Skip to main content
Log in

The anomalous rectification and cation selectivity of the membrane of a starfish egg cell

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The cation selectivity and its relation to the inward-going rectification of the immature egg cell membrane of a starfish,Nordora punctiformis, were studied and the following results were obtained. (1) When the external saline contains usual ion species the cell membrane at rest is predominantly permeable to K ions. The K chord conductanceg k depends on the electrochemical potential of K ions, ΔV=V−E K′ and the external K concentration [K+] o by

$$g_4 = A\left[ {1 + \exp \left( {\frac{{\Delta V - \Delta V_h }}{\upsilon }} \right)} \right]^{ - 1} ([K^ + ]_0 )^{\tfrac{1}{2}} $$

\((\Delta V_h \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{ \doteq } - 15mV,\upsilon \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{ \doteq } 7mV)\). (2) The permeability sequence of monovalent cations and the permeability ratiosP x/PK of the cell membrane at rest obtained with membrane tpotential measurements are, T1 (1.5)>K(1.0)>Rb(0.3 to 0.4)>NH4(0.03 to 0.04)>Na, Cs. (3) Current-voltage relations obtained when the external solution contains Rb+, Cs+ or T1+ in addition to K+ show: (a) Rb+ and Cs+ decrease the K conductance and the rate of decrease becomes greater with an increasing hyperpolarization, thereby the inward-going rectification is reduced; (b) the membrane conductance shows an ‘anomalous mole fraction dependence’ in Tl-K media, i.e., the conductance becomes minimum at a certain mole fraction; and (c) the current-voltage relation often shows a transitiontype behavior suggesting that the membrane undergoes metastable states during an ncrease of hyperpolarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adrian, R. H. 1964. The rubidium and potassium permeability of frog muscle membrane.J. Physiol. 175:134

    PubMed  Google Scholar 

  • Adrian, R. H. 1970. Rectification in muscle membrane.Prog. Biophys. Mol. Biol. 19:344

    Google Scholar 

  • Adrian, R. H., Chandler, W. K., Hodgkin, A. L. 1970. Slow changes in potassium permeability in skeletal muscle.J. Physiol. 208:645

    PubMed  Google Scholar 

  • Adrian, R. H., Freygang, W. H. 1962a,. The potassium and chloride conductance of frog muscle membrane.J. Physiol. 163:61

    Google Scholar 

  • Adrian, R. H., Freygang, W. H. 1962b. Potassium conductance of frog muscle membrane under controlled voltage.J. Physiol. 163:104

    Google Scholar 

  • Almers, W. 1971. The potassium permeability of frog muscle membrane. Ph.D. Thesis. University of Rochester, Rochester, New York

    Google Scholar 

  • Armstrong, C. M. 1971. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons.J. Gen. Physiol. 58:413

    PubMed  Google Scholar 

  • Benzanilla, F., Armstrong, C. M. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons.J. Gen. Physiol. 60:588

    PubMed  Google Scholar 

  • Binstock, L., Lecar, H. 1969. Ammonium ion currents in the squid giant axon.J. Gen. Physiol. 53:342

    PubMed  Google Scholar 

  • Eisenberg, R. S., Engel, E. 1970. The spacial variation of membrane potential near a small source of current in a spherical cell.J. Gen. Physiol. 55:736

    PubMed  Google Scholar 

  • Eisenman, G. 1965. Some elementary factors involved in specific ion permeation.Proc. Int. Union Physiol. Sci., Amsterdam: Excerpta Med. 4:489

    Google Scholar 

  • Eisenman, G., Sandblom, J. P., Walker, J. L., Jr. 1967. Membrane structure and ion permeation: Study of ion exchange membrane structure and function is relevant to analysis of biological ion permeation.Science 155:965

    PubMed  Google Scholar 

  • Hagiwara, S., Eaton, D. C., Stuart, A. E., Rosenthal, N. P. 1972. Cation selectivity of the resting membrane of squid axon.J. Membrane Biol. 9:373

    Google Scholar 

  • Hagiwara, S., Takahashi, K. 1974. Mechanism of anion permeation through the muscle fibre membrane of an elasmobranch fish,Taeniura lymma.J. Physiol. 238:109

    PubMed  Google Scholar 

  • Hille, B. 1972. Size of the selectivity filter in the K channel of frog nerve.Biophys. Soc. Annu. Meet. Abstr. 16:123a

    Google Scholar 

  • Hille, B. 1973. Potassium channels in myelinated nerve, selective permeability to small cations.J. Gen. Physiol. 61:669

    PubMed  Google Scholar 

  • Hodgkin, A. L., Horowicz, P. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibres.J. Physiol. 148:127

    PubMed  Google Scholar 

  • Hodgkin, A. L., Huxley, A. E. 1952. The dual effect of membrane potential on sodium conductance in the giant axon ofLoligo.J. Physiol. 116:497

    PubMed  Google Scholar 

  • Horowicz, P., Gage, P. W., Eisenberg, R. S. 1968. The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle.J. Gen. Physiol. 51:193s

    Google Scholar 

  • Katz, B. 1949. Les constantes electriques de la membrane du muscle.Arch. Sci. Physiol. 3:285

    Google Scholar 

  • Miyazaki, S., Takahashi, K., Tsuda, K., Yoshii, M. 1974. Analysis of non-linearity observed in the I–V relation of the tunicate embryo.J. Physiol. 238:55

    PubMed  Google Scholar 

  • Nakajima, S., Iwasaki, S., Obata, K. 1962. Delayed rectification and anomalous rectification in frog's skeletal muscle membrane.J. Gen. Physiol. 46:97

    PubMed  Google Scholar 

  • Schneider, M. F., Chandler, W. K. 1973. Voltage dependent charge movement in skeletal muscle: A possible step in excitation contraction coupling.Nature 242:244

    PubMed  Google Scholar 

  • Takahashi, K., Miyazaki, S., Kidokoro, Y. 1971. Development of excitability in embryonic muscle cell membranes in certain tunicates.Science 171:415

    PubMed  Google Scholar 

  • Takeuchi, A., Takeuchi, N. 1971. Anion interaction at the inhibitory post-synaptic membrane of the crayfish neuromuscular junction.J. Physiol. 212:337

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagiwara, S., Takahashi, K. The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J. Membrain Biol. 18, 61–80 (1974). https://doi.org/10.1007/BF01870103

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870103

Keywords

Navigation