Skip to main content
Log in

Prediction of the renal clearance of cimetidine using endogenousN-1-methylnicotinamide

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

We investigated the influence of the type rather than the degree of renal insufficiency on the renal clearance of drugs. Different models of site specific experimental renal failure (ERF) have been developed in the rat; proximal tubular necrosis, induced by cisplatin; papillary necrosis, induced by 2-bromoethylamine, and glomerulonephritis, induced by sodium aurothiomalate or by antiglomerular basement membrane antibody. Several parameters of kidney function were assessed: the clearance of inulin, PAH, and endogenous N-1-methylnicotinamide (NMN). Plasma BUN and creatinine concentrations, and the presence of proteinuria and glucosuria were also measured. Our results showed a nonparallel decrease in glomerular filtration rate (GFR)and tubular secretion as measured by the secretory clearance of endogenous NMN or by the secretory clearance of p-aminohippuric acid (PAH), that is incompatible with the “intact nephron hypothesis.” As a result, the renal clearance of cimetidine, a drug eliminated mainly by renal secretion, correlated better with the renal clearance of endogenous NMN than with the GFR.We conclude that (i) our models of ERF demonstrated the existence of glomerulo-tubular imbalance that is contrary to expectations based on the intact nephron hypothesis; (iii) the type of the renal disease has a direct influence on the renal clearance of cimetidine; (in) the clearance of endogenous NMN may be a valuable noninvasive test for assessing renal tubular secretion which could be useful in predicting the clearance of drugs eliminated predominantly by tubular secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Wartak. A modem approach in individualised drug therapy. In J. Wartak (eds.),Clinical Pharmacokinetics, Praeger, New York, 1983, pp. 175–189.

    Google Scholar 

  2. J. Fabre and L. Balant. Drug pharmacokinetics and action in renal failure. In M. Gibaldi and L. Prescott (eds.),Handbook of Clinical Pharmacokinetics, Vol. 1, Adis, Hong Kong, 1983, pp. 212–234.

    Google Scholar 

  3. L. Dettli. Drug dosage in renal failure.Clin. Pharmacokin. 1:126–134 (1976).

    Article  CAS  Google Scholar 

  4. L. Dettii. Drug dosage in renal failure. In M. Gibaldi and L. Prescott (eds.),Handbook of Clincal Pharmacokinetics, Vol. 1, Adis, Hong Kong, 1983, pp. 261–276.

    Google Scholar 

  5. T. D. Bjornsson. Use of serum creatinine concentration to determine renal function.Clin. Pharmacokin. 4:200–222 (1979).

    Article  CAS  Google Scholar 

  6. N. S. Bricker, P. A. F. Morrin, and S. W. Kime. The pathologic physiology of chronic Bright's disease.Am. J. Med. 28:77–98 (1960).

    Article  CAS  PubMed  Google Scholar 

  7. N. S. Bricker, R. Klahr, H. Lubowitz, and R. E. Rieselbach. The pathologic physiology of chronic Bright's disease.Medicine 44:263–288 (1965).

    Article  CAS  PubMed  Google Scholar 

  8. T. U. L. Biber, M. Mylle, and C. W. Gottschalk, Micropuncture study of kidney function in rats with experimental tubular necrosis. In J. Vostal and G. Richet (eds.),Second International Congress of Nephrology, Vol. 1, Prague, 1964, pp. 21–27.

  9. T. U. L. Biber, M. Mylle, A. D. Baines, C. W. Gottschalk, and M. C. McDowell. A study of micropuncture and microdissection of acute renal damage in rats.Am. J. Med. 44:664–705 (1968).

    Article  CAS  PubMed  Google Scholar 

  10. M. M. Reidenberg, M. Camacho, J. Kluger, and D. E. Drayer. Ageing and renal clerance of procainamide and acetylprocainamide.Clin. Pharmacol Ther. 28:732–735 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. P. T. Daley-Yates and D. C. H. McBrien. Cisplatin (cis dichlorodiammine platinum II) nephrotoxicity. In P. H. Bach, F. W. Bonner, J. W. Bridges, and E. A. Lock (eds.),Nephrotoxicity, Assessment and Pathogenesis, Wiley, Chichester, 1982, pp. 356–370.

