Skip to main content
Log in

Proton conductance caused by long-chain fatty acids in phospholipid bilayer membranes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Mechanisms of proton conductance (G H) were investigated in phospholipid bilayer membranes containing long-chain fatty acids (lauric, myristic, palmitic, oleic or phytanic). Membranes were formed from diphytanoyl phosphatidylcholine in decane plus chlorodecane (usually 30% vol/vol). Fatty acids were added either to the aqueous phase or to the membrane-forming solution. Proton conductance was calculated from the steadystate total conductance and the H+ diffusion potential produced by a transmembrane pH gradient. Fatty acids causedG H to increase in proportion to the first power of the fatty acid concentration. TheG H induced by fatty acids was inhibited by phloretin, low pH and serum albumin.G H was increased by chlorodecane, and the voltage dependence ofG H was superlinear. The results suggest that fatty acids act as simple (A type) proton carriers. The membrane: water partition coefficient (K p ) and adsorption coefficient (β) were estimated by finding the membrane and aqueous fatty acid concentrations which gave identical values ofG H. For palmitic and oleic acidsK p was about 105 and β was about 10−2 cm. The A translocation or “flip-flop” rate (k a ) was estimated from the value ofG H and the fatty acid concentration in the membrane, assuming that A translocation was the rate limiting step in H+ transport. Thek A 's were about 10−4 sec−1, slower than classical weak-acid uncouplers by a factor of 105. Although long-chain fatty acids are relatively inefficient H+ carriers, they may cause significant biological H+ conductance when present in the membrane at high concentrations, e.g., in ischemia, hypoxia, hormonally induced lipolysis, or certain hereditary disorders, e.g., Refsum's (phytanic acid storage) disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amende, L.M., Blanchette-Mackie, E.J., Scow, R.O. 1986. Demonstration of fatty acid domains in membranes produced by lipolysis in mouse adipose tissue.Cell Tissue Res. 246:495–508

    PubMed  Google Scholar 

  2. Andersen, O.S., Finkelstein, A., Katz, I., Cass, A. 1976. Effect of phloretin on the permeability of thin lipid membranes.J. Gen. Physiol. 67:749–771

    Google Scholar 

  3. Arvidsson, E.O., Green, F.A., Laurell, S. 1971. Branching and hydrophobic bonding. Partition equilibria and serum albumin binding of palmitic and phytanic acids.J. Biol. Chem. 246:5373–5379

    PubMed  Google Scholar 

  4. Aubourg, P., Robain, O., Rocchiccioli, F., Dancea, S., Scotto, J. 1985. The cerebro-hepato-renal (Zellweger) syndrome: Lamellar lipid profiles in adrenocortical, hepatic mesenchymal, astrocyte cells and increased levels of very long chain fatty acids and phytanic acid in the plasma.J. Neurol. Sci. 69:9–25

    PubMed  Google Scholar 

  5. Aubry, H., Merrill, A.R., Proulx, P. 1986. A comparison of brush-border membranes prepared from rabbit small intestine by procedures involving Ca2+ and Mg2+ precipitation.Biochim. Biophys. Acta 856:610–614

    PubMed  Google Scholar 

  6. Benz, R., McLaughlin, S. 1983. The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanidep-trifluoromethoxy-phenylhydrazone).Biophys. J. 41:381–398

    PubMed  Google Scholar 

  7. Boime, I., Smith, E.E., Hunt, F.E. 1970. The role of fatty acids in mitochondrial changes during liver ischemia.Arch. Biochem. Biophys. 139:425–443

    PubMed  Google Scholar 

  8. Borst, P., Loos, J.A., Christ, E.J., Slater, E.C. 1962. Uncoupling activity of long-chain fatty acids.Biochim. Biphys. Acta 62:509–518

    Google Scholar 

  9. Brown, J.R., Shockley, P. 1982. Serum albumin: Structure and characterization of its ligand binding sites.In: Lipid-Protein Interactions. P.C. Jost and O.H. Griffith, editors, Vol. 1, pp. 25–69. John Wiley and Sons, New York

    Google Scholar 

  10. Cadenhead, D.A., Kellner, B.M.J., Muller-Landau, F. 1975. A comparison of a spin-label and a fluorescent cell membrane probe using pure and mixed monomolecular films.Biochim. Biophys. Acta 382:253–259

