Skip to main content
Log in

A physiological model for renal drug metabolism: Enalapril esterolysis to enalaprilat in the isolated perfused rat kidney

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A physiologically based kidney model was developed to describe the metabolism of enalapril and explain the observed discrepancies between generated and preformed enalaprilat (metabolite) elimination in the constant flow single-pass and recirculating isolated perfused rat kidney preparations (IPKs) as a result of the differing points of origin of the metabolite within the kidney, subsequent to the simultaneous delivery of14Cenalapril and3H-enalaprilat. The model incorporated clearances for diffusion/transport of drug and metabolite across the basolateral and luminal membranes of the renal cells, an intrinsic clearance for renal drug metabolism, in addition to physiological variables such as perfusate flow rate, glomerular filtration rate, and urine flow rate. Nonlinear curve fitting of single-pass and recirculating data was performed to estimate the rate-limiting step in the renal elimination of enalaprilat. Through fitting and simulation procedures, we were able to predict metabolic and excretory events for enalapril (renal extraction ratio ≅0.25–0.3; fractional excretion, FE, was less than unity) and the relatively constant pattern of urinary excretion of preformed enalaprilat (extraction ratio ≅0.07; FE≅1). The extraction ratio of the intrarenally formed enalaprilat in single-pass IPK was about twofold that for the preformed metabolite, whereas the FEs of generated enalaprilat in recirculating IPKs were >1, and tended to increase, then decrease with perfusion time. These observations were explained by the optimized parameters which indicated that efflux from cell to lumen was rate-controlling in the excretion of enalaprilat, and another small transport barrier also existed at the basolateral membrane; the lower extraction ratio of preformed enalaprilat was due to its poor transmembrane clearance at the basolateral membrane. The variable FEs for generated enalaprilat vs. the relatively constant FE for preformed metabolite in the recirculating IPK was explained by the changing contributions of both circulating and intrarenal metabolite to metabolite excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. R. Hewitt and J. B. Hook. The renal excretion of drugs. In J. W. Bridges and L. F. Chasseaud (eds.),Drug Metabolism, Vol. 7, Wiley, 1983, pp. 11–56.

  2. T. D. McKinney. Renal transport of organic anions and cations. In R. W. Schrier and C. W. Gottschalk (eds.),Diseases of the Kidney, Little, Brown, Boston, MA 1988 pp. 285–307.

    Google Scholar 

  3. A. Shimomura, A. M. Chonko, and J. J. Grantham. Basis for heterogeneity of paraaminohippurate secretion in rabbit proximal tubules.Am. J. Physiol. 240:F430-F436 (1981).

    CAS  PubMed  Google Scholar 

  4. P. B. Woodhall, C. C. Tisher, C. A. Simonson, and R. K. Robinson. Relationship between para-aminohippurate secretion and cellular morphology in rabbit proximal tubules.J. Clin. Invest. 61:1320–1329 (1978).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. T. D. McKinney. Heterogeneity of organic base secretion by rabbit proximal tubules.Am. J. Physiol. 243:F404-F409 (1982).

    CAS  PubMed  Google Scholar 

  6. F. G. M. Russel, A. C. Wouterse, and C. A. M. van Ginneken. Physiologically based pharmacokinetic model for the renal clearance of phenolsulfonphthalein and the interaction with probenecid and salicyluric acid in the dog.J. Pharmacokin. Biophartn. 15:349–368 (1987).

    Article  CAS  Google Scholar 

  7. F. G. M. Russel, A. C. Wouterse, and C. A. M. van Ginneken. Physiologically based pharmacokinetic model for the renal clearance of salicyluric acid and the interaction with phenolsulfonphthalein in the dog.Drug Metabl. Dispos. 15:695–701 (1987).

    CAS  Google Scholar 

  8. F. G. M. Russel, A. C. Wouterse, and C. A. M. van Ginneken. Renal Clearance of substituted hippurates in the dog. 1. Benzoylglycine (hippurate) and methyl-substituted benzoylglycines.J. Pharmacol. Exp. Ther. 248:428–435 (1989).

    CAS  Google Scholar 

  9. N. Itoh, Y. Sawada, and Y. Sugiyama. Kinetic analysis of rat renal tubular transport based on multiple-indicator dilution method.Am. J. Physiol. 251:F103-F114 (1986).

    CAS  PubMed  Google Scholar 

  10. N. Itoh, Y. Sawada, Y. Sugiyama, T. Iga, and M. Hanano. Na+-dependent p-amino-hippurate transport at the basolateral side of the isolated perfused rat kidney.Biochim. Biophys. Acta 860:592–599 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. M. Silverman, C. Whiteside, C. J. Lumsden, and H. Steinhart.In vivo indicator dilution kinetics of PAH transport in dog kidney.Am. J. Physiol. 256:F255-F265 (1989).

    CAS  PubMed  Google Scholar 

  12. D. D.-S. Tang-Liu, T. N. Tozer, and S. Riegelman. Dependence of renal clearance on urine flow: A mathematical model and its application.J. Pharm. Sci. 72:154–158 (1983).

    Article  CAS  PubMed  Google Scholar 

  13. I. Komiya. Urine flow-dependence and interspecies variation of the renal reabsorption of sulfanilamide.J. Pharmacobiodyn. 10:1–7 (1987).

    Article  CAS  PubMed  Google Scholar 

  14. J. M. Mayer, S. D. Hall, and M. Rowland. Relationship between lipophilicity and tubular reabsorption for a series of 5-alkyl-5-ethylbarbituric acids in the isolated perfused rat kidney preparation.J. Pharm. Sci. 77:359–364 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. D. P. Jones, A. H. Stead, P. Moldéus, and S. Orrenius. Glutathione and glutathione conjugate metabolism in isolated liver and kidney cells. In H. Sies and A. Wendel (eds.),Functions of Glutathione in Liver and Kidney, Springer-Verlag, Berlin, 1978, pp. 124–200.