    Google Scholar 

  12. D. C. Dobyan, J. Levi, C. Jacobs, J. Kosek, and M. W. Weiner. Mechanism of cis-platinum nephrotoxicity: II. Morphologic observations.J. Pharmacol. Exp. Ther. 213:551–556 (1980).

    CAS  PubMed  Google Scholar 

  13. G. S. Hill, R. G. Willye, M. Miller, and R. M. Heptinstall. Experimental papillary necrosis of the kidney.Am. J. Pathol. 68:213–234 (1972).

    CAS  PubMed Central  PubMed  Google Scholar 

  14. R. Vanholder, N. Lameire, W. Eeckhaut, and S. Ringoir. Renal function studies in an experimental model of papillary necrosis in rat.Arch. Int. Physiol. Biochem. 89:63–73 (1981).

    Article  CAS  Google Scholar 

  15. A. H. Nagi, F. Alexander, and A. Z. Barabas. Gold nephropathy in rats—light and electron-microscopic studies.Exp. Mol. Pathol. 15:354–362 (1971).

    Article  CAS  PubMed  Google Scholar 

  16. T. S. Edgington, R. J. Glassock, J. A. Watson, and F. J. Dixon. Characterization and isolation of specific renal tubular epithelial antigens.J. Immunol. 99:1199–1210 (1967).

    CAS  PubMed  Google Scholar 

  17. D. C. Cattran and W. B. Chodirker. Experimental membranous glomerulonephritis.Nephron 31:260–265 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. S. O. Stitzer and M. Martinez-Maldonado, Clearance methods in the rat. In M. Martinez-Maldonado (ed.),Methods in Pharmacology, Vol. 4B, Pleum Press, New York, 1978, pp. 23–40.

    Google Scholar 

  19. R. A. Kramp, M. McDowell, C. W. Gottschalk, and J. R. Oliver. A study by microdissection and micropuncture of the structure and the function of the kidneys and the nephrons of rats with chronic renal damage.Kidney Int. 5:147–176 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. L. D. Griffith, R. E. Bulger, and B. F. Trump. The ultrastructure of the functioning kidney.Lab. Invest. 16:220–246 (1967).

    CAS  PubMed  Google Scholar 

  21. A. Adedoyin, L. Aarons, and J. B. Houston. High-performance liquid chromatographic method for the simultaneous determination of cimetidine and antipyrine in plasma.J. Chromatog. 345:192–196 (1985).

    Article  CAS  Google Scholar 

  22. R. Greger, F. Lang, F. G. Knox, and C. Lechene. Analysis of tubule fluid. In M. Martinez-Maldonado (ed.),Methods in Pharmacology, Vol. 4B, Plenum Press, New York, 1978, pp. 105–140.

    Google Scholar 

  23. B. R. Clark, R. M. Halpern, and R. A. Smith. A fluorimetric method for quantitation in the picomole range ofN-1-methylnicotinamide and nicotinamide in serum.Anal. Biochem. 68:54–61 (1975).

    Article  CAS  PubMed  Google Scholar 

  24. C. K. Shim, Y. Sawada, T. Iga, and M. Hanano. Estimation of renal blood flow by use of endogenousN-1-methylnicotinamide in rats.J. Pharmacobiodyn. 8:20–24 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. C. Bratton and E. K. Marshall. A new coupling agent for sulfanilamide determination.J. Biol. Chem. 128:537–539 (1939).

    CAS  Google Scholar 

  26. J. L. McNay, S. Rosello, and P. G. Dayton. Effects of azotemia on renal extraction and clearance of PAH and TEA.Am. J. Physiol. 230:901–906 (1976).

    CAS  Google Scholar 

  27. C. K. Shim, Y. Sawada, T. Iga, and M. Hanano. Effect of experimental renal failure on intrinsic renal tubular secretory clearance of organic cations in rats.J. Pharmacobiodyn. 6:787–789 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. A. Maïza and P. T. Daley-Yates. The clearance of drugs in different types of renal disease.Renal Failure 11:67 (1988).