    PubMed  Google Scholar 

  11. Cafiso, D.S., Hubbell, W.L. 1983. Electrogenic H+/OH movement across phospholipid vesicles measured by spinlabeled hydrophobic ions.Biophys. J. 44:49–57

    PubMed  Google Scholar 

  12. Chien, K.R., Han, A., Sen, A., Buja, L.M., Willerson, J.T. 1984. Accumulation of unesterified arachidonic acid in ischemic canine myocardium.Circ. Res. 54:313–322

    PubMed  Google Scholar 

  13. Cooper, R., Noy, N., Zakim, D. 1987. A physical-chemical model for cellular uptake of fatty acids: Prediction of intracellular pool sizes.Biochemistry 26:5890–5896

    PubMed  Google Scholar 

  14. Corr, P.B., Gross, R.W., Sobel, B.E. 1984. Amphipathic metabolites and membrane dysfunction in ischemic myocardium.Circ. Res. 55:135–154

    PubMed  Google Scholar 

  15. Cunarro, J., Weiner, M.W. 1975. Mechanism of action of agents which uncouple oxidative phosphorylation: Direct correlation between proton-carrying and respiratory-releasing properties using rat liver mitochondria.Biochim. Biophys. Acta 387:234–240

    PubMed  Google Scholar 

  16. Deamer, D.W. 1987. Proton permeation of lipid bilayers.J. Bioenerg. Biomembr. 19:457–479

    PubMed  Google Scholar 

  17. Dilger, J.P., McLaughlin, J.G.A., McIntosh, T.J., Simon, S.A. 1979. The dielectric constant of phospholipid bilayers and the permeability of membranes to ions.Science 206:1196–1198

    PubMed  Google Scholar 

  18. Dudeja, P.K., Brastis, T.A., Dahiya, R., Brown, M.D., Thomas, D., Lau, K. 1987. Intraluminal calcium modulates lipid dynamics of rat intestinal brush-border membranes.Am. J. Physiol. 252:G398-G403

    PubMed  Google Scholar 

  19. Farber, J.L., Young, E.E. 1981. Accelerated phospholipid degradation in anoxic rat hepatocytes.Arch. Biochem. Biophys. 211:312–320

    PubMed  Google Scholar 

  20. Franks, N.P., Lieb, W.R. 1986. Partitioning of long-chain alcohols into lipid bilayers: Implications for mechanisms of general anesthesia.Proc. Natl. Acad. Sci. USA 83:5116–5120

    PubMed  Google Scholar 

  21. Gutknecht, J. 1984. Proton/hydroxide conductance through lipid bilayer membranes.J. Membrane Biol. 82:105–112

    Google Scholar 

  22. Gutknecht, J. 1987. Proton/hydroxide conductance through phospholipid bilayer membranes: Effects of phytanic acid.Biochim. Biophys. Acta 898:97–108

    PubMed  Google Scholar 

  23. Gutknecht, J. 1987. Proton conductance through phospholipid bilayers: Water wires or weak acids?J. Bioenerg. Biomembr. 19:427–442

    PubMed  Google Scholar 

  24. Gutknecht, J. 1988. Proton conductance caused by longchain fatty acids in phospholipid bilayer membranes.Biophys. J. 53:375a

    Google Scholar 

  25. Hall, J.E., Mead, C.A., Szabo, G. 1973. A barrier model for current flow in lipid bilayer membranes.J. Membrane Biol. 11:75–97

    Google Scholar 

  26. Hamilton, J.A., Cistola, D.P. 1986. Transfer of oleic acid between albumin and phospholipid vesicles.Proc. Natl. Acad. Sci. USA 83:82–86

    PubMed  Google Scholar 

  27. Hauser, H., Howell, K., Dawson, R.M.C., Bowyer, D.E. 1980. Rabbit small intestinal brush border membrane preparation and lipid composition.Biochim. Biophys. Acta 602:567–577

    PubMed  Google Scholar 

  28. Hladky, S.B. 1974. The energy barriers to ion transport by nonactin across thin lipid membranes.Biochim. Biophys. Acta 352:71–85

    PubMed  Google Scholar 

  29. Hochachka, P.W. 1986. Defense strategies against hypoxia and hypothermia.Science 231:234–241

    PubMed  Google Scholar 

  30. Hori, R., Kagimoto, Y., Kamiya, K., Inui, K.-I. 1978. Effects of free fatty acids as membrane components on permeability of drugs across bilayer lipid membranes.Biochim. Biophys. Acta 509:510–518

