Skip to main content
Log in

The glycerophosphateacyltransferases and their function in the metabolism of fatty acids

  • General and Review Articles
  • b. review articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

  1. 1

    From different studies on the cellular localization, positional specificity, and regulatory properties of acyl-CoA: glycerophosphate acyltransferase (EC 2,3,1.15) and acyl-CoA: 1-acylglycerophosphate acyltransferase (EC 2,3,1⋯.) the following conclusions can be drawn:

  2. 2

    The glycerophosphate acyltransferase is localized in the endoplasmatic reticulum (microsomes) and in the outer membrane of the mitochondria of the animal cell. Its reaction product is 1-acylglycerophosphate (1-lysophosphatidic acid). The mitochondrial enzyme shows a high preference for saturated fatty acids while the microsomal enzyme is less specific (alternatively the microsomes contain more than one glycerophosphate acyltransferase).The 1-acylglycerophosphate acyltransferase is localized in the endoplasmatic reticulum (microsomes) in the animal cell. Possibly a minor fraction of this enzyme is localized to the outer membrane of the mitochondria. This enzyme shows a strong preference for unsaturated fatty acids.

  3. 3

    Both the microsomal and the mitochondrial dihydroxyacetonephosphate acyltransferase show similar fatty acid specificity as the corresponding glycerophosphate acyltransferases. It cannot be excluded that dihydroxyacetonephosphate and glycerophosphate are acylated by the same enzymes.

  4. 4

    The activity of the glycerophosphate acyltransferase(s) in the liver decreases in fasting or fat feeding and increases upon feeding of carbohydrate. The activity of carnitine palmityltransferase varies exactly opposit. These enzymes do not show dietary variations in heart and adipose tissue.

  5. 5

    Under otherwise identical conditions the rate of carnitine acylation in isolated mitochondria decreases more than the rate of glycerophosphate acylation when the concentration of palmityl-CoA is reduced.

  6. 6

    In isolated liver cells (which has lost most of their carnitine) addition of carnitine increases the rate of fatty acid oxidation and decreases the rate of triglyceride formation.

  7. 7

    Glycerol and fructose lower the rate of fatty acid oxidation, probably by lowering the levels of acyl-CoA and acyl-carnitine in the cells.

  8. 8

    It is concluded that the relative activities of glycerophosphate acyltransferase and carnitine palmityltransferase probably influence the fate of fatty acids in the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kornberg, A., and Pricer, W. E. Jr., 1953. J. Biol. Chem. 204, 345–357.

    Google Scholar 

  2. Hill, E. E., Husbands, D. R. and Lands, W. E. M., 1968. J. Biol. Chem. 243, 4440–4451.

    Google Scholar 

  3. McGarry, J. D., Meier J. M. and Foster, D. W., 1973. J. Biol. Chem. 248, 270–278.

    Google Scholar 

  4. Smith, M. E. and Hübscher, G., 1966. Biochem. J. 101, 308–316.

    Google Scholar 

  5. Stokke, O. and Bremer, J., 1970. Biochim. Biophys. Acta. 218, 552–554.

    Google Scholar 

  6. Christophersen, B. O. and Bremer, J., 1972. Biochim. Biophys. Acta 260, 515–526.

    Google Scholar 

  7. De Duve, C., Pressman, B. C., Gianetto, R., Wattiaux, R. and Appelmanns, F., 1955. Biochem. J. 60, 604–617.

    Google Scholar 

  8. Norum, K. R. and Bremer, J., 1967. J. Biol. Chem. 242, 407–411.

    Google Scholar 

  9. Sottocasa, G. L., Kyulenstierna, B., Ernster, L. and Bergstrand, J., 1967. J. Cell. Biol. 32, 415–438.

    Google Scholar 

  10. Norum, K. R., 1964. Biochim. Biophys. Acta 89, 95–108.

    Google Scholar 

  11. Farstad, M., Bremer, J. and Norum, K. R., 1967. Biochim. Biophys. Acta 132, 492–502.

    Google Scholar 

  12. Seglen, P. O., 1973. Exptl. Cell Research 82, 391–398.

    Google Scholar 

  13. Borrebaek, B., 1976. Acta Physiol. Scand. in press.

  14. Ontko, J. A., 1972. J. Biol. Chem. 247, 1788–1800.

    Google Scholar 

  15. Bremer, J. and Wojtczak, A. B., 1972. Biochim. Biophys. Acta. 280, 515–530.

    Google Scholar 

  16. Daae, L. N. W. and Bremer, J., 1970. Biochim. Biophys. Acta 210, 92–104.

    Google Scholar 

  17. Bjerve, K. S., Daae, L. N. W. and Bremer, J., 1974. Analytical Biochem. 58, 238–245.

    Google Scholar 

  18. Folch, J. Lees, M. and Sloan-Stanley, G. H., 1957. J. Biol. Chem. 226, 497–509.

    Google Scholar 

  19. Bligh, E. G. and Dyer, W. J., 1959. Canad. J. Biochem. Physiol. 37, 911–917.

    Google Scholar 

  20. Arvidson, G. A. E., 1968. Eur. J. Biochem. 4, 478–486.

    Google Scholar 

  21. De Haas, G. H., Postema, N. M., Niuwenhuizen, W. and Van Deenen, L. L. M., 1968. Biochim. Biophys. Acta 159, 103–117.

