Skip to main content
Log in

Microbial pharmacodynamics of piperacillin in neutropenic mice of systematic infection due toPseudomonas aeruginosa

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Mathematical solutions for two possible pharmacodynamic interactions (linear nonsaturable and nonlinear saturable) between antibiotics and microorganisms derived from the incorporation of clinically relevant antibiotic dosage regimens such as single bolus dosing, multiple doses, and constant infusion at steady state have been obtained. It is concluded that the saturable nonlinear interaction model between the tested antibiotic and microorganism appears appropriate. The model and its derived equations are capable of describing in vivobacterial growth of P. aeruginosaafter single bolus dosing and multiple doses of piperacillin as described by a linear one-compartment pharmacokinetic model. The activity of piperacillin against P. aeruginosain the neutropenic mouse systemic infection model can be described by an equation with three dynamic parameters: the bacterial growth rate constant k app ,0.02345min −1, the bacterial killing rate constant k′ kill ,0.02623 min −1, and the Michaelis-Menten type saturation constant Km, 0.05467 μg/ml. The concept and derived equations for the optimal dosing interval and minimum critical concentration are of clinical importance for the proper selection of antibiotic dosage regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Levy. Relationship between elimination rate of drugs and rate of decline of their pharmacologic effects.J. Pharm. Sci. 53:342–343 (1964).

    Article  CAS  PubMed  Google Scholar 

  2. J. G. Wagner. Kinetics of pharmacologic response. I. Proposed relationships between response and drug concentration in the intact animal and man.J. Theor. Biol. 20:173–201 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. M. Gibaldi. Measurement and interpretation of certain biopharmaceutic and pharmacodynamic parameters.Chemotherapy 13:1–15 (1968).

    Article  CAS  PubMed  Google Scholar 

  4. L. B. Sheiner, D. R. Stanski, S. Vozeh, R. Miller and J. Ham. Simultaneous modeling of pharamacokinetics and pharmacodynamics: application of d-tubocurarine.Clin. Pharmacol. Ther. 25:358–371 (1979).

    CAS  PubMed  Google Scholar 

  5. M. Gibaldi and D. Perrier.Pharmacokinetics, 2nd ed., Marcel Dekker. New York, 1982, pp. 221–269.

    Google Scholar 

  6. W. J. Jusko. Pharmacodynamics of chemotherapeutic effects: dose-time-response relationships for phase-nonspecific agents.J. Pharm. Sci. 60:892–895 (1971).

    Article  CAS  PubMed  Google Scholar 

  7. E. R. Garrett. Kinetics of antimicrobial action.Scand. J. Infect. Dis. 14(suppl.):54–85 (1978).

    CAS  Google Scholar 

  8. A. Tsuji, S. Hamano, T. Asano, E. Nakashima, T. Yamana, and S. Mitsuhashi. Microbial kinetics of beta-lactam antibiotics againstEscherichia coli.J. Pharm. Sci. 73:1418–1422 (1984).

    Article  CAS  PubMed  Google Scholar 

  9. A. U. Gerber and W. A. Craig. Aminoglycoside-selected subpopulations ofPseudomonas aeruginosa: characterization and virulence in normal and leukopenic mice.J. Lab. Clin. Med. 100:671–681 (1982).

    CAS  PubMed  Google Scholar 

  10. J. B. Schiff and J. E. Pennington. Comparative efficacies of piperacillin, azelocillin, ticarcillin, aztreonam, and tobramycin against experimentalPseudomonas aeruginosa pneumonia.Antimicrob. Agents Chemother. 25:49–52 (1984).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. H. Mattie. Kinetics of antimicrobial action.Rev. Infection Dis. 3:19–27 (1981).

    Article  CAS  Google Scholar 

  12. D. Lewis, D. Reeves, B. Wiedemann, and S. Zinner (eds).Methodology and evaluation of in vitro models of antimicrobial chemotherapy. Proceedings of a joint meeting held in Bad Honnef (Bonn). March 1984.J. Antimicrob. Chemother. (Suppl. A) (1985).