    PubMed  Google Scholar 

  31. Huang, C., Mason, J.T. 1978. Geometric packing constraints in egg phosphatidylcholine vesicles.Proc. Natl. Acad. Sci. USA 75:308–310

    PubMed  Google Scholar 

  32. Ives, H.E., Verkman, A.S. 1985. Effects of membrane fluidizing agents on renal brush border proton permeability.Am. J. Physiol. 249:F933-F940

    PubMed  Google Scholar 

  33. Kasianowicz, J., Benz, R., McLaughlin, S. 1984. The kinetic mechanism by which CCCP (carbonyl cyanidem-chlorophenylhydrazone) transports protons across membranes.J. Membrane Biol. 82:179–190

    Google Scholar 

  34. Kasianowicz, J., Benz, R., McLaughlin, S. 1987. How do protons cross the membrane-solution interface? Kinetic studies on bilayer membranes exposed to the protonophore S-13 (5-chloro-3-tert-butyl-2′-chloro-4′ nitrosalicylanilide).J. Membrane Biol. 95:73–89

    Google Scholar 

  35. Knauf, P.A., Fuhrmann, G.F., Rothstein, S., Rothstein, A. 1977. The relationship between anion exchange and net anion flow across the human red blood cell membrane.J. Gen. Physiol. 69:363–386

    Google Scholar 

  36. Koynova, R.D., Boyanov, A.I., Tenchov, B.G. 1987. Gelstate metastability and nature of the azeotropic points in mixtures of saturated phosphatidylcholines and fatty acids.Biochim. Biophys. Acta 903:186–196

    Google Scholar 

  37. Krishnamoorthy, G., Hinkle, P.C. 1984. Non-ohmic proton conductance of mitochondria and liposomes.Biochemistry 23:1640–1645

    PubMed  Google Scholar 

  38. Laposta, E.A., Lange, L.G. 1986. Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse.Science 231:497–499

    PubMed  Google Scholar 

  39. Leaf, A., Macknight, A.D.C., Cheung, J.W., Bonventre, J.V. 1986. The cellular basis of ischemic acute renal failure.In: Physiology of Membrane Dsorders. T.E. Andreoli, J.F. Hoffman, D.D. Fanestil and S.G. Schultz, editors, pp. 769–784. Plenum Medical, New York

    Google Scholar 

  40. LeBlanc, O.H., Jr. 1971. The effect of uncouplers of oxidative phosphorylation on lipid bilayer membranes: Carbonylcyanidem-chlorophenylhydrazone.J. Membrane Biol. 4:227–251

    Google Scholar 

  41. Lindsey, H., Petersen, N.O., Chan, S.I. 1979. Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems.Biochim. Biophys. Acta 555:147–167

    PubMed  Google Scholar 

  42. Livingstone, C.J., Schachter, D. 1980. Calcium modulates the lipid dynamics of rat hepatocyte plasma membranes by direct and indirect mechanism.Biochemistry 19:4823–4827

    PubMed  Google Scholar 

  43. Luvisetto, S., Pietrobon, D., Azzone, G.F., 1987. Uncoupling of oxidative phosphorylation: 1. Protonophoric effects account only partially for uncoupling.Biochemistry 26:7332–7338

    PubMed  Google Scholar 

  44. Maloney, P.C. 1979. Membrane H+ conductance ofStreptococcus lactis.J. Bacteriol. 140:197–205

    PubMed  Google Scholar 

  45. McLaughlin, S.G.A., Dilger, J.P.1980. Transport of protons across membranes by weak acids.Physiol. Rev. 60:825–863

    Google Scholar 

  46. Mitchell, P., Moyle, J. 1967. Acid-base titration across the membrane system of rat-liver mitochondria.Biochem. J. 104:588–600

    PubMed  Google Scholar 

  47. Mueller, P., Rudin, D.O. 1969. Translocators in biomolecular lipid membranes: Their role in dissipative and conservative bioenergy transductions.Curr. Top. Bioenerg. 3:157–249

    Google Scholar 

  48. Muranushi, N., Takagi, N., Muranishi, S., Sezaki, H. 1981. Effect of fatty acids and monoglycerides on permeability of lipid bilayer.Chem. Phys. Lipids 28:269–279

