Skip to main content
Log in

Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The mitochondrial permeability transition pore allows solutes with a m.w. ≲1500 to equilibrate across the inner membrane. A closed pore is favored by cyclosporin A acting at a high-affinity site, which may be the matrix space cylophilin isozyme. Early results obtained with cyclosporin A analogs and metabolites support this hypothesis. Inhibition by cyclosporin does not appear to require inhibition of calcineurin activity; however, it may relate to inhibition of cyclophilin peptide bond isomerase activity. The permeability transition pore is strongly regulated by both the membrane potential (Δψ) and ΔpH components of the mitochondrial protonmotive force. A voltage sensor which is influenced by the disulfide/sulhydryl state of vicinal sulfhydryls is proposed to render pore opening sensitive to Δψ. Early results indicate that this sensor is also responsive to membrane surface potential and/or to surface potential gradients. Histidine residues located on the matrix side of the inner membrane render the pore responsive to ΔpH. The pore is also regulated by several ions and metabolites which act at sites that are interactive. There are many analogies between the systems which regulate the permeability transition pore and the NMDA receptor channel. These suggest structural similarities and that the permeability transition pore belongs to the family of ligand gated ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aizenman, E., Lipton, S. A., and Loring, R. H. (1989).Neuron 2 1257–1263.

    Google Scholar 

  • Beatrice, M. C., Stiers, D. L., and Pfeiffer, D. R. (1982).J. Biol. Chem. 257 7161–7171.

    Google Scholar 

  • Bernardi, P. (1992).J. Biol. Chem. 267 8334–8339.

    Google Scholar 

  • Bernardi, P., Vassanelli, S., Veronese, P., Colonna, R., Szabó, I., and Zoratti, M. (1992).J. Biol. Chem. 267 2934–2939.

    Google Scholar 

  • Bernardi, P., Veronese, P., and Petronilli, V. (1993).J. Biol. Chem. 268 1005–1010.

    Google Scholar 

  • Broekemeier, K. M. (1990). Ph.D. Thesis, University of Minnesota, Minneapolis.

    Google Scholar 

  • Broekemeier, K. M., and Pfeiffer, D. R. (1989).Biochem. Biophys. Res. Commun. 163 561–566.

    Google Scholar 

  • Broekemeier, K. M., Schmid, P. C., Schmid, H. H. O., and Pfeiffer, D. R. (1985).J. Biol. Chem. 260 105–113.

    Google Scholar 

  • Broekemeier, K. M., Dempsey, M. E., and Pfeiffer, D. R. (1989).J. Biol. Chem. 264 7829–7830.

    Google Scholar 

  • Broekemeier, K. M., Carpenter-Deyo, L., Reed, D. J., and Pfeiffer, D. R. (1992).FEBS Lett. 304 192–194.

    Google Scholar 

  • Connern, C. P., and Halestrap, A. P. (1992).Biochem. J. 284 381–385.

    Google Scholar 

  • Copeland, K. R., and Yatscoff, R. W. (1990).Transpl. Proc. 22 1146–1149.

    Google Scholar 

  • Crompton, M., Ellinger, H., and Costi, A. (1988).Biochem. J. 255 357–360.

    Google Scholar 

  • Davidson, A. M., and Halestrap, A. P. (1990).Biochem. J. 268 147–152.

    Google Scholar 

  • Dierks, T., Salentin, A., Heberger, C., and Kramer, R. (1990a).Biochim. Biophys. Acta 1028 268–280.

    Google Scholar 

  • Dierks, T., Salentin, A., and Kramer, R. (1990b).Biochim. Biophys. Acta 1028 281–288.

    Google Scholar 

  • Fournier, N., Ducet, G., and Crevat, A. (1987).J. Bioenerg. Biomembr. 19 297–303.

    Google Scholar 

  • Galat, A. (1993).Eur. J. Biochem. 216 689–707.

    Google Scholar 

  • Griffiths, E. J., and Halestrap, A. P. (1991).Biochem. J. 274 611–614.

    Google Scholar 

  • Griffiths, E. J., and Halestrap, A. P. (1993).J. Mol. Cell. Cardiol. 25 1461–1469.

    Google Scholar 

  • Gudz, T. I., Novgorodov, S. A., Brierley, G. P., and Pfeiffer, D. R. (1994).Arch. Biochem. Biophys. 311 219–228.

    Google Scholar 

  • Gunter, T. E., and Pfeiffer, D. R. (1990).Am. J. Physiol. C755–C786.

  • Halestrap, A. P. (1991).Biochem. J. 278 715–719.

    Google Scholar 

  • Halestrap, A. P., and Davidson, A. M. (1990).Biochem. J. 268 153–160.

    Google Scholar 

  • Haworth, R. A., and Hunter, D. R. (1979).Arch. Biochem. Biophys. 195 460–467.

    Google Scholar 

  • Haworth, R. A., and Hunter, D. R. (1980).Fed. Proc. 39 1707.

    Google Scholar 

  • Hunter, D. R., and Haworth, R. A. (1979).Arch. Biochem. Biophys. 195 453–459.

    Google Scholar 

  • Imberti, R., Nieminen, A.-L., Herman, B., and LeMasters, J. J. (1993).J. Pharmacol. Exp. Ther. 265 392–400.

