Skip to main content
Log in

Protein size and cerebrospinal fluid composition

Molekülgröße der Serumproteine und Zusammensetzung des Liquor cerebrospinalis

  • Originalien
  • Published:
Klinische Wochenschrift Aims and scope Submit manuscript

Summary

The concentration ratios of several proteins between serum and cerebrospinal fluid (CSF) can be correlated more easily to hydrodynamic volumes than to molweights. Hydrodynamic radii were calculated from literature diffusion data and determined by analytical column chromatography and gel electrophoresis. Discrepancies between molweight and hydrodynamic volume become evident, especially with the high-molecular proteins because of stronger conformational variability in this size range. The permeability of the blood-CSF-barrier is compared to the blood-lymph-barrier and the results are discussed with reference to current views about capillary permeability. The basement membrane, exposed to the capillary lumen by endothelial fenestrations is considered the most likely site of protein passage at the blood-CSF-barrier.

Zusammenfassung

Die Konzentrations-Quotienten zahlreicher Proteine zwischen Serum und Liquor cerebrospinalis korrelieren besser mit den hydrodynamischen Volumen als mit den Molekulargewichten. Die hydrodynamischen Radien wurden der Literatur entnommen, sowie mit Hilfe der analytischen Säulenchromatographie und Gelelektrophorese bestimmt. Diskrepanzen zwischen Molekulargewicht und hydrodynamischem Volumen werden vorwiegend bei den großmolekularen Proteinen gefunden, da hier die Molekülformen stärker variieren. Die Permeabilität der Blut-Liquor-Schranke wird mit der Blut-Lymph-Schranke verglichen, und die Daten werden unter dem Aspekt der derzeitigen Filtrationstheorien diskutiert. Die Basalmembran, die durch Endothelfenster direkten Kontakt mit dem Kapillarlumen erhält, ist der wahrscheinlichste Ort für den Proteindurchtritt an der Blut-Liquor-Schranke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews, P.: The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem. J.96, 595 (1965)

    PubMed  Google Scholar 

  2. Andrews, P.: Estimation of molecular size and molecular weights of biological compounds by gel filtration. Meth. Biochem. Anal.18, 1 (1970)

    Google Scholar 

  3. Arturson, G., Granath, K.: Dextrans as test molecules in studies of the functional ultrastructure of biological membranes. Clin. chim. Acta37, 309 (1972)

    PubMed  Google Scholar 

  4. Berlet, H. H., Pilz, H.: Die Bedeutung von Plasmakreatin und neurologischen Erkrankungen für den Kreatingehalt im Liquor cerebrospinalis beim Menschen. Z. ges. Neurol. Psychiat.201, 310 (1972)

    Google Scholar 

  5. Bock, E.: In: A Manual of quantitative immuno-electrophoresis. Eds.: Axelsen, N. H., Krøll, J., Weeke, B., p. 111. Oslo: Universitetsforlaget 1973

    Google Scholar 

  6. Bradbury, M. W. B., Stulcova, B.: Efflux mechanism contributing to the stability of the potassium concentration in cerebrospinal fluid. J. Physiol. (Lond.)208, 415 (1970)

    PubMed  Google Scholar 

  7. Brightman, M. W., Klatzo, I., Olsson, Y., Reese, T. S.: The blood-brain-barrier to proteins under normal and pathological conditions. J. Neurol. Sci.10, 215 (1970)

    PubMed  Google Scholar 

  8. Brightman, M. W., Reese, T. S., Feder, N.: Assessment with the electron microscope of the permeability to peroxidase of cerebral endothelium and epithelium in mice and sharks. In: Ref. 13, p. 468

    Google Scholar 

  9. Bryce, C. F. A., Crichton, R. R.: The subunit structure of horse spleen apoferritin. J. biol. Chem.246, 4198 (1971)

    PubMed  Google Scholar 

  10. Clausen, J.: The β-lipoprotein of serum and cerebrospinal fluid. Acta neurol. scand.42, 153 (1966)

    PubMed  Google Scholar 

  11. Clementi, F., Palade, G. E.: Intestinal capillaries. I. Permeability to peroxydase and ferritin. J. Cell Biol.41, 33 (1969)

    PubMed  Google Scholar 

  12. Cohen, M. W., Gerschenfeld, H. M., Kuffler, S. W.: Ionic environment of neurones and glial cells in the brain of an amphibian. J. Physiol. (Lond.)197, 363 (1968)

    PubMed  Google Scholar 

  13. Crone, Ch., Lassen, N. A.: Capillary permeability. Copenhagen: Munksgaard 1970

    Google Scholar 

  14. Crone, C., Thompson, A. M.: Permeability of brain capilaries. In: Ref. 13, p. 447

    Google Scholar 

  15. Cserr, H.: Potassium exchange between cerebrospinal fluid, plasma and brain. Amer. J. Physiol.209, 1219 (1965)

    PubMed  Google Scholar 

  16. Davson, H.: Physiology of the cerebrospinal fluid. London: Churchill, Ltd. 1967

    Google Scholar 

  17. Dohrmann, G. J., Bucy, P. C.: Human choroid plexus: a light and electron microscopic study. J. Neurosurg.33, 506 (1970)