    PubMed  Google Scholar 

  49. Nagle, J.F. 1987. Theory of passive proton conductance in lipid bilayers.J. Bioenerg. Biomembr. 19:413–426

    PubMed  Google Scholar 

  50. Nicholls, D.G., Locke, R.M. 1984. Thermogenic mechanisms in brown fat.Physiol. Rev. 64:1–62

    PubMed  Google Scholar 

  51. Nichols, J.W., Deamer, D.W. 1980. Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique.Proc. Natl. Acad. Sci. USA 77:2038–2042

    PubMed  Google Scholar 

  52. Noy, N., Zakim, D. 1985. Substrate specificity of fatty-acyl-CoA ligase in liver microsomes.Biochim. Biophys. Acta 833:239–244

    PubMed  Google Scholar 

  53. Perkins, W.R., Cafiso, D.S. 1987. Procedure using voltagesensitive spin-labels to monitor dipole potential changes in phospholipid vesicles: The estimation of phloretin-induced conductance changes in vesicles.J. Membrane Biol. 96:165–173

    Google Scholar 

  54. Perkins, W.R., Cafiso, D.S. 1987. Characterization of the H+/OH conductivity of phospholipid vesicles.J. Bioenerg. Biomembr. 19:443–455

    PubMed  Google Scholar 

  55. Philipson, K.D., Ward, R. 1985. Effects of fatty acids on Na+−Ca2+ exchange and Ca2+ permeability of cardiac sarcolemmal vesicles.J. Biol. Chem. 260:9666–9671

    PubMed  Google Scholar 

  56. Pind, S., Kuksis, A. 1987. Isolation of purified brush-border membranes from rat jejunum containing a Ca2+-independent phospholipase A2 activity.Biochim. Biophys. Acta 903:78–87

    PubMed  Google Scholar 

  57. Piper, H.M., Sezer, O., Schwartz, P., Hutter, J.F., Spieckerman, P.G. 1983. Fatty-acid membrane interactions in isolated cardiac mitochondria and erythrocytes.Biochim. Biophys. Acta 732:193–203

    PubMed  Google Scholar 

  58. Pjura, W.J., Kleinfeld, A.M., Karnovsky, M.J. 1984. Partition of fatty acids and fluorescent fatty acids into membranes.Biochemistry 23:2039–2043

    PubMed  Google Scholar 

  59. Pressman, B.C., Lardy, H.A. 1956. Effect of surface active agents on the latent ATPase of mitochondria.Biochim. Biophys. Acta 21:458–466

    PubMed  Google Scholar 

  60. Raven, J.A., Beardall, J. 1981. The intrinsic permeability of biological membranes to H+: Significance for the efficiency of low rates of energy transformation.FEMS Microbiol. Lett. 10:1–5

    Google Scholar 

  61. Requena, J., Haydon, D.A. 1985. Is there a “cut-off” in the adsorption of long chain amphipathic molecules into lipid membranes?Biochim. Biophys. Acta 814:191–194

    Google Scholar 

  62. Reyes, J., Greco, F., Motais, R., Latorre, R. 1983. Phloretin and phloretin analogues: Mode of action in planar bilayers and monolayers.J. Membrane Biol. 72:93–103

    Google Scholar 

  63. Rooney, E.K., East, J.M., Jones, O.T., McWhirter, J., Simmonds, A.C., Lee, A.G. 1983. Interaction of fatty acids with lipid bilayers.Biochim. Biophys. Acta 728:159–170

    Google Scholar 

  64. Rottenberg, H., Steiner-Mordoch, S. 1986. Free fatty acids decouple oxidative phosphorylation by dissipating intramembranal protons without inhibiting ATP synthesis driven by the proton electrochemical gradient.FEBS Lett. 202:314–318

    PubMed  Google Scholar 

  65. Sallee, V.L. 1978. Fatty acid and alcohol partitioning into intestinal brush border and erythrocyte membranes.J. Membrane Biol. 43:187–201

    Google Scholar 

  66. Schullery, S.E., Seder, T.A., Weinstein, D.A., Bryant, D.A. 1981. Differential thermal analysis of dipalmitoyl phosphatidylcholine-fatty acid mixtures.Biochemistry 20:6818–6824

    PubMed  Google Scholar 

  67. Siesjo, B.K. 1984. Cerebral circulation and metabolism.J. Neurosurg. 60:883–908

    PubMed  Google Scholar 

  68. Small, D.M., Cabral, D.J., Cistola, D.P., Parks, J.S., Hamilton, J.A. 1984. The ionization behavior of fatty acids and bile acids in micelles and membranes.Hepatology 4:77S-79S

