Skip to main content
Log in

The enkephalin-containing cell: Strategies for polypeptide synthesis and secretion throughout the neuroendocrine system

  • Review and Commentary
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Enkephalinergic cells are found throughout the diffuse neuroendocrine system, in the adrenal medulla, brain, spinal cord, peripheral and enteric nervous systems, and endocrine pancreas.

  2. 2.

    In each of these diverse cell types, the enkephalin phenotype is (i) established during development, (ii) modified by the particular environment in which the cell is located, and (iii) maintained by ongoing biosynthesis at a rate consistent with loss of enkephalins from the cell during periods of secretion.

  3. 3.

    Enkephalin expression and biosynthesis have been studied in several neuroendocrine cell types and tumor cell lines. Transcriptional, translational, and posttranslational factors can play a role at all three stages (establishment, modification, and maintenance) in the regulation of enkephalin expression during the lifetime of the cell.

  4. 4.

    Cyclic nucleotides, glucocorticoids, and calcium may all act to control the overall level of enkephalin biosynthesis pretranslationally, while regulation of posttranslational processing of proenkephalin seems to be important in determining the pattern of proenkephalin-derived opiate peptides produced in a given tissue.

  5. 5.

    The themes (and variations) of cell regulation that apply to enkephalin expression may be similar for other bioactive peptides produced in neural and endocrine tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Affolter, H.-U., Giraud, P., Hotchkiss, A. J., and Eiden, L. E. (1984). Stimulus-secretion-synthesis coupling: A model for cholinergic regulation of enkephalin secretion and gene transcription in adrenomedullary chromaffin cells. InOpiate Peptides in the Periphery (F. Fraioli, Ed.), Elsevier, Amsterdam, pp. 23–30.

    Google Scholar 

  • Baker, P. F., and Knight, D. E. (1984). Calcium control of exocytosis in bovine adrenal medullary cells.Trends Neurosci. 7120–126.

    Google Scholar 

  • Boarder, M. R., and McArdle, W. (1986). Breakdown of small enkephalin derivatives and adrenal peptide E by human plasma.Biochem. Pharmacol. 351043–1047.

    Google Scholar 

  • Bohn, M. C., Kessler, J. A., Golightly, L., and Black, I. B. (1983). Appearance of enkephalinimmunoreactivity in rat adrenal medulla following treatment with nicotinic antagonists or reserpine.Cell Tissue Res. 231469–479.

    Google Scholar 

  • Byrd, J. C., Lindberg, I., Naranjo, J. R., and Costa, E. (1985).Soc. Neurosci. Abstr. 11355.

    Google Scholar 

  • Cherubini, E., and North, R. A. (1985). Mu and kappa opioids inhibit transmitter release by different mechanisms.Proc. Natl. Acad. Sci. USA 821860–1863.

    Google Scholar 

  • Comb, M., Birnberg, N. C., Seasholtz, A., Herbert, E., and Goodman, H. M. (1986). A cyclic AMP- and phorbol ester-inducible DNA element.Nature (London)323353–356.

    Google Scholar 

  • Dave, J. R., Eiden, L. E., and Eskay, R. L. (1987). Elevation of intracellular cyclic AMP by corticotrophin-releasing factor links secretion of beta-endorphin and biosynthesis of proopiomelanocortin in cultured anterior pituitary and AtT-20 cells.Ann. N.Y. Acad. Sci. (in press).

  • Douglas, W. W., and Rubin, R. P. (1961).Nature (London)1921087–1089.

    Google Scholar 

  • Eiden, L. E., and Hotchkiss, A. J. (1983). Cyclic adenosine monophosphate regulates vasoactive intestinal polypeptide and enkephalin biosynthesis in cultured bovine chromaffin cells.Neuropeptides 41–9.

    Google Scholar 

  • Eiden, L. E., and Zamir, J. (1986). Metorphamide levels in chromaffin cells increase after treatment with reserpine.J. Neurochem. 461651–1654.

    Google Scholar 

  • Eiden, L. E., Giraud, P., Affolter, H.-U., Herbert, E., and Hotchkiss, A. (1984a). Alternate modes of enkephalin biosynthesis regulation by reserpine and cyclic AMP in cultured chromaffin cells.Proc. Natl. Acad. Sci. USA 813949–3953.

    Google Scholar 

  • Eiden, L. E., Giraud, P., Dave, J. R., Hotchkiss, A. J., and Affolter, H.-U. (1984b). Nicotinic receptor stimulation activates both enkephalin release and biosynthesis in adrenal chromaffin cells.Nature (London)312661–663.

    Google Scholar 

  • Furness, J. B., and Costa, M. (1980). Types of nerves in the enteric nervous system.Neuroscience 51–20.

    Google Scholar 

  • Hook, V. Y. H., Eiden, L. E., and Pruss, R. M. (1985). Selective regulation of carboxypeptidase peptide hormone processing enzyme during enkephalin biosynthesis in cultured bovine adrenomedullary chromaffin cells.J. Biol. Chem. 2605991–5997.