    PubMed  Google Scholar 

  18. Dunn, J. S., Wyburn, G. M.: The anatomy of the bloodbrain barrier: a review. Scot. med. J.17, 21 (1972)

    PubMed  Google Scholar 

  19. Felgenhauer, K.: Moleculat size of human serum proteins determined by exclusion gel electrophoresis. Clin. chim. Acta32, 53 (1971)

    PubMed  Google Scholar 

  20. Felgenhauer, K.: Evaluation of molecular size in gelelectrophoretic techniques. Hoppe Seylers Z. physiol. Chem. (1974) (in press)

  21. Felgenhauer, K., Engel, H., Rapic, N., Schliep, G.: Rapid concentration of small volumes of protein solution. Z. klin. Chem. klin. Biochem.11, 173 (1973)

    PubMed  Google Scholar 

  22. Felgenhauer, K., Graesslin, D., Huismans, B. D.: Comparison of slab and cylinder gel focusing. Prot. Biol. Fluids19, 575 (1971)

    Google Scholar 

  23. Forster, R. E.: In: Current topics in membranes and transport. Eds.: Bronner, F., and Kleinzeller, A., II, p. 41. New York, London: Acad. Press 1971

    Google Scholar 

  24. Frick, E.: Quantitative Bestimmung des Transferrins im normalen und pathologischen Liquor cerebrospinalis. Klin. Wschr.41, 75 (1963)

    PubMed  Google Scholar 

  25. Frick, E.: Barriers of the central nervous system and physiology of proteins. Int. Ophthal. Clinics5, 683 (1965)

    Google Scholar 

  26. Gottesleben, A., Bauer, H. J.: Quantitative Immunochemie der Liquorproteine bei entzündlichen Erkrankungen des Nervensystems. Germ. med. Mth.12, 331 (1967)

    Google Scholar 

  27. Greenstein, J. P., Winitz, M.: Chemistry of the amino acids, I. p. 467. New York: Wiley Inc. 1961

    Google Scholar 

  28. Guroff, G.: In: Basic neurochemistry, eds.: R. W. Alberset al. p. 191. Boston: Little, Brown and Co. 1972

    Google Scholar 

  29. Hurliman, J., Waldesbühl, M., Zuber, C.: Human salivary immunoglobulin A. Biochim. biophys. Acta (Amst.)181, 393 (1969)

    PubMed  Google Scholar 

  30. Jost, W.: Fundamental aspects of diffusion processes. Angew. Chemie (Internat. edit.)3, 713 (1964)

    Google Scholar 

  31. Karnovsky, M. J.: Morphology of capillaries with special reference to muscle capillaries. In: Ref. 13, p. 341

    Google Scholar 

  32. Katzmann, R.: Blood-brain-CSF barriers. In: Ref. 28, p. 327

    Google Scholar 

  33. Kefalides, N. A.: Chemical properties of basement membranes. In: Int. Rev. exp. Path.10, 1 (1972)

    Google Scholar 

  34. Klotz, I. M., Darnall, D. W.: Protein subunits: a table. Science166, 126 (1969)

    PubMed  Google Scholar 

  35. Lajtha, A., Ford, D. H. (eds.): Brain barrier systems. Amsterdam: Elsevier Publ. Co. 1968

    Google Scholar 

  36. Landis, E. M., Pappenheimer, J. R.: Exchange of substances through capillary walls. Handbook of physiology, circulation, vol. II, p. 961. Baltimore: Williams and Wilkins 1963

    Google Scholar 

  37. Laurent, T. C.: The structure and function of the intercellular polysaccharides in connective tissue. In: Ref. 13, p. 261

    Google Scholar 

  38. Laurent, T. C., Killander, J.: A theory of gel filtration and its experimental verification. J. Chromatogr.14, 317 (1964)

    Google Scholar 

  39. Laurrell, C.-B.: Electroimmuno assay. Scand. J. clin. Lab. Invest.29, Suppl. 124, 21 (1972)

    Google Scholar 

  40. Levy, R. J., Bilheimer, D. W., Eisenberg, S.: In: Plasma proteins (ed. R. M. S. Smellie). London-New York: Acad. Press 1971

    Google Scholar 

  41. Lieb, W. R., Stein, W. D.: The molecular basis of simple diffusion within biological membranes. In: Current topics in membranes and transport2, 1 (1971)

    Google Scholar 

  42. Link, H., Zettervall, O., Blennow, G.: Individual cerebrospinal fluid (CSF) proteins in the evaluation of increased CSF total protein. Z. ges. Neurol. Psychiat.203, 119 (1972)

    Google Scholar 

  43. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem.193, 265 (1951)