    PubMed  Google Scholar 

  69. Smejtek, P., Jayaweera, A.R., Hsu, K. 1983. Electrical conductivity, transfer of hydrogen ions in lipid bilayer membranes and uncoupling effect induced by pentachlorobenzenethiol (pentachlorothiolphenol).J. Membrane Biol. 76:227–234

    Google Scholar 

  70. Smith, M.W., Collan, Y., Kahng, M.W., Trump, B.F. 1980. Changes in mitochondrial lipids of rat kidney during ischemia.Biochim. Biophys. Acta 618:192–201

    PubMed  Google Scholar 

  71. Spector, A.A. 1986. Plasma albumin as a lipoprotein.In: Biochemistry and Biology of Plasma Lipoproteins. A.M. Scanu and A.A. Spector, editors. pp. 247–279. Marcel Dekker, New York

    Google Scholar 

  72. Steinberg, D. 1978. Phytanic acid storage disease: Refsum's syndrome.In: The Metabolic Basis of Inherited Disease. (4th ed.) J.B. Stanbury, J.B. Wyngaarden, and D.S. Fredrickson, editors. pp. 688–706. McGraw-Hill, New York

    Google Scholar 

  73. Tosteson, D.C., Gunn, R.B., Wieth, J.O. 1973. Chloride and hydroxyl ion conductances of sheep red cell membranes.In: Erythrocytes, Thrombocytes, Leukocytes. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, editors. pp. 62–66. Georg Theime, Stuttgart

    Google Scholar 

  74. Tsui, F.C., Ojcius, D.M., Hubbell, W.L. 1986. The intrinsic pK a values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine bilayers.Biophys. J. 49: 459–468

    PubMed  Google Scholar 

  75. Vallano, M.L., Lee, M.Y., Sonenberg, M. 1983. Hormones modulate adipocyte membrane potential, ATP and lipolysis via free fatty acids.Am. J. Physiol. 245:E266-E272

    PubMed  Google Scholar 

  76. Verkman, A.S. 1987. Passive H+/OH permeability in epithelial brush border membranes.J. Bioenerg. Biomembr. 19:481–493

    PubMed  Google Scholar 

  77. Von Tscharner, V., Radda, G.K. 1981. The effect of fatty acids on the surface potential of phospholipid vesicles measured by condensed phase radioluminescence.Biochim. Biophys. Acta 643:435–448

    PubMed  Google Scholar 

  78. Vusse, G.J. van der, Roemen, T.H.M., Prinzen, F.W., Coumans, W.A., Reneman, R.S. 1982. Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions.Circ. Res. 50:538–546

    PubMed  Google Scholar 

  79. Walter, A., Gutknecht, J. 1984. Monocarboxylic acid permeation through lipid bilayer membranes.J. Membrane Biol. 77:255–264

    Google Scholar 

  80. Walter, A., Gutknecht, J. 1986. Permeability of small non-electrolytes through lipid bilayer membranes.J. Membrane Biol. 90:207–217

    Google Scholar 

  81. Wojtczak, L. 1976. Effect of long-chain fatty acids and acyl-CoA on mitochondrial permeability, transport and energy coupling processes.J. Bioenerg. Biomembr. 8:293–311

    PubMed  Google Scholar 

  82. Wright, E.M., Schell, R.E., Gunther, R.D. 1984. Proton and bicarbonate permeability of plasma membrane vesicles.In: Hydrogen Ion Transport in Epithelia. J.G. Forte and F.C. Rector, editors. pp. 21–33. John Wiley and Sons. New York

    Google Scholar 

  83. Yakymyshyn, L.M., Walker, K., Thompson, A.B.R. 1982. Use of Percoll in the isolation and purification of rabbit small intestinal brush border membranes.Biochim. Biophys. Acta 690:269–281

    PubMed  Google Scholar 

  84. Yoshida, S., Ikeda, M., Busto, R., Santiso, M., Martinez, E., Ginsberg, M.D. 1986. Cerebral phosphoinositide, triacylglycerol, and energy metabolism in reversible ischemia: Origin and fate of free fatty acids.J. Neurochem. 47:744–757

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutknecht, J. Proton conductance caused by long-chain fatty acids in phospholipid bilayer membranes. J. Membrain Biol. 106, 83–93 (1988). https://doi.org/10.1007/BF01871769

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871769

Key Words

Navigation