  13. T. Bergan, I. B. Carlsen and J. E. Fuglesang. Anin vitro model for monitoring bacterial responses to antibiotic agents under simulatedin vivo conditions.Infection 8(Suppl. 1):S96-S102 (1980).

    Article  Google Scholar 

  14. S. Grasso, G. Meinardi, G. de Carneri, and V. Tamassia. Newin vitro model to study the effect of antibiotic concentration and rate of elimination on antibacterial activity.Antimicrob. Agents Chemother. 13:570–576 (1978).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. R. D. Toothaker, P. G. Welling, and W. A. Craig. Anin vitro model for the study of antibacterial dosage regimen design.J. Pharm. Sci. 71:861–864 (1982).

    Article  CAS  PubMed  Google Scholar 

  16. I. M. Gould, J. Dent, and R. Wise.In vitro bacterial killing kinetics of ticarcillin/clavulanic acid.J. Antimicrob. Chemother. 19:307–312 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. P. König, J. P. Guggenbichler, E. Semenitz, and W. Foisner. Kill kinetics of bacteria under fluctuating concentrations of various antibiotics I. Description of the model; II. Description of experiments.Chemotherapy 32:37–58 (1986).

    Article  PubMed  Google Scholar 

  18. W. J. Jusko. A pharmacodynamic model for cell-cycle-specific chemotherapeutic agents.J. Pharmacokin. Biopharm. 1:175–200 (1973).

    Article  CAS  Google Scholar 

  19. W. J. Jusko. Interpreting of cell proliferation curves using a two-compartment cell model.Math. Biosci. 21:31–37 (1974).

    Article  Google Scholar 

  20. E. R. Garrett. The pharmacokinetic bases of biological response quantification in toxicology, pharmacology and pharmacodynamics.Prog. Drug. Res. 21:105–230 (1977).

    CAS  PubMed  Google Scholar 

  21. J. Zhi, C. H. Nightingale, and R. Quintiliani. A pharmacodynamic model for the activity of antibiotics against microorganisms under nonsaturable conditions.J. Pharm. Sci. 75:1063–67 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. H. Lineweaver and D. Burk. The determination of enzyme dissociation constants.J. Am. Chem. Soc. 56:658–666 (1934).

    Article  CAS  Google Scholar 

  23. J. Zhi. Pharmacodynamic modeling of antimicrobial activity: piperacillin versusPseudomonas aeruginosa Ph. D. dissertation, University of Connecticut, 1987.

  24. R. Cleeland and E. Grunberg. Laboratory evaluation of new antibioticsin vitro and in experimental animal infections. In V. Lorian (ed.)Antibiotics in Laboratory Medicine. 2nd ed., Williams & Wilkins, Baltimore, 1986, pp. 825–876.

    Google Scholar 

  25. C. M. Metzler, G. L. Elfring, and A. J. McEwen. A package of computer program for pharmacokinetic modeling.Biometrics. September 1974, p. 562.

    Google Scholar 

  26. S. Bolton.Pharmaceutical Statistics, Marcel Dekker, New York, 1986, p. 156.

    Google Scholar 

  27. P. D. Ellner and H. C. Neu. The inhibitory quotient: A method for interpreting minimum inhibitory concentration data.J. Am. Med. Assoc. 246:1575–1578 (1981).

    Article  CAS  Google Scholar 

  28. G. E. Schumacher. Comparison of antibiotic dosage regimens using pharmacokinetic and microbiological factors.Clin. Pharm. 6:59–68 (1987).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhi, J., Nightingale, C.H. & Quintiliani, R. Microbial pharmacodynamics of piperacillin in neutropenic mice of systematic infection due toPseudomonas aeruginosa . Journal of Pharmacokinetics and Biopharmaceutics 16, 355–375 (1988). https://doi.org/10.1007/BF01062551

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062551

Key words

Navigation