    Google Scholar 

  29. A. Maïza and P. T. Daley-Yates. Drug pharmacokinetics in renal failure: Influence of disease type. In P. H. Bach and E. A. Lock (eds.),Nephrotoxicity: Extrapolation from In Vitro in In Vivo and from Animals to Man, Plenum Press, London, 1989, pp. 381–386.

    Google Scholar 

  30. J. Oliver.Architecture of the Kidney in Chronic Bright's Disease, Hoeber, New York, 1939.

    Google Scholar 

  31. M. E. M. Allison, C. B. Wilson, and C. W. Gottschalk. Pathophysiology of experimental glomerulonephritis in rats.J. Clin. Invest. 53:1402–1423 (1974).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. A. Rocha, M. Marcondes, and G. Malnic. Micropuncture study in rats with experimental glomerulonephritis.Kidney Int. 3:14–23 (1973).

    Article  CAS  PubMed  Google Scholar 

  33. J. H. Lin, A. N. Chremos, K. C. Yeh, J. Antonello, and G. A. Hessey. Effects of age and chronic renal failure on the urinary excretion kinetics of famotidine in man.Eur. J. Clin. Pharamacol. 34:41–46 (1988).

    Article  CAS  Google Scholar 

  34. P. G. Welling, W. A. Craig, and C. M. Kunin. Prediction of drug dosage in patients with renal failure using data derived from normal subjects.Clin. Pharmacol. Ther. 18:45–52 (1975).

    CAS  PubMed  Google Scholar 

  35. M. Weiner and L. Roth. Renal excretion of cimetidine.J. Pharmacol. Exp. Ther. 216:516–520 (1981).

    CAS  PubMed  Google Scholar 

  36. J. H. Lin and T. H. Lin. Renal handling of drugs in renal failure. I: Differential effects of uranyl nitrate- and glycerol-induced acute renal failure on renal excretion of TEA and PAH in rats.J. Pharmacol. Exp. Ther. 246:896–901 (1988).

    CAS  PubMed  Google Scholar 

  37. C. A. Gloff and L. Z. Benet. Differential effects of the degree of renal damage on p-aminohippuric acid and inulin clearances in rats.J. Pharmacokin. Biopharm. 17:169–177 (1989).

    Article  CAS  Google Scholar 

  38. R. Larsson, B. Norlander, G. Bodemar, and A. Walan. Steady-state kinetics and dosage requirements of cimetidine in renal failure.Clin. Pharmacokin. 6:316–326 (1981).

    Article  CAS  Google Scholar 

  39. T. R. Vickery. Cimetidine reaction.Drug Intell. Clin. Pharm. 12:242–244 (1978).

    Google Scholar 

  40. J. B. Spears. Cimetidine and mental confusion.Am. J. Hosp. Pharm. 35:1035 (1978).

    CAS  PubMed  Google Scholar 

  41. C. A. Wood, M. L. Isaacson and M. S. Hibbs. Cimetidine and mental confusion.J. Am. Med. Assoc. 239:2550–2551 (1978).

    Article  CAS  Google Scholar 

  42. W. E. Knox and W. I. Grossman. A new metabolite of nicotinamide.J. Biol. Chem. 166:391–392 (1946).

    CAS  Google Scholar 

  43. K. H. Beyer, H. F. Russo, S. R. Gass, K. S. Wilhoyte, and A. A. Pitt. Renal tubular elimination ofN-1-methylnicotinamide.Am. J. Physiol. 160:34–37 (1950).

    Google Scholar 

  44. C. R. Ross, F. Diezi-Chomety, and F. Roch-Ramel. Renal excretion ofN-methyl-nicotinamide in rat.Am. J. Physiol. 228:F1641-F1645 (1975).

    Google Scholar 

  45. C. K. Shim, Y. Sawada, T. Iga, and M. Hanano. Estimation of renal secretory function for organic cations by endogenous N-1-methylnicotinamide in rats with experimental renal failure.J. Pharmacokin. Biopharm. 12:23–42 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiza, A., Daley-Yates, P.T. Prediction of the renal clearance of cimetidine using endogenousN-1-methylnicotinamide. Journal of Pharmacokinetics and Biopharmaceutics 19, 175–188 (1991). https://doi.org/10.1007/BF01073868

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01073868

Key words

Navigation