    Google Scholar 

  16. G. L. Diamond and A. J. Quebbemann.In vivo quantification of glucuronide and sulfate conjugation in the chicken.Drug Metab. Dispos. 9:402–409, (1981).

    CAS  PubMed  Google Scholar 

  17. L. A. Spry, T. Zenzer, S. M. Cohen, and B. B. Davis. Role of renal metabolism and excretion of 5-nitrofuran-induced uroepithelial cancer in the rat.J. Clin. Invest. 76:1025–1031 (1985).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. M. W. Anders. Metabolism of drugs by the kidney.Kidney Int. 18:636–647 (1980).

    Article  CAS  PubMed  Google Scholar 

  19. J. T. Hjelle, G. A. Hazelton, C. A. Klaassen, and J. J. Hjelle. Glucuronidation and sulfation in rabbit kidney.J. Pharmacol. Exp. Ther. 236:150–156 (1986).

    CAS  PubMed  Google Scholar 

  20. S. K. Wan and S. Riegelman. Renal contribution to overal. metabolism of drugs I: conversion of benzoic acid to hippuric acid.J. Pharm. Sci. 61:1278–1284 (1972).

    Article  CAS  PubMed  Google Scholar 

  21. I. A. M. de Lannoy, R. Nespeca, and K. S. Pang. Renal handling of enalapril and its metabolite, enalaprilat, in the isolated red blood cell-perfused rat kidney.J. Pharmacol. Exp. Ther. 251:1211–1222 (1989).

    PubMed  Google Scholar 

  22. A. J. Schwab, I. A. M. de Lannoy, C. A. Goresky, and K. S. Pang. Uptake of enalaprilat by the perfused rat kidney is barrier-limited, (submitted)

  23. P. Heckman and C. A. M. van Ginneken. Kinetic modelling of the renal excretion of iodopyracet in the dog.J. Pharmacokin. Biopharm. 10:77–92 (1982).

    Article  Google Scholar 

  24. P. Heckman and C. A. M. van Ginneken. Simultaneous kinetic modelling of plasma levels and urinary excretion of salicyluric acid and the influence of probenecid.Eur. J. Drug Metab. Pharmacokin. 8:239–249 (1983).

    Article  Google Scholar 

  25. E. Bojesen. The function of the urinary tract as a “dead space” in clearance experiments (A preliminary report).Scand. J. Clin. Invest. 1:290–294 (1949).

    Article  Google Scholar 

  26. D. Alcorn, K. R. Emslie, B. D. Ross, G. B. Ryan, and J. D. Tange. Selective distal nephron damage during isolated kidney perfusion.Kidney Int. 19:638–647 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. M. Brezis, S. Rosen, P. Suva, and F. H. Epstein. Selective vulnerability of the medullary thick ascending limb to anoxia in the isolated perfused rat kidney.J. Clin. Invest. 73:182–190 (1984).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. W. S. Spector.Handbook of Biological Data, W. B. Saunders, Philadelphia, 1956, pp. 75.

    Google Scholar 

  29. K. S. Pang, W. F. Cherry, J. A. Terrell, and E. H. Ulm. Disposition of enalapril and its diacid metabolite, enalaprilat, in a perfused rat liver preparation. Presence of a diffusional barrier for enalaprilat into hepatocytes.Drug Metab. Dispos. 12:309–313 (1984).

    CAS  PubMed  Google Scholar 

  30. A. J. Schwab, F. Barker III, C. A. Goresky, and K. S. Pang. Uptake of enalaprilat by the perfused rat liver is barrier-limited.Am. J. Physiol. 258:G461-G475 (1990).

    CAS  PubMed  Google Scholar 

  31. I. A. M. de Lannoy and K. S. Pang. Commentary: presence of a diffusional barrier on metabolite kinetics: enalaprilat as a generatedversus preformed metabolite.Drug Metab. Dispos. 14:513–520 (1986).

    PubMed  Google Scholar 

  32. L. A. Spry, J. Rubenstein, C. Rettke, T. V. Zenser, and B. B. Davis. Renal metabolic/excretory coupling.Am. J. Physiol. 254:F145-F152 (1988).

    CAS  PubMed  Google Scholar 

  33. I. Bekersky, L. Fishman, S. A. Kaplan, and W. A. Colburn. Renal clearance of salicyclic acid and salicyluric acid in the rat and in the isolated perfused rat kidney.J. Pharmacol. Exp. Ther. 212:309–212 (1980).

    CAS  PubMed  Google Scholar 

  34. B. von Lehmann, S. H. Wan, S. Riegelman, and C. Becker. Renal contribution to overall metabolism of drugs IV: Biotransformation of salicylic acid to salicyluric acid in man.J. Pharm. Sci. 62:1483–1486 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Medical Research Council of Canada. I. A. M. de Lannoy was a recipient of the Ontario Graduate Scholarship, and K. S. Pang is a recipient of the Faculty Development Award from MRC, Canada M5S 2S2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lannoy, I.A.M., Hirayama, H. & Pang, K.S. A physiological model for renal drug metabolism: Enalapril esterolysis to enalaprilat in the isolated perfused rat kidney. Journal of Pharmacokinetics and Biopharmaceutics 18, 561–587 (1990). https://doi.org/10.1007/BF01073939

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01073939

Key words

Navigation