    Google Scholar 

  • Jung, D. W., and Brierley, G. P. (1984).J. Biol. Chem. 259 6904–6911.

    Google Scholar 

  • Kasi, M., Kawasaki, T., and Yamamoto, K. (1992).J. Biochem. 112 197–203.

    Google Scholar 

  • Kinnally, K. W., Zorov, D. B., Antonenko, Y. N., Snyder, S. H., McEnery, M. W., and Tedeschi, H. (1993).Proc. Natl. Acad. Sci. USA 90 1374–1378.

    Google Scholar 

  • Kronbach, T., Fischer, V., and Meyer, U. A. (1988).Clin. Pharmacol. Ther. 23 630–635.

    Google Scholar 

  • Lapidus, R., and Sokolove, P.M. (1992).FEBS Lett. 313 314–318.

    Google Scholar 

  • Lapidus, R., and Sokolove, P. M. (1993).Arch. Biochem. Biophys. 306 246–253.

    Google Scholar 

  • Lenartowicz, E., Bernardi, P., and Azzone, G. F. (1991).J. Bioenerg. Biomembr. 23 679–688.

    Google Scholar 

  • LêQuôc, H., and LêQuôc, D. (1988).Arch. Biochem. Biophys. 265 249–257.

    Google Scholar 

  • McGuinness, O., Yafei, N., Costi, A., and Crompton, M. (1990).Eur. J. Biochem. 194 671–679.

    Google Scholar 

  • Mitchell, P. (1966).Biol. Rev. 41 445–501.

    Google Scholar 

  • Nazareth, W., Yafei, N., and Crompton, M. (1991).J. Mol. Cell Cardiol. 23 1351–1354.

    Google Scholar 

  • Nicolli, A., Petronilli, V., and Bernardi, P. (1993).Biochemistry 32 4461–4465.

    Google Scholar 

  • Novgorodov, S. A., Gudz, T. I., Milgrom, Y. M., and Brierley, G. P. (1992).J. Biol. Chem. 267 16274–16282.

    Google Scholar 

  • Palmieri, F., Bisaccia, F., Lacobazzi, V., Indiversi, C., and Zara, V. (1992).Biochim. Biophys. Acta 1101 223–227.

    Google Scholar 

  • Pastorino, J. G., Snyder, J. W., Serroni, A., Hoek, J. B., and Farber, J. L. (1993).J. Biol. Chem. 268 13791–13798.

    Google Scholar 

  • Petronilli, V., Cola, C., and Bernardi, P. (1993a).J. Biol. Chem. 268 1011–1016.

    Google Scholar 

  • Petronilli, V., Cola, C., Massari, S., Colonna, R., and Bernardi, P. (1993b).J. Biol. Chem. 268 21939–21945.

    Google Scholar 

  • Petronilli, V., Costantini, P., Scorrano, L., Colonna, R., Passamonti, S., and Bernardi, P. (1994a).J. Biol. Chem. 269 16638–16642.

    Google Scholar 

  • Petronilli, V., Nicolli, A., Costantini, P., Colonna, R., and Bernardi, P. (1994b).Biochim. Biophys. Acta,1187 255–259.

    Google Scholar 

  • Riley, W. W., Jr., and Pfeiffer, D. R. (1985).J. Biol. Chem. 260 12416–12425.

    Google Scholar 

  • Robillard, G. T., and Konings, W. N. (1982).Eur. J. Biochem. 127 597–604.

    Google Scholar 

  • Rottenberg, H., and Marbach, M. (1990a).Biochem. Biophys. Acta 1016 77–86.

    Google Scholar 

  • Rottenberg, H., and Marbach, M. (1990b).Biochem. Biophys. Acta 1016 87–98.

    Google Scholar 

  • Scatton, B. (1993).Fundam. Clin. Pharmacol. 7 389–40.

    Google Scholar 

  • Scherer, B., and Klingenberg, M. (1974).Biochemistry 13 161–170.

    Google Scholar 

  • Schreiber, S. L. (1991).Science 251 283–287.

    Google Scholar 

  • Schreier, M. H., Baumann, G., and Zenke, G. (1993).Transpl. Proc. 25 502–507.

    Google Scholar 

  • Snyder, J. W., Pastorino, J. G., Attie, A. M., and Farber, J. L. (1992).Biochem. Pharmacol. 44 833–835.

    Google Scholar 

  • Szabó, I., and Zoratti, M. (1993).FEBS Lett. 330 201–205.

    Google Scholar 

  • Tang, L.-H., and Aizenman, E. (1993).Mol. Pharmacol. 44 473–478.

    Google Scholar 

  • Toninello, A., Siliprandi, D., and Siliprandi, N. (1983).Biochem. Biophys. Res. Commun. 111 792–797.

    Google Scholar 

  • Walsh, C. T., Zydowski, L. D., and McKeon, F. D. (1992).J. Biol. Chem. 267 13115–13118.

    Google Scholar 

  • Wojtczak, L., and Schönfeld, P. (1993).Biochim. Biophys. Acta 1183 41–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardi, P., Broekemeier, K.M. & Pfeiffer, D.R. Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr 26, 509–517 (1994). https://doi.org/10.1007/BF00762735

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762735

Key words

Navigation