    Google Scholar 

  • Howells, R. D., Kilpatrick, D. L., Bailey, L. C., Noe, M., and Udenfriend, S. (1986). Proenkephalin mRNA in rat heart.Proc. Natl. Acad. Sci. USA 831960–1963.

    Google Scholar 

  • Howlett, T. A. and Rees, L. H. (1986). Endogenous opioid peptides and hypothalamo-pituitary function.Ann. Rev. Physiol. 48527–536.

    Google Scholar 

  • Hughes, J. (Ed.) (1983). Opiate peptides.Br. Med. Bull. 39:1-106.

  • Ikeda, Y., Nakao, K., Yoshima, Y., Yanaihara, N., Numa, S., and Imura, H. (1982). Existence of met-enkephalin-arg6-gly7-leu8 with met-enkephalin, leu-enkephalin and met-enkephalin-arg6-phe7 in the brain of guinea pig, rat and golden hamster.Biochem. Biophys. Res. Commun. 107656–662.

    Google Scholar 

  • Kilpatrick, D. L., Howells, R. D., Fleminger, G., and Udenfriend, S. (1984). Denervation of rat adrenal glands markedly increases preproenkephalin mRNA.Proc. Natl. Acad. Sci. USA 817221–7223.

    Google Scholar 

  • LaGamma, E. F., White, J. D., Adler, J. E., Krause, J. E., McKelvy, J. F., and Black, I. B. (1985). Depolarization regulates adrenal preporenkephalin mRNA.Proc. Natl. Acad. Sci. USA 828252–8255.

    Google Scholar 

  • Laimins, L., Holmgren-Konig, M. and Khoury, G. (1986). Transcriptional “silencer” element in rat repetitive sequences associated with the rat insulin 1 gene locus.Proc. Natl. Acad. Sci. USA 833151–3155.

    Google Scholar 

  • Lewis, R. V., Stern, A. S., Kilpatrick, D. L., Gerber, L. D., Rossier, J., Stern, S. and Udenfriend, S. (1981). Marked increases in large enkephalin-containing polypeptides in the rat adrenal gland following denervation.J. Neurosci. 180–82.

    Google Scholar 

  • Lindberg, I. (1986). Reserpine-induced alterations in the processing of proenkephalin in cultured chromaffin cells. Increased amidation.J. Biol. Chem.,26116317–16322.

    Google Scholar 

  • Liston, D., Patey, G., Rossier, J., Verbanck, P., and Vanderhaeghen, J.-J. (1984). Processing of proenkephalin in tissue-specific.Science 225734–737.

    Google Scholar 

  • Matsuo, H., Niyata, A., and Nizuno, K. (1983). Novel C-terminally amidated opioid peptide in human phaeochromocytoma tumour.Nature (London)305721–723.

    Google Scholar 

  • Naranjo, J. R., Mocchetti, I., Schwartz, J. P., and Costa, E. (1986). Permissive effect of dexamethasone on the increase of proenkephalin mRNA induced by depolarization of chromaffin cells.Proc. Natl. Acad. Sci. USA 831513–1517.

    Google Scholar 

  • Quach, T. T., Tang, F., Kageyama, H., Mocchetti, I., Guidotti, A., Meek, J. L., Costa, E., and Schwartz, J. P. (1984). Enkephalin biosynthesis in adrenal medulla. Modulation of proenkephalin mRNA content of cultured chromaffin cells by 8-bromo-adenosine 3′,5′-monophosphate.Mol. Pharmacol. 26255–260.

    Google Scholar 

  • Reisine, T., Rougon, G., Barbet, J., and Affolter, H.-U. (1985). Corticotropin-releasing factor-induced adrenocorticotropin hormone release and synthesis is blocked by incorporation of the inhibitor of cyclic-AMP-dependent protein kinase into anterior pituitary tumor cells by liposomes.Proc. Natl. Acad. Sci. USA 828261–8265.

    Google Scholar 

  • Sabol, S. L., Yoshikawa, K., and Hong, J.-S. (1985). Regulation of methionine-enkephalin precursor messenger RNA in rat striatum by haloperidol and lithium.Biochem. Biophys. Res. Commun. 113391–399.

    Google Scholar 

  • Schultzberg, M., Lundberg, J. M., Hokfelt, T., Terenius, L., Brandt, J., Elde, R. P., and Goldstein, M. (1978). Enkephalin-like immunoreactivity in gland cells and nerve terminals of the adrenal medulla.Neuroscience 31169–1186.

    Google Scholar 

  • Seizinger, B. R., Liebisch, D. C., Gramsch, C., Herz, A., Weber, E., Evans, C. J., Esch, F. S., and Bohlen, P. (1985). Isolation and structure of a novel C-terminally amidated opioid peptide, amidorphin, from bovine adrenal medulla.Nature (London)31357–59.