    PubMed  Google Scholar 

  44. Lüscher, E. F.: The biochemical properties and the biological function of fibrinogen. Prot. Biol. Fluids14, 1 (1966)

    Google Scholar 

  45. Manuel, Y., Revillard, J. P., Betuel, H.: Proteins in normal and pathological urine. Basel: S. Karger 1970

    Google Scholar 

  46. Mc.Ilwain, H., Bachelard, H. S.: Biochemistry and the central nervous system. Edinburgh: Churchill Livingstone 1971

    Google Scholar 

  47. Oldendorf, W. H.: Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injection. Amer. J. Physiol.221, 1629 (1971)

    PubMed  Google Scholar 

  48. Pappenheimer, J. R.: The ionic composition of cerebral extracellular fluid and its relation to control breathing. Harvey Lect.61, 71 (1967)

    PubMed  Google Scholar 

  49. Peeters, H. (ed.): Urinary proteins. Prot. Biol. Fluids21, 341–561 (1973)

  50. Putnam, F. W. (ed.): The proteins. New York: Acad. Press 1966

    Google Scholar 

  51. Rask, L., Peterson, P. A.: Structure and function of the retinol-binding protein: a protein characteristic of tubular proteinuria. Prot. Biol. Fluids21, 485 (1973)

    Google Scholar 

  52. Rauen, H. W. (ed.): Biochemisches Taschenbuch. Berlin-Heidelberg-New York: Springer 1964

    Google Scholar 

  53. Reese, T. S., Karnovsky, M. J.: Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol.34, 207 (1967)

    PubMed  Google Scholar 

  54. Renkin, E. M.: Filtration, diffusion and molecular sieving through porous cellulose membranes. J. gen. Physiol.38, 225 (1955)

    Google Scholar 

  55. Renkin, E. M.: Stofftransport durch die Wände von Blutkapillaren. Klin. Wschr.41, 147 (1963)

    PubMed  Google Scholar 

  56. Renkin, E. M.: Permeability and molecular size in “peripheral” and glomerular capillaries. In: Ref. 13, p. 544

    Google Scholar 

  57. Rosenthal, F. D., Soothill, J. F.: An immunochemical study of the proteins in cerebrospinal fluid. J. Neurol. Neurosurg. Psychiat.25, 177 (1962)

    PubMed  Google Scholar 

  58. Schliep, G., Felgenhauer, K.: The α2-macroglobulin level in cerebrospinal fluid, a parameter for the condition of the blood-CSF-barrier. J. Neurol.207, 171 (1974)

    PubMed  Google Scholar 

  59. Schliep, G., Rapic, N., Felgenhauer, K.: Quantitation of high-molecular proteins in cerebrospinal fluid. Z. klin. Chem. klin. Biochem.12, 367 (1974)

    PubMed  Google Scholar 

  60. Schmidt, R. M.: Der Liquor cerebrospinalis. Berlin: VEB Verlag und Gesundheit, 1968

    Google Scholar 

  61. Schultze, H. E., Heremans, J. F.: Molecular biology of human proteins, vol. I, Amsterdam: Elsevier 1966

    Google Scholar 

  62. Siegel, L. M., Monty, K. J.: Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Biochim. biophys. Acta (Amst.)112, 346 (1966)

    PubMed  Google Scholar 

  63. Slater, G. G.: Pore-limit electrophoresis on a gradient of polyacrylamide gel. Analyt. Biochem.24, 215 (1968)

    PubMed  Google Scholar 

  64. Snodgrass, S. R., Cutler, R. W. P., Kang, E. S., Lorenzo, A. V.: Transport of neutral amino acids from feline cerebrospinal fluid. Amer. J. Physiol.217, 974 (1969)

    PubMed  Google Scholar 

  65. Sober, H. A. (ed.) Handbook of biochemistry. Cleveland: The Chemical Rubber Co. 1970.

    Google Scholar 

  66. Svehag, S. E., Chesebro, B., Bloth, B.: Ultrastructure of gamma M immunoglobulin and alpha-2-macroglobulin: Electron-microscopic study. Science158, 933 (1967)

    PubMed  Google Scholar 

  67. Weeke, B.: Quantitative estimation of human immunoglobulins following carbamylation by electrophoresis in antibody-containing agarose. Scand. J. clin. Lab. Invest.22, 107 (1968)

    PubMed  Google Scholar 

  68. West, E. St.: Textbook of biophysical chemistry. New York: MacMillan Co. 1963

    Google Scholar 

  69. Wyke, B.: Brain function and metabolic disorders. London: Butterworths 1963

    Google Scholar 

  70. Yudilevich, D. L., De Rose, N., Sepulveda, F. V.: Facilitated transport of amino acids through the blood-brain-barrier of the dog studied in a single capillary circulation. Brain Res.44, 569 (1972)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. W. Scheid on the occasion of his 65th birthday.

I thank Dr. W. R. Lieb, London, for the helpful discussion of amino acid data.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felgenhauer, K. Protein size and cerebrospinal fluid composition. Klin Wochenschr 52, 1158–1164 (1974). https://doi.org/10.1007/BF01466734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01466734

Key words

Schlüsselwörter

Navigation