    Google Scholar 

  22. Shephard, E. H. and Hübscher, G., 1969. Biochem. J. 113, 429–440.

    Google Scholar 

  23. Stoffel, W. and Schiefer, H. G., 1968. Z. Physiol. Chem. 349, 1017–1026.

    Google Scholar 

  24. Zborowski, J. and Wojtczak, L., 1969. Biochim. Biophys. Acta 187, 73–84.

    Google Scholar 

  25. Eibl, H., Hill, E. E. and Lands, W. E. M., 1969. Eur. J. Biochem. 9, 250–258.

    Google Scholar 

  26. Davidson, J. B. and Stancev, N. Z., 1972. Can. J. Biochem. 50, 936–948.

    Google Scholar 

  27. Daae, L. N. W., 1972. Biochim. Biophys. Acta 270, 23–31.

    Google Scholar 

  28. Lands, W. E. M. and Hart, P., 1965. J. Biol. Chem. 240, 1905–1911.

    Google Scholar 

  29. Yamashita, S. and Numa, S., 1972. Eur. J. Biochem. 31, 565–573.

    Google Scholar 

  30. Liu, M. S. and Kako, K. J., 1974. Biochem. J. 138, 11–21.

    Google Scholar 

  31. Davidson, J. B. and Stanacev, N. Z., 1974. Canad. J. Biochem. 52, 936–939.

    Google Scholar 

  32. LaBelle, E. F. Jr. and Hajra, A. K., 1972. J. Biol. Chem. 247, 5835–5841.

    Google Scholar 

  33. Hajra, A. K., 1968. J. Biol. Chem. 243, 3458–3465.

    Google Scholar 

  34. Monroy, G., Kelker, H. C. and Pullman, M. E., 1973. J. Biol. Chem. 248, 2845–2852.

    Google Scholar 

  35. Eibl, H., Hill, E. E. and Lands, W. E. M., 1969. Eur. J. Biochem. 9, 250–258.

    Google Scholar 

  36. Lands, W. E. M. and Hart, P., 1964. J. Lip. Res. 5, 81–87.

    Google Scholar 

  37. De Jimenez, E. S. and Cleland, W. W., 1969. Biochim. Biophys. Acta 176, 685–691.

    Google Scholar 

  38. Åkesson, B., 1970. Biochim. Biophys. Acta 218, 57–70.

    Google Scholar 

  39. Elovsson, J., Åkesson, B. and Arvidsson, G., 1969. Biochim. Biophys. Acta 176, 214–217.

    Google Scholar 

  40. Possmayer, F., Scherphof, G. L., Dubbelman, T. M. A. R., van Golde, L. M. G. and Van Deenen, L. L. M., 1969. Biochim. Biophys. Acta 176, 95–110.

    Google Scholar 

  41. Baker, R. R. and Thompson, W., 1972. Biochim. Biophys. Acta 270, 489–503.

    Google Scholar 

  42. Tamai, Y. and Lands, W. E. M., 1974. J. Biochem. 76, 847–860.

    Google Scholar 

  43. Okuyama, H. and Lands, W. E. M., 1972. J. Biol. Chem. 247, 1414–1423.

    Google Scholar 

  44. Abou-Issa, H. M. and Cleland, W. W., 1969. Biochim. Biophys. Acta 176, 692–698.

    Google Scholar 

  45. Monroy, G., Rola, F. H. and Pullman, M. E., 1972. J. Biol. Chem. 247, 6884–6894.

    Google Scholar 

  46. McGarry, J. D., Meier, J. M. and Foster, D. W., 1973. J. Biol. Chem. 248, 270–278.

    Google Scholar 

  47. Aas, M. and Daae, L. N. W., 1971. Biochim. Biophys. Acta 239, 208–216.

    Google Scholar 

  48. Rao, G. A., Sorrels, M. F. and Reiser, R., 1971. Lipids 6, 88–92.

    Google Scholar 

  49. Norum, K. R., 1965. Biochim. Biophys. Acta 98, 652–654.

    Google Scholar 

  50. Van Tol, A. and Hülsmann, W. C., 1969. Biochim. Biophys. Acta 189, 342–353.

    Google Scholar 

  51. Evans, J. R., 1964. Circ. Research 15, supplement II, 96–180.

    Google Scholar 

  52. Kako, K. J. and Liu, M. S., 1974. FEBS Lett. 39, 243–246.

    Google Scholar 

  53. Joly, J. G., Feinman, L., Ischii, H. and Lieber, C. S., 1973. J. Lipid Res. 14, 337–343.

    Google Scholar 

  54. Lieber, C. S., In “Regulation of Hepatic Metabolism, Alfred Benzon Symposium VI“ (F. Lundquist and N. Tygstrup, eds.) pp. 379–396, Munksgaard, Copenhagen and Academic Press, New York 1974.

    Google Scholar 

  55. Greenbaum, A. L., Gumaa, K. A. and McLean, P., 1971. Arch. Biochem. Biophys. 143, 617–663.

    Google Scholar 

  56. Kondrup, J. and Grunnet, N., 1973. Biochem. J. 132, 373–379.

    Google Scholar 

  57. Van Tol, A., 1974. Biochim. Biophys. Acta 357, 14–23.

    Google Scholar 

  58. Burch, H. B., Lowry, O. H., Meinhardt, L., Max, Jr., P. and Chyu, K., 1970. J. Biol. Chem. 245, 2092–2102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An invited article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bremer, J., Bjerve, K.S., Borrebaek, B. et al. The glycerophosphateacyltransferases and their function in the metabolism of fatty acids. Mol Cell Biochem 12, 113–125 (1976). https://doi.org/10.1007/BF01731557

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01731557

Keywords

Navigation