    Google Scholar 

  • Siegel, R. E., Fiden, L. E., and Affolter, H.-U. (1985). Elevated potassium stimulates enkephalin biosynthesis in bovine chromaffin cells.Neuropeptides 6543–552.

    Google Scholar 

  • Stern, A. S., Lewis, R. V., Kimura, S., Rossier, J., Stein, S., and Udenfriend, S. (1980). Opioid hexapeptides and heptapeptides in adrenal medulla and brain possible implications on the biosynthesis of enkephalins.Arch. Biochem. Biophys. 205505–613.

    Google Scholar 

  • Tang, F., Costa, E., and Schwartz, J. P. (1983). Increase of proenkephalin mRNA and enkephalin content of rat straitum after daily injection of haloperidol for 2 to 3 weeks.Proc. Natl. Acad. Sci. USA 803841–3844.

    Google Scholar 

  • Udenfriend, S., and Kilpatrick, D. L. (1983). Biochemistry of the enkephalins and enkephalin-containing peptides.Arch. Biochem. Biophys. 221309–323.

    Google Scholar 

  • Unsworth, C. D., Wilson, S. P., and Viveros, O. H. (1984). Enkephalins in the adrenal medulla: Regulation of synthesis and processing by catecholamines and cAMP in bovine chromaffin cells in primary culture and by the splanchnic innervation in the adrenal of the rat. InEndocrinology (F. Labrie and L. Proulx, Eds.), Elsevier, New York, pp. 993–998.

    Google Scholar 

  • Unsworth, C. D., Kanamatsu, T., Diliberto, E. J., Jr., Hong, J.-S., and Viveros, O. H. (1985). Role of the splanchnic innervation in the control of opioid peptide biosynthesis and pro-enkephalin mRNA levels in the rat adrenal medulla.Proc. Int. Narcotics Res. Conf., Abstr. 38.

  • Waschek, J. A., Dave, J. R., Eskay, R. L., and Eiden, L. E. (1987). Barium distinguishes calcium targets for synthesis and secretion of peptides in neuroendocrine cells.Biochem. Biophys. Res. Commun. 146495–501.

    Google Scholar 

  • Weber, E., Esch, F. S., Bohlen, P., Paterson, S., Corbett, A. D., McKnight, A. T., Kosterlitz, H. W., Barchas, J. D., and Evans, C. J. (1983a). Metorphamide: Isolation, structure and biologic activity of an amidated opioid octapeptide from bovine brain.Proc. Natl. Acad. Sci. USA 807362–7366.

    Google Scholar 

  • Weber, E., Evans, C. J., and Barchas, J. D. (1983b). Multiple endogenous ligands for opioin receptors.Trends Neurosci. 6333–336.

    Google Scholar 

  • Wilson, S. P., and Kirshner, N. (1983). Effects of ascorbic acid, dexamethasone, and insulin on the catecholamine and opioid peptide stores of cultured adrenal medullary chromaffin cells.J. Neurosci. 31971–1978.

    Google Scholar 

  • Wilson, S. P., Chang, K.-J., and Viveros, O. H. (1980). Synthesis of enkephalins by adrenal medullary chromaffin cells: Reserpine increases incorporation of radiolabeled amino acids.Proc. Natl. Acad. Sci. USA 774364–4368.

    Google Scholar 

  • Wilson, S. P., and Viveros, O. H. (1981). Opioid peptide synthesis in bovine and human adrenal chromaffin cells.Peptides 2 (Suppl. 1):83–88.

    Google Scholar 

  • Wilson, S. P., Unsworth, C. D., and Viveros, O. H. (1984). Regulation of opioid peptide synthesis and processing in adrenal chromaffin cells by catecholamines and cyclic adenosine 3′:5′-monophosphate.J. Neurosci. 42993–3001.

    Google Scholar 

  • Yanase, T., Nawata, H., Higuchi, K., Kato, K.-I., and Ibayashi, H. (1984). Dexamethasone increases both catecholamines and methionine-enkephalin is cultured in bovine adrenal chromaffin cells and human extramedullary pheochromocytoma cells.Life Sci. 351869–1875.

    Google Scholar 

  • Yoshikawa, K., and Sabol, S. L. (1986). Glucocorticoids and cyclic AMP synergistically regulate the abundance of preproenkephalin messenger RNA in neuroblastoma-glioma hybrid cells.Biochem. Biophys. Res. Commun. 1391–10.

    Google Scholar 

  • Yoshikawa, K., Hong, J.-S., and Sabol, S. L. (1985). Electronconvusive shock increases preproenkephalin messenger RNA abundance in rat hypothalamus.Proc. Natl. Acad. Sci. USA 82589–593.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eiden, L.E. The enkephalin-containing cell: Strategies for polypeptide synthesis and secretion throughout the neuroendocrine system. Cell Mol Neurobiol 7, 339–352 (1987). https://doi.org/10.1007/BF00733787

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00733787

Key words

Navigation