, 1994

    Google Scholar 

  94. Chen L, Nishinaka T, Kwan K, Kitabayashi I, Yokoyama K, Fu Y, Grunwald S, Chiu R: The retinoblastoma gene product RB stimulates Sp1-mediated transcription by liberating Sp1 from a negative regulator. Mol Cell Biol 4380-4389, 1994

  95. Welch PJ, Wang JYJ: A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell 75: 779–790, 1993

    Google Scholar 

  96. Wilcock D, Lane DP: Localization of p53, retinoblastoma and host replication proteins at sites of viral replication in herpes-infected cells. Nature 349: 429–431, 1991

    Google Scholar 

  97. Karantza V, Maroo A, Fay D, Sedivy JM: Overproduction of Rb protein after the G1/S boundary causes G2 arrest. Mol Cell Biol 13: 6640–6652, 1993

    Google Scholar 

  98. Miyashita T, Harigai M, Hanada M, Reed JC: Identification of a p53-dependent negative response element in the bcl-2 gene. Cancer Res 54: 3131–3135, 1994

    Google Scholar 

  99. Selvakumaran M, Lin HK, Miyashita T, Wang HG, Krajewski S, Reed JC, Hoffman B, Liebermann D: Immediate early up-regulation of bax expression by p53 but not TGF beta 1: a paradigm for distinct apoptotic pathways. Oncogene 9: 1791–1798, 1994

    Google Scholar 

  100. Hunter T, Pines J: Cyclins and cancer II: cyclin D and cyclin-dependent kinase inhibitors come of age. Cell 79: 573–582, 1994

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almasan, A., Linke, S.P., Paulson, T.G. et al. Genetic instability as a consequence of inappropriate entry into and Progression through S-phase. Cancer Metast Rev 14, 59–73 (1995). https://doi.org/10.1007/BF00690212

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690212

Key words

Navigation